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RECURRENCE RELATIONS AND VECTOR EQUILIBRIUM

PROBLEMS ARISING FROM A MODEL OF

NON-INTERSECTING SQUARED BESSEL PATHS

A.B.J. KUIJLAARS AND P. ROMÁN

Abstract. In this paper we consider the model of n non-intersecting squared
Bessel processes with parameter α, in the confluent case where all particles
start, at time t = 0, at the same positive value x = a, remain positive, and
end, at time T = t, at the position x = 0. The positions of the paths have a
limiting mean density as n → ∞ which is characterized by a vector equilib-
rium problem. We show how to obtain this equilibrium problem from different
considerations involving the recurrence relations for multiple orthogonal poly-
nomials associated with the modified Bessel functions.

We also extend the situation by rescaling the parameter α, letting it increase
proportionally to n as n increases. In this case we also analyze the recurrence
relation and obtain a vector equilibrium problem for it.

1. Introduction and statement of results

1.1. Introduction. This paper deals with the model, studied in [12], of n non-
intersecting squared Bessel paths in the confluent limit where all paths start, at
time t = 0, at the same positive value x = a, remain positive, and end at a later
time t = T , at the position x = 0.

The squared Bessel process is a diffusion process on [0,∞), depending on a
parameter α > −1, whose transition probability density is given by

Pα
t (x, y) =

1

2t

(y
x

)α
2

e−
x+y
2t Iα

(√
xy

t

)
, x, y > 0,

Pα
t (0, y) =

yα

(2t)α+1Γ(α+ 1)
e−

y

2t , y > 0.

Here, Iα denotes the modified Bessel function of the first kind of order α,

Iα(z) =
∞∑

k=0

(z/2)2k+α

k!Γ(k + α+ 1)
.

If we let n → ∞, and perform an appropriate time scaling t 7→ t/(2n), T 7→
1/(2n), the paths fill out a region in the tx-plane as shown in the left figure in
Figure 1. The figure shows a numerical simulation of 50 non-intersecting squared
Bessel paths and the boundary of the region filled by the paths. The right part
of Figure 1 shows a similar picture where in addition α increases proportionally
with n. Since α is a measure for the repulsion from 0 all paths in the right part of
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Figure 1. Numerical simulation of n = 50 non-intersecting
squared Bessel paths. The left figure shows n paths with fixed
α, and the right figure shows n paths with α increasing propor-
tionally with n.

Figure 1 stay at a positive distance from 0 until the final time t = 1. In contrast,
in the left part of Figure 1, where α remains fixed, the smallest paths arrive at the
hard edge (the wall) at x = 0 already at a critical time t = t∗ = a/(1 + a) < 1, see
[12].

The model with fixed α was studied in [12]. One of the results was that for
every t ∈ (0, 1), the positions of the paths at time t have a limiting mean density
as n → ∞, that is characterized by the following vector equilibrium problem (see
Theorem 2.4 and the appendix of [12]). The vector equilibrium problem asks to
minimize the functional

(1.1)

∫∫
log

1

|x− y|dν1(x)dν1(y) +
∫∫

log
1

|x− y|dν2(x)dν2(y)

−
∫∫

log
1

|x− y|dν1(x)dν2(y) +
∫ (

x

t(1− t)
− 2

√
ax

t

)
dν1(x),

over all vectors of measures (ν1, ν2) such that

supp(ν1) ⊂ [0,∞),

∫
dν1 = 1, supp(ν2) ⊂ (−∞, 0],

∫
dν2 = 1/2,(1.2)

and

ν2 ≤ σ,(1.3)

where σ is the measure on (−∞, 0] with density

dσ(x)

dx
=

√
a

πt
|x|−1/2, x ∈ (−∞, 0].(1.4)

There is a unique minimizer (ν1, ν2), and the part ν1 has a density which is the
limiting mean density of the positions of the paths at time t. The equilibrium
problem depends on the parameters a > 0 and 0 < t < 1 that appear in the energy
functional (1.1) as well as in the upper constraint (1.4).

The above equilibrium problem is somewhat unusual since it involves a second
measure ν2 with a constraint σ. It turns out (see [12]) that the constraint is not
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active if t < t∗ = a/(a+1), that is before the critical time where the smallest paths
come to the hard edge. The constraint is active for t > t∗.

It is the aim of this paper to give more insight into the nature of the vector
equilibrium problem with constraint. We show how it arises from different con-
siderations involving the recurrence relations for multiple orthogonal polynomials
associated with modified Bessel functions, see the next section.

We note that a similar vector equilibrium problem with constraint and external
field was also found in the context of the Hermitian two-matrix model

1

Zn
exp (−nTr(V (M1) +W (M2)− τM1M2)) dM1dM2

where W (M) = 1
4M

4, see [7]. The vector equilibrium problem now involves three
measures, which are located on R, iR and R, respectively, with a constraint acting
on the second measure. The energy functional is similar to (1.1). The polynomials
that are connected to this model satisfy a five term recurrence relation. The ideas
that are developed in this paper can be extended to analyze this recurrence relation
and it is possible to obtain the vector equilibrium problem from it. This will be
reported elsewhere.

1.2. Multiple orthogonal polynomials. In [12] it was shown that the positions
of the paths at any time t ∈ (0, T ) constitute a multiple orthogonal polynomial
(MOP) ensemble associated with the two weight functions

(1.5) w1(x) = x
α
2 e−

Tx
2t(1−t) Iα

(√
ax

t

)
, w2(x) = x

α+1
2 e−

Tx
2t(1−t) Iα+1

(√
ax

t

)
,

defined for x ∈ (0,+∞). It implies in particular that the ‘average characteristic
polynomial’

(1.6) Bn(x) = E




n∏

j=1

(x− xj(t))


 ,

where x1(t) < x2(t) < · · · < xn(t) are the positions of the n paths at time t, satisfies
the orthogonality relations (assume n is even)

(1.7)

∫ ∞

0

Bn(x)x
kwj(x)dx = 0, for k = 0, 1, . . . , n/2− 1, j = 1, 2.

The polynomial (1.6) is characterized by a 3 × 3 matrix valued Riemann-Hilbert
problem and the correlation kernel for the MOP ensemble can be written directly in
terms of the solution of the Riemann-Hilbert problem. See also [11] for the general
notion of a MOP ensemble.

The multiple orthogonal polynomials Bn for the weights (1.5) were studied in
detail by Coussement and Van Assche [4], [5]. They obtained a third order differ-
ential equation, which was used in [12]. In addition they also gave an explicit four
term recurrence relation

(1.8) xBk(x) = Bk+1(x) + bkBk(x) + ckBk−1(x) + dkBk−2(x)
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with recurrence coefficients

(1.9)

bk =
a(T − t)2

T 2
+

2t(T − t)

T
(2k + α+ 1),

ck =
4at(T − t)3

T 3
k +

4t2(T − t)2

T 2
k(k + α),

dk =
4at2(T − t)4

T 4
k(k − 1).

After the rescaling t 7→ t/(2n), T 7→ 1/(2n), we obtain a doubly indexed sequence
Bk,n of polynomials satisfying for each n, the recurrence

(1.10) xBk,n(x) = Bk+1,n(x) + bk,nBk,n(x) + ck,nBk−1,n(x) + dk,nBk−2,n(x)

with recurrence coefficients

(1.11)

bk,n = a(1− t)2 + t(1− t)
2k + α+ 1

n
,

ck,n = 2at(1− t)3
k

n
+ t2(1− t)2

k(k + α)

n2
,

dk,n = at2(1− t)4
k(k − 1)

n2
.

It is the aim of this paper to obtain the vector equilibrium problem from this recur-
rence relation. We will show that the measure ν1 is the limiting zero distribution
of the diagonal polynomial Bn,n as n → ∞.

We also consider the following extension of the situation studied in [12]. We
rescale the parameter α by letting it increase proportionally to n as n increases.
The right figure in Figure 1 shows a numerical simulation of 50 non-intersecting
paths for this case. We observe that now the paths stay away from the hard edge
x = 0. In this case we are also able to analyze the recurrence relation and obtain
a vector equilibrium problem from it.

