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OPTIMAL APPROXIMATION RATE OF CERTAIN

STOCHASTIC INTEGRALS

HEIKKI SEPPÄLÄ

Abstract. Given an increasing function H : [0, 1) → [0,∞) and

An(H) := inf
τ∈Tn

 

n
X

i=1

Z ti

ti−1

(ti − t)H2(t)dt

!

1

2

,

where Tn := {τ = (ti)
n
i=0 : 0 = t0 < t1 < · · · < tn = 1}, we characterize the property

An(H) ≤ c√
n
, and give conditions for An(H) ≤ c√

nβ
and An(H) ≥ 1

c
√

nβ
for β ∈ (0, 1),

both in terms of integrability properties of H . These results are applied to the approxi-

mation of certain stochastic integrals.
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1. Introduction

In this paper we estimate the size of the error which occurs when a
stochastic integral is approximated discretely. To explain the problem
in more detail, we assume a stochastic process X = (Xt)t∈[0,1] such that

dXt = σ(Xt)dWt with X0 ≡ x0 > 0,

where W = (Wt)t∈[0,1] is the standard Brownian motion, σ satisfies
certain regularity properties, and (Ft)t∈[0,1] is the augmentation of the
filtration generated by W . It is of interest to approximate discretely a
stochastic integral, which can be written as

(1) f(X1) = Ef(X1) +

∫ 1

0

λudXu,

where f : R → R is a polynomially bounded, Borel measurable func-
tion, and λ = (λt)t∈[0,1] is a suitable adapted process. We approximate
f(X1) by

(2) Ef(X1) +

n
∑

i=1

λti−1
(Xti −Xti−1

),

where τn := (ti)
n
i=0 is a deterministic time net with 0 = t0 < t1 <

· · · < tn−1 < tn = 1. Using this approximation instead of the original
stochastic integral, we obtain an approximation error

(3) f(X1)− Ef(X1)−
n
∑

i=1

λti−1
(Xti −Xti−1

).

1
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We are interested in the minimal quadratic error under the constraint
that the time net used in the approximation has n + 1 time points.
According to [3, Lemma 3.2 and its proof], this error is equivalent to

(4) aXn (Z) := inf
τn
aX(Z, τ

n),

where aX(Z, τ
n) := inf

(

E|f(X1)− Ef(X1)−
∑n

i=1 vi−1(Xti −Xti−1
)|2
)

1
2

and Z = f(X1) with the infimum taken over all sequences v = (vi)
n−1
i=0

of Fti-measurable step functions vi : Ω → R.

The approximation problem is of interest for at least two reasons.

(a) In stochastic finance one would like to replace a continuously
adjusted hedging portfolio in the Black-Scholes option pricing
model by a discretely adjusted one, as portfolios can be adjusted
in practice only finitely many times. If we consider the qua-
dratic error which occurs in this replacement (and which we can
interpret as risk in finance), then we end up with the approxi-
mation problem described above. In this case X = (Xt)t∈[0,1] is
an appropriate positive diffusion process, f : (0,∞) → [0,∞) is
a payoff function of a European type option, and τn is the net
of time points where the portfolio is rebalanced.

(b) The approximation introduced above yields to an approxima-

tion of
∫ t

0
λudXu by

∑n
i=1 λti−1

(Xti∧t − Xti−1∧t). The point is
that the approximation itself is a stochastic integral, but the
integrand λu (which is usually hard to compute) is only com-
puted n-times, whereas the increments (Xti∧t −Xti−1∧t) can be
easily simulated (for example by an Euler scheme).

There are several previous results concerning the error caused by the
discrete approximation of stochastic integrals. Under certain conditions
on Z and σ, C. and S. Geiss showed that if τn = ( i

n
)ni=0 is the equidistant

time net with cardinality n+ 1, then one has that

aX(Z, τ
n) ≤ c√

n

if and only if Z belongs to the Malliavin Sobolev space D1,2 [3, The-
orems 2.3, and 2.6]. Furthermore, they proved that there exists a
constant c > 0 such that aXn (Z) ≥ 1

c
√
n
unless there are constants c0

and c1 such that Z = c0+ c1X1 a.s. [3, Theorem 2.5] (if such constants
do exist, then aXn (Z) = 0). It is also known by [3, Theorem 2.9] and [7,
Theorem 3.2] that there exists a constant c > 0 such that aXn (Z) ≤ c√

n
,

if Z has a certain polynomial smoothness measured by Besov spaces
generated by real interpolation. In this case the rate 1√

n
is obtained by

adapted non–equidistant time nets.
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M. Hujo showed in [8, Theorem 3] that for X being the Brownian
motion or the geometric Brownian motion, there exists random vari-
ables Z = f(X1) ∈ L2(Ω,F ,P) such that

sup
n∈N

√
naXn (Z) = ∞,

which means that the approximation rate is not always 1√
n
even if the

underlying process is the standard Brownian motion. However, there
are no explicit examples of such functions.

These results lead us to the question to characterize those Z =
f(X1) ∈ L2(Ω,F ,P) with

aXn (Z) ≤
c√
n

for some c = c(Z) > 0.

According to Theorem 4.4 below, there exists a constant c = c(σ) > 0
such that

1

c
aX(Z, τ) ≤

(

n
∑

i=1

∫ ti

ti−1

(ti − t)H2
XZ(t)dt

)
1
2

≤ caX(Z, τ),

where HXZ(t) :=
∥

∥

∥

(

σ2 ∂2F
∂x2

)

(t, Xt)
∥

∥

∥

L2

, F : [0, 1) × I → R is given by

F (t, x) = E(Z|Xt = x), f and X satisfy certain conditions and I ⊂ R

depends on X . Moreover, Lemma 4.3 implies that HXZ is increasing
so that we concentrate our investigations for some time on the quantity

An(H) := inf
τ∈Tn

(

n
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

)
1
2

,

where the function H : [0, 1) → [0,∞) is increasing and

Tn := {τ = (ti)
n
i=0 : 0 = t0 < t1 < · · · < tn = 1}.

