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OPTIMAL APPROXIMATION RATE OF CERTAIN
STOCHASTIC INTEGRALS
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Abstract. Given an increasing function H : [0,1) — [0, 0c0) and

1
n t; 2
i= i—
where T, := {7 = (ti)jmo : 0 =1to < t1 < --- < tn = 1}, we characterize the property
An(H) < —=, and give conditions for An(H) < -4 and An(H) > ﬁ for g € (0,1),
both in terms of integrability properties of H. These results are applied to the approxi-

mation of certain stochastic integrals.
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1. INTRODUCTION

In this paper we estimate the size of the error which occurs when a
stochastic integral is approximated discretely. To explain the problem
in more detail, we assume a stochastic process X = (X;)icpo,1 such that

dXt = J(Xt)th with XO =g > O,

where W = (Wy)epo,1) is the standard Brownian motion, o satisfies
certain regularity properties, and (F;)icp,1] is the augmentation of the
filtration generated by W. It is of interest to approximate discretely a
stochastic integral, which can be written as

where f : R — R is a polynomially bounded, Borel measurable func-
tion, and A = (A¢)tejo,1] is a suitable adapted process. We approximate

f(X1) by

(2) Ef(Xl) + Z )\tifl (Xti - Xti71>7
i=1
where 7 = (;)I, is a deterministic time net with 0 = t;, < #; <

<o < ty_1 <t, =1. Using this approximation instead of the original
stochastic integral, we obtain an approximation error

(3) f(Xl) - Ef(Xl) - Z )‘ti—l (th - Xti—l)'
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We are interested in the minimal quadratic error under the constraint
that the time net used in the approximation has n + 1 time points.
According to [3, Lemma 3.2 and its proof], this error is equivalent to

(4) aX(Z) = iglfaX(Z, ™),

n

where ax(Z,7") := inf (E\f(Xl) —Ef(Xy) = >0 via (X, — Xt¢71)|2)
and Z = f(X;) with the infimum taken over all sequences v = (v;)/~

of F;,-measurable step functions v; : 2 — R.

The approximation problem is of interest for at least two reasons.

(a) In stochastic finance one would like to replace a continuously
adjusted hedging portfolio in the Black-Scholes option pricing
model by a discretely adjusted one, as portfolios can be adjusted
in practice only finitely many times. If we consider the qua-
dratic error which occurs in this replacement (and which we can
interpret as risk in finance), then we end up with the approxi-
mation problem described above. In this case X = (X;)ejo,1 is
an appropriate positive diffusion process, f : (0,00) — [0, 00) is
a payoff function of a European type option, and 7" is the net
of time points where the portfolio is rebalanced.

(b) The approximation introduced above yields to an approxima-
tion of [; \ydX, by 0 N, (Xesne — Xiy_ae)- The point is
that the approximation itself is a stochastic integral, but the
integrand A, (which is usually hard to compute) is only com-
puted n-times, whereas the increments (X;rs — Xy, ,a¢) can be
easily simulated (for example by an Euler scheme).

There are several previous results concerning the error caused by the
discrete approximation of stochastic integrals. Under certain conditions
on Z and o, C. and S. Geiss showed that if 7" = ()i is the equidistant

time net with cardinality n + 1, then one has that

ax(Z,7") < %

if and only if Z belongs to the Malliavin Sobolev space Dy o 3l The-
orems 2.3, and 2.6]. Furthermore, they proved that there exists a
constant ¢ > 0 such that @\ (Z) > ﬁ unless there are constants ¢
and ¢; such that Z = co+ 1 X7 a.s. [3, Theorem 2.5] (if such constants
do exist, then aX (Z) = 0). It is also known by [3, Theorem 2.9] and [7|
Theorem 3.2] that there exists a constant ¢ > 0 such that a;X (Z) < ﬁ,
if Z has a certain polynomial smoothness measured by Besov spaces
generated by real interpolation. In this case the rate ﬁ is obtained by
adapted non—equidistant time nets.

N
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M. Hujo showed in [8, Theorem 3] that for X being the Brownian
motion or the geometric Brownian motion, there exists random vari-

ables Z = f(X1) € Lao(Q, F,P) such that
sup v (7) =

neN

which means that the approximation rate is not always — 5 even if the

underlying process is the standard Brownian motion. However, there
are no explicit examples of such functions.

