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Abstract

A product formula for semigroups of Lipschitz operators associated with semi-
linear evolution equations of parabolic type is discussed under a new type of sta-
bility condition which admits “error term”. The result obtained here is applied
to showing the convergence of approximate solutions constructed by a fractional
step method to the solution of the complex Ginzburg-Landau equation.
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1. Introduction

We are concerned with product formulas for semigroups of Lipschitz oper-
ators associated with semilinear evolution equations of parabolic type. For the
linear case Trotter [30] established a formula for products of semigroups and
Chernoff [4] extended the formula into more general situation. Product formu-
las for quasi-contractive nonlinear semigroups were studied by Miyadera-Oharu
[25], Brezis-Pazy [2], Miyadera-Kobayashi [24], Kato-Masuda [10], Reich [29]
and Kobayashi [11, 12] and applied to the convergence of approximate solu-
tions of a scalar conservation law ([13]). As an extension of quasi-contractive
nonlinear semigroups, Kobayashi and Tanaka [14] introduced the notion of semi-
groups of Lipschitz operators and applied their theory to quasilinear evolution
equations. In the case where the infinitesimal generator of such a semigroup is
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continuous, a generation theorem, a product formula and an application to the
convergence of approximate solutions of Kirchhoff equation by Lax-Friedrichs
difference scheme were discussed in [14, 15]. Recently, their generation theorem
for semigroups of Lipschitz operators has been extended to the case where the
infinitesimal generator is not necessarily continuous. For example, we considered
in [21] the case where the infinitesimal generator is represented as a relatively
continuous perturbation of the infinitesimal generator of an analytic semigroup
and gave a characterization for semigroups of Lipschitz operators associated
with semilinear evolution equations of parabolic type. As an application of the
characterization theorem, C1 well-posedness for the complex Ginzburg-Landau
equation was shown there. For extensions to the fully nonlinear case we refer
to [16, 17].

In this paper we consider a semilinear evolution equation of the form

u′(t) = Au(t) +Bu(t) for t > 0. (SP)

Here A is the infinitesimal generator of an analytic semigroup of class (C0) on
a Banach space (X, ∥ · ∥) and B stands for a continuous operator from a subset
C of the domain of a fractional power of −A into X.

Our objective here is to study a product formula for semigroups of Lipschitz
operators associated with semilinear evolution equations of parabolic type un-
der a suitable stability condition. We also give an application of the product
formula to the convergence of approximate solutions of the complex Ginzburg-
Landau equation by using a fractional step method. To establish a product
formula, Kobayashi and Tanaka [15] proposed the following stability condition
for a family {Fh;h ∈ (0, h0]} by using a metric-like functional Φ on X ×X:

Φ(Fhx, Fhy) ≤ eωhΦ(x, y) for (x, y) ∈ X ×X and h ∈ (0, h0]. (1.1)

Marsden [20] assumed the similar condition to obtain a product formula on
Banach manifolds. We note that if Φ(x, y) = ∥x − y∥ then condition (1.1)
coincides with the stability condition for quasi-contractive semigroups studied
in [2, 10, 11, 12, 25, 29]. In order to construct approximate solutions of (SP) by
a fractional step method, we need to apply the product formula with

Fh = TA(h)TB(h) for h ∈ (0, h0], (1.2)

where {TA(t); t ≥ 0} and {TB(t); t ≥ 0} stand for operator semigroups generated
by A and B, respectively. Since the semigroup {TB(t); t ≥ 0} is not quasi-
contractive in general, it is difficult to check the stability condition (1.1) for the
family {Fh;h ∈ (0, h0]} defined by (1.2). In this paper we introduce a weaker
stability condition which admits “error term”

lim sup
h↓0

(sup{(Φ(Fhx, Fhy)− Φ(x, y))/h− ωΦ(x, y);x, y ∈ C}) ≤ 0, (1.3)

and establish a product formula for (SP) under such a stability condition. The
use of this stability condition is the feature of our paper.
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The paper is organized as follows: Section 2 contains basic assumptions and
our main result (Theorem 2.2). The proof of Theorem 2.2 is given in Section
4. An application of the product formula to the complex Ginzburg-Landau
equation is discussed in Section 5.

2. Assumptions and main result

Let (X, ∥ · ∥) be a Banach space and D a closed subset of X. We consider a
semilinear Cauchy problem in X of the form

u′(t) = Au(t) +Bu(t) for t > 0, u(0) = u0 ∈ D. (SP; u0)

Here A is assumed to be the infinitesimal generator of an analytic semigroup
{T (t); t ≥ 0} of class (C0) on X such that ∥T (t)∥ ≤MAe

ωAt for all t ≥ 0, where
MA ≥ 1 and ωA < 0 are some constants.

Let α ∈ (0, 1) and Y = D((−A)α). Then Y is a Banach space equipped with
the norm ∥x∥Y := ∥(−A)αx∥ for x ∈ Y . Let C = D ∩ Y . For the operator B
we make the following assumptions:

(B-i) The operator B from C into X is continuous and C is dense in D.

(B-ii) There exists MB > 0 such that ∥Bx∥ ≤MB(1 + ∥x∥Y ) for x ∈ C.

Let Φ be a nonnegative functional on X×X satisfying the two conditions below:

(Φ-i) There exists L ≥ 0 such that

|Φ(x, y)− Φ(x̂, ŷ)| ≤ L(∥x− x̂∥+ ∥y − ŷ∥) for (x, y), (x̂, ŷ) ∈ X ×X.

(Φ-ii) There exist M ≥ m > 0 such that

m∥x− y∥ ≤ Φ(x, y) ≤M∥x− y∥ for (x, y) ∈ D ×D.

Let {Fh;h ∈ (0, h0]} be a family of nonlinear operators from C into itself
which satisfies the following two conditions:

(F-i) There exists ω ≥ 0 such that for any null sequence {hn} of positive num-
bers and any Y -bounded sequences {xn} and {yn} in C,

lim sup
n→∞

{h−1
n (Φ(Fhnxn, Fhnyn)− Φ(xn, yn))− ωΦ(xn, yn)} ≤ 0.

(F-ii) There exists β ∈ (0, 1) such that for any null sequence {hn} of positive
numbers and any convergent sequence {xn} in C with respect to Y norm,

lim
n→∞

h−1
n ∥Fhnxn − J(hn)xn∥ = 0, lim

n→∞
h−β
n ∥Fhnxn − J(hn)xn∥Y = 0,

where

J(h)w = T (h)w +

∫ h

0

T (s)Bw ds for w ∈ C and h > 0. (2.1)
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Definition 2.1. A one-parameter family {S(t); t ≥ 0} of Lipschitz operators
from D into itself is called a semigroup of Lipschitz operators on D if the fol-
lowing three conditions are satisfied:

(S1) S(0)x = x for x ∈ D, and S(t+s)x = S(t)S(s)x for s, t ≥ 0 and x ∈ D.
(S2) For each x ∈ D, S(·)x : [0,∞) → X is continuous.
(S3) For each τ > 0 there exists Lτ > 0 such that

∥S(t)x− S(t)y∥ ≤ Lτ∥x− y∥ for x, y ∈ D and t ∈ [0, τ ].

We are now in a position to state our main result.

Theorem 2.2. Assume that (B), (Φ) and (F) hold. Then there exists a semi-
group {S(t); t ≥ 0} of Lipschitz operators on D such that

BS(·)x ∈ C([0,∞);X) for x ∈ C,

BS(·)x ∈ C((0,∞);X) ∩ L1
loc(0,∞;X) for x ∈ D,

S(t)x = T (t)x+

∫ t

0

T (t− s)BS(s)x ds for x ∈ D and t ≥ 0. (2.2)

Moreover, the following product formula holds:

S(t)x = lim
h↓0

F
[t/h]
h x in X, for x ∈ C and t ≥ 0, (2.3)

where the convergence is uniform on every compact subset of [0,∞).

The existence of a semigroup {S(t); t ≥ 0} of Lipschitz operators on D
satisfying (2.2) is assured by Remark 2.4 below and [21, Theorem 5.2] with φ
defined by φ = 0 on D and φ = ∞ on X \D. Thus, we have only to prove the
product formula (2.3). The proof will be given in the following two sections.

Remark 2.3. It is easily seen that (F-i) and (F-ii) are equivalent to the following
conditions, respectively.