1.3. Polynomials satisfying an m-term recurrence relation. The recurrence
coefficients (1.11) are such that whenever n → ∞, k → ∞ so that k/n → s exists,
there is a limit

bk,n → b(s), ck,n → c(s), dk,n → d(s)

for certain functions b(s), c(s) and d(s).
We will study this situation in the general context of polynomials Pk,n depending

on two parameters, satisfying for each n, anm-term recurrence relation with varying
coefficients
(1.12)

xPk,n(x) = Pk+1,n(x) + b
(0)
k,nPk,n(x) + b

(1)
k,nPk−1,n(x) + · · ·+ b

(m−2)
k,n Pk+2−m,n(x),

with P0 ≡ 1, P−1 ≡ 0, . . . , P−m+2 ≡ 0, where the recurrence coefficients have
scaling limits

lim
k/n→s

b
(j)
k,n = b(j)(s), j = 0, . . . ,m− 2.

for certain functions b(0), . . . , b(m−2). The notation limk/n→s that we use here and
also later in the paper, means that both k, n → ∞ with k/n → s.

We associate with the functions b(j), j = 0, . . . ,m− 2, a family of functions

(1.13) As(z) = z + b(0)(s) + b(1)(s)z−1 + · · ·+ b(m−2)(s)z−m+2
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and the sequence of Toeplitz matrices (Tn)n where Tn = Tn(As) is the n×n Toeplitz
matrix with symbol As, defined by

(1.14) (Tn(As))jk =





1, if k = j + 1,

b(i)(s), if k = j − i, i = 0, . . . ,m− 1,

0, otherwise.

The limiting behavior of the spectrum of Tn(As) as n → ∞ is characterized
in terms of the solutions of the algebraic equation As(z) = x, see [2]. For every
x ∈ C there exist exactly m− 1 solutions of the equation As(z) = x (assume that
b(m−2)(s) 6= 0) which we denote by zj(x, s), j = 1, . . . ,m−1. We label the solutions
by their absolute value so that

(1.15) |z1(x, s)| ≥ |z2(x, s)| ≥ · · · ≥ |zm−1(x, s)| > 0.

We put

(1.16) Γ1(s) = {x ∈ C | |z1(x, s)| = |z2(x, s)|},
which is a finite union of analytic arcs.

We will use the following classical theorem on the behavior of the eigenvalues of
Tn(As) as n → ∞.

Theorem 1.1. As n → ∞ the eigenvalues of Tn(As) accumulate on the contour
(1.16).

The sequence of normalized counting measures of the eigenvalues of Tn(As) con-
verges weakly as n → ∞ to the Borel probability measure µs

1 on Γ1(s), given by

(1.17) dµs
1(x) =

1

2πi

(
z′1−(x, s)

z1−(x, s)
− z′1+(x, s)

z1+(x, s)

)
dx,

where ′ denotes the derivative with respect to x. In (1.17), we have that dx is
the complex line element on Γ1(s) and z1±(x, s) is the limiting value of z1(x̃, s)
as x̃ → x from the ± side on each of the arcs in Γ1(s) (the complex line element
induces an orientation on Γ1(s) and the + side (− side) is on the left (right) as
one traverses Γ1(s) according to the orientaton).

Proof. The fact that the eigenvalues accumulate on Γ1(s) was shown by Schmidt
and Spitzer [16]. The result about the limit of the normalized eigenvalue counting
measures is due to Hirschman [10], see also [2, Chapter 11]. The precise form (1.17)
for the limiting measure was given in [6]. �

For later use we also note that by [6, Proposition 4.2],

(1.18)

∫
dµs

1(y)

x− y
=

z′1(x, s)

z1(x, s)
, for x ∈ C \ Γ1(s),

which also characterizes the measure µs
1.

Our first result states that, under certain conditions, the polynomials Pk,n sat-
isfying the recurrence (1.12) have a limiting zero distribution, which is an average
of the measures (1.17). The average is with respect to the parameter s.

Theorem 1.2 is an extension of Theorem 3.1 of [3] to polynomials satisfying an
m-term recurrence relation instead of a specific four-term recurrence relation as
in [3]. The analogous result for orthogonal polynomials satisfying a three-term
recurrence is from [14]. See also [13] and [17] for related results.
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Theorem 1.2. Let for each n ∈ N, m − 1 sequences {b(j)k,n}∞k=0, j = 0, . . . ,m− 2,

of real coefficients be given and assume that there exist continuous functions b(j) :
[0,∞) → R, j = 0, . . . ,m− 2, such that for each s ≥ 0,

(1.19) lim
k/n→s

b
(j)
k,n = b(j)(s), j = 0, . . . ,m− 2.

Let Pk,n be the monic polynomials generated by the recurrence (1.12) and suppose
that

(a) the polynomials Pk,n have real and simple zeros xk,n
1 < · · · < xk,n

k satisfying
for each k and n the interlacing property

xk+1,n
j < xk,n

j < xk+1,n
j+1 , for j = 1, . . . , k,

(b) Γ1(s) ⊂ R for every s > 0, where Γ1(s) is given by (1.16).

Then the normalized zero counting measures ν(Pk,n) =
1
k

∑k
j=1 δxk,n

j

have a weak

limit as k, n → ∞ with k/n → ξ > 0 given by

(1.20) lim
k/n→ξ

ν(Pk,n) =
1

ξ

∫ ξ

0

µs
1 ds

where µs
1 is the measure (1.17).

The proof of Theorem 1.2 is given in Section 2.

1.4. Multiple orthogonal polynomials associated with modified Bessel

functions. We want to apply Theorem 1.2 to the multiple orthogonal polynomials
Bk associated with the modified Bessel function.

1.4.1. Interlacing. The assumption (a) of Theorem 1.2 will be satisfied since we
have the following.

Proposition 1.3. Let a > 0, α > −1, 0 < t < T . Then the polynomials Bk

generated by the recurrence (1.8) with recurrence coefficients (1.9) have real and
simple zeros in (0,∞) with the interlacing property.

The proof of Proposition 1.3 is given in Section 3.

1.4.2. First rescaling. In the first rescaling we let t and T depend on n, while α
and a remains fixed. We replace

t 7→ t/(2n), T 7→ 1/(2n)

and we obtain the recurrence coefficients as in (1.11). The scaling limits of the
recurrence coefficients indeed exist:

lim
k/n→s

bk,n = b(s) = a(1− t)2 + 2st(1− t),

lim
k/n→s

ck,n = c(s) = 2ast(1− t)3 + s2t2(1 − t)2,

lim
k/n→s

dk,n = d(s) = as2t2(1− t)4.

(1.21)

Then as in (1.13) we have the associated family of symbols

As(z) = z + b(s) + c(s)z−1 + d(s)z−2(1.22)



RECURRENCE RELATIONS AND VECTOR EQUILIBRIUM PROBLEMS 7
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Figure 2. Graph of the curves β(s), γ(s) and η(s) for the first
and second rescaling.

and the solutions z1(x, s), z2(x, s) and z3(x, s) of the algebraic equation As(z) = x.
We define Γ1(s) as in (1.16) and similarly

(1.23) Γ2(s) = {x ∈ C | |z2(x, s)| = |z3(x, s)|}.
The symbol (1.22) with the functions b(s), c(s) and d(s) from (1.21) allows for

a factorization

As(z) =
(z + a(1− t)2)(z + st(1− t))2

z2
.(1.24)

From (1.24) we see that As has three negative zeros, namely a double zero at
−st(1− t) and a simple zero at −a(1− t)2. For the special value

s = s∗ =
a(1− t)

t

the three zeros of the symbol coincide.
These facts are used to prove the following.

Proposition 1.4. For each s > 0, we have that Γ1(s) ⊂ [0,∞) and Γ2(s) ⊂
(−∞, 0]. More precisely, there exist η(s) ≤ 0 ≤ β(s) < γ(s) so that

Γ1(s) = [β(s), γ(s)], Γ2(s) = (−∞, η(s)].(1.25)

In addition we have

(a) s 7→ γ(s) is strictly increasing for s > 0, lims→0+ γ(s) = a(1 − t)2, and
lims→∞ γ(s) = +∞,

(b) s 7→ β(s) is positive and strictly decreasing for 0 < s < s∗ = a(1−t)
t and

β(s) = 0 for s ≥ s∗. Furthermore, lims→0+ β(s) = a(1− t)2,
(c) η(s) = 0 for 0 < s ≤ s∗ and s 7→ η(s) is negative, strictly decreasing for

s > s∗ and lims→∞ η(s) = −∞.