These results lead us to the question to characterize those Z =
f(Xy) € Ly(Q2, F,P) with

ax(Z) < % for some ¢ = ¢(Z) > 0.

n

According to Theorem [A.4] below, there exists a constant ¢ = ¢(o) > 0
such that

%axZT (Z/ (ti —t)HXZ ()dt> < cax(Z,7),

where Hx Z(t) —H( 28F> (t,Xy)|| , F:[0,1) x I — R is given by
Lo

F(t,z) =E(Z|X, = z), f and X satisfy certain conditions and I C R
depends on X. Moreover, Lemma implies that HxZ is increasing
so that we concentrate our investigations for some time on the quantity

An( = inf — H2
ol 712% (Z / (t: —1) )dt) ,

where the function H : [0,1) — [0, 00) is increasing and
%Z:{T:(ti)?zoi 0=ty <ty <<tn:1}
Our first main result, Theorem 23] says that

inf <Z/ >d’f); <7

if and only if the function H is integrable. Moreover, in Theorem
we give sufficient conditions for

1

n t 2
inf [ t— OHdt | < —
o (izl /tH( JH(t) ) = /8

1
n t; 2 1
inf t—H(t)dt | > ——,
inf (}Hj |t ) =

where 5 € (0, 1), in terms of the growth rate of H : [0,1) — [0, 00).

and
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These results can be applied to the setting introduced above and
also to other situations, for example to the quadratic approximation of
multi-dimensional stochastic integrals (see [9], [12] and [13]).

The paper is organized as follows: In section 2 we introduce the main
results of the paper, their proofs can be found in Section 3. In Section
4 we apply the results of Section 2 to the 1-dimensional stochastic
setting. In particular, we give an example of random variables for which
the approximation rate is ﬁ <aX(Z) < =, for 5 € (0,1) in case
X is the standard Brownian motion or the geometric Brownian motion.
In Section 5 the results of Section 2 are applied to the approximation
of d—dimensional stochastic integrals where the underlying diffusion
might have a drift.

2. RESuLTS

To shorten the notation in the following, we say that A ~. B if for
constant ¢ > 1 it holds that %A < B < ¢A and for time net 7 € T,, we
define

1Mo == Zgllaxn{tz —ti1}.

2.1. Definition. Let H : [0,1) — R be a non-negative measurable
function. If 7 = (¢;)I, € Tn, then we define

A(H,7) = (ZL St - t)H?(t)dt) :
An(H) :=inf, 7, A(H,T).

2.2. Definition. We say that an increasing function H : [0,1) — [0, 00)
belongs to the set A if and only if

[Hla = sup VA, (H) < oo,
ne

and to the set H if and only if
1
|H||y = / H(t)dt < oo.
0

2.3. Theorem. Let H : [0,1) — [0,00) be an increasing function. Then
sup vnA,(H) < oo

neN
if and only if fol H(t)dt < co. In particular, one has that
[H N4~z 1 H [l

2.4. Remark. The proof of Theorem 2.3 implies that [ := fol H(t)dt <
o0 gives

An(H) < for alln € N.

Si=
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This rate can be obtained by regular sequences (see [10] and [I1])
generated by H. Regular sequences generated by H are time nets
" = (t7)_, for which

/H <), o

Our second main result is

for all i € {0, ..

2.5. Theorem. Let H : [0,1) — [0,00) be an increasing function and
€ (3,1). Then one has the following:

(1) If there exists a constant ¢c; > 1 such that

H(t) < ¢ (]' - log(l — t))ia
- 1—-1¢

for all t €]0,1),

then
An(H) <

for alln € N,

n2a—1
where ¢ = c(a) > 1.
€ [0,

(2) If there exists 1) and a constant cy > 1 such that

1 (1—log(1—#)~°

H(t) > forallt € [s, 1),

o (-1
then -
A.(H) > =i for alln € N,

where ¢ = ¢(s,a, cz) > 1.

2.6. Remark. Tt follows from the arguments in [5, Lemma 4.14, Propo-
sition 4.16] that if H is increasing and there are C' € (0, 00), o € (1, 00)
with

C
H) < o osi s )P =

for all £ € [0,1), then one has that
supvnA,(H) < oo for all n € N.

2.7. Remark. Let H : [0,1) — [0,00) be a measurable function and
H*(t) := sup,eo H(s) < oo for all ¢t € [0,1). Then the monotonicity
properties of A,(-) imply the following:
(1) sup,eny vVRAL(H) < ||H*||3 as a consequence of Lemma 3.1.
(2) If H*(t) < ¢ W20 for all ¢ € [0, 1), then

A (H) <

for all n € N.

na
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3. PROOF

In this chapter we prove Theorems and To prove Theorem

2.3 we need two lemmas concerning the connection between A,,(H) and
fol H(t)dt, where H is a non—negative and increasing function.