Our first main result, Theorem 2.3, says that

inf
τ∈Tn

(

n
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

)
1
2

≤ c√
n
,

if and only if the function H is integrable. Moreover, in Theorem 2.5
we give sufficient conditions for

inf
τ∈Tn

(

n
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

)
1
2

≤ c√
nβ

and

inf
τ∈Tn

(

n
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

)
1
2

≥ 1

c
√
nβ
,

where β ∈ (0, 1), in terms of the growth rate of H : [0, 1) → [0,∞).
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These results can be applied to the setting introduced above and
also to other situations, for example to the quadratic approximation of
multi–dimensional stochastic integrals (see [9], [12] and [13]).

The paper is organized as follows: In section 2 we introduce the main
results of the paper, their proofs can be found in Section 3. In Section
4 we apply the results of Section 2 to the 1–dimensional stochastic
setting. In particular, we give an example of random variables for which
the approximation rate is 1

c
√
nβ

≤ aXn (Z) ≤ c√
nβ
, for β ∈ (0, 1) in case

X is the standard Brownian motion or the geometric Brownian motion.
In Section 5 the results of Section 2 are applied to the approximation
of d–dimensional stochastic integrals where the underlying diffusion
might have a drift.

2. Results

To shorten the notation in the following, we say that A ∼c B if for
constant c ≥ 1 it holds that 1

c
A ≤ B ≤ cA and for time net τ ∈ Tn we

define
||τ ||∞ := max

i∈1,...,n
{ti − ti−1}.

2.1. Definition. Let H : [0, 1) → R be a non–negative measurable
function. If τ = (ti)

n
i=0 ∈ Tn, then we define







A(H, τ) :=
(

∑n
i=1

∫ ti
ti−1

(ti − t)H2(t)dt
)

1
2
,

An(H) := infτ∈Tn A(H, τ).

2.2.Definition. We say that an increasing functionH : [0, 1) → [0,∞)
belongs to the set A if and only if

‖H‖A := sup
n∈N

√
nAn(H) <∞,

and to the set H if and only if

‖H‖H :=

∫ 1

0

H(t)dt <∞.

2.3.Theorem. Let H : [0, 1) → [0,∞) be an increasing function. Then

sup
n∈N

√
nAn(H) <∞

if and only if
∫ 1

0
H(t)dt <∞. In particular, one has that

‖H‖A ∼√
2 ‖H‖H.

2.4. Remark. The proof of Theorem 2.3 implies that I :=
∫ 1

0
H(t)dt <

∞ gives

An(H) ≤ I√
n

for all n ∈ N.
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This rate can be obtained by regular sequences (see [10] and [11])
generated by H . Regular sequences generated by H are time nets
τn = (tni )

n
i=0 for which

∫ tni

0

H(t)dt =
i

n

∫ 1

0

H(t)dt

for all i ∈ {0, ..., n}.
Our second main result is

2.5. Theorem. Let H : [0, 1) → [0,∞) be an increasing function and
α ∈ (1

2
, 1). Then one has the following:

(1) If there exists a constant c1 ≥ 1 such that

H(t) ≤ c1
(1− log(1− t))−α

1− t
for all t ∈ [0, 1),

then

An(H) ≤ c√
n2α−1

for all n ∈ N,

where c = c(α) ≥ 1.
(2) If there exists s ∈ [0, 1) and a constant c2 ≥ 1 such that

H(t) ≥ 1

c2

(1− log(1− t))−α

(1− t)
for all t ∈ [s, 1),

then

An(H) ≥ 1

c

1√
n2α−1

for all n ∈ N,

where c = c(s, α, c2) ≥ 1.

2.6. Remark. It follows from the arguments in [5, Lemma 4.14, Propo-
sition 4.16] that if H is increasing and there are C ∈ (0,∞), α ∈ (1,∞)
with

H(t) ≤ C

[α + log(1 + 1
1−t

)]α(1− t)

for all t ∈ [0, 1), then one has that

sup
n

√
nAn(H) <∞ for all n ∈ N.

2.7. Remark. Let H : [0, 1) → [0,∞) be a measurable function and
H∗(t) := sups∈[0,t]H(s) < ∞ for all t ∈ [0, 1). Then the monotonicity
properties of An(·) imply the following:

(1) supn∈N
√
nAn(H) ≤ ‖H∗‖H as a consequence of Lemma 3.1.

(2) If H∗(t) ≤ c1
(1−log(1−t))−α

1−t
for all t ∈ [0, 1), then

An(H) ≤ c√
n2α−1

for all n ∈ N.
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3. Proof

In this chapter we prove Theorems 2.3 and 2.5. To prove Theorem
2.3 we need two lemmas concerning the connection between An(H) and
∫ 1

0
H(t)dt, where H is a non–negative and increasing function.

3.1. Lemma. Let H : [0, T ) → [0,∞), T > 0, be an increasing function
such that

I =

∫ T

0

H(t)dt <∞.

Then for all n ∈ N there exists a sequence τn = (tni )
n
i=0, 0 = tn0 < tn1 <

· · · < tnn = T such that
∫ tni

0

H(t)dt =
i

n
I

for all i ≤ n and for this sequence it holds that
(

n
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

)
1
2

≤ I√
n
.

Proof. The existence of the sequence (tni )
n
i=0 for which

∫ tni

0

H(t)dt =
i

n
I

follows from the continuity of the integral. Now we have

n
∑

i=1

∫ tni

tni−1

(tni − t)H2(t)dt =
n
∑

i=1

∫ tni

tni−1

[(tni − t)H(t)]H(t)dt

≤ I

n

n
∑

i=1

sup
t∈[tni−1,t

n
i )

(tni − t)H(t).

Since H is increasing, it is clear that

(tni − t)H(t) ≤
∫ tni

t

H(s)ds ≤
∫ tni

tni−1

H(s)ds

for all t ∈ [tni−1, t
n
i ). Hence

n
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt ≤ I

n

n
∑

i=1

∫ tni

tni−1

H(t)dt =
I2

n
.

