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SAMPLING IN REPRODUCING KERNEL BANACH SPACES ON LIE

GROUPS

JENS GERLACH CHRISTENSEN

Abstract. We present sampling theorems for reproducing kernel Banach spaces on Lie
groups. Recent approaches to this problem rely on integrability of the kernel and its local
oscillations. In this paper we replace the integrability conditions by requirements on the
derivatives of the reproducing kernel. The results are then used to obtain frames and atomic
decompositions for Banach spaces of distributions stemming from a cyclic representation,
and it is shown that this is particularly easy, when the cyclic vector is a G̊arding vector for
a square integrable representation.

June 15, 2018

1. Introduction

The classical sampling theorem for band-limited functions states that a function can be
reproduced from its samples at equidistant points. At the core of this statement lies the fact
that a bounded interval has an orthonormal basis of complex exponentials. Extensions of this
theorem for irregular sampling points have been found using the smoothness of the functions
involved [13, 11, 14]. The irregularity and density of the sampling points is connected to the
theory of frames [5, 1]: A sequence of vectors φi in a Hilbert space H is called a frame, if
there are constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑

i

|(f, φi)|2 ≤ B‖f‖2

for all f ∈ H . A vector f can be reconstructed by inversion of the frame operator

Sf =
∑

i

(f, φi)φi

A Banach (or Hilbert) space of functions on a set D for which point evaluation is continuous
is called a reproducing kernel Banach (or Hilbert) space. Sampling at points xi provide a
frame on a reproducing kernel Hilbert space H if for all f ∈ H

A‖f‖2 ≤
∑

i

|cif(xi)|2 ≤ B‖f‖2 (1)

where ci are constants. If this frame inequality is satisfied we can reconstruct f from its sam-
ples f(xi). For reproducing kernel Banach spaces the existence of a reconstruction operator
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is not evident from a frame type inequality. However in [15] it was proven that reconstruction
is possible if for 1 ≤ p <∞ there are constants 0 < A ≤ B <∞ such that

A‖f‖p ≤
∑

i

|cif(xi)|p ≤ B‖f‖p (2)

for all f ∈ B. For other types of reproducing kernel Banach spaces more care has to be
taken and a lot more machinery is needed. The article [17] is concerned with reconstruction
in reproducing kernel subspaces of Lp(Rn) and [9, 12] deals with Banach spaces defined
via representations of locally compact groups. Common for these approaches is that a
reproducing kernel is given by an integral over a locally compact group

f(x) =

∫

G

f(y)K(x, y) dy

This kernel is assumed to be integrable, i.e. for every x
∫

G

|K(x, y)| dy <∞

It is also assumed that for a compact set U , the local oscillations

MUK(x, y) = sup
u,v∈U

|K(xu, yv)−K(x, y)|

satisfy ∫

G

|MUK(x, y)| dy <∞

These assumptions are not satisfied for band-limited functions, since the reproducing kernel
is the non-integrable sinc-function. Other non-integrable kernels are known (see for example
the sections about Bergman spaces in [3, 4]) and this calls for a sampling theory without
integrability conditions. The main idea in this article is to estimate local oscillations via
derivatives, and therefore we restrict our attention to reproducing kernel Banach spaces on
Lie groups.

Reproducing kernel Banach spaces show up naturally in connection with square integrable
representations, which was first noted in the construction of coorbit spaces (see [8, 9]). In [3,
4] this work was generalized and coorbit spaces were defined as Banach spaces of distributions
stemming from cyclic representations. As an application of our sampling theorems we obtain
frames and atomic decompositions for coorbit spaces arising from cyclic (and not necessarily
integrable) representations of Lie groups.

2. Examples with reproducing kernel Hilbert spaces

In this section we will cover sampling theorems for two cases of reproducing kernel Hilber
spaces on groups. The two groups are R and the (ax+ b)-group.

2.1. Sampling of band-limited functions. The Fourier transform is the extension to
L2(Rn) of the operator F

Ff(w) = (2π)−n/2

∫
f(x)e−iw·x dx
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defined for f ∈ L1(R) ∩ L2(R). We will often denote the Fourier transform Ff by f̂ . A

function in L2(R) is called Ω-band-limited if supp(f̂) ⊆ [−Ω,Ω]. The space L2
Ω of Ω-band-

limited functions is a reproducing kernel Hilbert space and satisfies

f(x) =

∫
f(y)sinc(x− y) dy

where

sinc(x) =
sin x

x
Therefore we need only provide a frame inequality like (1) in order to reconstruct Ω-band-
limited functions. In [14] the following irregular sampling theorem for band-limited functions
was used to provide sampling theorems for the wavelet and short time Fourier transforms.

Theorem 2.1. Suppose that f ∈ L2(R) and supp(f̂) ⊆ [−Ω,Ω]. If {xk}k∈Z is any increasing
sequence such that the maximal gap length δ satisfies

δ := sup
k∈Z

(xk+1 − xk) <
π

Ω

then

(1− δΩ/π)2‖f‖22 ≤
∑

k

xk+1 − xk−1

2
|f(xk)|2 ≤ (1 + δΩ/π)2‖f‖22

To prove this it is first shown that for disjoint intervals Ik ⊆ (xk − δ/2, xk + δ/2) with
∪kIk = R we have ∥∥∥∥∥f −

∑

k

f(xk)1Ik

∥∥∥∥∥
L2

≤ δ

π
‖f ′‖L2 (3)

This inequality follows from an application of Wirtinger’s inequality. Then Bernstein’s in-
equality ‖f ′‖L2 ≤ Ω‖f‖L2 is utilized to obtain the frame inequality of the theorem above.

We now give an alternative approach to inequalities resembling (3). Note that this has
already been presented as Lemma 4 in [13], however we include the calculations here to
demnonstrate how they can be generalized. This is more straight forward than Wirtinger’s
inequality and uses the smoothness of band-limited functions and the fundamental theorem
of calculus. Since many reproducing kernel spaces consist of differentiable functions this
approach will carry over to such spaces. Define the local oscillation of a band-limited function
f as

M δf(x) = sup
|u|≤δ

|f(x+ u)− f(x)|

Then an application of Hölder’s inequality shows that

M δf(x) = sup
|u|≤δ

|f(x+ u)− f(x)|

= sup
|u|≤δ

∣∣∣∣
∫ u

0

f ′(x+ t) dt

∣∣∣∣

≤ sup
|u|≤δ

(∫ |u|

0

1 dt

)1/2(∫ u

0

|f ′(x+ t)|2 dt
)1/2

≤ δ

(∫ δ

−δ

|f ′(x+ t)|2 dt
)1/2
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Applying Minkowski’s inequality then gives the following oscillation estimate

‖M δf‖L2 ≤
√
2δ‖f ′‖L2 (4)

From this follows ∥∥∥∥∥f −
∑

k

f(xk)1Ik

∥∥∥∥∥
L2

≤ ‖M δf‖L2 ≤
√
2δ‖f ′‖L2

and we can again derive a frame inequality by use of Bernstein’s inequality. Note that this
estimate is not as sharp as (3), however it has the advantage that it can be generalized to
other groups than R.