(F-i)′ There exists ω ≥ 0 such that for any Y -bounded set W in C,

lim sup
h↓0

(
sup{h−1(Φ(Fhx, Fhy)− Φ(x, y))− ωΦ(x, y);x, y ∈W}

)
≤ 0.

(F-ii)′ There exists β ∈ (0, 1) such that for any compact set W in C with respect
to Y norm,

lim
h↓0

h−1∥Fhx− J(h)x∥ = 0 uniformly for x ∈W ,

lim
h↓0

h−β∥Fhx− J(h)x∥Y = 0 uniformly for x ∈W.

Remark 2.4. Under (Φ-i) and (F), the following condition holds:

There exists ω ≥ 0 such that for any null sequence {hn} of positive num-
bers and x, y ∈ C,

lim sup
n→∞

h−1
n (Φ(J(hn)x, J(hn)y)− Φ(x, y)) ≤ ωΦ(x, y).

Remark 2.5. Without loss of generality, by using the Feller renorming technique
[5] if necessary, we may assume that MA = 1 in the proof of Theorem 2.2. We
may assume β ∈ (0, 1− α] in condition (F-ii) as well.
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3. Key estimate for product formula

This section is devoted to estimating the difference between the discrete
semigroup {F k

h ; k ≥ 0} and an approximate solution xj satisfying

xj = T (tj − tj−1)xj−1 +

∫ tj

tj−1

T (tj − s)Bxj−1 ds+ ξj

for j = 1, 2, . . . , N . We begin by recalling the following result.

Lemma 3.1. ([21, Lemma 3.2]) There exists K0 ≥ 1 such that for any τ ∈
(0, 1] and for any finite sequence {sk}Nk=0 satisfying 0 ≤ s0 < s1 < · · · < sN ≤ τ ,
the following two assertions hold:

(i) Let MG > 0 and let G be a measurable function from [0, τ) into X
satisfying ∥G(ξ)∥ ≤MG for ξ ∈ [0, τ). Then∫ si

sl

∥T (si − ξ)G(ξ)∥Y dξ ≤ K0MG(si − sl)
β for 0 ≤ l ≤ i ≤ N .

(ii) Let ε > 0. Then, for any finite sequence {ζi}Ni=1 in Y satisfying ∥ζi∥ ≤
ε(si − si−1) and ∥ζi∥Y ≤ ε(si − si−1)

β for 1 ≤ i ≤ N ,

i∑
l=k+1

∥T (si − sl)ζl∥Y ≤ K0ε(si − sk)
β for 0 ≤ k ≤ i ≤ N .

In the rest of this section the symbol K0 stands for the constant specified in
Lemma 3.1.

Lemma 3.2. ([21, Lemma 3.3]) Let v0 ∈ C. Assume that h ∈ (0, 1], ν ≥ 0
and positive numbers ρ, M0 and ε satisfy

∥Bx∥ ≤M0 for x ∈ UY (v0, ρ) ∩ C,
K0(M0 + ε+ ν)hβ + sup

s∈[0,h]

∥T (s)v0 − v0∥Y ≤ ρ,

where UY (v0, ρ) denotes the closed ball in Y with center v0 and radius ρ. Let
δ ∈ [0, h], w0 ∈ C, σ > 0 and G be a measurable function from [0, δ) into X
such that

σ + δ ≤ h, ∥w0 − T (δ)v0∥ ≤ (M0 + ν)δ, ∥G(ξ)∥ ≤M0 for ξ ∈ [0, δ),∥∥∥∥∥w0 − T (δ)v0 −
∫ δ

0

T (δ − ξ)G(ξ) dξ

∥∥∥∥∥
Y

≤ K0νδ
β .

Assume that there exists a sequence {(si, wi, ζi)}Ni=1 in [0, σ]×C × Y such that

0 = s0 < s1 < · · · < sN ≤ σ,

wi = T (si − si−1)wi−1 +

∫ si

si−1

T (si − ξ)Bwi−1 dξ + ζi for 1 ≤ i ≤ N ,

∥ζi∥ ≤ ε(si − si−1) and ∥ζi∥Y ≤ ε(si − si−1)
β for 1 ≤ i ≤ N .

Then the following assertions hold:
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(i-1) ∥T (sj − sk)wk − wj∥ ≤ (M0 + ε)(sj − sk) for 0 ≤ k ≤ j ≤ N .
(i-2) ∥T (sj − sk)wk − wj∥Y ≤ K0(M0 + ε)(sj − sk)

β for 0 ≤ k ≤ j ≤ N .
(ii-1) ∥wj − T (sj + δ)v0∥ ≤ (M0 + ε+ ν)(sj + δ) for 0 ≤ j ≤ N .
(ii-2) For each j = 0, 1, . . . , N , there exists a measurable function Gj from

[0, sj + δ) into X with ∥Gj(ξ)∥ ≤M0 for ξ ∈ [0, sj + δ) such that∥∥∥∥∥wj − T (sj + δ)v0 −
∫ sj+δ

0

T (sj + δ − ξ)Gj(ξ) dξ

∥∥∥∥∥
Y

≤ K0(ε+ν)(sj+δ)
β.

(iii) wj ∈ UY (v0, ρ) and ∥Bwj∥ ≤M0 for 0 ≤ j ≤ N .

The above lemma is a special version of [21, Lemma 3.3] where φ is a func-
tional on X into [0,∞] defined by φ = 0 on D and φ = ∞ on X \D.

For each h ∈ (0, h0] we define an operator Eh from C into Y by

Ehw = Fhw − J(h)w for w ∈ C. (3.1)

Lemma 3.3. Let w0 ∈ C. Assume that M0 > 0, ρ > 0, ε > 0, σ ∈ (0, 1] and
δ ∈ (0, h0] satisfy that

∥Bx∥ ≤M0 for x ∈ UY (w0, ρ) ∩ C,
K0(M0 + ε)σβ + sup

0≤s≤σ
∥T (s)w0 − w0∥Y ≤ ρ ,

∥Ehx∥ ≤ hε, ∥Ehx∥Y ≤ hβε for h ∈ (0, δ] and x ∈ UY (w0, ρ) ∩ C.

Then for each h ∈ (0, δ] and nonnegative integer N with Nh ≤ σ, the following
are valid:

(i) ∥T ((k − j)h)F j
hw0 − F k

hw0∥ ≤ (M0 + ε)(k − j)h for 0 ≤ j ≤ k ≤ N .

(ii) ∥T ((k−j)h)F j
hw0−F k

hw0∥Y ≤ K0(M0+ε)((k−j)h)β for 0 ≤ j ≤ k ≤ N .

(iii) F k
hw0 ∈ UY (w0, ρ) ∩ C for 0 ≤ k ≤ N .

Proof. Let h ∈ (0, δ] and let N be a nonnegative integer with Nh ≤ σ. For
k = 0 conditions (i) through (iii) are obviously valid. Let k0 be an integer with
1 ≤ k0 ≤ N and suppose that for each pair of integers (j, k) with 0 ≤ j ≤ k ≤
k0 − 1, conditions (i) through (iii) hold true. Since F l−1

h w0 ∈ C for 1 ≤ l ≤ k0,
it follows from (3.1) and (2.1) that

F l
hw0 = T (h)F l−1

h w0 +

∫ h

0

T (s)BF l−1
h w0 ds+ EhF

l−1
h w0

for 1 ≤ l ≤ k0. Let 0 ≤ j ≤ k0 − 1. Applying T ((k0 − l)h) to both sides and
summing up the resultant for l = j + 1, . . . , k0, we have

F k0

h w0 = T ((k0 − j)h)F j
hw0 +

k0∑
l=j+1

∫ h

0

T ((k0 − l)h+ s)BF l−1
h w0 ds

+

k0∑
l=j+1

T ((k0 − l)h)EhF
l−1
h w0. (3.2)
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Since F l−1
h w0 ∈ UY (w0, ρ) ∩ C for 1 ≤ l ≤ k0 (by the hypothesis of induction),

we have ∥BF l−1
h w0∥ ≤ M0, ∥EhF

l−1
h w0∥ ≤ hε and ∥EhF

l−1
h w0∥Y ≤ hβε for

1 ≤ l ≤ k0. Therefore, since {T (t); t ≥ 0} may be assumed to be contractive
by Remark 2.5, we have ∥F k0

h w0 − T ((k0 − j)h)F j
hw0∥ ≤ (M0 + ε)(k0 − j)h and

apply Lemma 3.1 to obtain

∥F k0

h w0 − T ((k0 − j)h)F j
hw0∥Y ≤

k0∑
l=j+1

∫ lh

(l−1)h

∥T (k0h− s)BF l−1
h w0∥Y ds

+

k0∑
l=j+1

∥T ((k0 − l)h)EhF
l−1
h w0∥Y

≤ K0(M0 + ε)((k0 − j)h)β .