�

3.2. Lemma. Let H : [0, 1) → [0,∞) be an increasing function. If for
all n ∈ N there exists a time net τn = (tni )

n
i=0 ∈ Tn such that

A(H, τn) ≤ c√
n
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for some fixed c > 0, then H is integrable and
∫ 1

0

H(t)dt ≤
√
2c.

Proof. If A(H, τn) = 0, then H ≡ 0 and the claim is trivial. Assume
then that A(H, τn) > 0, which implies thatH(t) > 0 for some t ∈ [0, 1).
Let a := inf{t ∈ [0, 1) : H(t) > 0} and τ̃n = {a} ∪ {tni ∈ τn : tni > a}.
Since H is positive on (a, 1), our assumption implies that ||τ̃n||∞ → 0
as n→ ∞. Using the Cauchy-Schwartz inequality and the assumption
A2(H, τn) ≤ c2

n
we see that

[

n−1
∑

i=1

H(tni−1)(t
n
i − tni−1)

]2

≤ n

n−1
∑

i=1

H2(tni−1)(t
n
i − tni−1)

2

≤ 2n
n
∑

i=1

∫ tni

tni−1

(tni − t)H2(t)dt ≤ 2c2.

(5)

Let b ∈ (a, 1) and 0 < ǫ <
√
c. Choose n such that b < tnn−1 and

∫ b

0

H(t)dt <
n−1
∑

i=1

H(tni−1)(t
n
i − tni−1) + ǫ.

(We can choose n satisfying this, since the positivity of the function H
on the interval (a, 1) implies that tnn−1 → 1 and ||τ̃n||∞ → 0 as n→ ∞.)
Now (5) gives that

∫ b

0

H(t)dt ≤
√
2c+ ǫ

and since this is true for any b ∈ (a, 1) and any ǫ > 0, we finally have
∫ 1

0

H(t)dt ≤
√
2c.

�

Proof of Theorem 2.3. Assume first thatH ∈ H. Then I :=
∫ 1

0
H(t)dt <

∞ and Lemma 3.1 implies
√
nAn(H) ≤ I for all n ∈ N

and ‖H‖A ≤ ‖H‖H.
Assume now that H ∈ A, which means that

sup
n∈N

√
nAn(H) <∞.

Lemma 3.2 implies
∫ 1

0

H(t)dt ≤
√
2 sup

n∈N

√
nAn(H)

and ‖H‖H ≤
√
2‖H‖A.
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The computations above imply
∫ 1

0

H(t)dt <∞ if and only if sup
n∈N

√
nAn(H) <∞

and that ‖H‖H ∼√
2 ‖H‖A. �

3.3. Lemma. Let H : [0, 1) → [0,∞) be an increasing function. Then

An(H) ≤ inf
T∈(0,1)







(

∫ T

0
H(t)dt

)2

n− 1
+

∫ 1

T

(1− t)H2(t)dt







1
2

for all n ≥ 2.

Proof. Let T ∈ [0, 1) and let τn = (ti)
n
i=0 ∈ Tn be a time net such that

0 = t0 < t1 < · · · < tn−1 = T < tn = 1 and
∫ ti

0

H(t)dt =
i

n− 1

∫ T

0

H(t)dt for all i = 1, ..., n− 1.

Using Lemma 3.1 we get that

A2(H, τn) =
n−1
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt+

∫ 1

tn−1

(1− t)H2(t)dt

≤

(

∫ T

0
H(t)dt

)2

n− 1
+

∫ 1

T

(1− t)H2(t)dt.

By definition, we have that An(H) ≤ A(H, τn) and we are done. �

3.4. Remark. The best rate that Lemma 3.3 can give, is obtained by
choosing T such that

∫ T

0

H(t)dt =
√
n− 1

(
∫ 1

T

(1− t)H2(t)dt

)1/2

.

However, it is not known if Lemma 3.3 gives the optimal rate, i.e. we
do not know whether the inequality

(6) A2
n(H) ≥ 1

c
inf

T∈(0,1)







(

∫ T

0
H(t)dt

)2

n− 1
+

∫ 1

T

(1− t)H2(t)dt







holds. What we have is

A2
n(H) = inf

T∈(0,1)

[

A2
n−1(H|[0, T ]) +

∫ 1

T

(1− t)H2(t)dt

]

,

where

A2
n−1(H|[0, T ]) := inf

0=t0<···<tn−1=T

n−1
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt.
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In order to obtain inequality (6) we would need to know that there
exists a constant c > 0 such that

A2
n−1(H|[0, T ]) ≥ 1

c

(

∫ T

0
H(t)dt

)2

n− 1
,

for all n ≥ 2, but we do not know whether this is true.

For the proof of Theorem 2.5, we need the following lemmas.

3.5. Lemma. Let β ∈ (0, 1). Then there exists a constant c > 0 such
that

(1− log(1− t))−(1+β)

(1− t)2
∼c

∫ ∞

1

z−β−2(1− t)
1
z
−2dz for all t ∈ [0, 1).

Proof. Let ψβ(t) =
(1−log(1−t))−(1+β)

(1−t)2
and ϕβ(t) =

∫∞
1
z−β−2(1− t)

1
z
−2dz.

Choosing x = − log(1−t)
z

, we obtain

ϕβ(t) =

∫ ∞

1

z−β−2(1− t)
1
z
−2dz

=

∫ 0

− log(1−t)

(− log(1− t)

x

)−β−2

(1− t)
− x

log(1−t)
−2 log(1− t)dx

x2

=
(− log(1− t))−β−1

(1− t)2

∫ − log(1−t)

0

xβe−xdx,

since (1− t)
1

log(1−t) = [elog(1−t)]
1

log(1−t) = e.
The statement follows from

lim
t→1

ϕβ(t)

ψβ(t)
=

∫ ∞

0

xβe−xdx ∈ (0,∞).