3.1.Lemma. Let H : [0,T) — [0,00), T > 0, be an increasing function
such that

T
[:/ H(t)dt < co.
0

Then for all n € N there exists a sequence T" = (t7)",, 0 =t§ < ] <
<< tr =T such that

t? i
/ H(t)dt = 11
0 n

for all v < n and for this sequence it holds that

1

(Z /“ ) t>H2<t>df> < vt

Proof. The existence of the sequence (1), for which

tZL i
H)dt = 11

0 n

follows from the continuity of the integral. Now we have
n t:l n t:t
S [ wr-nmed=Y [ - o#o)H@:
i=1 Yt i=1 Yt

I
< — sup (I —t)H(t).
N el 1)

Since H is increasing, it is clear that

tn

(7 — ) H(t) < / “hsyas< [ H(s)ds

for all t € [t? ,,t}). Hence

n t; I n 7 [2
Z/ (ti—t)H(t)dt < =>" [ H(t)dt = —.
i=1 v ti-1 NI e n

0

3.2. Lemma. Let H :[0,1) — [0,00) be an increasing function. If for
all n € N there exists a time net 7" = (t7')7_, € T, such that

A(H, ™) <

Sie
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for some fixed ¢ > 0, then H is integrable and

/ 1 H(t)dt < V2e.

Proof. If A(H,7") = 0, then H = 0 and the claim is trivial. Assume
then that A(H,7") > 0, which implies that H(¢) > 0 for some ¢ € [0,1).
Let a :=inf{t € [0,1) : H(t) > 0} and 7" = {a} U{t} € 7" : I > a}.
Since H is positive on (a, 1), our assumption implies that ||7"||,c — 0
as n — o0o. Using the Cauchy-Schwartz inequality and the assumption
A2(H, ") < < we see that

n—1

[Z H(t? )t — t?—1)] <n Z H2 (87 ) (7 —t7,)?

(5) n o
< QnZ/ (tr — ) H*(t)dt < 262
i=1 Y ti-1

Let b € (a,1) and 0 < € < /c. Choose n such that b < ¢ _; and

b n—1
/ H(t)dt < S H(E) (1 — 1) +e.
0 i=1

(We can choose n satisfying this, since the positivity of the function H
on the interval (a, 1) implies that ¢ _; — 1 and ||7"||.c — 0 asn — 00.)
Now () gives that

/bH(t)dtS\/icﬂ

and since this is true for any b € (a, 1) and any € > 0, we finally have

/1 H(t)dt < v2c.
O

Proof of Theorem 2.3 Assume first that H € H. Then I := fol H(t)dt <
oo and Lemma [B.1] implies

VnA,(H) < I foralln €N

and | H||u < | H|ln.
Assume now that H € A, which means that

sup vnA,(H) < .

neN
Lemma [3.2] implies

/ 1 H(t)dt < /2sup/nA,(H)

neN

and | H 3 < v/2I|H]|a.
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The computations above imply

1
/ H(t)dt < oo if and only if supv/nA,(H) < oo
0

neN
and that ||H |y ~ 5 || H||4. O
3.3. Lemma. Let H : [0,1) — [0,00) be an increasing function. Then
1
2 2
(fOTH(t)dt> ! )
A,(H)< inf |—— 1—t)H"(t)dt
( )_TéI(lO,l) n—1 Jr/T( JH(?)
for alln > 2.

Proof. Let T € [0,1) and let 7 = (¢;)"_, € T, be a time net such that
O=tog<t1i <---<t,1=T<t,=1and

t; . T
/H(t)dt: ! /H(t)dt foralli=1,..,n— L.
0 n—1J

Using Lemma [3.1] we get that

A2(H, ) = ni/t (ti—t)HQ(t)dt+/1 (1— £ H2(t)dt
T H(t)d i 1
< w+/T (1 —t)H?(t)dt.