From the proposition it follows that the sets Γ1(s) and Γ2(s) are intervals, and
that Γ1(s) is increasing as s increases, while Γ2(s) decreases. See the left part of
Figure 2 for an illustrative plot of γ(s), β(s) and η(s), as a function of s.
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As a result of Propositions 1.3 and 1.4 we see that the assumptions (a) and (b)
of Theorem 1.2 are satisfied, and so for each ξ > 0, the weak limit of the normalized
zero counting measures of the polynomials Bk,n as k, n → ∞, k/n → ξ, exists and
is given by (1.20).

1.4.3. Second rescaling. In the second rescaling we let the parameter α increase as
n increases. For this we change the variables t, T and α by

t 7→ t/(2n), T 7→ 1/(2n), α 7→ pn

with p > 0.
The recurrence coefficients (1.9) now have scaling limits that also depend on p.

Indeed,

b(s) = a(1− t)2 + 2st(1− t) + t(1 − t)p,

c(s) = 2ast(1− t)3 + s2t2(1− t)2 + st2(1− t)2p,

d(s) = as2t2(1− t)4.

(1.26)

Now the symbol (1.24) depends on p and we can again explicitly factorize

(1.27) As(z) =
(z + st(1− t))(z2 + (1− t)(a(1 − t) + (s+ p)t)z + ast(1− t)3)

z2
.

There are again three negative zeros of the symbol, but now all three zeros are
simple.

We again have Γ1(s) and Γ2(s) as in (1.16) and (1.23), and we prove the following.

Proposition 1.5. Let p > 0. Then for each s > 0, we have that Γ1(s) ⊂ (0,∞)

and Γ2(s) ⊂ (−∞,− p2t2

4a ]. More precisely, there exist η(s) < 0 < β(s) < γ(s) so
that

Γ1(s) = [β(s), γ(s)], Γ2(s) = (−∞, η(s)].(1.28)

In addition we have

(a) s 7→ γ(s) is strictly increasing for s > 0, lims→0+ γ(s) = (1−t)(a(1−t)+pt)
and lims→∞ γ(s) = ∞,

(b) s 7→ β(s) is positive and strictly decreasing for s > 0 with lims→0+ β(s) =
(1 − t)(a(1− t) + pt) and lims→∞ β(s) = 0,

(c) s 7→ η(s) is negative and strictly decreasing for s > 0 with lims→0+ γ(s) =

− p2t2

4a and lims→∞ η(s) = −∞.

See the right part of Figure 2 for a plot of the functions β(s), γ(s) and η(s) in
the case p = 5.

Also in the second scaling the assumptions of Theorem 1.2 are satisfied, and
again it follows that for each ξ > 0, the weak limit of the normalized zero counting
measures of the polynomials Bk,n as k, n → ∞, k/n → ξ, exists and is given by
(1.20).

The proof of Propositions 1.4 and 1.5 are given in Section 4.

1.5. Equilibrium problem. In both scalings we find for each ξ > 0 a probability
measure of the form

νξ1 =
1

ξ

∫ ξ

0

µs
1 ds(1.29)
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as the weak limit of the normalized zero counting measures. The main result of the
paper is that this measure can also be obtained as the first component of a vector

of measures (νξ1 , ν
ξ
2) that satisfies a vector equilibrium problem. For the case p = 0

and ξ = 1, it reduces to the vector equilibrium problem (1.1)–(1.4) stated in the
introduction.

We will use a recent result of Duits and Kuijlaars [6] which in the present context
says that the measure µs

1 that gives the limiting eigenvalue distribution of the
Toeplitz matrices with symbol (1.24) is part of a vector (µs

1, µ
s
2) that is characterized

by a vector equilibrium problem.
The second measure µs

2 is supported on Γ2(s) (see (1.23)) and is given by

(1.30) dµs
2(x) =

1

2πi

(
z′2−(x, s)

z2−(x, s)
− z′2+(x, s)

z2+(x, s)

)
dx

for x ∈ Γ2(s). Then µs
2 is indeed a positive measure on Γ2(s) with total mass 1/2.

The result of [6] in this special case is the following.

Theorem 1.6. For each s > 0 we have that the vector (µs
1, µ

s
2) is the unique

minimizer for the energy functional

(1.31)

∫∫
log

1

|x− y|dµ1(x)dµ1(y) +

∫∫
log

1

|x− y|dµ2(x)dµ2(y)

−
∫∫

log
1

|x− y|dµ1(x)dµ2(y)

among all vectors (µ1, µ2) satisfying supp(µj) ⊂ Γj(s) for j = 1, 2, and
∫

dµ1 = 1,

∫
dµ2 =

1

2
.

The measures µs
1 and µs

2 satisfy for some constant ℓs,

2

∫
log |x− y|dµs

1(y)−
∫

log |x− y|dµs
2(y) = ℓs, x ∈ Γ1(s),(1.32)

2

∫
log |x− y|dµs

2(y)−
∫

log |x− y|dµs
1(y) = 0, x ∈ Γ2(s).(1.33)

The conditions (1.32)–(1.33) are the Euler-Lagrange variational conditions for
the vector equilibrium problem.

Recall that we have (1.29) and similarly we put for ξ > 0,

νξ2 =
1

ξ

∫ ξ

0

µs
2 ds.(1.34)

Then νξ2 is a measure on
⋃

s<ξ Γ2(s) = (−∞,−p2t2/4a] with total mass 1/2. We

obtain the vector equilibrium problem for (νξ1 , ν
ξ
2) by integrating the vector equilib-

rium problem for (µs
1, µ

s
2) with respect to s, in particular the variational conditions

(1.32)–(1.33). A complication is that the intervals Γ1(s) and Γ2(s) are varying with
s. The fact that Γ1(s) is increasing with s induces, after integration, an external

field on νξ1 . The fact that Γ2(s) is decreasing as s increases leads to the upper

constraint on νξ2 .

Theorem 1.7. Define

V (x) =

∫ ∞

0

log

∣∣∣∣
z1(x, s)

z2(x, s)

∣∣∣∣ ds(1.35)
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νξ1

σ

νξ2

a = 1, t = 0.2, p = 0, ξ = 1

x

Figure 3. Graphs of the densities of σ (dashed) and νξ2 on the

negative half line and the density of νξ1 on the positive half line,
for the case p = 0 and t < t∗.

and

σ =

∫ ∞

0

µs
2 ds.(1.36)

Then for every ξ > 0, the vector of measures (νξ1 , ν
ξ
2) is the unique minimizer

for the energy functional

(1.37)

∫∫
log

1

|x− y|dν1(x)dν1(y) +
∫∫

log
1

|x− y|dν2(x)dν2(y)

−
∫∫

log
1

|x− y|dν1(x)dν2(y) +
1

ξ

∫
V (x)dν1(x),

over all vectors of measures (ν1, ν2) such that supp(ν1) ⊂ [0,∞),
∫
dν1 = 1,

supp(ν2) ⊂ (−∞, 0],
∫
dν2 = 1/2, and

ν2 ≤ 1

ξ
σ.

The measures νξ1 and νξ2 are characterized by the following variational conditions

2

∫
log |x− y|dνξ1(y)−

∫
log |x− y|dνξ2(y) +

1

ξ
V (x)

{
= ℓ, for x ∈ supp(νξ1),

≤ ℓ, for x ∈ [0,∞),

(1.38)

for some ℓ, and

2

∫
log |x− y|dνξ2(y)−

∫
log |x− y|dνξ1(y)

{
= 0, for x ∈ supp(σ − ξνξ2),

> 0, for x ∈ C \ supp(σ − ξνξ2).

(1.39)

The proof of Theorem 1.7 is given in Section 5.
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νξ1

σ

νξ2

a = 1, t = 0.9, p = 0, ξ = 1

x

Figure 4. Graphs of the densities of σ (dashed) and νξ2 on the

negative half line and the density of νξ1 on the positive half line,
for the case p = 0 and t > t∗.