These two inequalities show that assertions (i) and (ii) hold for 0 ≤ j ≤ k0.
Setting j = 0 in the last inequality, we observe that

∥F k0

h w0 − w0∥Y ≤ ∥F k0

h w0 − T (k0h)w0∥Y + ∥T (k0h)w0 − w0∥Y
≤ K0(M0 + ε)(k0h)

β + ∥T (k0h)w0 − w0∥Y ≤ ρ.

This means that assertion (iii) is valid for k = k0. The proof is complete.

Lemma 3.4. Let w0 ∈ C. Assume that M0 > 0, ρ > 0, ε > 0, σ ∈ (0, 1] and
δ ∈ (0, h0] satisfy that

∥Bx∥ ≤M0 for x ∈ UY (w0, ρ) ∩ C,
∥Bx−Bw0∥ ≤ ε for x ∈ UY (w0, ρ) ∩ C,
∥Ehx∥ ≤ hε, ∥Ehx∥Y ≤ hβε for h ∈ (0, δ] and x ∈ UY (w0, ρ) ∩ C,
K0(M0 + ε)σβ + sup

0≤s≤σ
∥T (s)w0 − w0∥Y ≤ ρ.

Then for each h ∈ (0, δ] the following holds:

∥F [σ/h]
h w0 − J(σ)w0∥ ≤ 2εσ +M0h+ sup

s∈[0,h]

∥T (s)w0 − w0∥. (3.3)

Proof. Let h ∈ (0, δ]. By (3.2) we find by a change of variables that

F k
hw0 − T (kh)w0 −

∫ kh

0

T (s)Bw0 ds

=

k∑
l=1

T ((k − l)h)

(∫ h

0

T (s)(BF l−1
h w0 −Bw0) ds+ EhF

l−1
h w0

)
(3.4)

for 0 ≤ k ≤ [σ/h]. Since F l−1
h w0 ∈ UY (w0, ρ) ∩ C for 1 ≤ l ≤ [σ/h] (by Lemma

3.3), we have

∥BF l−1
h w0 −Bw0∥ ≤ ε,

∥EhF
l−1
h w0∥ ≤ hε,
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for 1 ≤ l ≤ [σ/h]. We use these inequalities to estimate (3.4), so that∥∥∥∥∥F k
hw0 − T (kh)w0 −

∫ kh

0

T (s)Bw0 ds

∥∥∥∥∥ ≤ 2ε(kh)

for 0 ≤ k ≤ [σ/h]. Since

∥T (σ)w0 − T ([σ/h]h)w0∥ = ∥T ([σ/h]h)(T (σ − [σ/h]h)w0 − w0)∥
≤ ∥T (σ − [σ/h]h)w0 − w0∥

and ∥∥∥∥∥
∫ σ

0

T (s)Bw0 ds−
∫ [σ/h]h

0

T (s)Bw0 ds

∥∥∥∥∥ ≤
∫ σ

[σ/h]h

∥Bw0∥ ds ≤M0h,

the desired inequality (3.3) can be obtained by combining the last three inequal-
ities.

The next lemma gives the key estimate for the product formula (2.3). We
often use the inequality ∥(−A)γT (t)∥ ≤Mγt

−γ for t > 0 and γ ∈ (0, 1).

Lemma 3.5. Let x0 ∈ C and ε ∈ (0, 1/2]. Let ω be constant specified in (F-i).
Assume that M0 > 0, ρ0 > 0, τ0 ∈ (0, 1] and δ0 ∈ (0, h0] satisfy that

Φ(Fhx, Fhy) ≤ eωh(Φ(x, y) + εh)

for x, y ∈ UY (x0, 2ρ0) ∩ C and h ∈ (0, δ0], (3.5)

∥Bx∥ ≤M0 for x ∈ UY (x0, ρ0) ∩ C, (3.6)

K0(M0 + 1)τβ0 + sup
0≤s≤τ0

∥T (s)x0 − x0∥Y ≤ ρ0, (3.7)

∥Ehx∥ ≤ h, ∥Ehx∥Y ≤ hβ for h ∈ (0, δ0] and x ∈ UY (x0, ρ0) ∩ C. (3.8)

Let σ0 ∈ (0, τ0] and δ ∈ (0, δ0]. Let {tj}Nj=1, {xj}Nj=1 and {ξj}Nj=1 be sequences
in [0, σ0], C and Y respectively such that they satisfy the following conditions:

(i) 0 = t0 < t1 < . . . < tj < . . . < tN = σ0 and tj−tj−1 ≤ ε for j = 1, 2, . . . N .

(ii) xj = T (tj − tj−1)xj−1 +

∫ tj

tj−1

T (tj − s)Bxj−1 ds+ ξj for j = 1, 2, . . . , N .

(iii) ∥ξj∥ ≤ ε(tj − tj−1) and ∥ξj∥Y ≤ ε(tj − tj−1)
β for j = 1, 2, . . . , N .

(iv) If x ∈ C satisfies

∥x−xj−1∥Y ≤ K0(M0+1)(tj − tj−1)
β + sup

s∈[0,tj−tj−1]

∥T (s)xj−1−xj−1∥Y ,

then ∥Bx−Bxj−1∥ ≤ ε for j = 1, 2, . . . , N .
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(v) If h ∈ (0, δ] and x ∈ C satisfies

∥x−xj−1∥Y ≤ K0(M0+1)(tj − tj−1)
β + sup

s∈[0,tj−tj−1]

∥T (s)xj−1−xj−1∥Y ,

then ∥Ehx∥ ≤ hε and ∥Ehx∥Y ≤ hβε for j = 1, 2, . . . , N .

(vi) K0(M0 + 1)(tj − tj−1)
β + sups∈[0,tj−tj−1] ∥T (s)xj−1 − xj−1∥Y ≤ ρ0 for

j = 1, 2, . . . , N .

Define v(t) = xj−1 for t ∈ [tj−1, tj) and j = 1, 2, . . . , N , and v(tN ) = xN . Then

Φ(v(t), Fn
h x0) ≤ eωτ0

{
(3L+ 1)τ0ε+ 4NL(M0 + 1)h

+NL sup
s∈[0,h]

max
1≤j≤N

∥T (s)xj−1 − xj−1∥

+NLM1−αα
−1(3h)α(∥x0∥Y + ρ0)

}
+ L(M0 + 1)(ε+ 2h)

+ LM1−αα
−1(ε+ 2h)α(∥x0∥Y + ρ0) (3.9)

for t ∈ [0, σ0], n ∈ N and h ∈ (0, δ] with nh ≤ τ0 and |t− nh| ≤ h.

Proof. Let 1 ≤ j ≤ N and h ∈ (0, δ]. By Lemma 3.2 we have ∥Bxj−1∥ ≤
M0. This and condition (iv) together imply that ∥Bx∥ ≤ M0 + ε for x ∈
UY (xj−1, ρj) ∩ C, where

ρj = K0(M0 + 1)(tj − tj−1)
β + sup

s∈[0,tj−tj−1]

∥T (s)xj−1 − xj−1∥Y .

This inequality, the definition of ρj and conditions (iv) and (v) assure that
all the assumptions in Lemma 3.4 are satisfied with M0 replaced by M0 + ε,
w0 = xj−1, ρ = ρj and σ = tj − tj−1; hence∥∥∥∥F [(tj−tj−1)/h]

h xj−1 − T (tj − tj−1)xj−1 −
∫ tj−tj−1

0

T (s)Bxj−1 ds

∥∥∥∥
≤ 2ε(tj − tj−1) + (M0 + ε)h+ sup

s∈[0,h]

∥T (s)xj−1 − xj−1∥.