In this paper we will derive oscillation estimates similar to (4) for (non-commutative)
Lie groups in order to obtain sampling theorems. In the next subsection we work through
the details for the non-commutative (ax + b)-group and show how this provides sampling
theorems for the wavelet transform.

2.2. Sampling of the wavelet transform. In this section we present the ideas behind
sampling for reproducing kernel Hilbert space related to the non-commutative (ax + b)-
group. The approach will be generalized in section 3.

Let G be the (ax+ b)-group which can be realized as a matrix group

G =

{
(a, b) =

(
a b
0 1

) ∣∣∣ a > 0, b ∈ R

}

The left Haar measure on G is defined by

Cc(G) ∋ f →
∫ ∞

0

∫

R

f(a, b)
da db

a2

and we denote by L2(G) the space of square integrable functions with respect to this measure.
For a function g let g∨ be the function

g∨(x) = g(x−1)

Convolution of two functions f, g∨ ∈ L2(G) is given by

f ∗ g(a, b) =
∫ ∞

0

∫

R

f(a1, b1)g((a1, b1)
−1(a, b))

da db

a2

Assume that φ ∈ L2(G) is a non-zero function for which φ∨ ∈ L2(G) and the mapping

L2(G) ∋ f 7→ f ∗ φ ∈ L2(G)

is continuous. Further assume that φ∗φ = φ, then the space Hφ = L2(G)∗φ is a reproducing
kernel Hilbert space and the reproducing kernel is given by convolution with φ. In order
to obtain oscillation estimates we need some notation concerning differentiation. The Lie
algebra of G is

g =

{(
s t
0 0

) ∣∣∣ s, t ∈ R

}

and the exponential function is the usual matrix exponential function

eA =

∞∑

k=0

Ak/k!
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For X ∈ g define the differential operator

Xf(x) =
d

dt

∣∣∣
t=0
f(xetX)

Denote by X1, X2 the basis for the Lie algebra g of G for which

etX1 =

(
et 0
0 1

)
and etX2 =

(
1 t
0 1

)

For α a multi-index of length k with entries 1 or 2 we define the differential operators Rα

Rαf = Xα(k)Xα(k−1) · · ·Xα(1)f

When ǫ is a positive number we define the neighbourhood Uǫ of the identity e by

Uǫ = {et1X1et2X2 | −ǫ < t1, t2 < ǫ}

Choose points xi ∈ G such that G ⊆ ∪ixiUǫ. Let Ui ⊆ xiUǫ be disjoint sets such that
G = ∪iUi and denote by 1Ui

the indicator function for Ui. The following lemma provides an
estimate equivalent to (3) for the (ax+ b)-group.

Lemma 2.2. If f ∈ L2(G) is right differentiable up to order 2 and Rαf ∈ L2(G) for |α| ≤ 2,
then

∥∥∥∥∥f −
∑

i

f(xi)1Ui

∥∥∥∥∥
L2

≤ Cǫ(‖X1f‖L2 + ‖X2f‖L2 + ‖X2X1f‖L2)

where Cǫ → 0 as ǫ→ 0.

Proof. For x ∈ xiU there are s1 and s2 in between −ǫ and ǫ such that xi = xes2X2es1X1 .
Thus we get

|f(x)− f(xi)| = |f(x)− f(xes2X2es1X1)|
≤ |f(x)− f(xes2X2)|+ |f(xes2X2)− f(xes2X2es1X1)|

=

∣∣∣∣
∫ s2

0

d

dt2
f(xet2X2) dt2

∣∣∣∣ +
∣∣∣∣
∫ s1

0

d

dt1
f(xes2X2et1X1) dt1

∣∣∣∣

≤
∫ ǫ

−ǫ

∣∣X2f(xe
t2X2)

∣∣ dt2 +
∫ ǫ

−ǫ

∣∣X1f(xe
s2X2et1X1)

∣∣ dt1

Since

et2X2et1X1 = et1X1et2e
−t1X2
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the term |X1f(xe
s2X2et1X1)| can be estimated by

|X1f(xe
s2X2et1X1)| = |X1f(xe

t1X1es2e
−t1X2)|

≤ |X1f(xe
t1X1es2e

−t1X2)−X1f(xe
t1X1)|+ |X1f(xe

t1X1)|

=

∣∣∣∣
∫ s1

0

d

dt2
X1f(xe

t1X1et2e
−t1X2) dt2

∣∣∣∣+ |X1f(xe
t1X1)|

=

∣∣∣∣
∫ s1

0

e−t1X2X1f(xe
t1X1et2e

−t1X2) dt2

∣∣∣∣ + |X1f(xe
t1X1)|

=

∣∣∣∣
∫ s1

0

e−t1X2X1f(xe
t2X2et1X1) dt2

∣∣∣∣+ |X1f(xe
t1X1)|

≤ eǫ
∫ ǫ

−ǫ

∣∣X2X1f(xe
t2X2et1X1)

∣∣ dt2 + |X1f(xe
t1X1)|

We therefore obtain the following estimate for |f(x)− f(xi)|:

|f(x)− f(xi)| ≤
∫ ǫ

−ǫ

∣∣X2f(xe
t2X2)

∣∣ dt2 +
∫ ǫ

−ǫ

|X1f(xe
t1X1)| dt1

+ eǫ
∫ ǫ

−ǫ

∫ ǫ

−ǫ

∣∣X2X1f(xe
t2X2et1X1)

∣∣ dt2 dt1

This expression no longer depends on i and using Fubini’s theorem to change the order of
integration (or Minkowski to move the L2-norm inside the integrals over t1 and t2) we get

∥∥∥∥∥f −
∑

i

f(xi)1Ui

∥∥∥∥∥
L2

≤
∥∥∥∥
∫ ǫ

−ǫ

ret2X2 |X2f | dt2
∥∥∥∥
L2

+

∥∥∥∥
∫ ǫ

−ǫ

ret1X1 |X1f | dt1
∥∥∥∥
L2

+ eǫ
∥∥∥∥
∫ ǫ

−ǫ

∫ ǫ

−ǫ

ret2X2et1X1 |X2X1f | dt2 dt1
∥∥∥∥
L2

≤
∫ ǫ

−ǫ

‖ret2X2X2f‖L2 dt2

+

∫ ǫ

−ǫ

‖ret1X1X1f‖L2 dt1

+ eǫ
∫ ǫ

−ǫ

∫ ǫ

−ǫ

‖ret2X2et1X1X2X1f‖L2 dt2 dt1

≤ Cǫ(‖X1f‖L2 + ‖X2f‖L2 + ‖X2X1f‖L2)

where we have also used that right translation inside L2(G) is continuous. Note that by the
above calculations Cǫ → 0 when ǫ → 0.