1.6. Evaluation of V and σ. In a final result we are able to evaluate the integrals
(1.35) and (1.36) that define V and σ.

Theorem 1.8. For every p ≥ 0, we have

(1.40) V (x) =
x

t(1 − t)
−
√
p2t2 + 4ax

t
− p log

(√
p2t2 + 4ax− pt

)

+
a(1 − t)

t
+ p log (2a(1− t)) ,

and σ is the measure on (−∞, 0] with density

(1.41)
dσ(x)

dx
=





√
4a|x|−p2t2

2πt|x| , for x ∈
(
−∞,− p2t2

4a

]
,

0 for x ∈
(
− p2t2

4a , 0
]
.

Note that for p = 0, the external field (1.40) is

(1.42) V (x) =
x

t(1− t)
− 2

√
ax

t
+

a(1− t)

t
=

1

t(1− t)
(
√
x−√

a(1− t))2

and the constraint (1.41) is the measure with density

dσ(x)

dx
=

√
a

πt
|x|−1/2, x ∈ (−∞, 0].

Remark 1.9. Figure 3 shows the graph of the densities of σ, νξ1 and νξ2 in the case
p = 0 and t below the critical time t∗. This corresponds to the case where the
non-intersecting paths did not come to the hard edge. The constraint σ is not

active and νξ1 is supported on a interval which is at a positive distance from zero.
Figure 4 illustrates the case p = 0 for t > t∗. Here the constraint σ is active in an
interval.

Figure 5 shows the densities of σ, νξ1 and νξ2 for p > 0. For all values of t, the

constraint σ is active in some interval and νξ1 is supported on an interval which is
at a positive distance from zero.
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σ
νξ1

νξ2

a = 1, t = 0.9, p = 1, ξ = 1

Figure 5. Graphs of the densities of σ (dashed) and νξ2 on the

negative real line and the density of νξ1 on the positive real line for
p > 0.

Remark 1.10. It was pointed out that if we let n → ∞, the paths fill out a region
in the tx-plane. This can be observed in the left figure of Figure 1 for the case
p = 0 and in the right figure of Figure 1 for the case p > 0. The region filled by
the paths, for a fixed time t ∈ [0, 1], is exactly the interval [β(1), γ(1)]. We can
obtain β(1) and γ(1) by computing the zeros of the discriminant of the polynomial
z2A1(z)− z2x with respect to z, which is the following algebraic equation of degree
three in x:

4ax3 −
[
8a2(1 − t)2 + 4at(1− t)(2p+ 5)− t2(p+ 1)2

]
x2

+(1−t)
[
4a3(1−t)3+4a2t(1−t)2(2p−3)+2at2(1−t)(p2+p+6)−2t3(p+2)(p+1)2

]
x

+ p2t2(1 − t)2
[
a2(1− t)2 + 2at(1− t)(p− 1) + t2(p+ 1)2

]
= 0.

If p = 0 then the algebraic equation reduces to

(1.43) x(4ax2 − x(8a2(1− t)2 + 20at(1− t)− t2) + 4(1− t)(a(1− t)− t)3) = 0.

We can compute explicit expressions for the solutions in this case

x1(t) = 0,

x2(t) =
1

8a

(
8a2(1− t)2 − t(t− 20a(1− t))−

√
t(t+ 8a(1− t))3

)
,

x3(t) =
1

8a

(
8a2(1− t)2 − t(t+ 20a(1− t)) +

√
t(t+ 8a(1− t))3

)
.

Remark 1.11. If we let a → 0 and s = 1, then the symbol (1.27) becomes

(1 + zt(1− t))2

z2
+

pt(1− t)(1 + zt(1− t))

z
.
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1
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

a = 0, p = 5

t

x

Figure 6. Numerical simulation of 50 non-intersecting paths for
a = 0 and p = 0 (left), p > 0 (right).

The solution z3(x, 1) tends to zero as a → 0. On the other hand, the solutions
z1(x, 1) and z2(x, 1) have limits (with appropriate choice of ±-sign)

z1(x) = −1

2
t(1− t)(p+ 2) +

x

2
+

1

2
((x− ρ1(t))(x − ρ2(t)))

1/2 ,

z2(x) = −1

2
t(1− t)(p+ 2) +

x

2
− 1

2
((x− ρ1(t))(x − ρ2(t)))

1/2
,

as a → 0, where

ρ1(t) = t(1 − t)(p+ 2− 2
√
p+ 1), ρ2(t) = t(1 − t)(p+ 2 + 2

√
p+ 1).

One can show that ν1 is the Marchenko-Pastur distribution, see e.g. [9], with density

dν1(x)

dx
=

√
(ρ2(t)− x)(x − ρ1(t))

2πt(1 − t)x
, x ∈ [ρ1(t), ρ2(t)].

Figure 6 shows simulations of 50 non-intersecting squared Bessel paths for the case
a = 0 and the boundaries ρ1(t) and ρ2(t) of the region filled by the paths as n → ∞.

The rest of the paper is devoted to the proofs of the theorems and propositions
stated above. Theorem 1.2 is proved in Section 2, Proposition 1.3 in Section 3,
Propositions 1.4 and 1.5 in Section 4, Theorem 1.7 in Section 5, and finally Theo-
rem 1.8 is proved in Section 6.

2. Proof of Theorem 1.2

Before proving Theorem 1.2 we will state a result concerning ratio asymptotics
of polynomials satisfying a recurrence relation (1.12) with varying recurrence coef-
ficients.

The following lemma will be used in the proofs of Theorem 1.2 and Lemma 2.2.

Lemma 2.1. Suppose that the zeros of the monic polynomials Pk and Pk+1, with
degrees k and k+1, respectively, are simple and real, lie in an interval [−R,R] for
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some R > 0, and are interlacing. Then we have
∣∣∣∣
Pk(z)

Pk+1(z)

∣∣∣∣ ≤
1

dist(z, [−R,R])
for z ∈ C \ [−R,R],(2.1)

∣∣∣∣
Pk(z)

Pk+1(z)

∣∣∣∣ ≥
1

2|z| for |z| > R,(2.2)

∣∣∣∣∣

(
Pk(z)

Pk+1(z)

)′
∣∣∣∣∣ ≤

1

dist(z, [−R,R])2
for z ∈ C \ [−R,R].(2.3)

Proof. Inequalities (2.1) and (2.2) can be found in [14, Lemma 2.2]. The proof of
(2.3) is similar to that of (2.1). �

We consider the doubly indexed sequences of polynomials {Pk,n} generated by
them-term recurrence relation (1.12) and we assume that the recurrence coefficients
have scaling limits

lim
k/n→s

b
(j)
k,n = b(j)(s).

Lemma 2.2. Under the assumptions of Theorem 1.2 we have that for each s > 0,
there exists R > 0 so that all zeros of Pk,n belong to [−R,R] whenever k ≤ (s+1)n.
Moreover,

(2.4) lim
k/n→s

Pk+1,n(x)

Pk,n(x)
= z1(x, s),

uniformly on compact subsets of C \ [−R,R].

Proof. Fix s > 0. The convergence (1.19) imply that the recurrence coefficients
are uniformly bounded if k/n is restricted to compact subsets of [0,∞). So, the
number R defined by

(2.5) R := sup{1 + |b(0)k,n|+ |b(1)k,n|+ · · ·+ |b(m−2)
k,n | | k ≤ (s+ 1)n}

is finite.
By the recurrence (1.12) we have Pk,n(x) = det(zIk −Mk,n) where Mk,n is the

matrix

(2.6) Mk,n =




b
(0)
0,n 1 0

b
(1)
1,n b

(0)
1,n 1 0

...
. . . 1

. . .

b
(m−2)
m−2,n

. . .
. . .

. . .

0
. . .

. . .
. . . 0

. . .
. . .

. . . 1

0 b
(m−2)
k−1,n . . . . . . b

(0)
k−1,n




.