Combining this inequality and conditions (ii) and (iii), we obtain

∥xj − F
[(tj−tj−1)/h]
h xj−1∥ ≤ 3ε(tj − tj−1) + (M0 + 1)h

+ sup
s∈[0,h]

∥T (s)xj−1 − xj−1∥. (3.10)

Since all the assumptions in Lemma 3.3 are satisfied withM0 replaced byM0+ε,
w0 = xj−1, ρ = ρj and σ = tj − tj−1, we have F k

hxj−1 ∈ UY (xj−1, ρj) ∩ C for
0 ≤ k ≤ [(tj − tj−1)/h]. Since xj−1 ∈ UY (x0, ρ0) ∩ C by Lemma 3.2 and
since ρj ≤ ρ0 by condition (vi), we observe that F k

hxj−1 ∈ UY (x0, 2ρ0) ∩ C for
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0 ≤ k ≤ [(tj − tj−1)/h]. By (3.6) through (3.8), all the assumptions in Lemma
3.3 are satisfied with ε = 1, w0 = x0, ρ = ρ0, σ = τ0 and δ = δ0; hence
F k
hx0 ∈ UY (x0, ρ0) ∩ C for 0 ≤ k ≤ [τ0/h]. Therefore, by (3.5) we have

Φ(F
[(tj−tj−1)/h]
h xj−1, F

[(tj−tj−1)/h]+[tj−1/h]
h x0)

≤ eω[(tj−tj−1)/h]h(Φ(xj−1, F
[tj−1/h]
h x0) + εh[(tj − tj−1)/h]). (3.11)

By (Φ-i), (3.10) and (3.11) we have

Φ(xj , F
[tj/h]
h x0)

≤ eω[(tj−tj−1)/h]h(Φ(xj−1, F
[tj−1/h]
h x0) + εh[(tj − tj−1)/h])

+ L

(
3ε(tj − tj−1) + (M0 + 1)h+ sup

s∈[0,h]

∥T (s)xj−1 − xj−1∥

)
+ L∥F [tj/h]

h x0 − F
[(tj−tj−1)/h]+[tj−1/h]
h x0∥. (3.12)

Noting that [(tj − tj−1)/h] + [tj−1/h] ≤ [tj/h] and applying Lemma 3.3 with
ε = 1, w0 = x0, ρ = ρ0, σ = τ0 and δ = δ0 again, we have

∥T ((p− q)h)F q
hx0 − F p

hx0∥ ≤ (M0 + 1)(p− q)h,

where p = [tj/h] and q = [(tj − tj−1)/h] + [tj−1/h]; hence

∥F [tj/h]
h x0 − F

[(tj−tj−1)/h]+[tj−1/h]
h x0∥

≤ (M0 + 1)(p− q)h+ ∥T ((p− q)h)F q
hx0 − F q

hx0∥
≤ 3(M0 + 1)h+M1−αα

−1(3h)α(∥x0∥Y + ρ0). (3.13)

Here we have used the fact that F q
hx0 ∈ UY (x0, ρ0) ∩ C shown above and the

inequality that ∥T (t)x − x∥ ≤ M1−αα
−1tα∥x∥Y for x ∈ Y and t ≥ 0 to obtain

the last inequality. Thus, we find by solving the inequality (3.12) combined with
(3.13) that

Φ(xj , F
[tj/h]
h x0) ≤ eωτ0

{
(3L+ 1)τ0ε

+ 4NL(M0 + 1)h+NL sup
s∈[0,h]

max
1≤l≤N

∥T (s)xl−1 − xl−1∥

+NLM1−αα
−1(3h)α(∥x0∥Y + ρ0)

}
(3.14)

for 0 ≤ j ≤ N .
Now, let t ∈ [0, σ0] and let n ∈ N and h ∈ (0, δ] satisfy nh ≤ τ0 and

|t−nh| ≤ h. Then there exists an integer l with 0 ≤ l ≤ N such that |tl− t| ≤ ε
and v(t) = xl. By a way similar to the deviation of (3.13) we have

∥Fn
h x0 − F

[tl/h]
h x0∥ ≤ (M0 + 1)(ε+ 2h) +M1−αα

−1(ε+ 2h)α(∥x0∥Y + ρ0).

Substituting this inequality and (3.14) into the inequality

Φ(v(t), Fn
h x0) ≤ Φ(xl, F

[tl/h]
h x0) + L∥Fn

h x0 − F
[tl/h]
h x0∥,

we obtain the desired inequality (3.9).
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4. Proof of product formula

Let u0 ∈ C and τ > 0. Let {S(t); t ≥ 0} be the semigroup of Lipschitz
operators on D obtained by the first part of Theorem 2.2 and put u(t) = S(t)u0
for t ∈ [0, τ ]. By condition (F-ii) one finds δ1 > 0 and ρ1 > 0 such that

∥Ehx∥ ≤ h and ∥Ehx∥Y ≤ hβ (4.1)

for h ∈ (0, δ1] and x ∈
∪

t∈[0,τ ] UY (u(t), ρ1) ∩C. The continuity of the operator
B assures that there exist M0 > 0 and ρ2 > 0 satisfying

∥Bx∥ ≤M0 for x ∈
∪

t∈[0,τ ]

UY (u(t), ρ2) ∩ C. (4.2)

Set ρ0 = min{1/2, ρ1/2, ρ2/2} and choose τ0 ∈ (0, 1] such that

K0(M0 + 1)τβ0 + sup
0≤s≤τ0

∥T (s)u(t)− u(t)∥Y ≤ ρ0/3 for t ∈ [0, τ ], (4.3)

Kγ(2Mγ,α(τ0))
1/γ +K0τ

β
0 ≤ ρ0/4, (4.4)

where K0 is the constant specified in Lemma 3.1, γ ∈ (α, 1), Kγ is a positive
constant in the moment inequality that

∥x∥Y ≤ Kγ∥x∥(γ−α)/γ∥(−A)γx∥α/γ for x ∈ D((−A)γ) (4.5)

and Mγ,α(t) is the nondecreasing function on [0,∞) defined by

Mγ,α(t) = Mα
γ−αt

(γ−α)(1−α)

(
sup{∥u(s)∥Y ; s ∈ [0, τ ]}+ 1

)α

+Mα
γ M

α
0 (1− γ)−αtγ(1−α) (4.6)

for t ≥ 0. Since 0 < α < γ < 1, we have limt↓0Mγ,α(t) = 0. This fact guarantees
the existence of τ0 ∈ (0, 1] satisfying condition (4.4).

Let σ0 ∈ (0, τ0) and k0 ∈ N satisfy k0σ0 = τ . Let k be an integer with
0 ≤ k ≤ k0 − 1. Then the proof of the product formula (2.3) is inductively

completed once it is shown that if limh↓0 F
[kσ0/h]
h u0 = S(kσ0)u0 in X and

lim suph↓0 ∥F
[kσ0/h]
h u0 − S(kσ0)u0∥Y ≤ ρ0/4, then

lim
h↓0

(sup{∥F [(t+kσ0)/h]
h u0 − S(t+ kσ0)u0∥; t ∈ [0, σ0]}) = 0, (4.7)

lim sup
h↓0

∥F [(k+1)σ0/h]
h u0 − S((k + 1)σ0)u0∥Y ≤ ρ0/4. (4.8)

Indeed, assume that the above-mentioned claim is proved for 0 ≤ k ≤ k0 − 1.

Since F
[kσ0/h]
h u0 = u0 = S(kσ0)u0 for k = 0, conditions (4.7) and (4.8) are

satisfied for k = 0. By (4.7) with k = 0 we have limh↓0 F
[t/h]
h u0 = S(t)u0 in X,

uniformly for t ∈ [0, σ0]. In particular, we have limh↓0 F
[σ0/h]
h u0 = S(σ0)u0 in
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X. This and (4.8) with k = 0 together imply that conditions (4.7) and (4.8)

are satisfied for k = 1. By (4.7) with k = 1 we have limh↓0 F
[t/h]
h u0 = S(t)u0 in

X, uniformly for t ∈ [σ0, 2σ0]. Continuing this procedure up to k = k0 − 1, we

have limh↓0 F
[t/h]
h u0 = S(t)u0 in X, uniformly for t ∈ [0, k0σ0].