�

3.6. Lemma. [8, Lemma 7] Let θ ∈ [1, 2) and Hθ : [0, 1) → [0,∞), be
given by

Hθ(t) =
√

(2− θ)(1− t)−θ for t ∈ [0, 1).

Then

inf
(ti)ni=0∈Tn

n
∑

i=1

∫ ti

ti−1

(ti − t)H2
θ (t)dt ≥ (θ − 1)n−1

for all n ∈ {1, 2, ...}.
3.7. Lemma. Let H : [0, 1) → [0,∞) be an increasing function and
β ∈ (0, 1). If

H2(t) ≥
∫ ∞

1

z−β−2(1− t)
1
z
−2dz for all t ∈ [0, 1),

then

An(H) ≥ 1

cβ
√
nβ

for all n ∈ N
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where cβ =
√

β(4β+2 + 2β+2 + 1)e.

Proof. Let g : [1,∞)× [0, 1) → (0,∞) be given by

g(z, t) = z−β−2(1− t)
1
z
−2.

Then

g(k, t)

g(k + 1, t)
=

(

1 +
1

k

)β+2

(1− t)
1

k(k+1) ≤ 2β+2

for all k ≥ 1 and t ∈ [0, 1). We have

d

dz
g(z, t) = (− log(1− t)− (2 + β)z)

(1− t)
1
z
−2

zβ+4

and it is easy to see that for any fixed t ∈ [0, 1) there exists kt ≥ 2 such
that g(z, t) is increasing for all z ≤ kt−1 and decreasing for all z ≥ kt.
Hence

∫ ∞

1

g(z, t)dz ≥
kt−2
∑

k=1

g(k, t) +
∞
∑

k=kt+1

g(k, t),

where we treat an empty sum as zero. Since g(k, t) ≤ 2β+2g(k + 1, t)
for all k ≥ 1, we have

g(kt − 1, t) + g(kt, t) + g(kt + 1, t) ≤ cβg(kt + 1, t),

with cβ := (4β+2 + 2β+2 + 1), and therefore

∞
∑

k=(kt−1)

g(k, t) = g(kt − 1, t) + g(kt, t) + g(kt + 1, t) +
∞
∑

k=kt+1

g(k + 1, t)

≤ cβ

∞
∑

k=kt

g(k + 1, t).

This implies

∫ ∞

1

g(z, t)dz ≥
kt−2
∑

k=1

g(k, t) +
∞
∑

k=kt

g(k + 1, t)

≥
kt−2
∑

k=1

g(k, t) +
1

cβ

∞
∑

k=(kt−1)

g(k, t)

≥ 1

cβ

∞
∑

k=1

g(k, t)

for all t ∈ [0, 1).
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Let ak = 2− 1
k
and pk = k−(1+β). By assumption,

H2(t) ≥
∫ ∞

1

g(z, t)dz

≥ 1

cβ

∞
∑

k=1

g(k, t)

=
1

cβ

∞
∑

k=1

1

kβ+1

1

k
(1− t)

1
k
−2

=
1

cβ

∞
∑

k=1

pk(2− ak)(1− t)−ak .

Now

A2
n(H) = inf

τ∈Tn

n
∑

i=1

∫ ti

ti−1

(ti − t)H2(t)dt

≥ inf
τ∈Tn

n
∑

i=1

∫ ti

ti−1

(ti − t)
1

cβ

∞
∑

k=1

pk(2− ak)(1− t)−akdt

=
1

cβ
inf
τ∈Tn

∞
∑

k=1

pk

n
∑

i=1

∫ ti

ti−1

(ti − t)(2− ak)(1− t)−akdt

≥ 1

cβ

∞
∑

k=1

pk inf
τ∈Tn

n
∑

i=1

∫ ti

ti−1

(ti − t)(2− ak)(1− t)−akdt.

To prove our claim it is enough to consider n ≥ 2. We set

Hak(t) =
√

(2− ak)(1− t)−ak ,

and now Lemma 3.6 implies that

A2
n(H) ≥ 1

cβ

∞
∑

k=1

pk(ak − 1)n−1

=
1

cβ

∞
∑

k=1

k−(1+β)

(

1− 1

k

)n−1

≥ 1

cβe

∞
∑

k=n

k−(1+β)

≥ 1

cβeβ
n−β

=
1

c̃βnβ
,

where c̃β = eβcβ. �
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3.8. Lemma. Let β ∈ (0, 1) and H : [0, 1) → [0,∞) be an increasing
function such that there exists a constant c1 ≥ 1 for which

An(H + 1) ≥ 1

c1
√
nβ

for all n ∈ N.

Then there exists a constant c2 ≥ 1 such that

An(H) ≥ 1

c2
√
nβ

for all n ∈ N.

Proof. Assume first n ≥ ñ := (2β+1c21)
1

1−β . Then we have 1
2c21(2n)

β ≥ 1
n

and since

A2
2n−1(H + 1) ≤ 2[A2

n(H) + A2
n(1)] ≤ 2

[

A2
n(H) +

1

2n

]

for all n ∈ N,

we get

A2
n(H) ≥ 1

2c21(2n− 1)β
− 1

2n
≥ 1

4c21(2n)
β
=

1

c̃22n
β

for all n ≥ ñ, where c̃2 = 2
1+β

2

√
2c1.

If n < ñ, the computations above imply

A2
n(H) ≥ A2

⌈ñ⌉(H) ≥ 1

c̃22⌈ñ⌉β
≥ 1

c22n
β
,

where c2 = c̃2⌈ñ⌉
β

2 and ⌈ñ⌉ := inf{k ∈ Z : ñ ≤ k}. �

Proof of Theorem 2.5.