The zeros of Pk,n are equal to the eigenvalues of Mk,n, and their absolute values are
bounded by the maximum absolute row sum of Mk,n. Therefore, by the definition
(2.5), if k ≤ (s+ 1)n then the zeros of Pk,n lie in the interval [−R,R].

We consider the family of functions

(2.7) H =

{
Pk+1,n

Pk,n
| k, n ∈ N, k + 1 ≤ (s+ 1)n

}
.
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Because of the assumption (a) in Theorem 1.2 we can apply Lemma 2.1 to Pk,n and
Pk+1,n. It follows from (2.1), (2.2) and (2.7) that the family H is a normal family
(in the sense of Montel) on C \ [−R,R].

Using induction on l, we will show the following.

Claim: For each l ≥ 0, the following holds. If {ki}i, {ni}i are sequences of
non-negative integers with ki, ni → ∞, ki/ni → s as i → ∞, so that

(2.8) f(x) := lim
i→∞

Pki+1,ni
(x)

Pki,ni
(x)

exists for |x| > R, then

(2.9) f(x) = z1(x, s) +O(x−l)

as x → ∞.

We have z1(x, s) = x + O(1), as x → ∞, and so it is clear that (2.9) holds for
l = 0.

Now assume that the claim holds for l ≥ 0. Let {ki} and {ni} be as in the claim.
Since ki/ni → s as i → ∞, we may assume that ki ≤ (s + 1)ni for every i. For
j = 0, . . . ,m− 2, we then have that

Pki+1−j,ni

Pki−j,ni

belongs to the family H. Since it is a normal family, we may assume, by passing to
a subsequence if necessary, that

(2.10) f (j)(x) = lim
i→∞

Pki+1−j,ni
(x)

Pki−j,ni
(x)

exists for x ∈ C \ [−R,R] and j = 0, . . . ,m− 2.
Now we divide the recurrence (1.12) by Pk,n, and replace k and n by ki and ni,

to obtain for each j,

x =
Pki+1,ni

(x)

Pki,ni
(x)

+ b
(0)
ki,ni

+
m−2∑

j=1

b
(j)
ki,ni

Pki−j,ni
(x)

Pki,ni
(x)

.

We let i → ∞, where we note that by (1.19)

b
(j)
ki,ni

→ b(j)(s)

and by (2.10)

Pki−j,ni
(x)

Pki,ni
(x)

→
[
f (1)(x) · · · f (j)(x)

]−1

for x ∈ C \ [−R,R] and j = 1, . . . ,m− 2. Thus

x = f(x) + b(0)(s) +

m−2∑

j=1

b(j)(s)
[
f (1)(x) · · · f (j)(x)

]−1

.

for all x ∈ C \ [−R,R].
Now by the induction hypothesis we have for j = 0, . . . ,m− 2,

f (j)(x) = z1(x, s) +O(x−l) = z1(x, s)
(
1 +O(x−l−1)

)
as x → ∞.
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and so

f(x) = x− b(0)(s)−
m−2∑

j=1

b(j)(s)
[
f (1)(x) · · · f (j)(x)

]−1

= x− b(0)(s)−
m−2∑

j=1

b(j)(s)z1(x, s)
−j
(
1 +O(x−l−1)

)

= x− b(0)(s)−
m−2∑

j=1

b(j)(s)z1(x, s)
−j +O(x−l−2).

Since z1(x, s) is a solution of As(z) = x, we have

x− b(0)(s)−
m−2∑

j=1

b(j)(s)z1(x, s)
−j = z1(x, s)

and so we obtain

f(x) = z1(x, s) +O(x−l−2)

as x → ∞, which proves (2.9) for l+ 2.
The claim now proved, we finally show how the lemma follows from the claim.

First note that f is analytic in C\ [−R,R] and x 7→ z1(x, s) is defined, analytic and
non-zero in C \ Γ1(s). Thus, if (2.9) holds for every l, then clearly f(x) = z1(x, s)
for x in a neighborhood of ∞ in the x-plane, and by analyticity the equality extends
to C\([−R,R]∪Γ1(s)). Next, recall the assumption (b) in Theorem 1.2, which says
that Γ1(s) ⊂ R. Then it easily follows by its definition that z1(x, s) cannot possibly
have an analytic continuation from C \Γ1(s) to a larger set. Thus Γ1(s) ⊂ [−R,R]
and it follows that

(2.11) lim
i→∞

Pki+1,ni
(x)

Pki,ni
(x)

= z1(x, s), x ∈ C \ [−R,R],

for all sequences {ki}, {ni} as in the statement of (2.7).
Then by a standard normal families argument (recall that the family H is a

normal family) (2.4) follows.
�

Proof of Theorem 1.2. Let ξ > 0, and take 0 ≤ s ≤ 1. From Lemma 2.2, there
exists R > 0 such that all zeros of Pk,n belong to [−R,R]. For k ∈ N, we use ⌊sk⌋
to denote the greatest integer less than or equal to sk. We observe that

1

k

P ′
k,n(x)

Pk,n(x)
=

1

k

k−1∑

j=0

(
P ′
j+1,n(x)

Pj+1,n(x)
−

P ′
j,n(x)

Pj,n(x)

)

=

∫ 1

0

(
P ′
⌊sk⌋+1,n(x)

P⌊sk⌋+1,n(x)
−

P ′
⌊sk⌋,n(x)

P⌊sk⌋,n(x)

)
ds.(2.12)

By taking the logarithmic derivative of (2.4) and using (1.18) we obtain

(2.13) lim
k/n→ξ

(
P ′
⌊sk⌋+1,n(x)

P⌊sk⌋+1,n(x)
−

P ′
⌊sk⌋,n(x)

P⌊sk⌋,n(x)

)
=

z′1(x, sξ)

z1(x, sξ)
=

∫
dµsξ

1 (y)

x− y
,
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uniformly on compact subsets of C \ [−R,R]. From (2.2) and (2.3) in Lemma 2.1
we obtain ∣∣∣∣∣

P ′
⌊sk⌋+1,n(x)

P⌊sk⌋+1,n(x)
−

P ′
⌊sk⌋,n(x)

P⌊sk⌋,n(x)

∣∣∣∣∣ =
∣∣∣∣∣

(
P⌊sk⌋,n(x)

P⌊sk⌋+1,n(x)

)′
∣∣∣∣∣

∣∣∣∣
P⌊sk⌋+1,n(x)

P⌊sk⌋,n(x)

∣∣∣∣(2.14)

≤ 2|z|
dist(z, [−R,R])2

.

for |z| > R. Therefore we may apply Lebesgue’s dominated convergence theorem
and it follows by (2.12) and (2.13)

lim
k/n→ξ

1

k

P ′
k,n(x)

Pk,n(x)
=

∫ 1

0

∫
dµsξ

1 (y)

x− y
ds =

1

ξ

∫ ξ

0

∫
dµs

1(y)

x− y
ds.

Therefore we have that

lim
k/n→ξ

1

k

P ′
k,n(x)

Pk,n(x)
=

∫
1

ξ

∫ ξ

0

dµs
1(y)

x− y
ds,

for all x ∈ C \ [−R,R]. This gives, by a standard argument, see [15], that the
polynomials Pk,n have

νξ1 =
1

ξ

∫ ξ

0

µs
1(λ)ds,

as limiting zero distribution as k/n → ξ. �

3. Proof of Proposition 1.3

In [4] it is proved that the weights (w1, w2) from (1.5) are such that there exist
discrete measures σ1 and σ2 on (−∞, 0] such that

w2(x)

w1(x)
= x

∫ 0

−∞

dσ1(t)

x− t
,

w1(x)

w2(x)
=

∫ 0

−∞

dσ2(t)

x− t
, x > 0.

From this it is shown in [4, Theorem 4] that the weights (w1, w2) form an AT-system
on [0,∞), which means that for any n1, n2 ∈ N, the set of real valued functions

Fn1,n2 = {w1(x), xw1(x), . . . , x
n1w1(x), w2(x), xw2(x), . . . , x

n2w2(x)},
is a Chebyshev system on (0,∞) i.e., every linear combination

∑n1+n2+2
k=1 akϕk,

with ϕk ∈ Fn1,n2 , ϕk 6= ϕk′ if k 6= k′, and (a1, . . . , an+m+2) 6= (0, . . . , 0), has at
most n1 + n2 + 1 zeros in (0,∞).