By definition, we have that A, (H) < A(H,7,) and we are done. [

3.4. Remark. The best rate that Lemma can give, is obtained by
choosing T' such that

/OT Ht)dt = Vi =1 </T1(1 _ t)H?(t)dt) "

However, it is not known if Lemma [B.3] gives the optimal rate, i.e. we
do not know whether the inequality

% inf M+/l(l—tw2(t)dt

T€(0,1) n—1
holds. What we have is

A%2(H) = inf {Ai_l(H|[0,T])+/

T€(0,1) T

1

(1— t)HZ(t)dt] ,

where

O=tp<---<tp—1=T

A2 (H|[0,T]) := inf nz_: /tt (t; — ) H2(t)dL.
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In order to obtain inequality (6) we would need to know that there
exists a constant ¢ > 0 such that

9 1 <foT H<t)dt)2
A, (H|[0,T]) > P

for all n > 2, but we do not know whether this is true.
For the proof of Theorem 2.5, we need the following lemmas.

3.5. Lemma. Let € (0,1). Then there exists a constant ¢ > 0 such
that
(1 —log(1 —t))~(+A o

—B—2 1_9
(1= 17 ~e 1 2 P21 —t)="%dz  forallt €0,1).

)—(1+,6)
2

Proof. Let 13(t) = (1—log(1—t)

(1-t)
— w, we obtain

and ps(t) = [ 27P72(1— t)=2dz.

Choosing x =
palt) = [0 1- 0t
1

-/ (M)_Hu _ gyt 2 loall — )de

2

log(1—t) xr x
_ _ —B-1 —log(1—t)
B A
- 0
1 1
since (1 — t)los(1=0 = [elos(1=D]leel=0 = ¢,

The statement follows from

t oo
lim(pﬁ—() = / 2Pe"dx € (0, 00).
=11s(t)  Jo
U
3.6. Lemma. [8, Lemma 7] Let 6 € [1,2) and Hy : [0,1) — [0,00), be
given by

Hy(t) =/ (2—-0)1—1)=? forte]0,1).
Then

n t;
inf t; — tYH2(t)dt > (0 — 1) !
()TZ/< VH3(t)dt > (6 1)
for allm € {1,2,...}.
3.7. Lemma. Let H : [0,1) — [0,00) be an increasing function and
e 1), If
H*(t) > / 2 P21 — t)%*zdz for allt € [0,1),
1

then

A.(H) > for alln € N

1
cgVnh
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where cg = /B(45+2 + 2642 4 1)e.
Proof. Let g : [1,00) x [0,1) — (0, 00) be given by
g(z,t) = 27P2(1 — )= 2,

Then

p+2
g >

forall k > 1 and t € [0,1). We have
d t)=(—log(l—1 2
EQ(% ) = (—log(l—1t) —( +6)Z>W

and it is easy to see that for any fixed t € [0, 1) there exists k; > 2 such
that g(z,t) is increasing for all z < k; — 1 and decreasing for all z > k;.
Hence

ki—2 oo

JRCUEED SRS S

k=k++1

where we treat an empty sum as zero. Since g(k,t) < 2°2g(k + 1,1)
for all £ > 1, we have

g(kt - 17t) _'_g(ktvt) +g<kt + 17t) < Cﬁg<kt + 17t)7

with cg := (412 + 26+2 + 1), and therefore

[e o] o0

> glkt) = glhke = 1,8) + g(ke, t) + glhe + 1,6) + > gk +1,1)
k=(ke—1) k=Fki+1
< cg Z gk +1,1).
k=k¢

This implies

W,
| —
NE
S\
“??‘

for all t € [0,1).
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Let ar, =2 — % and p, = k=9 By assumption,

Now

1
> — kmfZ/ (ti — 1)(2 — ag) (1 — t) " dLt.
To prove our claim it is enough to consider n > 2. We set

Ho, (t) = /(2 = ai)(1 — 1)~

and now Lemma implies that

o0

Ai(H) > — pk<CLk — 1)”71

n—1
IR R N S
c k
B =1

1 S k)
cge P
1
n?
cgef
1
5577,5’

v

v

where ¢z = eficg. O
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3.8. Lemma. Let 5 € (0,1) and H : [0,1) — [0,00) be an increasing
function such that there exists a constant ¢c; > 1 for which

1

A,(H+1) > for alln € N.
( ) W
Then there exists a constant cs > 1 such that
1
A, (H) > for alln € N.
(H) o
Proof. Assume first n > n := (25+lc%)ﬁ. Then we have 202(12n)ﬁ > 1
1

and since

A2 (H+1) < 2[A%2(H)+ A%(1)] <2 {Ai(H) + QL] for all n € N,

n

we get

1 1 1 1
A2H)> —— — — > =
n(H) 2 22(2n —1)%  2n — 43(2n)P Enf

for all n > n, where ¢, = 9% V2e.
If n < n, the computations above imply

A2(H) > A2 (H) > e >

AP = anf’