�

We are now able to obtain the following sampling result for reproducing kernel subspaces
of L2(G).
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Theorem 2.3. If right differentiation up to order 2 is continuous on Hφ = L2(G) ∗ φ, then
we can choose points xi such that the norms ‖f‖L2 and ‖{f(xi)}‖ℓ2 are equivalent. Thus
ℓxi
φ∨ forms a frame for Hφ.

Proof. First we note that if right differentiation is continuous then by Lemma 2.2 there is a
constant Cǫ such that ∥∥∥∥∥f −

∑

i

f(xi)1Ui

∥∥∥∥∥
L2

≤ Cǫ‖f‖L2

By [18] it is possible to choose ǫ and xi such that the sets xiUǫ/4 are disjoint and Cǫ < 1.
Further note that as shown in [9] both ‖∑i λi1xiUǫ/4

‖L2 and ‖∑i λi1xiUǫ‖L2 define equivalent

norms on ℓ2. Since 1xiUǫ/4
≤ 1Ui

we get

‖{f(xi)}‖ℓ2 ≤ C‖
∑

i

f(xi)1xiUǫ/4
‖L2

≤ C‖
∑

i

(f − f(xi))1xiUǫ/4
‖L2 + C‖

∑

i

f1xiUǫ/4
‖L2

≤ C‖f −
∑

i

f(xi)1Ui
‖L2 + C‖

∑

i

f1Ui
‖L2

≤ C(1 + Cǫ)‖f‖L2

Similarly we have

‖f‖L2 ≤ ‖
∑

i

(f − f(xi))1Ui
‖L2 + ‖

∑

i

f(xi)1Ui
‖L2

≤ Cǫ‖f‖L2 + ‖
∑

i

f(xi)1xiUǫ‖L2

≤ Cǫ‖f‖L2 +D‖{f(xi)}‖ℓ2

Since Cǫ < 1 the inequalities above can be combined into

1− Cǫ

D
‖f‖L2 ≤ ‖{f(xi)}‖ℓ2 ≤ C(1 + Cǫ)‖f‖L2

which shows the equivalence of the norms.
Since

f(xi) =

∫
f(y)φ∨(x−1

i y) dy

the vectors ℓxi
φ∨ form a frame. �

This leaves of course task of showing the continuity of left differentiation on Hφ. In the
following example most statements are already proven in [16].

2.2.1. Example: Wavelet transform. Let π be the irreducible unitary representation of G on
the space

L2
+ = {f ∈ L2(R) | supp(f̂) ⊆ [0,∞)}

given by

π(a, b)f(x) =
1√
a
f

(
x− b

a

)
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Define the subspace

S+ = {f ∈ S(R) | supp(f̂) ⊆ [0,∞)} ⊆ L2
+

then S+ is invariant under the differential operators

π(X)u = lim
t→0

π(etX)u− u

t

for X ∈ g. Denote by π(Rα) the differential operator

π(Rα)u = π(Xα(k))π(Xα(k−1)) · · ·π(Xα(1))u

which also leaves S+ invariant. For a non-zero u ∈ S+ define the wavelet transform of f ∈ L2
+

by

Wu(f)(a, b) = (f, π(a, b)u) =

∫
f(x)

1√
a
u

(
x− b

a

)
dx

We can normalize u according to the Duflo-Moore theorem [6] such that for all f ∈ L2
+

Wu(f) ∗Wu(u) = Wu(f)

Then the wavelet tranform Wu becomes an isometric isomorphism from L2
+ into the repro-

ducing kernel Hilbert space L2(G) ∗ Wu(u). Also the functions Wu(f) is smooth and for
X ∈ g we have

RαWu(f) =Wπ(Rα)u(f)

The Duflo-Moore theorem again tells us that

Wπ(Rα)u(f) =Wu(f) ∗Wπ(Rα)u(u)

Since π(Rα)u ∈ S+ we have Wπ(Rα)u(u) ∈ L1(G) as shown in [16] and therefore

‖Wπ(Rα)u(f)‖L2 ≤ Cα‖Wu(f)‖L2.

This shows that the continuities in Theorem 2.3 are satisfied and we can reconstruct Wu(f)
from it samples. In other words we can reconstruct f ∈ L2

+ from sampling its wavelet
coefficients.

3. Sampling in reproducing kernel Banach spaces on Lie groups

A Banach space of functions is called a reproducing kernel Banach space if point evaluation
is continuous. We restrict our attention to reproducing kernel Banach spaces where the
reproducing formula is given by a Lie group convolution. We derive local oscillation estimates
for such spaces and use them to give a discrete characterization of the reproducing kernel
space. In particular we obtain frame and atomic decompositions for reproducing kernel
Banach spaces under certain smoothness conditions on the kernel.

3.1. Reproducing kernel Banach spaces. Let G be a locally compact group with left
invariant Haar measure µ. Denote by ℓx and rx the left and right translations given by

ℓxf(y) = f(x−1y) and rxf(y) = f(yx)

A Banach space of functions is called left or right invariant if there is a constant Cx such
that

‖ℓxf‖B ≤ Cx‖f‖B or ‖rxf‖B ≤ Cx‖f‖B
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respectively. We will always assume that for compact U there is a constant CU such that for
all f ∈ B

sup
y∈U

‖ℓyf‖B ≤ CU‖f‖B and sup
y∈U

‖ryf‖B ≤ CU‖f‖B (5)

For 1 ≤ p < ∞ the space Lp(G) denotes the equivalence class of measurable functions for
which

‖f‖Lp =

(∫
|f(x)|p dµ(x)

)1/p

<∞

We will often write dx instead of dµ(x). The space L∞(G) consists of equivalence classes of
measurable functions for which

‖f‖L∞ = ess supx∈G|f(x)|
The spaces Lp(G) are left and right invariant and satisfy (5) for 1 ≤ p ≤ ∞, however the
left and right translations are only continuous for 1 ≤ p <∞.

When f, g are measurable functions on G for which the product f(x)g(x−1y) is integrable
for all y ∈ G we define the convolution f ∗ g as

f ∗ g(y) =
∫

G

f(x)g(x−1y) dµ(x)

A Banach space of functions B is called solid if |f | ≤ |g| and g ∈ B imply that f ∈ B. All
spaces Lp(G) are solid, but Sobolev subspaces are not.