A consequence of this result is that for every n1, n2 ∈ N there is a unique monic
polynomial Bn1,n2 of degree n1 + n2 satisfying the orthogonality conditions

(3.1)

∫ ∞

0

Bn1,n2(x)x
kwj(x)dx = 0, for k = 0, 1, . . . , nj − 1, j = 1, 2.

The polynomial Bn1,n2 has exactly n1 + n2 simple zeros in (0,∞), see e.g. [19].
Comparing (3.1) with (1.5) we see that Bn = Bn1,n2 with n1 = n2 = n/2 if n is
even, and n1 = (n+ 1)/2, n2 = (n− 1)/2 if n is odd.

The interlacing of zeros now follows from Lemma 2.3 and Remark 2.1 of [1].
Indeed there it is shown that for any n1, n2 the zeros of Bn1,n2 are interlaced with
those of Bn1+1,n2 and with those of Bn1,n2+1.

For convenience of the reader, we give the proof of interlacing following [1] (see
also [8, Lemma 5 and Corollary 1] for a different approach). We show that the zeros
of Bn1,n2 interlace with those of Bn1+1,n2 , the proof for Bn1,n2+1 being similar.
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Figure 7. The graph of As(z) (1.27), z ∈ R, for p > 0.

Let us consider a polynomial P = aBn1,n2 + bBn1+1,n2 with (a, b) 6= (0, 0). Let
us assume that P has a double real zero at ζ ∈ R. Then

(3.2) P (x) = aBn1,n2(x)+ bBn1+1,n2(x) = (x− ζ)2R(x), degR ≤ n1+n2− 1.

From the orthogonality conditions (3.1) it follows that R satisfies

(3.3)

∫ ∞

0

R(x)xk(x− ζ)2wj(x)dx =

∫ ∞

0

(aBn1,n2(x) + bBn1+1,n2(x))wj(x)dx

= 0 for k = 0, . . . , nj − 1, j = 1, 2.

Thus R has multiple orthogonality conditions with respect to the weights (w̃1, w̃2)
where

w̃1(x) = (x− ζ)2w1(x), and w̃2(x) = (x− ζ)2w2(x).

By the same reasoning as in [4] it follows that (w̃1, w̃2) is also an AT system on
[0,∞). It follows that any monic polynomial R that satisfies (3.3) should have
degree ≥ n1 + n2, and this is a contradiction.

Therefore the polynomial P has only simple zeros in R. This means that for
every fixed x ∈ R, the linear system

(
Bn1,n2(x) Bn1+1,n2(x)
B′

n1,n2
(x) B′

n1+1,n2
(x)

)(
a
b

)
=

(
0
0

)

has only the trivial solution a = b = 0. Then the determinant is non-zero

Bn1,n2(x)B
′
n1+1,n2

(x)−Bn1+1,n2(x)B
′
n1,n2

(x) 6= 0, x ∈ R,

which readily implies thatBn1,n2 has opposite signs at consecutive zeros ofBn1+1,n2 .
It follows that between two consecutive zeros of Bn1+1,n2 there is at least one zero
of Bn1,n2 , and this proves the interlacing of zeros. �
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4. Proof of Propositions 1.4 and 1.5

Propositions 1.4 and 1.5 will be proved simultaneously. First of all we observe
that the symbol allows for a factorization

(4.1) As(z) =
(z − r1)(z − r2)(z − r3)

z2
, with r1, r2, r3 < 0,

see (1.24) for the case p = 0, and (1.27). We order the roots so that

r1 ≤ r2 ≤ r3 < 0.

If p > 0, then it is elementary to check from (1.27) that all zeros are distinct.
Figure 7 shows the plot of As(z) for the case p > 0. If p = 0, then it follows from
(1.24) that

r1 = r2 < r3 < 0, if st < a(1− t),

r1 = r2 = r3 < 0, if st = a(1− t),

r1 < r2 = r3 < 0, if st > a(1− t).

These three cases are illustrated in Figures 8, 9 and 10, respectively.
The derivative of As(z),

A′
s(z) = 1− c(s)z−2 − 2d(s)z−3,

has three roots in the complex plane. From Figures 7, 8, 9, and 10 we see that all
zeros are of A′

s are real. We denote the zeros of A′(z) by y1, y2 and y3 so that

y1 ≤ y2 < 0 < y3,

as indicated in the figures. The equality y1 = y2 only holds if p = 0 and s = s∗ as
in Figure 9. To indicate the dependence on s we also write y1(s), y2(s) and y3(s).

Before proving Propositions 1.4 and 1.5 we first need two lemmas. The proofs
of these lemmas only use the fact that the zeros rj of the symbol As are strictly
negative.

Lemma 4.1. Assume that z1, z2 ∈ C are such that z1 6= z2, |z1| = |z2| and
As(z1) = As(z2) = x. Then z1 = z̄2 and x ∈ R.

Proof. The complex numbers z1 and z2 lie in a circle of radius ρ = |z1| = |z2|
centered at the origin in the complex plane. Then from (4.1) we have

|As(z)| =
dist(z, r1) dist(z, r2) dist(z, r3)

ρ2
, if |z| = ρ.

Since all rj < 0, it follows that

[−π, π] → R : θ 7→ |As(ρe
iθ)|

is an even function which is strictly decreasing as θ increases from 0 to π.
Thus equality

|As(ρe
iθ1)| = |As(ρe

iθ2)|,
with θ1,2 ∈ [−π, π] and θ1 6= θ2 can only occur if θ2 = −θ1. Then it follows from
the assumptions of the lemma, that z1 = z̄2, and

x = As(z1) = As(z̄1) = As(z2) = x

so that x ∈ R. �
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Figure 8. Graph of As(z) (1.24), z ∈ R, in the case p = 0, s < s∗.

Lemma 4.2. For each s > 0 we have Γ1(s) ∪ Γ2(s) ⊂ R. Moreover, if p > 0 or if
p = 0 and s 6= s∗ = a(1− t)/t, then Γ1(s) ∩ Γ2(s) = ∅. On the other hand, if p = 0
and s = s∗, then Γ1(s) ∩ Γ2(s) = {0}.
Proof. If x ∈ Γ1(s)∪Γ2(s) and As(z)−x has a double root, then there exists z1 ∈ C

such that As(z1) = x and A′
s(z1) = 0. Since all zeros of A′(z) are real, it follows

that z1 ∈ R.
If x ∈ Γ1(s) ∪ Γ2(s) and As(z)− x does not have a double root, then there exist

z1, z2 ∈ C such that z1 6= z2, |z1| = |z2| and x = As(z1) = As(z2). Lemma 4.1 says
that x ∈ R. This proves that Γ1(s) ∪ Γ2(s) ⊂ R.

If x ∈ Γ1(s) ∩ Γ2(s), and s 6= s∗ if p = 0, then there exist three solutions of
As(z) = x. One negative solution z1 < 0 and two complex conjugated solutions
z2 and z̄2 (see Figures 7, 8, 10). Moreover z1 6= z2 and z1 6= z̄2. Now |z1| = |z2|
(x ∈ Γ1(s)) and As(z1) = As(z2). Therefore we can apply Lemma 4.1 and we
obtain z1 = z̄2 which is a contradiction. Then Γ1(s) ∩ Γ2(s) = ∅.

The fact that Γ1(s
∗) ∩ Γ2(s

∗) = {0}, if p = 0, follows directly from Figure 9, by
observing that z = −a(1− t)2 is a triple root of As(z). �

Proof of Propositions 1.4 and 1.5. If p > 0 then there are three local extrema of
As(z), namely β(s), γ(s), η(s), such that

η(s) < 0 < β(s) < γ(s).

If x ∈ (η(s), β(s)) ∪ (γ(s),∞), then there exist three different real solutions of
As(z) = x. It is easily seen that these solutions also differ in absolute value (Fig-
ure 7, and Lemma 4.1 if x ∈ (γ(s),∞)). On the other hand, there is one real and
two complex conjugated solutions whenever x ∈ (−∞, η(s)]∪[β(s), γ(s)]. Therefore

Γ1(s) ∪ Γ2(s) ⊂ (−∞, η(s)] ∪ [β(s), γ(s)].