~r=18

where ¢o = & [n]2 and [n] :=inf{k € Z : n < k}. O
Proof of Theorem 2.5,
(1) Let T =1 —¢%( where c,(n) = 1—((1—a)n'~®+1)=a. Then

/T H(t)dt < ) /T (1= lolg(_l - D) 4

(1 —log(1—T))"" —1]

&1

:1—a

1—
=cn ¢

and

1 1-2a
1—log(l—-T
0 (1~ log(1 7))
2 —2a
B 20401_ T a)nt=e 4 1)
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and hence Lemma says that, for n > 2,

- . T 9 ) 1/2
An(H) < (/ H(t)dt) +/ (1— t)H2(t)dt]
n—1 0 T
- 2 1/2
S 1 n2f2a +C%5an12a:|
n—1
2+ E,)2
<o 252
/n2a—-1"
1—2a
where ¢, = %

(2) Assume there exists a constant c; > 1 such that
iy > Q= loell=0)
ca(l —1t)
Then there exists a constant ¢z > 1 such that
(1= log(1 = 1))
c3(1—1t)

If we write § =2a —1 € (0,1), Lemma implies that there exists a
constant ¢4 > 1 such that

for all t € [s,1).

H(it)+1> forall t € [0,1).

1 [e. 9]
(H(t) +1)* > —/ P21 —4):%dz forallt € [0,1),
1

Cy
and Lemma 3.7 implies that there exists ¢5 > 1 such that

1
A (H+1) >
( ) Y

Finally, Lemma B.8 implies the existence of a constant ¢ > 1 such that

for all n € N.

A (H) >

1
or alln € N.
z = J

0

4. APPLICATION: OPTIMAL APPROXIMATION RATE OF CERTAIN
STOCHASTIC INTEGRALS

Throughout the section, we assume a standard Brownian motion
W = (Wy)iep0,1) on a stochastic basis (Q, F, P, (Fi)ejo,1), where (Fy)iepo,1]
is the augmentation of the natural filtration of W and F = F;. We
let the process S = (S¢)iejo,1) be the geometric Brownian motion, i.e.
S, = "=z for all t € [0,1]. The space of continuous, infinitely many
times continuously differentiable functions with bounded derivatives is
denoted by C;°(R). Moreover, we let X = (X;);c[0,1) be a diffusion such
that

(7) dX; = o(Xy)dW, with Xg =z € R,
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where the process X is obtained through Y = (Y}):c[0,1) given as unique
continuous solution of

dY; = 6(Y)dW, + b(Y;)dt with Yy =y € R,

with 0 < €9 < & € C°(R) and b € C°(R), in the following two ways:
(&) yp=xp €R, 6:=0,b:=0, X, =Y,
(b) yo = log xg with g > 0,

R o(eY N 1.
a(y) = ( ), b(y) := —éo(y)Q, and X; = e**.
Moreover, we let v be the Gaussian measure on R, i.e.
1 22

e zdx.
V2T

4.1. Definition. Let C, be the linear space of Borel measurable func-
tions f : R — R such that there exists m > 0 for which

ey

dvy(x) =

supe "R (z + tg) < oo
z€R

for all ¢ > 0, where ¢ is a centered standard normal random variable.
Moreover, we define

C={Z:=fM1):Q—=R| fel. and Y as above}.

The main tool for investigating the approximation problem in papers
of C. Geiss, S. Geiss, and Hujo was the H-functional defined in the
following way.

4.2. Definition. Let X be a stochastic process as in ([7) and assume
that Z € C (or Z € Ly(Q2, F,P) if X € {W,S}). Then we set

(8) HxZ(t) H( 6:102) (t, X;)

where F' : [0,1) x I — R is given by F(t,z) = E(Z|X, = z), with
I =R in the case of (a) and [ = (0, 00) in the case of (b).

for all t € [0, 1),

Lo

4.3. Lemma. [3, Lemma 5.3], [7, Lemma 3.9] The function HxZ :
[0,1) = [0, 00) is continuous and increasing.

In order to deduce from Theorem a characterization of the ap-
proximation rate

a, (Z) < %,

we need the following theorem.
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4.4. Theorem. [3, Lemma 3.2] [7, Lemma 3.10] Let X be a stochastic
process as in (M), Z € C (or Z € Ly(QF,P) if X € {W,S}) and

7= (t;)"_y € Tn. Then
i -

where ¢ > 1 is an absolute constant depending on o only. Consequently,
aX(Z) ~, Ap(Hx Z)

n

4.5. Corollary. Let X be as in ([{) and Z € C (or Z € Ly(Q, F,P) if
dt,

X € {W,S}). Then
(5 ) -],

sup vna; (Z) ~, /
neN 0

where F: [0,1) x I — R is given by F(t,z) = E(Z|X; = x), with [ =R

in the case of (a) and I = (0,00) in the case of (b).