(1) Let T = 1−ecα(n), where cα(n) = 1− ((1−α)n1−α+1)
1

1−α . Then

∫ T

0

H(t)dt ≤ c1

∫ T

0

(1− log(1− t))−α

1− t
dt

=
c1

1− α
[(1− log(1− T ))1−α − 1]

= c1n
1−α

and
∫ 1

T

(1− t)H2(t)dt ≤ c21

∫ 1

T

(1− log(1− t))−2α

1− t
dt

=
c21

2α− 1
(1− log(1− T ))1−2α

=
c21

2α− 1
((1− α)n1−α + 1)

1−2α
1−α

≤ c21(1− α)
1−2α
1−α

2α− 1
n1−2α
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and hence Lemma 3.3 says that, for n ≥ 2,

An(H) ≤
[

1

n− 1

(
∫ T

0

H(t)dt

)2

+

∫ 1

T

(1− t)H2(t)dt

]1/2

≤
[

c21
n− 1

n2−2α + c21c̃αn
1−2α

]1/2

≤ c1
(2 + c̃α)

1
2

√
n2α−1

,

where c̃α = (1−α)
1−2α
1−α

2α−1
.

(2) Assume there exists a constant c2 ≥ 1 such that

H(t) ≥ (1− log(1− t))−α

c2(1− t)
for all t ∈ [s, 1).

Then there exists a constant c3 ≥ 1 such that

H(t) + 1 ≥ (1− log(1− t))−α

c3(1− t)
for all t ∈ [0, 1).

If we write β = 2α− 1 ∈ (0, 1), Lemma 3.5 implies that there exists a
constant c4 ≥ 1 such that

(H(t) + 1)2 ≥ 1

c4

∫ ∞

1

z−β−2(1− t)
1
z
−2dz for all t ∈ [0, 1),

and Lemma 3.7 implies that there exists c5 ≥ 1 such that

An(H + 1) ≥ 1

c5
√
nβ

for all n ∈ N.

Finally, Lemma 3.8 implies the existence of a constant c ≥ 1 such that

An(H) ≥ 1

c
√
nβ

for all n ∈ N.

�

4. Application: Optimal approximation rate of certain
stochastic integrals

Throughout the section, we assume a standard Brownian motion
W = (Wt)t∈[0,1] on a stochastic basis (Ω,F ,P, (Ft)t∈[0,1]), where (Ft)t∈[0,1]
is the augmentation of the natural filtration of W and F = F1. We
let the process S = (St)t∈[0,1] be the geometric Brownian motion, i.e.

St = eWt− t
2 for all t ∈ [0, 1]. The space of continuous, infinitely many

times continuously differentiable functions with bounded derivatives is
denoted by C∞

b (R). Moreover, we let X = (Xt)t∈[0,1] be a diffusion such
that

(7) dXt = σ(Xt)dWt with X0 ≡ x0 ∈ R,
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where the process X is obtained through Y = (Yt)t∈[0,1] given as unique
continuous solution of

dYt = σ̂(Yt)dWt + b̂(Yt)dt with Y0 ≡ y0 ∈ R,

with 0 < ǫ0 ≤ σ̂ ∈ C∞
b (R) and b̂ ∈ C∞

b (R), in the following two ways:

(a) y0 = x0 ∈ R, σ̂ := σ, b̂ := 0, Xt := Yt,
(b) y0 = log x0 with x0 > 0,

σ̂(y) :=
σ(ey)

ey
, b̂(y) := −1

2
σ̂(y)2, and Xt = eYt .

Moreover, we let γ be the Gaussian measure on R, i.e.

dγ(x) :=
1√
2π
e−

x2

2 dx.

4.1. Definition. Let Ce be the linear space of Borel measurable func-
tions f : R → R such that there exists m > 0 for which

sup
x∈R

e−m|x|
Ef 2(x+ tg) <∞

for all t > 0, where g is a centered standard normal random variable.
Moreover, we define

C := {Z := f(Y1) : Ω → R | f ∈ Ce and Y as above}.

The main tool for investigating the approximation problem in papers
of C. Geiss, S. Geiss, and Hujo was the H-functional defined in the
following way.

4.2. Definition. Let X be a stochastic process as in (7) and assume
that Z ∈ C (or Z ∈ L2(Ω,F ,P) if X ∈ {W,S}). Then we set

(8) HXZ(t) :=

∥

∥

∥

∥

(

σ2∂
2F

∂x2

)

(t, Xt)

∥

∥

∥

∥

L2

for all t ∈ [0, 1),

where F : [0, 1) × I → R is given by F (t, x) = E(Z|Xt = x), with
I = R in the case of (a) and I = (0,∞) in the case of (b).

4.3. Lemma. [3, Lemma 5.3], [7, Lemma 3.9] The function HXZ :
[0, 1) → [0,∞) is continuous and increasing.

In order to deduce from Theorem 2.3 a characterization of the ap-
proximation rate

aXn (Z) ≤
c√
n
,

we need the following theorem.
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4.4. Theorem. [3, Lemma 3.2] [7, Lemma 3.10] Let X be a stochastic
process as in (7), Z ∈ C (or Z ∈ L2(Ω,F ,P) if X ∈ {W,S}) and
τ = (ti)

n
i=0 ∈ Tn. Then

aX(Z, τ) ∼c

(

n
∑

i=1

∫ ti

ti−1

(ti − t)H2
XZ(t)dt

)
1
2

where c ≥ 1 is an absolute constant depending on σ only. Consequently,

aXn (Z) ∼c An(HXZ).

4.5. Corollary. Let X be as in (7) and Z ∈ C (or Z ∈ L2(Ω,F ,P) if
X ∈ {W,S}). Then

sup
n∈N

√
naXn (Z) ∼c

∫ 1

0

∥

∥

∥

∥

(

σ2∂
2F

∂x2

)

(t, Xt)

∥

∥

∥

∥

L2

dt,

where F : [0, 1)×I → R is given by F (t, x) = E(Z|Xt = x), with I = R

in the case of (a) and I = (0,∞) in the case of (b).