We have that As(z) = γ(s) has a double root y3 = y3(s) > 0 and one negative
root whose absolute value is less than y3(s). Thus γ(s) ∈ Γ1(s). Also β(s) ∈ Γ1(s).
Now the fact that Γ1(s) is connected (see [18],[2, Theorem 11.19]) says that Γ1(s) =
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Figure 9. Graph of As(z) (1.24), z ∈ R, in the case p = 0, s = s∗.

[β(s), γ(s)]. On the other hand As(z) = η(s) has a double root at y2(s) < 0 and a
negative root whose absolute value is larger than |y2(s)|. Therefore η2(s) ∈ Γ2(s)
and Γ2(s) = (−∞, η(s)].

The case p = 0 follows analogously by studying Figures 8, 9, and 10 whenever
st < a(1− t), st = a(1− t) or st > a(1− t), respectively. We deduce from Figure 8
that η(s) = 0 for st < a(1− t). On the other hand, Figure 10 shows that β(s) = 0
if st > a(1− t).

We shall prove that γ(s) is an increasing function. The monotonicity of β(s) and
η(s) is proved with similar considerations. Observe that the function

B(z, s) = As(sz) =
(sz + a(1− t)2)(z + t(1− t))2

z2
+

pt(1− t)(z + t(1− t))

z
,

as a function of z, has a local minimum at y3(s)/s and

γ(s) = As(y3(s)) = B(y3(s)/s, s).

If we take the partial derivative of B(z, s) with respect to s we obtain

∂B(z, s)

∂s
=

(z + t(1− t))2

z
.

which is positive for all z > 0. Then the fact that z 7→ B(z, s) has a minimum at
y3(s)/s implies that

γ′(s) =
∂B(y3(s)/s, s)

∂z

(y′3(s)s− y3(s))

s2
+

∂B(y3(s)/s, s)

∂s
=

∂B(y3(s)/s, s)

∂s
> 0,

and therefore γ(s) is increasing for all s > 0.
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Figure 10. Plots of As(z) (1.24), z ∈ R, in the case p = 0,
s > a(1− t)/t.

If p > 0, it is a straightforward computation that y1(s), y2(s) and y3(s) have the
following behavior as s → ∞

y1(s) = st(1− t) +O(1),

y2(s) = −2a(1− t)2 +O(s−1),

y3(s) = −st(1− t)− 1

2
t(1− t)p+O(s−1).

Then we obtain

γ(s) = As(y3(s)) = 4st(1− t) +O(1),

β(s) = As(y2(s)) =
1

4
tp2(1− t)s−1 +O(s−2),

η(s) = As(y1(s)) = −s2t2

4a
+O(s),

as s → ∞. This proves the limits

lim
s→∞

β(s) → 0, lim
s→∞

γ(s) = ∞, lim
s→∞

η(s) = −∞,

and completes the proof of the propositions. �

5. Proof of Theorem 1.7

From the definitions of νξ1 and νξ2 in (1.29) and (1.34), it is immediate that

supp(νξ1) ⊂ [0,∞),
∫
dνξ1 = 1, supp(νξ2) ⊂ (−∞, 0] and

∫
dνξ2 = 1/2. In fact, from

(1.29) and the fact that the sets Γ1(s) = supp(µs
1) are increasing as s increases (see

Propositions 1.4 and 1.5) it follows that

(5.1) supp(νξ1) =
⋃

s≤ξ

Γ1(s) = Γ1(ξ).
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From (1.34) and the definition of σ in (1.36), it is then also clear that

νξ2 =
1

ξ

∫ ξ

0

µs
2ds ≤

1

ξ

∫ ∞

0

µs
2ds =

1

ξ
σ,

and

(5.2) σ − ξνξ2 =

∫ ∞

ξ

µs
2ds

so that

(5.3) supp(σ − ξνξ2) =
⋃

s≥ξ

Γ2(s) = Γ2(ξ)

where the last equality holds since the sets Γ2(s) are decreasing as s increases, see
also Propositions 1.4 and 1.5.

Thus in order to establish that (νξ1 , ν
ξ
2) is the minimizer of the energy functional

(1.37) under the conditions stated in Theorem 1.7 it suffices to prove that the
variational conditions (1.38) and (1.39) are satisfied.

The proof of (1.38) and (1.39) will be carried out by integrating the variational
conditions (1.32) and (1.33) with respect to s from 0 to ξ. The proof of Theorem
2.3 of [6] contains a more general expression for the variational conditions (1.32)
and (1.33), which is valid for any complex number x, namely

2

∫
log |x− y|dµs

1(x)−
∫

log |x− y|dµs
2(x) − ℓs = log

∣∣∣∣
z1(x, s)

z2(x, s)

∣∣∣∣ ,(5.4)

2

∫
log |x− y|dµs

2(x) −
∫

log |x− y|dµs
1(x) = log

∣∣∣∣
z2(x, s)

z3(x, s)

∣∣∣∣ .(5.5)

These conditions reduce to (1.32) and (1.33) whenever x ∈ Γ1(s) and x ∈ Γ2(s),
respectively.
Proof of (1.38). If we multiply both sides of (5.4) by 1/ξ, integrate with respect to
s from 0 to ξ, and interchange the order of integration, then we obtain
(5.6)

2

∫
log |x− y|dνξ1(x) −

∫
log |x− y|dνξ2(x) − ℓ =

1

ξ

∫ ξ

0

log

∣∣∣∣
z1(x, s)

z2(x, s)

∣∣∣∣ ds, x ∈ C,

for some constant ℓ ∈ R, where νξ1 and νξ2 are the measures defined in (1.29) and
(1.34), respectively.

Let x > 0. Since |z1(x, s)| ≥ |z2(x, s)| for every s it follows from (5.6) that
(5.7)

2

∫
log |x− y|dνξ1(x) −

∫
log |x− y|dνξ2(x) − ℓ ≤ 1

ξ

∫ ∞

0

log

∣∣∣∣
z1(x, s)

z2(x, s)

∣∣∣∣ ds =
1

ξ
V (x).

If x ∈ supp(νξ1) then x ∈ Γ1(ξ) by (5.1) and therefore x ∈ Γ1(s) for every s ≥ ξ,
since the sets are increasing. Thus |z1(x, s)| = |z2(x, s)| for every s ≥ ξ, and

equality holds in (5.7) for x ∈ supp(νξ1). This completes the proof of (1.38).
Proof of of (1.39). If we multiply both sides of equation (5.5) by 1/ξ, integrate with
respect to s from 0 to ξ, and we interchange the order of integration we obtain

2

∫
log |x− y|dνξ2(x)−

∫
log |x− y|dνξ1(x) =

1

ξ

∫ ξ

0

log

∣∣∣∣
z2(x, s)

z3(x, s)

∣∣∣∣ ds.
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Since |z2(x, s)| ≥ |z3(x, s)| for every s > 0 it follows that

(5.8) 2

∫
log |x− y|dνξ2(x) −

∫
log |x− y|dνξ1(x) ≥ 0, x ∈ C.

Equality holds in (5.8) if and only if |z2(x, s)| = |z3(x, s)| for every s ∈ (0, ξ], that
is, if and only if

x ∈
⋂

s≤ξ

Γ2(s) = Γ2(ξ) = supp(σ − ξνξ2),

where the first equality holds since the sets Γ2(s) are decreasing as s increases, and
the last equality holds because of (5.3). This completes the proof of (1.39). �

6. Proof of Theorem 1.8

Before starting with the proof of Theorem 1.8 we establish the following lemma.

Lemma 6.1. Let As(z) be given by (1.27), and let z1(x, s), z2(x, s) and z3(x, s) be
the solutions of As(z) = x, ordered as in (1.15). Then

(6.1)

lim
s→0+

z1(x, s) = x− pt(1− t)− a(1− t)2,

lim
s→0+

s−1z2(x, s) = − 2at(1− t)2

2a(1− t) + pt−
√
p2t2 + 4ax

,

lim
s→0+

s−1z3(x, s) = − 2at(1− t)2

2a(1− t) + pt−
√
p2t2 + 4ax

.