Now, let uh = F
[kσ0/h]
h u0 for h ∈ (0, h0] and suppose that limh↓0 uh =

S(kσ0)u0 in X and lim suph↓0 ∥uh − S(kσ0)u0∥Y ≤ ρ0/4. Then we want to
show (4.7) and (4.8). For this purpose, let ε ∈ (0, 1/2]. Then we deduce from
condition (F-i) that there exists δ2 ∈ (0, h0] such that

Φ(Fhx, Fhy) ≤ eωh(Φ(x, y) + εh) (4.9)

for h ∈ (0, δ2] and x, y ∈
∪

t∈[0,τ ] UY (u(t), 1) ∩ C. By the hypothesis that

lim suph↓0 ∥uh − S(kσ0)u0∥Y ≤ ρ0/4, there exists δ3 > 0 such that

∥uh − S(kσ0)u0∥Y ≤ ρ0/3 for h ∈ (0, δ3]. (4.10)

Set δ0 = min{δ1, δ2, δ3}. Let δ ∈ (0, δ0]. Since u(kσ0) = S(kσ0)u0, we have
UY (uδ, ρ0) ⊂ UY (u(kσ0), 2ρ0) by (4.10). It follows from (4.2), (4.3) and (4.1)
that

∥Bx∥ ≤M0 for x ∈ UY (uδ, ρ0) ∩ C, (4.11)

K0(M0 + 1)τβ0 + sup
0≤s≤τ0

∥T (s)uδ − uδ∥Y ≤ ρ0,

∥Ehx∥ ≤ h, ∥Ehx∥Y ≤ hβ for h ∈ (0, δ] and x ∈ UY (uδ, ρ0) ∩ C. (4.12)

These three conditions show that all the assumptions in Lemma 3.3 are satisfied
with w0 = uδ, σ = τ0, ρ = ρ0 and ε = 1; hence F l

huδ ∈ UY (uδ, ρ0) ∩ C for
0 ≤ l ≤ [τ0/h] and h ∈ (0, δ]. In particular, we have F l

δuδ ∈ UY (uδ, ρ0) ∩ C for
0 ≤ l ≤ [τ0/δ]. It follows from (4.11), (4.12) and (4.10) that

∥BF l
huh∥ ≤M0, (4.13)

∥EhF
l
huh∥ ≤ h, ∥EhF

l
huh∥Y ≤ hβ , (4.14)

F l
huh ∈ UY (u(kσ0), 2ρ0) ∩ C (4.15)

for 0 ≤ l ≤ [τ0/h] and h ∈ (0, δ0]. By (4.9), (4.2), (4.3) and (4.1) we have

Φ(Fhx, Fhy) ≤ eωh(Φ(x, y) + εh)

for x, y ∈ UY (u(kσ0), 2ρ0) ∩ C and h ∈ (0, δ0], (4.16)

∥Bx∥ ≤M0 for x ∈ UY (u(kσ0), ρ0) ∩ C, (4.17)

K0(M0 + 1)τβ0 + sup
0≤s≤τ0

∥T (s)u(kσ0)− u(kσ0)∥Y ≤ ρ0, (4.18)

∥Ehx∥ ≤ h, ∥Ehx∥Y ≤ hβ for h ∈ (0, δ0] and x ∈ UY (u(kσ0), ρ0) ∩ C. (4.19)

We apply Lemma 3.3 with ε = 1 to obtain the inequality

F l
hu(kσ0) ∈ UY (u(kσ0), ρ0) ∩ C for 0 ≤ l ≤ [τ0/h] and h ∈ (0, δ0].
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By this inequality and (4.15) we use the inequality (4.16) to find that

Φ(F l
huh, F

l
hu(kσ0)) ≤ eωτ0(Φ(uh, u(kσ0)) + τ0ε)

for 0 ≤ l ≤ [τ0/h] and h ∈ (0, δ0]. Since ([(t + kσ0)/h] − [kσ0/h])h ≤ t + h ≤
σ0 + h ≤ τ0 for t ∈ [0, σ0] and sufficiently small h > 0, we have

lim
h↓0

(sup{Φ(F [(t+kσ0)/h]
h u0, F

[(t+kσ0)/h]−[kσ0/h]
h u(kσ0)); t ∈ [0, σ0]}) = 0. (4.20)

To prove (4.7), it remains to estimate ∥F [(t+kσ0)/h]−[kσ0/h]
h u(kσ0)−S(t)u(kσ0)∥

for t ∈ [0, σ0], by applying Lemma 3.5. It should be noticed that assumptions
(3.5) through (3.8) with x0 = u(kσ0) are satisfied by (4.16) through (4.19). By
condition (F-ii) one finds δ̄1 > 0 and ρ̄1 > 0 such that

∥Ehx∥ ≤ hε and ∥Ehx∥Y ≤ hβε (4.21)

for h ∈ (0, δ̄1] and x ∈
∪

t∈[0,τ ] UY (u(t), ρ̄1) ∩C. The continuity of the operator
B assures that there exists ρ̄2 > 0 satisfying

∥Bx−Bu(t)∥ ≤ ε for x ∈ UY (u(t), ρ̄2) ∩ C and t ∈ [0, τ ]. (4.22)

Set ρ̄0 = min{ρ0, ρ̄1, ρ̄2} and choose λ > 0 so that λ ≤ min{δ0, δ̄1, ε} and the
following two conditions are satisfied:

If t, s ∈ [0, τ ] satisfy |t− s| ≤ λ, then

∥Bu(t)−Bu(s)∥ ≤ (1 +Mα(1− α)−1)−1ε. (4.23)

If t ∈ [0, τ ], then K0(M0 + 1)λβ + sup
s∈[0,λ]

∥T (s)u(t)− u(t)∥Y ≤ ρ̄0. (4.24)

Let {tj}Nj=0 be a partition of the interval [0, σ0] such that 0 = t0 < t1 < . . . <
tj < . . . < tN = σ0 and tj − tj−1 ≤ λ for 1 ≤ j ≤ N . Put sj = kσ0 + tj and
xj = S(sj)u0 (= u(sj)) for 0 ≤ j ≤ N . In order to apply Lemma 3.5, it suffices
to check conditions (ii) through (vi) in Lemma 3.5. Conditions (vi) follows from
(4.24), since ρ̄0 ≤ ρ0 and sj−1 ≤ (k + 1)σ0 ≤ τ for 1 ≤ j ≤ N . Condition (ii) is
satisfied by defining

ξj = xj −

(
T (tj − tj−1)xj−1 +

∫ tj

tj−1

T (tj − s)Bxj−1 ds

)
for 1 ≤ j ≤ N . Since we deduce from (2.2) that the right-hand side is written
as ∫ sj

sj−1

T (sj − s)(Bu(s)−Bu(sj−1)) ds

for 1 ≤ j ≤ N , we have by (4.23)

∥ξj∥ ≤
∫ sj

sj−1

∥Bu(s)−Bu(sj−1)∥ ds ≤ (tj − tj−1)ε,

∥ξj∥Y ≤
∫ sj

sj−1

Mα(sj − s)−α(1 +Mα(1− α)−1)−1ε ≤ (tj − tj−1)
1−αε
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for 1 ≤ j ≤ N . Since tj − tj−1 ≤ 1 for 1 ≤ j ≤ N , we observe by these two
inequalities and Remark 2.5 that condition (iii) is satisfied. To check the two
conditions (iv) and (v), let 1 ≤ j ≤ N and let x ∈ C satisfy ∥x − xj−1∥Y ≤
K0(M0 + 1)(tj − tj−1)

β + sups∈[0,tj−tj−1] ∥T (s)xj−1 − xj−1∥Y . Since xj−1 =
u(sj−1), it follows from (4.24) that x ∈ UY (u(sj−1), ρ̄0)∩C. By (4.22) we have
∥Bx−Bu(sj−1)∥ ≤ ε. This means that condition (iv) is satisfied. In the same
way, condition (v) with δ = λ follows from (4.21). Thus, all the conditions
in Lemma 3.5 with x0 = u(kσ0) and δ = λ are proved to be satisfied. Since
nh ≤ τ0 for sufficiently small h ∈ (0, λ] provided that t ∈ [0, σ0] and |t−nh| ≤ h
for h ∈ (0, h0], we find by Lemma 3.5 that

lim sup
h↓0

(sup{Φ(S(t)S(kσ0)u0, Fn
h S(kσ0)u0); t ∈ [0, σ0], |t− nh| ≤ h})

≤ L sup{∥S(t)S(kσ0)u0 − S(s)S(kσ0)u0∥; t, s ∈ [0, σ0], |t− s| ≤ λ}
+ eωτ0(3L+ 1)τ0ε+ L(M0 + 1)ε+ LM1−αα

−1εα(∥S(kσ0)u0∥Y + ρ0).