Proof. Theorem 2.3 together with Lemma 4.3 and Theorem 4.4 gives
the result immediately. �

4.6. Remark. Remark 2.4 implies that if
∥

∥

∥

(

σ2 ∂2F
∂x2

)

(t, Xt)
∥

∥

∥

L2

is inte-

grable, then the regular sequences generated by
∥

∥

∥

(

σ2 ∂2F
∂x2

)

(t, Xt)
∥

∥

∥

L2

give the rate 1√
n
. Using these sequences, denoted by τnr , we have that

if A :=
∫ 1

0

∥

∥

∥

(

σ2 ∂2F
∂x2

)

(t, Xt)
∥

∥

∥

L2

dt <∞, then

aXn (Z) ≤ aX(Z, τ
n
r ) ≤

c(4.4)A√
n

for all n ∈ N,

where c(4.4) > 0 is taken from Theorem 4.4 above.
One can also optimize over random time nets instead of deterministic

ones considered here. The result [4, Theorem 1.1.] from C. and S. Geiss
implies that 1√

n
is the best possible approximation rate also for the

random time nets in case the underlying diffusion X is the Brownian
motion W or the geometric Brownian motion S and Z is not equal to
c0 + c1X1 a.s. for some c0, c1 ∈ R. This means that if X ∈ {W,S}, the
random time nets do not improve the approximation if the deterministic
time nets already give the rate 1√

n
. According to this, Corollary 4.5

implies that if
∫ 1

0

∥

∥

∥

∥

(

σ2∂
2F

∂x2

)

(t, Xt)

∥

∥

∥

∥

L2

dt <∞,

then the optimal approximation rate is 1√
n
also for the random time

nets and this rate is obtained by using the regular sequences generated

by
∥

∥

∥

(

σ2 ∂2F
∂x2

)

(t, Xt)
∥

∥

∥

L2

.
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Now we give for β ∈ (0, 1) an example such that

aXn (Z) ∼c
1√
nβ

for all n ∈ N,

in case X is a standard Brownian motion or the geometric Brownian
motion. According to Theorem 2.5, Lemma 4.3 and Theorem 4.4 it is
sufficient to find a random variable Z = fα(W1) such that

HXZ(t) ∼c
(1− log(1− t))−α

1− t
,

where α = β+1
2
.

4.7. Example. Let α ∈ (1/2, 1) and fα =
∑∞

k=0 akhk ∈ L2(γ), where
a = (ak)

∞
k=0 is given by

ak =















0 if k ∈ {0, 1, 3},
1√
2

if k = 2,
√

k−2
k(k−1)

log−α(k − 2) if k ≥ 4,

and (hk)
∞
k=0 ⊂ L2(γ) is the complete orthonormal system of Hermite

polynomials,

hk(x) =
(−1)k√
k!

e
x2

2
dk

dxk
e−

x2

2 .

Then Zα := fα(W1) ∈ L2(Ω,F ,P) and it can be shown that

HWZα(t) =

(

1 +

∞
∑

k=2

k log−2α(k)tk

)1/2

∼c1

(1− log(1− t))−α

1− t

for all t ∈ [0, 1) (according to Lemmas 4.9 and 4.8 below). Using
Lemma 4.9 it is easy to show that there exists a constant c2 > 0 such
that

HWZα(t) ∼c2 HSZα(t) for all t ∈ (0, 1).

Theorem 2.5 implies there exists a constant c3 ≥ 1 such that

1

c3
√
n2α−1

≤ aXn (Zα) ≤
c3√
n2α−1

for all n ∈ N, where X ∈ {W,S}. In other words, letting β ∈ (0, 1)
and defining α := β+1

2
we have

aXn (Zα) ∼c3

1√
nβ

for all n ∈ N.

The following lemma should be known. For completeness and con-
venience of the reader we include a proof.
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4.8. Lemma. Let β > 1. Then for all t ∈ [0, 1), one has that

(9)
(1− log(1− t))−β

(1− t)2
∼c 1 +

∞
∑

k=2

k log−β(k)tk,

where the constant c ≥ 1 depends at most on β.

Proof. Let n ≥ eβ be an integer, ǫ ∈ [ 1
n+1

, 1
n
), and t = e−ǫ. Since

k log−β(k) is increasing if k ≥ eβ and we assumed that n ≥ eβ, we have

1 +

∞
∑

k=2

k log−β(k)tk ≥
2n
∑

k=n

k log−β(k)(e−1/n)k

≥
2n
∑

k=n

n log−β(n)e−2

≥ e−2n2 log−β(n).

Moreover,

1 +

∞
∑

k=2

k log−β(k)tk ≤ 1 +

n
∑

k=2

k log−β(k) +

∞
∑

m=1

(m+1)n
∑

k=mn+1

k log−β(k)e−
mn
n+1

≤ cβ

n
∑

k=2

n log−β(n) +
∞
∑

m=1

(m+ 1)n2 log−β(n)e−
mn
n+1

≤ cβn
2 log−β(n) + n2 log−β(n)

∞
∑

m=1

(m+ 1)e−m/2

≤ (cβ + c)n2 log−β(n),

where cβ depends at most on β and c =
∑∞

m=1(m + 1)e−m/2. This
implies, for t = e−ǫ with ǫ ∈ [ 1

n+1
, 1
n
), that

1 +
∞
∑

k=2

k log−β(k)tk ∼c1 n
2 log−β(n) for all n ≥ eβ ,

where c1 ≥ 1 is a constant depending at most on β. Adapting the
constant c1 > 0, we get this for n ≥ 2.
Now we show that if n ≥ 4, then

(1− log(1− t))−β

(1− t)2
∼c2 n

2 log−β(n),

where c2 ≥ 2 is a constant depending at most on β. Firstly, we have
that log(1

t
) ∼c3

1
n
, where c3 =

5
4
. Moreover

log(u−1) ∼c4 1− u,

for all u ∈ [e−1/2, 1], where c4 = [2(1− e−
1
2 )]−1. Hence

1− t ∼c5

1

n
,
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where c5 =
5
8
[1− e−

1
2 ]−1. Furthermore,

log n

2
≤ log(n/c5) ≤ log((1− t)−1) ≤ log(c5n) ≤ 2 logn

since c5 < 2 and n ≥ 4. Now

1− log(1− t) ∼3 log(n)

and hence
(1− log(1− t))−β

(1− t)2
∼c2 n

2 log−β n,

where c2 = 3βc25.