Proof. The lemma follows by a straightforward computation. �

For the proof of Theorem 1.8 we need to establish the two identities (1.40) and
(1.41).
Proof of (1.40). Let x > 0. From Propositions 1.4 and 1.5 it follows that there exist
a unique s∗(x) ≥ 0 so that for all s > 0

x ∈ Γ1(s) ⇐⇒ s ≥ s∗(x).

Then log |z1(x, s)/z2(x, s)| = 0 for all s ≥ s∗(x), and so by (1.35)

(6.2) V (x) =

∫ s∗(x)

0

log

∣∣∣∣
z1(x, s)

z2(x, s)

∣∣∣∣ ds.

There is a special value

x0 = (1− t)(a(1− t) + pt) = lim
s→0+

β(s) = lim
s→0+

γ(s)

that belongs to every Γ1(s) for all s > 0. Then s∗(x0) = 0 and

(6.3) V (x0) = 0.

The derivative of (6.2) is

(6.4) V ′(x) =

∫ s∗(x)

0

(
1

z1(x, s)

∂z1(x, s)

∂x
− 1

z2(x, s)

∂z2(x, s)

∂x

)
ds.

In order to handle this integral we introduce new variables

(6.5) z̃1(x, s) =
z1(x, s)

s
, z̃2(x, s) =

z2(x, s)

s
, z̃3(x, s) =

z3(x, s)

s
.



RECURRENCE RELATIONS AND VECTOR EQUILIBRIUM PROBLEMS 25

Since zj(x, s) for j = 1, 2, 3 is a solution of As(z) = x, it follows that z̃j(x, s) for
j = 1, 2, 3 is a solution of the equation B(z, s) = x where

(6.6) B(z, s) =
(sz + a(1 − t)2)(z + t(1 − t))2

z2
+

pt(1− t)(z + t(1− t)

z
.

Taking partial derivatives with respect to s and x on both sides ofB(z̃j(x, s), s) =
x, and applying the chain rule, we obtain

(6.7)

(
∂B

∂z
(z̃j(x, s), s)

)
∂z̃j(x, s)

∂s
+

∂B

∂s
(z̃j(x, s), s) = 0,

(
∂B

∂z
(z̃j(x, s), s)

)
∂z̃j(x, s)

∂x
= 1

for j = 1, 2, 3. From (6.6), it is elementary to deduce that

∂B

∂s
(z̃j(x, s), s) =

(z̃j(x, s) + t(1− t))2

z̃j(x, s)
.

Combining this with (6.7) we obtain

(6.8)
1

z̃j(x, s)

∂z̃j(x, s)

∂x
= − 1

(z̃j(x, s) + t(1− t))2
∂z̃j(x, s)

∂s
, j = 1, 2, 3.

Using (6.8) in (6.4) we get

V ′(x) = −
∫ s∗(x)

0

(
1

(z̃1(x, s) + t(1− t))2
∂z̃1(x, s)

∂s
− 1

(z̃2(x, s) + t(1− t))2
∂z̃2(x, s)

∂s

)
ds,

which can be written as

(6.9) V ′(x) =

∫ s∗(x)

0

∂

∂s

(
F (z̃1(x, s))− F (z̃2(x, s))

)
ds

with

(6.10) F (x) =
1

x+ t(1− t)
.

From (6.9) and the fundamental theorem of calculus, we have

(6.11) V ′(x) = F (z̃1(x, s
∗(x))− F (z̃2(x, s

∗(x)) − lim
s→0+

(F (z̃1(x, s)) − F (z̃2(x, s))).

By definition s∗(x) is the smallest value of s ≥ 0 for which x ∈ Γ1(s). Then
x = γ(s∗(x)) if x0 < x and x = β(s∗(x)) if 0 < x < x0. We can observe from
Figures 7-10 that z1(γ(s), s) = z2(γ(s), s) and z1(β(s), s) = z2(β(s), s). Therefore

z̃1(x, s
∗(x)) = z̃2(x, s

∗(x))

and (6.11) reduces because of (6.10) to

(6.12) V ′(x) = − lim
s→0+

(
1

z̃1(x, s) + t(1− t)
− 1

z̃2(x, s) + t(1− t)

)
.

From (6.5) and Lemma 6.1 we find that

lim
s→0+

z̃1(x, s) = ∞ and lim
s→0+

z̃2(x, s) = − 2at(1− t)2

2a(1− t) + pt−
√
p2t2 + 4ax

.

Then (6.12) leads by straightforward computation to

(6.13) V ′(x) =
1

t(1− t)
− 2a

t(
√
p2t2 + 4ax− pt)

.
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We obtain V (x) by integrating (6.13) with respect to x. Thus

V (x) =
x

t(1− t)
−
√
p2t2 + 4ax

t
− p log(

√
p2t2 + 4ax− pt) + C.

The constant of integration C should be such that V (x0) = 0, see (6.3). This leads
to

C =
a(1− t)

t
+ p log(2a(1− t))

and (1.40) is proved.
Proof of (1.41). The measure σ, introduced in (1.36), has the density

(6.14)
dσ(x)

dx
=

∫ ∞

0

dµs
2(x)

dx
ds, x < 0,

where dµs
2(x)/dx = 0 for x 6∈ Γ2(s) and by (1.30)

dµs
2(x)

dx
=

1

2πi

(
z′2−(x, s)

z2−(x, s)
− z′2+(x, s)

z2+(x, s)

)
=

1

2πi

(
z′3+(x, s)

z3+(x, s)
− z′2+(x, s)

z2+(x, s)

)
,

for x ∈ Γ2(s). The last equality comes from the fact that z2−(x, s) = z3+(x, s) for
x ∈ Γ2(s).

From Proposition 1.5 it follows that dµs
2(x)/dx = 0 for every x ∈ (−p2t2/4a, 0]

and every s > 0 so that

dσ(x)

dx
= 0 for x ∈ (−p2t2/4a, 0].

Let x < p2t2/4a. Again from Proposition 1.5 (or from Proposition 1.4 in case
p = 0) it follows that there is a unique s∗(x) > 0 so that

x ∈ Γ2(s) ⇐⇒ s ≤ s∗(x).

Then dµs
2(x)/dx = 0 for s > s∗(x) so that (6.14) is in fact a finite integral

(6.15)
dσ(x)

dx
=

1

2πi

∫ s∗(x)

0

(
1

z3+(x, s)

∂z3+(x, s)

∂x
− 1

z2+(x, s)

∂z2+(x, s)

∂x

)
ds.

The computation of (6.15) is similar to the computation of (6.4) given above.
We use the functions z̃j(x, s) as in (6.5) and the function F as defined in (6.10).
From (6.8) and (6.15) we then get

2πi
dσ(x)

dx
= −

∫ s∗(x)

0

(
1

(z̃3+ + t(1− t))2
∂z̃3+
∂s

− 1

(z̃2+ + t(1− t))2
∂z̃2+
∂s

)
ds

= F (z̃3+(x, s
∗(x))) − F (z̃2+(x, s

∗(x)))

− lim
s→0+

(
F (z̃3+(x, s)) − F (z̃2+(x, s))

)

= − lim
s→0+

(
F (z̃3+(x, s)) − F (z̃2+(x, s))

)
(6.16)

since z̃2+(x, s
∗(x)) = z̃3+(x, s

∗(x)).
Since x < −p2t2/4a, we obtain from (6.5) and Lemma 6.1

lim
s→0+

z̃2(x, s) = lim
s→0+

s−1z2(x, s) = − 2at(1− t)2

2a(1− t) + pt− i
√
4a|x| − p2t2

,

lim
s→0+

z̃3(x, s) = lim
s→0+

s−1z3(x, s) = − 2at(1− t)2

2a(1− t) + pt+ i
√
4a|x| − p2t2

.
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Using this and (6.10) in (6.16) we easily get

2πi
dσ(x)

dx
= − lim

s→0+

(
1

z̃2(x, s) + t(1− t)
− 1

z̃3(x, s) + t(1− t)

)

= i

√
4a|x| − p2t2

t|x| .

which completes the proof of identity (1.41). �
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