In this article we will only work with reproducing kernel Banach spaces which can be
constructed in the following manner. Let B be a solid left invariant Banach space of functions
on G which satisfies (5). Assume that there is a non-zero φ ∈ B such that

∣∣∣∣
∫

G

f(y)φ(y−1) dy

∣∣∣∣ ≤ C‖f‖B

By the left invariance of B the convolution f ∗ φ is well-defined by

f ∗ φ(x) =
∫

G

f(y)φ(y−1x) dy

Assume that φ satisfies the reproducing formula

φ ∗ φ = φ

and that convergence in B implies convergence (locally) in measure. Then the space

Bφ = {f ∈ B | f = f ∗ φ}
is a non-zero reproducing kernel Banach subspace of B. Let us for completeness prove this
statement (though it is already contained in [4] in disguise) by showing that Bφ is a closed
subspace of B. Let fn ∈ Bφ be a sequence converging to f ∈ B then fn converges locally in
measure. Therefore there is a subsequence fnk

converging to f almost everywhere. Thus for
almost all x ∈ G we have

|f(x)− f ∗ φ(x)| ≤ |f(x)− fnk
(x)|+ |fnk

(x)− fnk
∗ φ(x)|+ |fnk

∗ φ(x)− f ∗ φ(x)|
≤ |f(x)− fnk

(x)|+ |fnk
(x)− fnk

∗ φ(x)|+ C‖fnk
− f‖B
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The middle term is 0 and the two remaining terms can be made arbitrarily small so f = f ∗φ
which shows that Bφ is closed in B. Point evaluation is continuous for f ∈ Bφ by the left
invariance of B:

|f(x)| ≤ C‖ℓx−1f‖B ≤ Cx‖f‖B
The discretizations we will investigate on Bφ can be thought of as Riemann sums for the

reproducing formula

f(x) =

∫

G

f(y)φ(y−1x) dy

which holds for all f ∈ Bφ.

3.2. Atomic decompositions and Banach frames. We will derive atomic decomposi-
tions and frames for reproducing kernel Banach spaces, and here we introduce the two
notions. Further we introduce sequence spaces and partitions of unity used to obtain the
discrete characterizations.

Definition 3.1. Let B be a Banach space and B# an associated Banach sequence space
with index set I. If for λi ∈ B∗ and φi ∈ B we have

(a) {λi(f)}i∈I ∈ B# for all f ∈ B
(b) the norms ‖λi(f)‖B# and ‖f‖B are equivalent
(c) f can be written f =

∑
i λi(f)φi

then {(λi, φi)} is an atomic decomposition of B with respect to B#.

More generally a Banach frame for a Banach space can be defined as

Definition 3.2. Let B be a Banach space and B# an associated Banach sequence space
with index set I. If for λi ∈ B∗ we have

(a) {λi(f)}i∈I ∈ B# for all f ∈ B
(b) the norms ‖λi(f)‖B# and ‖f‖B are equivalent
(c) there is a bounded reconstruction operator S : B# → B such that S({λi(f)}) = f

then {λi} is an Banach frame for B with respect to B#.

In Hilbert spaces the existence of the operator S is automatic given the equivalence of the
norms ‖λi(f)‖B# and ‖f‖B. Further, the operator S has been shown to exist for p-frames
for reproducing kernel Banach spaces in [15]. For general Banach spaces this is not the case
as is demonstrated in [2].

We will work with very particular Banach sequence spaces which are constructed from
a solid Banach function space B. These spaces were introduced in [9]. For a compact
neighbourhood U of the identity we call the sequence {xi}i∈I U -relatively separated if G ⊆
∪ixiU and there is an N such that

sup
i
(#{j | xiU ∩ xjU 6= ∅}) ≤ N

For a U -relatively separated sequence X = {xi}i∈I define the space B#(X) to be the collec-
tion of sequences {λi}i∈I for which

∑

i∈I

|λi|1xiU ∈ B
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when the sum is taken to be pointwise. If the compactly supported continuous functions are
dense in B then this sum also converges in norm. Equipped with the norm

‖{λi}‖B# = ‖
∑

i∈I

|λi|1xiU‖B

this is a solid Banach sequence space. In the case were B = Lp(G) we get that B#(X) =
ℓp(I). For fixed X = {xi}i∈I the space B#(X) only depends on the compact neighbourhood
U up to norm equivalence. Further, if X = {xi}i∈I and Y = {yi}i∈I are two U -relatively
separated sequences with same index set such that x−1

i yi ∈ V for some compact set V , then
B#(X) = B#(Y ) equivalent norms. For these properties consult Lemma 3.5 in [9].

Given a compact neighbourhood U of the identity the non-negative functions ψi are called
a bounded uniform partition of unity subordinate to U (or U -BUPU), if there is a U -relatively
separated sequence {xi}, such that supp(ψi) ⊆ xiU and

∑
i ψi = 1. A partition of unity

could consist of indicator functions, however on a Lie group G it is possible to find smooth
U -BUPU’s whenever U is contained in a ball of radius less than the injectivity radius of G
(see for example [18, Lemma 2.1]). For the existence of U -BUPU’s with elements contained
in homogeneous Banach spaces see the paper [7].

3.3. Local oscillation estimates on Lie groups. Let G be Lie group with Lie algebra
g with exponential function exp : g → G. Then for X ∈ g we define the right and left
differential operators (if the limits exist)

R(X)f(x) = lim
t→0

f(x exp(tX))− f(x)

t
and L(X)f(x) = lim

t→0

f(exp(tX)x)− f(x)

t

Fix a basis {Xi}dim(G)
i=1 for g. For a multi index α of length |α| = k with entries between 1

and dim(G) we introduce the operator Rα of subsequent right differentiations

Rαf = R(Xα(k))R(Xα(k−1)) · · ·R(Xα(1))f

Similarly we introduce the operator Lα of subsequent left differentiations

Lαf = L(Xα(k))L(Xα(k−1)) · · ·L(Xα(1))f

We call f right (or left) differentiable of order n if for every x and all |α| ≤ n the derivatives
Rαf(x) (or Lαf(x)) exist.