If t > e−
1
4 , the computations above imply that

(1− log(1− t))−β

(1− t)2
∼c2 n

2 log−β n ∼c1 1 +

∞
∑

k=2

k log−β(k)tk,

where n is such that e−
1
n < t ≤ e−

1
n+1 . If 0 ≤ t < e−

1
4 , then one has

that

1 ≤ 1 +
∞
∑

k=2

k log−β(k)tk ≤ cβ ,

where the constant cβ > 0 depends only on β, and

1

dβ
≤ (1− log(1− t))−β

(1− t)2
≤ dβ,

where the constant dβ > 0 depends only on β. Hence

(1− log(1− t))−β

(1− t)2
∼c 1 +

∞
∑

k=2

k log−β(k)tk

for all t ∈ [0, 1), where the constant c ≥ 1 depends on β. �

4.9. Lemma. [7, Lemma 3.9] For f =
∑∞

k=0 akhk ∈ L2(γ), t ∈ [0, 1)
and Z = f(W1) one has that

HWZ
2(t) =

∞
∑

k=0

a2k+2(k + 2)(k + 1)tk,

HSZ
2(t) =

∞
∑

k=0

(

ak+2 −
ak+1√
k + 2

)2

(k + 2)(k + 1)tk,

where W is a standard Brownian motion and S is the geometric Brow-
nian motion. Moreover

1

12
HWZ

2(t)− 2

3
(a21 + a22) ≤ HSZ

2(t) ≤ 4HWZ
2(t) + 2a21.
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5. Application: Approximation of certain d-dimensional
stochastic integrals with drift

We can apply Theorems 2.3 and 2.5 also to the discrete time ap-
proximation of d–dimensional stochastic integrals considered by Zhang
[13], Temam [12] and Hujo [9]. Our setting introduced below recalls
for the convenience of the reader line by line the setting of [9], which
generalizes the 1–dimensional setting of Section 4 to d dimensions.

We assume a stochastic basis (Ω,F ,P, (Ft)t∈[0,1]), where (Ft)t∈[0,1] is
the augmentation of the natural filtration generated by the d–dimensional
standard Brownian motion W = (Wt)t∈[0,1] with F = F1.

We consider a diffusion X = (X1, ..., Xd), where

(10) X i
t = xi0 +

∫ t

0

bi(Xu)du+
d
∑

j=1

∫ t

0

σij(Xu)dW
j
u , t ∈ [0, 1], a.s.

for all i = 1, ..., d and x0 = (x10, ..., x
d
0). We assume X is obtained

through Y given as unique path–wise continuous solution of

(11) Y i
t = yi0 +

∫ t

0

b̂i(Yu)du+

d
∑

j=1

∫ t

0

σ̂ij(Yu)dW
j
u , t ∈ [0, 1], a.s.

for all i = 1, ..., d, where b̂i, σ̂ij ∈ C∞
b (Rd) and (σ̂σ̂T )ij(x) =

∑d
k=1 σ̂ik(x)σ̂jk(x)

is uniformly elliptic, i.e.

d
∑

i,j=1

(σ̂σ̂T )ij(x)ξiξj ≥ λ‖ξ‖2, for all x, ξ ∈ R
d and some λ > 0,

where ‖·‖ is the Euclidean norm. Again, we assume that X is obtained
through Y by one of the following two ways:

(a) x0 = y0 ∈ R
d, b̂i(x) := bi(x), σ̂ij(x) := σij(x), and Xt = Yt,

(b) x0 = ey0 ∈ (0,∞)d, b̂i(y) := bi(e
y)

eyi
− 1

2

∑d
j=1 σ̂

2
ij(y), σ̂ij(y) :=

σij(ey)

eyi
, and Xt = eYt .

Here and in the following ey = (ey1 , ..., eyd) for y = (y1, ..., yd). As in
one dimensional case, (a) is related to the standard Brownian motion
and (b) to the geometric Brownian motion.

Moreover, we assume that f : E → R is a Borel–function such that
for some q ∈ (0,∞) and C > 0 it holds that

(12) |f(x)| ≤ C(1 + ‖x‖q), x ∈ E,

where the set E is defined by

E :=

{

R
d in case (a)

(0,∞)d in case (b).
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Finally, we define the function g : Rd → R by

g(y) :=

{

f(y) in case (a)

f(ey) in case (b).

5.1. Theorem. [1, Theorem 8 on p. 263], [2, Theorem 5.4 on p. 149]

For b̂, σ̂ with σ̂σ̂T uniformly elliptic, there exists a transition density
Γ : (0, 1]×R

d×R
d → [0,∞) ∈ C∞ such that P(Yt ∈ B) =

∫

B
Γ(t, y, ξ)dξ

for t ∈ (0, 1] and B ∈ B(Rd), where Y = (Yt)t∈[0,1] is the strong solution
of stochastic differential equation (11) starting in y. Moreover, the
following is satisfied:

(i) For (s, y, ξ) ∈ (0, 1]× R
d × R

d we have that

∂

∂s
Γ(s, y, ξ) =

1

2

d
∑

k,l=1

d
∑

j=1

σ̂kj(y)σ̂lj(y)
∂2

∂yk∂yl
Γ(s, y, ξ)+

d
∑

i=1

b̂i(y)
∂

∂yi
Γ(s, y, ξ).

(ii) For a ∈ {0, 1, 2, ...} and multi–indices b and c there exist positive
constants C and D, depending only on a, b, c and d such that

∣

∣

∣

∣

∂a+|b|+|c|

∂at∂by∂cξ
Γ(t, y, ξ)

∣

∣

∣

∣

≤ C

t(d+2a+|b|+|c|)/2 e
−D

‖y−ξ‖2
t .