Proof. Theorem together with Lemma and Theorem (.4 gives
the result immediately. O

N

4.6. Remark. Remark 2.4 implies that if H( 29 F) (t, Xy)

1s inte-
2

grable, then the regular sequences generated by H( 20°F ) (t, X3)

Lo
give the rate T Using these sequences, denoted by 7., we have that

ﬁA:ﬁ'(Wﬂ@XQ dt < oo, then
Lo
X(7) < an (7. < “BDA llneN
c
a, (Z) <ax(Z,7") < NG for alln ,
where ¢ > 0 is taken from Theorem [4.4] above.

One can also optimize over random time nets instead of deterministic
ones considered here. The result [4, Theorem 1.1.] from C. and S. Geiss
implies that ﬁ is the best possible approximation rate also for the
random time nets in case the underlying diffusion X is the Brownian
motion W or the geometric Brownian motion S and Z is not equal to
co + 1 X1 a.s. for some ¢y, ¢; € R. This means that if X € {W, S}, the
random time nets do not improve the approximation if the deterministic

time nets already give the rate % According to this, Corollary

implies that if
82
[ (%) e

then the optimal approximation rate is

dt < oo,

Lo

% also for the random time

nets and this rate is obtained by using the regular sequences generated
o | (28 )

Ly
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Now we give for 8 € (0,1) an example such that

1
X
a;(Z) ~, —— foralln € N,
D)~ T
in case X is a standard Brownian motion or the geometric Brownian
motion. According to Theorem 2.5 Lemma and Theorem [4.4] it is
sufficient to find a random variable Z = f, (W) such that

(1 —log(1 —#))™

HXZ<t> ~c 1_+¢ )

where o = %

4.7. Example. Let a € (1/2,1) and f, = > ;- arhy € Lo(y), where
a = (ax)2, is given by

0 if k € {0,1,3},
1 3 —
ap = % if k= 2,
Vi log M (k—2)  if k>4,

and (hg)72, C La(7y) is the complete orthonormal system of Hermite
polynomials,
(=1)F 2 db .2

ez N

M) = = e e
Then Z, := fo(W1) € Ly(£2, F,P) and it can be shown that

z_
2

1-1

0o 1/2 .
Hy Zo(t) = (1 +) k:log_zo‘(k;)tk> ., dzlos=1)
k=2

for all ¢ € [0,1) (according to Lemmas and [A.8 below). Using
Lemma it is easy to show that there exists a constant c; > 0 such
that

HywZ,(t) ~e, HsZ,(t)  for all t € (0,1).
Theorem implies there exists a constant ¢z > 1 such that

L - aX(Z,) < —=

03,/n2a—1 - n — /n2a-1

for all n € N, where X € {W,S}. In other words, letting 5 € (0,1)
and defining o := % we have

1
aX(Zy) ~ey —— foralln € N.

c3 \/n_ﬁ

The following lemma should be known. For completeness and con-
venience of the reader we include a proof.
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4.8. Lemma. Let f > 1. Then for allt € [0,1), one has that

(1 —log(1 —1))
(9) 1 1+Zk:10g

where the constant ¢ > 1 depends at most on 3.

Proof. Let n > €” be an integer, € € [n%rl,%), and t = e . Since

klog™?(k) is increasing if k > e? and we assumed that n > e, we have

0o 2n
L+ klog 2 (k)t* > " klog ™ (k)(e /)"
k=2 =

Moreover,
0o n oo (m+1)n
1+Zklog’5(/€)tk§1+2klog +Z Z klog " (k)e Tt
k=2 k=2 m=1 k=mn+1
< ¢ Z nlog™?(n) + > (m+ 1)n?log ?(n)e n+t
= m=1