In the following we will often use this lemma

Lemma 3.3. Let U be a compact set and fix a basis element Xk ∈ g. There is a constant
CU such that for any y ∈ U and |s| ≤ ǫ

(a) If f is right differentiable of order 1, then

|f(xesXky)− f(xy)| ≤ CU

∫ ǫ

−ǫ

dim(G)∑

n=1

|R(Xn)f(xe
tXky)| dt

(b) If f is left differentiable of order 1, then

|f(yesXkx)− f(yx)| ≤ CU

∫ ǫ

−ǫ

dim(G)∑

n=1

|L(Xn)f(ye
tXkx)| dt

The constant CU depends only on U and CU ′ ≤ CU for U ′ ⊆ U .
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Proof. First use the fundamental theorem of calculus to get

|f(xesXky)− f(xy)| = |f(xyesAdy−1(Xk))− f(xy)|

=

∣∣∣∣
∫ s

0

d

dt
f(xyetAdy−1(Xk) dt

∣∣∣∣

≤
∫ s

0

∣∣∣∣
d

dt
f(xyetAdy−1 (Xk)

∣∣∣∣ dt

≤
∫ ǫ

−ǫ

|R(Ady−1(Xk))f(xe
tXky)| dt

The adjoint representation can be written as

Ady−1(Xk)) = c1(y)X1 + · · ·+ cn(y)Xn

where the coefficients ci depend continuously on y (and also depend on Xk). So for smooth
f we have the pointwise inequality

|R(Ady−1(Xk))f | ≤ |c1(y)||R(X1)f |+ · · ·+ |cn(y)||R(Xn)f | ≤ CU(Xk)

dim(G)∑

n=1

|R(Xn)f |

where CU(Xk) is maxy∈U |ci(y)|. Let CU = maxk |CU(Xk)|, then we obtain

|f(xesXky)− f(xy)| ≤ CU

∫ ǫ

−ǫ

dim(G)∑

n=1

|R(Xn)f(xye
tAdy−1(Xk))| dt

= CU

∫ ǫ

−ǫ

dim(G)∑

n=1

|R(Xn)f(xe
tXky)| dt

From the definition of CU above it follows that CU ′ ≤ CU for U ′ ⊆ U . A similar argument
works for left differentiations. �

From now on we let Uǫ denote the set

Uǫ =

{
n∏

k=1

exp(tkXk)
∣∣∣ − ǫ ≤ tk ≤ ǫ

}
.

We further define the right local oscillations

M ǫ
rf(x) = sup

u∈Uǫ

|f(xu−1)− f(x)|

and the left local oscillations

M ǫ
l f(x) = sup

u∈Uǫ

|f(ux)− f(x)|

For formulating the next lemma we need some notation. By δ we denote an n-tuple
δ = (δ1, . . . , δn) with δi ∈ {0, 1}. The length |δ| of δ is the number of non-zero entries
|δ| = δ1 + · · ·+ δn. Further the function τδ is defined as

τδ(t1, . . . , tn) = eδ1t1X1 . . . eδntnXn
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Lemma 3.4. If f is right differentiable of order n = dim(G) there is a constant Cǫ such
that

M ǫ
rf(x) ≤ Cǫ

∑

1≤|α|≤n

∑

|δ|=|α|

∫ ǫ

−ǫ

· · ·
∫ ǫ

−ǫ︸ ︷︷ ︸
|δ| integrals

|Rαf(xτδ(t1, . . . , tn)
−1)|(dt1)δ1 · · · (dtn)δn

If f is left differentiable of order n = dim(G) there is a constant Cǫ such that

M ǫ
l f(x) ≤ Cǫ

∑

1≤|α|≤n

∑

|δ|=|α|

∫ ǫ

−ǫ

· · ·
∫ ǫ

−ǫ︸ ︷︷ ︸
|δ| integrals

|Lαf(τδ(t1, . . . , tn)x)|(dt1)δ1 · · · (dtn)δn

For ǫ′ ≤ ǫ we have Cǫ′ ≤ Cǫ.

Proof. For any x there is an element σ = esnXn . . . es1X1 ∈ U−1
ǫ such that

M ǫ
rf(x) = |f(xesnXn . . . es1X1)− f(x)|

Denote by σk the element in U−1
ǫ given by

σk = esnXnesn−1Xn−1 . . . eskXk

with the convention that σn+1 = e. The elements σk depend on x, and we wish to estimate
the function M ǫ

rf(x) = |f(xσ1)− f(x)| by an expression without any σk. To do so we make
repeated use of the fundamental theorem of calculus in form of the previous lemma.

For any n-tuple δ of 0’s and 1’s and for a smooth function f we define

Tα,δf(x) =

∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ︸ ︷︷ ︸
|δ| integrals

|Rαf(xτδ(t1, . . . , tn)
−1)| (dt1)δ1(dt2)δ2 . . . (dtn)δn

We first show that if δm = 0 for m ≥ k, then

Tα,δf(xσk) ≤ Tα,δf(xσk+1) + CU−1
ǫ

∑

|α′|=|δ′|=|α|+1

Tα′,δ′f(xσk+1)

where δ′m = 0 for m ≥ k + 1. To show this note that

|Rαf(xσkτδ(t1, . . . , tn)
−1)|

≤ |Rαf(xσk+1τδ(t1, . . . , tn)
−1)|

+ |Rαf(xσk+1e
skXkτδ(t1, . . . , tn)

−1)− Rαf(xσk+1τα(t1, . . . , tn)
−1)|

≤ |Rαf(xσk+1τδ(t1, . . . , tn)
−1)|

+ CU−1
ǫ

∫ ǫ

−ǫ

dim(G)∑

n=1

|R(Xn)R
αf(xσk+1e

tkXkτδ(t1, . . . , tn)
−1)| dtk

The terms R(Xn)R
αf(xσk+1e

tkXkτδ(t1, . . . , tn)
−1) are of the type

Rα′

f(xσk+1τδ′(t1, . . . , tn)
−1)
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with |α′| = |α|+ 1 and δ′m = 0 for m ≥ k + 1. Therefore

Tα,δf(xσk)

=

∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ

|Rαf(xτδ(t1, . . . , tn)
−1)| (dt1)δ1(dt2)δ2 . . . (dtn)δn

≤
∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ

|Rαf(xσk+1τδ(t1, . . . , tn)
−1)| (dt1)δ1(dt2)δ2 . . . (dtn)δn

+ CU−1
ǫ

∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ︸ ︷︷ ︸
|α|+ 1 integrals

n∑

m=1

|R(Xm)R
αf(xσk+1e

tkXkτδ(t1, . . . , tn)
−1)| dtk (dt1)δ1(dt2)δ2 . . . (dtn)δn

≤ Tα,βf(xσk+1) + CU−1
ǫ

∑

|α′|=|δ′|=|α|+1

Tα′,δ′f(xσk+1)

The assumption that δm = 0 for m ≥ k ensures that each τδ′ is in Uǫ and thus the constant
CU−1

ǫ
shows up in the application of the previous lemma. As ǫ is chosen smaller this constant

is thus bounded.
Estimating the right local oscillation we first obtain

M ǫ
rf(x) = |f(xσ1)− f(x)|

≤
n∑

l=1

|f(xσl)− f(xσl+1)|

=

n∑

l=1

|f(xσl+1e
slXl)− f(xσl+1)|

≤
n∑

l=1

∫ ǫ

−ǫ

|R(Xl)f(xσl+1e
tlXl)| dtl

This is a finite sum of terms of the type Tα,δf(xσk) with |α| = |δ| = 1 and 2 ≤ k ≤ n + 1.
Each of the terms with 2 ≤ k ≤ n can in turn be estimated by a sum of terms Tα,δf(xσk)
with 1 ≤ |α| = |δ| ≤ 2 for 3 ≤ k ≤ n+ 1. Repeating these steps we find

M ǫ
rf(x) ≤ Cǫ

∑

1≤|α|=|β|≤n

Tα,βf(x)

where Cǫ is a constant for which Cǫ′ ≤ Cǫ when ǫ
′ ≤ ǫ.