If we apply Theorem 5.1 to the stochastic differential equation
{

Z i
t = Z i

0 +
∑d

j=1

∫ t

0
σ̂ij(Zu)dW

j
u in case (a),

Z i
t = Z i

0 −
∫ t

0

(

1
2

∑d
j=1 σ̂

2
ij(Zu)

)

du+
∑d

j=1

∫ t

0
σ̂ij(Zu)dW

j
u in case (b),

we obtain a transition density Γ0 such that we can define the function
G ∈ C∞([0, 1]× R

d) by

G(t, y) :=

∫

Rd

Γ0(1− t, y, ξ)g(ξ)dξ, 0 ≤ t < 1

so that






(

∂
∂t
+ 1

2

∑d
k,l=1

(

σ̂σ̂T (y)
)

kl
∂2

∂yk∂yl

)

G(t, y) = 0 (a),
(

∂
∂t
−
∑d

i=1

(

1
2

∑d
j=1 σ̂

2
ij(y)

)

∂
∂yi

+ 1
2

∑d
k,l=1

(

σ̂σ̂T (y)
)

kl
∂2

∂yk∂yl

)

G(t, y) = 0 (b).

We define the function F : E → R by setting

F (t, x) :=

{

G(t, x), in case (a),

G(t, log(x)), in case (b),

where log x = (log(x1), ..., log(xd)), and the operator L by

L :=
∂

∂t
+

1

2

d
∑

k,l=1

Lkl(x)
∂2

∂xk∂xl
,

where Lkl(x) =
∑d

j=1 σkj(x)σlj(x). Now we have that

LF (t, x) = 0 on [0, 1)× E,
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and Itô’s formula implies that

F (t, Xt) = F (0, X0) +

d
∑

k=1

∫ t

0

∂

∂xk
F (u,Xu)dX

k
u , a.s. t ∈ [0, 1).

From Theorem 5.1 we get that

F (t, Xt) → f(X1) in L2 as tր 1

and

f(X1) = F (0, X0) +
d
∑

k=1

∫ 1

0

∂

∂xk
F (u,Xu)dX

k
u a.s.

5.2. Definition. For f , F and X as above we define

asimX (f(X1), τ, s)

:=

∥

∥

∥

∥

∥

n
∑

i=1

d
∑

k=1

∫ tni ∧s

tni−1∧s

(

∂

∂xk
F (u,Xu)−

∂

∂xk
F (tni−1, Xtni−1

)

)

dXk
u

∥

∥

∥

∥

∥

L2

,

for all τ = (ti)
n
i=0 ∈ Tn and s ∈ [0, 1).

5.3. Definition. We define HXf,H
∗
Xf : [0, 1) → [0,∞) by setting

HXf(t) :=

(

sup
α,β

E

[

Lαα(Xt)Lββ(Xt)

∣

∣

∣

∣

∂2

∂xα∂xβ
F (t, Xt)

∣

∣

∣

∣

2
])

1
2

and

H∗
Xf(t) := sup

s∈[0,t]
HXf(s).

Finally, we define functions Qi : R
d → R for i = 1, ..., d by

Qi(x) :=

{

1, in case (a)

xi in case (b).

In this setting we have the following theorem, which refines [9, The-
orem 1].

5.4. Theorem. Assume that for all x ∈ E
∣

∣

∣

∣

∂s

∂qxβ∂
r
xα

σij(x)

∣

∣

∣

∣

≤ C1
Qi(x)

Qq
β(x)Q

r
α(x)

, where q + r = s, q, r, s ∈ {0, 1, 2},

|bi(x)| ≤ C1Qi(x) and Lii(x) ≥ 1
C1
Q2

i (x) for i ∈ {1, ..., d} and some
fixed C1 > 0.

(1) If one has that

IH :=

∫ 1

0

H∗
Xf(t)dt <∞,

then

inf
τ∈Tn

sup
s∈[0,1]

asimX (f(X1), τ, s) ≤
D1IH√

n
for all n ∈ N,
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where D1 = D1(C1, d) > 0.
(2) If there exists C2 > 0 and α ∈ (1

2
, 1) such that

H∗
Xf(t) ≤ C2

(1− log(1− t))−α

1− t
for all t ∈ [0, 1),

then

inf
τ∈Tn

sup
s∈[0,1]

asimX (f(X1), τ, s) ≤
D2√
n2α−1

for all n ∈ N,

where D2 = D2(C1, C2, α, d) > 0.

Proof of Theorem 5.4 . Hujo showed in the proof of [9, Theorem 1, p.
18] that under the assumptions of Theorem 5.4 we have that

E

∣

∣

∣

∣

∣

n
∑

i=1

d
∑

k=1

∫ tni ∧s

tni−1∧s

(

∂

∂xk
F (u,Xu)−

∂

∂xk
F (tni−1, Xtni−1

)

)

dXk
u

∣

∣

∣

∣

∣

2

≤ c
n
∑

i=1

∫ tni

tni−1

∫ t

tni−1

sup
α,β

E

[

Lαα(Xu)Lββ(Xu)

∣

∣

∣

∣

∂2

∂xα∂xβ
F (u,Xu)

∣

∣

∣

∣

2
]

dudt

≤ c

n
∑

i=1

∫ tni

tni−1

(ti − t)[H∗
Xf(t)]

2dt

for any s ∈ [0, 1) and any time net τ = (tni )
n
i=0, where c = c(C1, d).

Hence we can conclude by Theorems 2.3 and 2.5. �
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[10] Ritter, K. (2000): Average–Case Analysis of Numerical Problems, Springer.
[11] Sacks, J., Ylvisaker, D. (1970): Design for regression problems with correlated

errors III, Ann. Math. Statist. 41, 2057–2074.
[12] Temam, E. (2003): Analysis of error with Malliavin calculus: Application to

hedging, Mathematical Finance, Vol. 13, No.1, January 2003, pp. 201–214.
[13] Zhang, R. (1998): Couverture approchée des options Européennes. PhD thesis,

Ecole Nationale des Ponts et Chaussèes, Paris.
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