Letting λ ↓ 0 and then letting ε ↓ 0, we have by condition (Φ-ii)

lim
h↓0

(sup{∥S(t+ kσ0)u0 − Fn
h S(kσ0)u0∥; t ∈ [0, σ0], |t− nh| ≤ h}) = 0.

This together with (4.20) implies (4.7), since |([(t+kσ0)/h]− [kσ0/h])h− t| ≤ h
for t ∈ [0, σ0] and h > 0.

To prove (4.8), let lh = [(k + 1)σ0/h]− [kσ0/h] for h ∈ (0, δ0] and define

vh = T (lhh)uh +

lh∑
j=1

∫ h

0

T ((lh − j)h+ s)BF j−1
h uh ds, (4.25)

wh =

lh∑
j=1

T ((lh − j)h)EhF
j−1
h uh (4.26)

for h ∈ (0, δ0]. Then, by (3.2) we have

F [(k+1)σ0/h]u0 = F lh
h uh = vh + wh (4.27)

for h ∈ (0, δ0]. Since |lhh − σ0| ≤ h for h ∈ (0, δ0], we have lhh ≤ τ0 for
sufficiently small h ∈ (0, δ0]. By (4.14) we apply Lemma 3.1 to find that

∥wh∥ ≤ lhh and ∥wh∥Y ≤ K0(lhh)
β (4.28)

for sufficiently small h ∈ (0, δ0]. Since the fact that limh↓0 F
[(k+1)σ0/h]
h u0 =

u((k + 1)σ0) in X is already shown in (4.7), we have by (4.27) and (4.28)

lim sup
h↓0

∥vh − u((k + 1)σ0)∥ ≤ σ0. (4.29)

Let h ∈ (0, δ0] and let G(s) = BF j−1
h uh for s ∈ [(j − 1)h, jh) and 1 ≤ j ≤ lh.

Then, we observe by (4.13) that ∥G(s)∥ ≤M0 for s ∈ [0, lhh). Since the second
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term on the right-hand side of (4.25) is written as
∫ lhh

0
T (lhh − s)G(s) ds, we

find that

∥(−A)γvh∥ ≤Mγ−α(lhh)
−(γ−α)∥uh∥Y +MγM0(1− γ)−1(lhh)

1−γ . (4.30)

It follows from (4.10) and (4.6) that

lim sup
h↓0

σγ−α
0 ∥(−A)γvh∥α ≤Mγ,α(σ0). (4.31)

Here we have used the inequality (a+ b)α ≤ aα + bα for a, b ≥ 0. By (2.2) and
(4.2) we have

u((k + 1)σ0) = T (σ0)u(kσ0) +

∫ σ0

0

T (σ0 − s)Bu(s+ kσ0) ds

and ∥Bu(s + kσ0)∥ ≤ M0 for s ∈ [0, σ0], respectively. By a way similar to the
derivation of (4.30) we observe that σγ−α

0 ∥(−A)γu((k + 1)σ0)∥α ≤ Mγ,α(σ0).
Using this inequality, (4.31) and (4.29), we find by the moment inequality (4.5)
that lim suph↓0 ∥vh − u((k + 1)σ0)∥Y ≤ Kγ(2Mγ,α(σ0))

1/γ . Combining this
inequality, (4.27) and (4.28), we have

lim sup
h↓0

∥F [(k+1)σ0/h]
h u0 − u((k + 1)σ0)∥Y ≤ Kγ(2Mγ,α(σ0))

1/γ +K0σ
β
0 .

By (4.4) this inequality implies the desired inequality (4.8).

5. Solvability of the complex Ginzburg-Landau equation by a frac-
tional step method

Let 1 < p < ∞ and let us consider the mixed problem for the complex
Ginzburg-Landau equation

(CGL)


∂u

∂t
− (λ+ iµ)∆u+ (κ+ iν)|u|q−2u− γu = 0 in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x)

in Lp(Ω) space. Here Ω is a smooth domain in RN where N ≥ 1, and λ > 0,
κ > 0, µ, ν, γ ∈ R. Under the assumption that

|µ|/λ < 2
√
p− 1/|p− 2| and 2 ≤ q ≤ 2 + 2p/N (5.1)

it is shown in [21] that the (CGL) has a unique solution in the class

C([0,∞);Lp(Ω)) ∩ C1((0,∞);Lp(Ω)) ∩ C((0,∞);W 1,p
0 (Ω) ∩W 2,p(Ω)). (5.2)

For further details we refer to [1, 6, 7, 18, 21, 22, 23, 27, 28, 31, 32].
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In this section we discuss the solvability of the (CGL) by a fractional step
method as an application of Theorem 2.2. For simplicity, we consider the case
where γ = 0. In what follows we assume that q > 2.

Following [22, Section 2], we first write (CGL) as the abstract Cauchy prob-
lem (SP) in Lp(Ω) (see [22] for details). Let X = Lp(Ω) and ∥u∥ = ∥u∥Lp for
u ∈ X. Define a linear operator A in X by

Au = (λ+ iµ)∆u for u ∈ D(A) :=W 2,p(Ω) ∩W 1,p
0 (Ω)

and define Av = Av−(λ+iµ)v for v ∈ D(A) := D(A). Then, by (5.1) we deduce
from [9, 26] that A generates an analytic semigroup {TA(z); | arg z| < ψp} of
contractions onX and the operatorA is the infinitesimal generator of an analytic
semigroup {T (z) (:= e−(λ+iµ)zTA(z)); | arg z| < ψp} of class (C0) on X such that
∥T (t)∥ ≤ e−λt for t ≥ 0, where ψp = tan−1(2

√
p− 1/|p−2|)− tan−1(|µ|/λ). By

(5.1) we can choose p̃ such that

p < p̃ < p+ q − 2, (5.3)

|µ|/λ < 2
√
p̃− 1/|p̃− 2|, (5.4)

θ̃ := (N/2)(1/p− 1/(p̃(q − 1))) < 1. (5.5)

Then, by (5.4) we have

∥TA(t)v∥Lp̃ ≤ ∥v∥Lp̃ and ∥T (t)v∥Lp̃ ≤ e−λt∥v∥Lp̃ (5.6)

for v ∈ X ∩ Lp̃(Ω) and t ≥ 0. Moreover, we can choose α ∈ (0, 1) such that

θ̃ < α < 1, (5.7)

D((−A)α) ⊂ Lp(Ω) ∩ Lp̃(Ω) ∩ Lp(q−1)(Ω) ∩ Lp̃(q−1)(Ω), (5.8)

where the inclusion in (5.8) is continuous (see [22]). Let Y = D((−A)α). Let
R > 0 be fixed arbitrarily and let

D = {v ∈ Lp(Ω) ∩ Lp̃(Ω); ∥v∥Lp + ∥v∥Lp̃ ≤ R}. (5.9)

Then, the (CGL) is rewritten as the semilinear Cauchy problem

u′(t) = Au(t) +Bu(t) for t > 0, u(0) = u0,

by defining a nonlinear operator B from C into X as

Bu = −(κ+ iν)|u|q−2u+ (λ+ iµ)u for u ∈ D(B) = C (= D ∩ Y ).

The operator B from C into X is already shown ([22]) to satisfy condition (B)
and the locally Lipschitz continuity condition in the following sense: For each
ρ > 0 there exists LB(ρ) > 0 such that

∥Bv −Bv̂∥ ≤ LB(ρ)∥v − v̂∥Y for v, v̂ ∈ C with ∥v∥Y ≤ ρ, ∥v̂∥Y ≤ ρ.
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The purpose is to discuss the solvability of the (CGL) through a fractional
step method. Namely, we write (CGL) as u′(t) = Au(t) + Bu(t) for t > 0, and
u(0) = u0 by using the nonlinear operator B in X defined by

Bu = −(κ+ iν)|u|q−2u for u ∈ D(B) = Lp(Ω) ∩ Lp(q−1)(Ω).