The inequality for the left local oscillation is obtained analogously. �

The following local oscillation estimate will be of great importance to our sampling results.

Theorem 3.5. If f ∈ B is right differentiable up to order n = dim(G) and the derivatives
Rαf are in B for 1 ≤ |α| ≤ n, then

‖M ǫ
rf‖B ≤ Cǫ

∑

1≤|α|≤n

‖Rαf‖B

Here Cǫ → 0 as ǫ→ 0.
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Proof. As in the proof of the previous lemma let

Tα,δf(x) =

∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ︸ ︷︷ ︸
|δ| integrals

|Rαf(xτδ(t1, . . . , tn)
−1)| (dt1)δ1(dt2)δ2 . . . (dtn)δn

We now show that there is a constant C (only depending on U and B) such that

‖Tα,δf‖B ≤ C(2ǫ)|δ|‖Rαf‖B
For this we use the Minkowski inequality to get

‖Tα,δf‖B =

∥∥∥∥
∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ

|rτδ(t1,...,tn)−1Rαf | (dt1)δ1(dt2)δ2 . . . (dtn)δn
∥∥∥∥
B

≤
∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ

‖rτδ(t1,...,tn)−1Rαf‖B (dt1)
δ1(dt2)

δ2 . . . (dtn)
δn

According to (5) let C be the smallest constant such that for all f ∈ B and for all u ∈ Uǫ

we have ‖ru−1f‖B ≤ C‖f‖B. Then

‖Tα,δf‖B ≤
∫ ǫ

−ǫ

. . .

∫ ǫ

−ǫ

C‖Rαf‖B (dt1)
δ1(dt2)

δ2 . . . (dtn)
δn ≤ C(2ǫ)|δ|‖Rαf‖B

Since M ǫ
rf can be estimated by a finite sum of terms of the type Tα,δf with |δ| ≥ 1 the

triangle inequality can be used to finish the proof. �

Corollary 3.6. If the functions in Bφ are smooth and the mappings

Bφ ∋ f 7→ Rαf ∈ B

are continuous for |α| ≤ dim(G), then there is a Cǫ such that

‖M ǫ
rf‖B ≤ Cǫ‖f‖B

with Cǫ → 0 as ǫ→ 0.

It is typically not hard to show that if f ∈ Bφ then

Rαf = f ∗Rαφ

Thus we need only check that convolution with Rαφ is continuous. In the following case
we will use differentiability of the kernel to obtain estimates of M ǫ

rf for f ∈ Bφ. This ties
our results with [12], though we do not require the kernel to be integrable. The previous
results are more general and are in particular very easy to verify for band-limited functions,
whereas the following theorem is harder to apply in that case (the author is at present not
aware of an application of this theorem to band-limited functions).

Theorem 3.7. If the mappings

Bφ ∋ f 7→ |f | ∗ |Rαφ| ∈ B

are continuous for |α| ≤ dim(G) then there is a Cǫ such that

‖M ǫ
rf‖B ≤ Cǫ‖f‖B

with Cǫ → 0 as ǫ→ 0.
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Proof. For f ∈ Bφ we have that

M ǫ
rf(x) = sup

u∈Uǫ

|f(xu−1)− f(x)|

= sup
u∈Uǫ

∣∣∣∣
∫
f(y)[φ(y−1xu−1)− φ(y−1x)] dy

∣∣∣∣

≤
∫

|f(y)|M ǫ
rφ(y

−1x) dy

Since φ is differentiable we know that M ǫ
rφ(y

−1x) can be estimated by

M ǫ
rφ(x) ≤ Cǫ

∑

1≤|α|≤n

∑

|δ|=|α|

∫ ǫ

−ǫ

· · ·
∫ ǫ

−ǫ︸ ︷︷ ︸
|δ| integrals

|Rαφ(xτδ(t1, . . . , tn)
−1)|(dt1)δ1 · · · (dtn)δn

Thus the assumption that the convolutions |f | ∗ |Rαφ| are continuous from Bφ to B and the
right invariance of B can be used to finish the proof. �

3.4. Atomic decompositions and frames for reproducing kernel Banach spaces. In
this section we will derive sampling theorems and atomic decompositions for the reproducing
kernel Banach space Bφ. The results are similar to those in [8, 9, 10, 12] and more recently
[19] and [17], but unlike these references we do not require integrability of the reproducing
kernel.

The following sampling theorem can be utilized together with the result of Corollary 3.6
and Theorem 3.7.

Theorem 3.8. Assume there is a Cǫ such that Cǫ → 0 for ǫ → 0 such that for all f ∈ Bφ

we have ‖M ǫ
rf‖B ≤ Cǫ‖f‖B. We can choose ǫ small enough that for every Uǫ-relatively

separated set {xi} the norms ‖{f(xi)}‖B# and ‖f‖B are equivalent.

Remark 3.9. We would like to note that Theorem 3.8 is sufficient to prove that sampling
provides a Banach frame in the case B = Lp(G) according to [15, Theorem 3.1]. Thus we
are able to obtain sampling theorems for cases where the convolution with the kernel is not
a continuous projection.

Proof. Choose ǫ small enough that Cǫ < 1 and let {xi} be Uǫ-relatively separated. Note
that there is an N such that each xiUǫ overlap with at most N other xjUǫ. The following
calculation shows that {f(xi)} ∈ B#.

∑

i

|f(xi)|1xiUǫ(x) ≤
∑

i

|f(x)− f(xi)|1xiUǫ(x) +
∑

i

|f(x)|1xiUǫ(x)

≤
∑

i

M ǫ
rf(x)1xiUǫ(x) +

∑

i

|f(x)|1xiUǫ(x)

≤ N(M ǫ
rf(x) + |f(x)|)

Both the functions M ǫ
rf and |f | are in B by assumption and thus

‖{f(xi)}‖B# =

∥∥∥∥∥
∑

i

|f(xi)|1xiUǫ

∥∥∥∥∥
B

≤ N(Cǫ + 1)‖f‖B
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We now show that (1−Cǫ)‖f‖B ≤ ‖{f(xi)}‖B# . Let ψi be a Uǫ-uniform bounded partition
of unity, i.e. supp(ψi) ⊆ xiUǫ and

∑
i ψi = 1 a.e.

|f(x)| =
∑

i

|f(x)|ψi(x)

≤
∑

i

|f(x)− f(xi)|ψi(x) +
∑

i

|f(xi)|ψi(x)

≤M ǫ
rf(x) +

∑

i

|f(xi)|1xiUǫ(x)

Therefore
‖f‖B ≤ ‖M ǫ

rf‖B + ‖{f(xi)}‖#B ≤ Cǫ‖f‖B + ‖{f(xi)}‖#B
By assumption Cǫ < 1 so we obtain

(1− Cǫ)‖f‖B ≤ ‖{f(xi)}‖#B
This finishes the proof. �

The following theorem provides a reconstruction operator in the case where convolution
with φ is continuous on B.