< cgn*log™?(n) + n?log™” Z m+ 1)e
m=1

< (¢ + c)n’log (n),

where ¢z depends at most on 3 and ¢ = Y o°_ (m + 1)e™/2. This

m=1
implies, for t = e~ with € € [-25, 1), that

1+ Z klog P (k)t* ~¢, n?log™?(n) for all n > €?,

where ¢; > 1 is a constant depending at most on 3. Adapting the
constant ¢; > 0, we get this for n > 2.
Now we show that if n > 4, then

oe(l — #))-5
- l(1g(_1 t)2t)) ~e, nlog ™’ (n),

where ¢ > 2 is a constant depending at most on (. Firstly, we have
that log(1) ~c, =, where ¢z = 2. Moreover
log(u™") ~, 1 —u,
for all u € [e7/2,1], where ¢; = [2(1 — ¢72)]~*. Hence
1

1=t~ —
n

)



18 HEIKKI SEPPALA

1
where ¢; = 2[1 — e~2]~!. Furthermore,

logn
2

since ¢; < 2 and n > 4. Now

1 —log(1 —t) ~3 log(n)

< log(n/cs) < log((1 —1)7") <log(esn) < 2logn

and hence
(1= log(1 — 1)~
(1—1)

~e, 2 log P n,
where ¢, = 3°¢2.

Ift> e’i, the computations above imply that

(1 —log(1 — )"
(1—1)

~e, 12 log P~ 1+ Z klog ™" (k)t*,
k=2

where n is such that e~n < ¢ < e_n+r1. o<t e’i, then one has
that

1<1+ Zklog_ﬁ(k)tk < cg,
k=2
where the constant ¢z > 0 depends only on 3, and
1 _ (1—log(1—1)™"
dﬁ - (1 — t)Q
where the constant dsz > 0 depends only on 3. Hence

< dg,

—lo — =B N
(1 1(1g(_1t)21t>> ~e 1+ ; klog ™ (k)t*

for all t € [0,1), where the constant ¢ > 1 depends on f. O

4.9. Lemma. [7, Lemma 3.9] For f = > 77 japhi, € Lao(y), t € [0,1)
and Z = f(W1) one has that

HwZ*(t) =Y aqa(k+2)(k + 1)t

k=0

- Qp+1 ?
HgZ%(t) = — ) k+2)(k+ 1)tk
70 =3 (aea = L5 ) 2841

where W is a standard Brownian motion and S is the geometric Brow-
nian motion. Moreover

1 2
EHWZ2(t) — g(af +a3) < HgZ*(t) < 4AHw Z*(t) + 2a].
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5. APPLICATION: APPROXIMATION OF CERTAIN D-DIMENSIONAL
STOCHASTIC INTEGRALS WITH DRIFT

We can apply Theorems and also to the discrete time ap-
proximation of d—dimensional stochastic integrals considered by Zhang
[13], Temam [12] and Hujo [9]. Our setting introduced below recalls
for the convenience of the reader line by line the setting of [9], which
generalizes the 1-dimensional setting of Section 4 to d dimensions.

We assume a stochastic basis (€2, F, P, (F)icp0,1]), Where (F)ieqoq) is
the augmentation of the natural filtration generated by the d—dimensional
standard Brownian motion W = (W,)cjo,1] with F = Fi.

We consider a diffusion X = (X1, ..., X%), where

(10) X} =z} + / du+Z/ 0ij (X, )dW!, t€[0,1], a.s

for all i = 1,...,d and 7 = (z{,...,28). We assume X is obtained

through Y given as unique path—wise continuous solution of

(11) Yy =i+ / du—i—Z/ 6:;(Y,)dW?, te€[0,1], a.s

foralli = 1,...,d, where b;, 6;; € C°(R%) and (567),;(x) = Zk L Oik(2) k()

is uniformly elhptlc ie.

d

> (667)i(x)6& = ME]P, for all z,¢ € R and some A > 0,
ij=1
where || || is the Euclidean norm. Again, we assume that X is obtained

through Y by one of the following two ways:
(a) 20 = yo € RY, by(x) := bi(x), G4(x) := 0y5(x), and X, =Y,
i (eY d ~ ~
(b) g = e € (0, OO) bi(y) = —be(yi) —% j=1 O-zzj(y)a Gij(y) =

2i(@) and X, = eV
eYi

Here and in the followmg eV = (e, ...,e¥) for y = (y1,...,yq). Asin
one dimensional case, (a) is related to the standard Brownian motion
and (b) to the geometric Brownian motion.