Then we solve the two simpler problems v′(t) = Av(t) and w′(t) = Bw(t), and
obtain the solution u through the formula u(t) = limh↓0(TA(h)TB(h))

[t/h]u0 for
t ≥ 0, where {TB(t); t ≥ 0} is the semigroup generated by B. To do this, we
need to investigate some basic properties on the semigroup {TA(t); t ≥ 0} and
the operator B.

Lemma 5.1. The following assertions hold.

(i) There exists K > 0 such that

eλt∥T (t)v∥Lp(q−1) = ∥TA(t)v∥Lp(q−1) ≤ K∥v∥Lp(q−1) (5.10)

for v ∈ X ∩ Lp(q−1)(Ω) and t > 0.

(ii) There exists K > 0 such that

eλt∥T (t)v∥Lp(q−1) = ∥TA(t)v∥Lp(q−1) ≤ Kt−(N/p−N/p(q−1))/2∥v∥ (5.11)

for v ∈ D and t > 0.

(iii) There exist K > 0 and θA ∈ (0, 1) such that

∥TA(t)v − v∥Lp(q−1) ≤ KtθA∥v∥Y , (5.12)

∥∇TA(t)v∥Lp(q−1) ≤ Kt(θA−1)/2∥v∥Y (5.13)

for v ∈ Y and t ∈ (0, 1].

(iv) There exists K > 0 such that

∥Bv − Bv̂∥ ≤ K(∥v∥q−2
Lp(q−1) + ∥v̂∥q−2

Lp(q−1))∥v − v̂∥Lp(q−1) (5.14)

for v, v̂ ∈ D(B).

In what follows, the symbol K stands for various constants.

Proof. Assertions (i) and (ii) follow from [19], [26] and Lp-Lq estimates for
the heat semigroup. Assertion (iii) will be shown as follows: Since TA(t)v− v =∫ t

0
(Ae(λ+iµ)sT (s)v + (λ+ iµ)e(λ+iµ)sT (s)v) ds for v ∈ Y and t > 0, we have

∥TA(t)v − v∥Lp(q−1) ≤ K

∫ t

0

(∥AT (s)v∥Lp(q−1) + ∥T (s)v∥Lp(q−1)) ds (5.15)

for v ∈ Y and t ∈ (0, 1]. Since AT (s)v = −T (s/2)(−A)1−αT (s/2)(−A)αv for
v ∈ Y and s > 0, we find by (5.11) and the inequality ∥(−A)γT (t)∥ ≤ Mγt

−γ

for t > 0 and γ ∈ (0, 1) that

∥AT (s)v∥Lp(q−1) ≤ KsθA−1∥v∥Y (5.16)
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for v ∈ Y and s > 0, where θA = α−N(q − 2)/(2p(q − 1)). By (5.3), (5.5) and
(5.7) we have N(q − 2)/(2p(q − 1)) < θ̃ < α < 1; hence θA ∈ (0, 1). By (5.10)
and (5.8) we have

∥T (s)v∥Lp(q−1) ≤ K∥v∥Y (5.17)

for v ∈ Y and s > 0. The inequality (5.12) is obtained by substituting (5.16)
and (5.17) into (5.15). By the Gagliardo-Nirenberg inequality

∥∇w∥Lp(q−1) ≤ K∥w∥1/2
Lp(q−1)∥w∥

1/2

W 2,p(q−1) for w ∈W 2,p(q−1)(Ω),

the elliptic estimate ∥w∥W 2,p(q−1) ≤ K∥Aw∥Lp(q−1) for w ∈ W 2,p(q−1)(Ω), and
the inequalities (5.16) and (5.17), we have

∥∇TA(t)v∥Lp(q−1) ≤ K∥∇T (t)v∥Lp(q−1) ≤ Kt(θA−1)/2∥v∥Y

for v ∈ Y and t ∈ (0, 1]. Assertion (iv) is shown by using the elementary

inequality ||ξ|q−2ξ − |η|q−2η| ≤ K
(∫ 1

0
|θξ + (1− θ)η|q−2 dθ

)
|ξ − η| for ξ, η ∈

C.

By a direct computation, the Cauchy problem in C

ξ′(t) = −(κ+ iν)|ξ(t)|q−2ξ(t) for t > 0, ξ(0) = ξ0 ∈ C (5.18)

has a unique solution ξ given by

ξ(t) =
(
1 + (q − 2)κ|ξ0|q−2t

)−1/(q−2)
ξ0

× exp

(
−i ν

(q − 2)κ
log
(
1 + (q − 2)κ|ξ0|q−2t

))
for t ≥ 0. By this representation we have

|ξ(t)| ≤ |ξ0| for t ≥ 0. (5.19)

By (5.18) and (5.19) we have |ξ′(t)| = K|ξ(t)|q−1 ≤ K|ξ0|q−1 for t ≥ 0; hence

|ξ(t)− ξ0| ≤ K|ξ0|q−1t for t ≥ 0. (5.20)

By (5.19) we can define a family {TB(t); t ≥ 0} of operators on X by

(TB(t)v)(x) =
(
1 + (q − 2)κ|v(x)|q−2t

)−1/(q−2)
v(x)

× exp

(
−i ν

(q − 2)κ
log
(
1 + (q − 2)κ|v(x)|q−2t

))
(5.21)

for v ∈ X.

Lemma 5.2. The family {TB(t); t ≥ 0} has the properties below:
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(i) For each v ∈ X, TB(t)v is continuous in t ≥ 0 and TB(t)v → v in X as
t ↓ 0. Furthermore, for s ∈ [1,∞)

∥TB(t)v∥Ls ≤ ∥v∥Ls for t ≥ 0 and v ∈ X ∩ Ls(Ω). (5.22)

(ii) For each v ∈ D(B) and t ≥ 0, TB(t)v is differentiable with respect to t and
(d/dt)TB(t)v = BTB(t)v in X. Moreover,

∥TB(t)v − v∥ ≤ Kt∥v∥q−1
Lp(q−1) for t ≥ 0 and v ∈ D(B). (5.23)

(iii) There exists θB ∈ (0, 1) such that

∥TB(t)v − v∥Lp(q−1) ≤ Kt1−θB∥v∥p̃/p
Lp̃(q−1) (5.24)

for t ≥ 0 and v ∈ X ∩ Lp̃(q−1)(Ω).

Proof. Assertions (i) and (ii) follow from (5.18), (5.19), (5.20) and the dom-
inated convergence theorem. To verify assertion (iii), let v ∈ X ∩ Lp̃(q−1)(Ω).
By (5.21) we find that

|(TB(t)v)(x)|p(q−1)2 ≤ |v(x)|(q−1)(p(q−1)−p̃)|v(x)|p̃(q−1)

(1 + (q − 2)κ|v(x)|q−2t)
(q−1)(p(q−1)−p̃)/(q−2)

≤ |v(x)|p̃(q−1)

((q − 2)κt)(q−1)(p(q−1)−p̃)/(q−2)

for almost all x ∈ Ω and t > 0. Hence TB(t)v ∈ Lp(q−1)2(Ω) for t > 0

and ∥TB(t)v∥Lp(q−1)2 ≤ Kt−(p(q−1)−p̃)/p(q−1)(q−2)∥v∥p̃/p(q−1)

Lp̃(q−1) for t > 0. Since

|(BTB(t)v)(x)| ≤ K|(TB(t)v)(x)|q−1 for almost all x ∈ Ω and t > 0, we have

BTB(t)v ∈ Lp(q−1)(Ω) and ∥BTB(t)v∥Lp(q−1) ≤ Kt−θB∥v∥p̃/p
Lp̃(q−1)

for t > 0, where θB = (p(q − 1) − p̃)/p(q − 2). By (5.3) and the fact that
p+ q − 2 < p(q − 1) we have θB ∈ (0, 1). Thus, the inequality (5.24) holds.

The following product formula shows the solvability of the (CGL) by a frac-
tional step method.

Theorem 5.3. Let u0 ∈ C. Then there exists a unique C1 solution u to (CGL)
with the initial value u0. Moreover, the solution u is obtained through the for-
mula

u(t) = lim
h↓0

(TA(h)TB(h))
[t/h]u0 in X, for t ≥ 0, (5.25)

where the convergence is uniform on each compact subinterval of [0,∞).