Theorem 3.10. Assume there is a Cǫ such that Cǫ → 0 for ǫ→ 0 such that for all f ∈ Bφ

we have ‖M ǫ
rf‖B ≤ Cǫ‖f‖B. If convolution with φ is continuous on B, then we can choose

ǫ small enough that for any Uǫ-BUPU {ψi} with supp(ψi) ⊆ xiUǫ the operator T1 : Bφ → Bφ

given by

T1f =
∑

i

f(xi)(ψi ∗ φ)

is invertible. The convergence of the sum is pointwise, and if Cc(G) is dense in B then the
convergence is also in norm.

Proof. We have that∣∣∣∣∣f(x)−
∑

i

f(xi)ψi(x)

∣∣∣∣∣ ≤
∑

i

|f(x)− f(xi)|ψi(x) ≤
∑

i

M ǫ
rf(x)ψi(x) =M ǫ

rf(x)

so the solidity of B ensures that∥∥∥f −
∑

f(xi)ψi

∥∥∥
B
≤ Cǫ‖f‖B

The continuity of convolution with the reproducing kernel gives∥∥∥f −
(∑

f(xi)ψi

)
∗ φ
∥∥∥
Bφ

≤ Cǫ‖f‖Bφ

Lastly we show that the operator
(∑

f(xi)ψi

)
∗ φ

is indeed the operator T . To do so we use the dominated convergence theorem to swap the
sum and the integral in ∫ (∑

i

f(xi)ψi(x)

)
φ(x−1y) dx
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The sum
∑

i f(xi)ψi(x) is to be understood as the pointwise limit of partial sums. Any
partial sum FP (x) =

∑
i∈P f(xi)ψi(x) is dominated by

|FP (x)| ≤
∑

i∈P

|f(xi)|ψi(x)

≤
∑

i∈P

|f(xi)− f(x)|ψi(x) +
∑

i∈P

|f(x)|ψi(x)

≤
∑

i∈P

M ǫ
rf(x)ψi(x) +

∑

i∈P

|f(x)|ψi(x)

≤M ǫ
rf(x) + |f(x)|

Both M ǫ
rf and |f | are in B and therefore (by our assumptions on φ) the integrable function

(M ǫ
rf(x) + |f(x)|)|φ(x−1y)| dominates |FN(x)φ(x

−1y)|. This allows the sum and integral to
be swapped to get

∥∥∥f −
∑

f(xi)(ψi ∗ φ)
∥∥∥
Bφ

≤ Cǫ‖f‖Bφ

Choosing ǫ small enough that Cǫ < 1 the operator T can be inverted using its Neumann
series.

In [19] it has been shown that if the compactly supported continuous functions are dense,
then the sum converges in norm. We therefore skip that part of the proof. �

The previous result in conjunction with Corollary 3.6 and Theorem 3.7 only requires
continuity involving left differentiation. We will now state results that also involve right
differentation.

Lemma 3.11. Assume the convolutions f 7→ f ∗ |Lαφ| are continuous B → B for |α| ≤
dim(G), then the mapping

B# ∋ {λi} 7→
∑

i

λiℓxi
φ ∈ Bφ

is continuous.

Proof. Let {λi} ∈ B# and define

f(x) =
∑

i

λiℓxi
φ(x)
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with pointwise convergence of the sum. We will show that this defines a function in B. For
every x we have

|f(x)| ≤
∑

i

|λi||φ(x−1
i x)|

= µ(U)−1

∫ ∑

i

|λi|1xiU(y)|φ(x−1
i x)| dy

≤ µ(U)−1

(∫ ∑

i

|λi|1xiU(y)|φ(y−1x)− φ(x−1
i x)| dy +

∫ ∑

i

|λi|1xiU(y)|φ(y−1x)| dy
)

≤ µ(U)−1

(∫ ∑

i

|λi|1xiU(y)M
ǫ
ℓφ(y

−1x) dy +

∫ ∑

i

|λi|1xiU(y)|φ(y−1x)| dy
)

≤ µ(U)−1

(
∑

i

|λi|1xiU)

)
∗ (M ǫ

ℓφ+ |φ|)(x)

The function F =
∑

i |λi|1xiU(y) is in B and our assumptions ensure that the functions
F ∗ |φ| and F ∗M ǫ

ℓφ are also in B. The solidity of B thus ensures that the function f is in
B.

We will now show that f is reproduced by convolution with φ. Note that any partial
sum fN =

∑N
i=1 λiℓxi

φ is in B and us reproduced by convolution by φ. We have to show
that f(x) = limN→∞ fN (x) is also reproduced by convolution with φ. The calculation above
shows that any partial sum fN is dominated by the function

G = µ(U)−1

(
∑

i

|λi|1xiU)

)
∗ (M ǫ

ℓφ+ |φ|) ∈ B

Thus we have |fN(y)φ(y−1x)| ≤ |G(y)φ(y−1x)| and the dominated convergence theorem gives

f ∗ φ(x) = ( lim
N→∞

fN ) ∗ φ(x) = lim
N→∞

(fN ∗ φ)(x) = lim
N→∞

fN(x) = f(x).

The continuity of the mapping follows from the calculations above. �

Theorem 3.12. Assume that the convolutions f 7→ |f | ∗ |Lαφ| are continuous B → B for
|α| ≤ dim(G). We can choose ǫ and Uǫ-relatively separated points {xi}, such that for any
Uǫ-BUPU {ψi} with supp(ψi) ⊆ xiUǫ the operator (we let λi(f) =

∫
f(x)ψi(x) dx)

T2f =
∑

i

λi(f)ℓxi
φ

is invertible on Bφ. The convergence of the sum is pointwise, and if Cc(G) is dense in B
then the convergence is also in norm. Further {λi(T−1

2 f), ℓxi
φ} is an atomic decomposition

for Bφ.
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Proof. For f ∈ Bφ we have the following estimate
∑

i

|λi(f)|1xiU(y) ≤
∑

i

|λi|1xiU(y)

≤
∑

i

∣∣∣∣
∫
f(x)ψi(x) dx

∣∣∣∣ 1xiU(y)

≤
∑

i

∫
|f(x)|1xiU(x) dx1xiU(y)