Moreover, we assume that f : E — R is a Borel-function such that
for some ¢ € (0,00) and C' > 0 it holds that

(12) |f(@)] < C(L+[jz]|7), © € E,
where the set F is defined by

B R? in case (a)
"] (0,00)¢ in case (b).
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Finally, we define the function g : R — R by

) fw) in case (a)
9ly) = {f(ey) in case (b).

5.1. Theorem. [I, Theorem 8 on p. 263], [2 Theorem 5.4 on p. 149]
For 13, o with 667 uniformly elliptic, there exists a transition density
I':(0,1]xRIxR? — [0,00) € C* such that P(Y; € B) = [, T(t,y,&)d¢
fort € (0,1] and B € B(R?), where Y = (Y})ep,1) is the strong solution
of stochastic differential equation () starting in y. Moreover, the
following s satisfied:

(i) For (s,vy, f) (0 1] x RY x RY we have that

8
5. 0(s..€) = ZZ% aykayl sy£+Zb [(5,9,).

klljl

(ii) Fora € {0,1,2,...} and multi-indices b and c there exist positive
constants C' and D, depending only on a,b,c and d such that

gotlbl+lel C _plu=el?

0atob acéf (t Y g) — t(d+2a+\b\+|c\)/2 P

If we apply Theorem [5.1] to the stochastic differential equation
= Z} + Z] o AU W) AW in case (a),
fo <2 i1 Z]( )) du+2] 1f0 64(Z,)dW3  in case (b),
we obtain a transition density I'g such that we can define the function

G € C®([0,1] x RY) by

Glty) = [ Tolt =t O9(6)ds, 0t <1
so that
2 i3 (667 (y >)M%ayl) Glt,y) =0
8- (30 020)) 2+ 3 (067 (W) i) Glty) =0
We define the function F': ' — R by setting

B G(t, x), n case (a),
F(t z) = {G(t,log(x)% in case (b),

where logz = (log(x1), ...,log(x4)), and the operator L by
d

0o 1 0?

where Ly (z) = Z;l:l ok;(x)oy;(z). Now we have that
LF(t,z) =0 on [0,1) x E,

(a),
(b).
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and Ito’s formula implies that

k
F(t, X,) = OX0+Z/ 8—xkFuX )dXF as. tel0,1).
From Theorem 5.1l we get that
F(t,X;) — f(Xy) in Lyast /1

and

f(X1) = F(0, Xo) +Z/ 8—xkFuX )dXF as.

5.2. Definition. For f, F' and X as above we define
S‘m(f(Xl)

tPAs a k

zlkl P N\s

9

Lo

for all 7 = (¢;)I, € T, and s € [0, 1).
5.3. Definition. We define Hx f, Hy f : [0,1) — [0, 00) by setting

e 27\ 3
Hxf(t):= (S;EE Lo (Xt)Lps(Xt) 8xa6:ﬁ5F<t’ Xy) ]) and
HY f(t) := sup Hxf(s).

s€[0,t]
Finally, we define functions Q; : R? = R fori = 1, ...,d by
1, in case (a
Qlayi= ¢ b mee )
x;  in case (b).

In this setting we have the following theorem, which refines [9, The-
orem 1].

5.4. Theorem. Assume that for all v € E
il S 1AS0 A
o, " = e
1b;(z)] < C1Qi(z) and Ly(x) > CLQ (x) for i € {1,...,d} and some
fized Cy > 0.

(1) If one has that

<

where g +1 = s, q,r,s € {0,1,2},

1
Iy = / Hy f(t)dt < o0,
0
then

Dily
inf sup ai™(f(X4),7,5) <
7€Tn se(0,1) VX ) Vn

for alln € N,
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where D1 = D1(C4,d) > 0
(2) If there exists Cy > 0 and o € (3, 1) such that

. (1 —log(1 —t))*
Hy f(t) < Cq 11

then

for all t €10,1),

Do
inf sup aS™(f(X1),7,8) < ——— foralln €N,
reT, se[Opl} (f( 1) ) \/W f

where Dy = Dy(CY, Cy, v, d) > 0.

Proof of Theorem [5.4] . Hujo showed in the proof of [9, Theorem 1, p.
18] that under the assumptions of Theorem [5.4l we have that

tiAs a k

Zlkl

<CZ/ /n supE

<CZ/ (t; — )[H% f(1))%d

for any s € [0, 1) and any time net 7 = (tI")I,, where ¢ = ¢(Cy,d).
Hence we can conclude by Theorems and 2.5 O

2

82

oo (Xu) Ls(Xu) Dz

F(u, X,)

2
] dudt
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