Proof. The existence and uniqueness of C1 solutions is known. To prove (5.25)
we shall check all the assumptions in Theorem 2.2. Let Φ be the nonnegative
functional on X ×X defined by

Φ(u, v) = exp((b/κp)((∥u∥ ∧R)p + (∥v∥ ∧R)p))(∥u− v∥ ∧ (2R))
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for u, v ∈ X, where a∧ b = min{a, b} for a, b ∈ R. It is shown ([22, (4.6)]) that
assumption (Φ) is satisfied and that there exists ω ≥ 0 such that

D+Φ(u, v)(Au+Bu,Av +Bv) ≤ ωΦ(u, v) for u, v ∈ D(A) ∩D, (5.26)

where
D+Φ(u, v)(ξ, η) = lim inf

h↓0
(Φ(u+ hξ, v + hη)− Φ(u, v))/h

for (u, v), (ξ, η) ∈ X ×X.
Let Fhv = TA(h)TB(h)v for h > 0 and v ∈ C. Then we deduce from (5.6)

and (5.22) that the operator Fh maps C into itself. By Remark 2.3 we shall
check conditions (F-i)′ and (F-ii)′ in place of conditions (F-i) and (F-ii). To
prove that condition (F-ii)′ is satisfied, let W be any compact set in C and let
ρ be a positive number such that ∥v∥Y ≤ ρ for v ∈ W . Put w(t, v) = Ftv for
t > 0 and v ∈W . Since

w′(t, v) = ATA(t)TB(t)v + TA(t)BTB(t)v
= Aw(t, v) +Bv + f(t, v)

for t > 0 and v ∈W , where

f(t, v) = TA(t)BTB(t)v − Bv + (λ+ iµ)(w(t, v)− v)

for t > 0 and v ∈W , we have

Ftv = w(t, v) = J(t)v +

∫ t

0

T (t− s)f(s, v) ds (5.27)

for t > 0 and v ∈W . By (5.27) we have

∥Fhv − J(h)v∥ ≤ h sup
s∈[0,h]

∥f(s, v)∥, (5.28)

∥Fhv − J(h)v∥Y ≤Mα(1− α)−1h1−α sup
s∈[0,h]

∥f(s, v)∥ (5.29)

for h > 0 and v ∈ W . To estimate ∥f(s, v)∥ for s > 0 and v ∈ W , we write
f(s, v) = a(s, v) + b(s, v) + c(s, v) for s > 0 and v ∈W , where

a(s, v) = TA(s)BTB(s)v − TA(s)Bv,
b(s, v) = TA(s)Bv − Bv + (λ+ iµ)(TA(s)v − v),

c(s, v) = (λ+ iµ)(TA(s)TB(s)v − TA(s)v)

for s > 0 and v ∈ W . Since W is compact in C, the sets B(W ) and W are
compact in X. This and the strong continuity of {TA(t); t ≥ 0} in B(X) imply
that {b(s, v)} vanishes in X uniformly for v ∈W as s ↓ 0. Since the semigroup
{TA(t); t ≥ 0} is contractive on X, we find by (5.14), (5.22), (5.24) and (5.8)
that

∥a(s, v)∥ ≤ K(∥TB(s)v∥q−2
Lp(q−1) + ∥v∥q−2

Lp(q−1))∥TB(s)v − v∥Lp(q−1)

≤ Kρq−2ρp̃/ps1−θB
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for s > 0 and v ∈ W . By (5.23) we have ∥c(s, v)∥ ≤ K∥TB(s)v − v∥ ≤ Kρq−1s
for s > 0 and v ∈W . Hence limh↓0 sups∈[0,h] ∥f(s, v)∥ = 0 uniformly for v ∈W .
This together with (5.28) and (5.29) implies that condition (F-ii)′ is satisfied.

It remains to show that condition (F-i)′ is satisfied. For this purpose, let W
be any Y -bounded set in C and let ρ be a positive number such that ∥v∥Y ≤ ρ
for v ∈ W . Put w(t, v) = TA(t)TB(t)v for t > 0 and v ∈ W . Then we
have w′(t, v) = Aw(t, v) + Bw(t, v) + g(t, v) for t > 0 and v ∈ W , where
g(t, v) = TA(t)BTB(t)v−BTA(t)TB(t)v for t > 0 and v ∈W . By (5.26) we have

D+Φ(w(t, z), w(t, ẑ)) ≤ ωΦ(w(t, z), w(t, ẑ)) + L(∥g(t, z)∥+ ∥g(t, ẑ)∥)

for t > 0 and z, ẑ ∈W , where D+Φ(w(t, z), w(t, ẑ)) is the Dini derivative of the
function t→ Φ(w(t, z), w(t, ẑ)). This implies that

h−1(Φ(w(h, z), w(h, ẑ))− Φ(z, ẑ))

≤ h−1(eωh − 1)Φ(z, ẑ) + h−1L

∫ h

0

eω(h−s)(∥g(s, z)∥+ ∥g(s, ẑ)∥) ds (5.30)

for h ∈ (0, 1] and z, ẑ ∈ W . To verify condition (F-i)′ we want to estimate
∥g(s, v)∥ for s ∈ (0, 1] and v ∈ W . For this purpose, let s ∈ (0, 1] and v ∈ W ,
and write

g(s, v) =(TA(s)BTB(s)v − TA(s)BTA(s)v) + (TA(s)BTA(s)v − BTA(s)v)
+ (BTA(s)v − BTA(s)TB(s)v). (5.31)

Since ∥v∥Y ≤ ρ and Y is continuously embedded in the space Lp(q−1)(Ω) ∩
Lp̃(q−1)(Ω) by (5.8), we deduce from Lemmas 5.1 and 5.2 that

∥TA(s)BTB(s)v − TA(s)BTA(s)v∥
≤ K(∥TB(s)v∥q−2

Lp(q−1) + ∥TA(s)v∥q−2
Lp(q−1))∥TB(s)v − TA(s)v∥Lp(q−1)

≤ Kρq−2(∥TB(s)v − v∥Lp(q−1) + ∥TA(s)v − v∥Lp(q−1))

≤ Kρq−2(ρp̃/ps1−θB + ρsθA). (5.32)

Similarly, we have

∥BTA(s)v − BTA(s)TB(s)v∥ ≤ Kρq−2∥v − TB(s)v∥Lp(q−1)

≤ Kρq−2+p̃/ps1−θB . (5.33)

Since |(∇BTA(s)v)(x)| ≤ K|(TA(s)v)(x)|q−2|(∇TA(s)v)(x)| for almost all x ∈
Ω, we observe by Lemma 5.1 that BTA(s)v ∈W 1,p

0 (Ω) and

∥BTA(s)v∥W 1,p ≤ K(∥BTA(s)v∥+ ∥TA(s)v∥q−2
Lp(q−1)∥∇TA(s)v∥Lp(q−1))

≤ Kρq−1(1 + s(θA−1)/2). (5.34)

To estimate the second term on the right-hand side of (5.31), let ε be a positive
number such that 2ε < min{1−1/p, θA/3}. Since 1−2ε > 1/p, we notice by [8,
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Proposition 5.11] that the real interpolation space (Lp, D(A))1/2−ε,p between
Lp(Ω) and D(A) is characterized as {f ∈ W 1−2ε,p(Ω); f |∂Ω = 0}. By this
fact, the definition of (Lp, D(A))1/2−ε,∞ and the fact that (Lp, D(A))1/2−ε,p is
continuously embedded in (Lp, D(A))1/2−ε,∞ (see [3, Chapter 3]), we find that

∥TA(s)BTA(s)v − BTA(s)v∥ ≤ Ks1/2−ε∥BTA(s)v∥(Lp,D(A))1/2−ε,∞

≤ Ks1/2−ε∥BTA(s)v∥W 1−2ε,p

≤ Ks1/2−ε∥BTA(s)v∥W 1,p .

This together with (5.34) yields that

∥TA(s)BTA(s)v − BTA(s)v∥ ≤ Kρq−1sθA/3,

since θA/3 < θA/2 − ε < 1/2 − ε and s ∈ (0, 1]. Combining this inequality,
(5.31), (5.32) and (5.33) we find a positive number K(ρ) depending only on ρ
such that

∥g(s, v)∥ ≤ K(ρ)sθ0

for s ∈ (0, 1] and v ∈ W , where θ0 = min{1 − θB, θA/3}. By substituting this
inequality into (5.30), condition (F-i)′ is proved to be satisfied.
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