=
∑

i

∫
|f(x)|1xiU(x) dx1xiU(y)

For each y only N of the neighbourhoods xiU overlap, and also 1xiU(x)1xiU(y) ≤ 1U−1U(x
−1y)

so we get
∑

i

|λi|1xiU(y) ≤ N

∫
|f(x)|1U−1U(x

−1y) dx = N |f | ∗ 1U−1U(y)

The function |f | ∗ 1U−1U is in B with norm bounded by C‖f‖B for some constant C (in the
sense of Bochner integrals). Therefore the sequence λi(f) is in B

# with norm estimated by

‖{λi(f)}‖B# ≤ CN‖f‖B
By Lemma 3.11 we see that T2f ∈ Bφ and

|f(x)− T2f(x)| =
∣∣∣∣∣f(x)−

∑

i

∫
f(y)ψi(y) dyφ(x

−1
i x)

∣∣∣∣∣

=

∣∣∣∣∣

∫
f(y)φ(y−1x) dy −

∑

i

∫
f(y)ψi(y) dyφ(x

−1
i x)

∣∣∣∣∣

=

∣∣∣∣∣

∫ ∑

i

ψi(y)f(y)φ(y
−1x) dy −

∑

i

∫
ψi(y)f(y)ψi(y) dyφ(x

−1
i x)

∣∣∣∣∣

≤
∑

i

∣∣∣∣
∫
ψi(y)f(y)φ(y

−1x) dy −
∫
ψi(y)f(y)ψi(y) dyφ(x

−1
i x)

∣∣∣∣

=
∑

i

∣∣∣∣
∫
ψi(y)f(y)(φ(y

−1x)− φ(x−1
i x)) dy

∣∣∣∣

≤
∑

i

∫
ψi(y)|f(y)|M ǫ

l φ(y
−1x) dy

=

∫
|f(y)|M ǫ

l φ(y
−1x) dy

= |f | ∗M ǫ
l φ(x)

The continuity of the mappings

B ∋ f 7→ f ∗ |Lαφ| ∈ B

and Lemma 3.4 ensure that T2f ∈ B and T2 is well-defined.
We will now show that {ℓxi

φ} yields an atomic decomposition.
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Since T−1
2 f ∈ Bφ we therefore have

‖{λi(T−1
2 f)}‖B# ≤ C‖T−1

2 f‖B ≤ C‖f‖B

Further the reconstruction formula f =
∑

i λ(T
−1
2 f)ℓxi

φ Lemma 3.11 tells us that

‖f‖B ≤ C‖{λi(T−1
2 f)}‖B#

thus showing that we have an atomic decomposition. �

Theorem 3.13. Assume the convolutions f 7→ f ∗ |Lαφ| and f 7→ f ∗ |Rαφ| are continuous
B → B for |α| ≤ dim(G). Then we can choose ǫ and Uǫ-relatively separated points {xi}
such that for any Uǫ-BUPU {ψi} with supp(ψi) ⊆ xiUǫ the operator given by (we let ci =∫
ψi(x) dx)

T3f =
∑

i

cif(xi)ℓxi
φ

is invertible. The convergence of the sum is pointwise, and if Cc(G) is dense in B then the
convergence is also in norm. Further {ciT−1

3 f(xi), ℓxi
φ} is an atomic decomposition for Bφ

and {ciℓxi
φ} is a frame.

Proof. Since

ci =

∫
ψi(x) dx ≤

∫
1xiU(x) dx = µ(U)

we have

∣∣∣∣∣
∑

i

cif(xi)1xiU(x)

∣∣∣∣∣ ≤ µ(U)
∑

i

[|f(xi)− f(x)|+ |f(x)|]1xiU(x)

≤ µ(U)
∑

i

[M ǫ
rf(x) + |f(x)|]1xiU(x)

≤ µ(U)N [M ǫ
rf(x) + |f(x)|]

Therefore Theorem 3.7 gives

‖{cif(xi)}‖B# ≤ µ(U)N(Cǫ + 1)‖f‖B

Thus T3f ∈ Bφ by Lemma 3.11 and

|f(x)− T3f(x)| ≤
∣∣∣∣∣f(x)−

∑

i

(∫
f(y)ψi(y) dy

)
ℓxi
φ(x)

∣∣∣∣∣

+

∣∣∣∣∣
∑

i

(∫
f(y)ψi(y) dy

)
ℓxi
φ(x)−

∑

i

cif(xi)ℓxi
φ(x)

∣∣∣∣∣
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The first expression was estimated in the previous theorem, so we concentrate on
∣∣∣∣∣
∑

i

(∫
f(y)ψi(y) dy

)
ℓxi
φ −

∑

i

cif(xi)ℓxi
φ

∣∣∣∣∣

≤
∑

i

(∫
|f(y)− f(xi)||φ(x−1

i x)|ψi(y) dy

)

≤
∑

i

∫
|f(y)− f(xi)||φ(y−1x)|ψi(y) dy

+
∑

i

∫
|f(y)− f(xi)||φ(y−1x)− φ(x−1

i x)|ψi(y) dy

≤
∑

i

(∫
Mf(y)|φ(y−1x)|ψi(y) dy

)

+
∑

i

∫
Mf(y)M ǫ

rφ(y
−1x)ψi(y) dy

=M ǫ
l f ∗ |φ|(x) +M ǫ

l f ∗M ǫ
rφ(x)

Now, by our assumptions the functions in the last expression are all in B, and their norms
are dominated by the norms of convolution with of f with |Lαφ| and |Rαφ| for |α| ≤ Dim(G).
Therefore

‖f − T3f‖B ≤ Cǫ‖f‖B
where Cǫ → 0 as ǫ→ 0.

Since T−1
3 f ∈ Bφ we thus have

‖{ciT−1
3 f(xi)}‖B# ≤ C‖T−1

3 f‖B ≤ C‖f‖B
Any f ∈ Bφ can be written

f =
∑

i

ciT
−1
3 f(xi)ℓxi

φ

and thus by Lemma 3.11 the norm of f satisfies

‖f‖B ≤ C‖{ciT−1
3 f(xi)}‖B#

which finishes the proof that {ciT−1
3 f(xi), ℓxi

φ} forms an atomic decomposition of Bφ. �

4. Coorbit Spaces on Lie groups

In this section we apply the sampling theorems from section 3 to a certain class of repro-
ducing spaces. These spaces are images of Banach spaces of distributions (so-called coorbit
spaces) under a wavelet transform. Thus we yield sampling theorems for a large class of Ba-
nach spaces including modulation spaces, Besov spaces, Bergman spaces and Hilbert spaces
of band-limited functions. Similar sampling theorems are known for spaces related to ir-
reducible and integrable representations [9, 10, 12]. We replace the integrability condition
with smoothness arguments which also apply to non-integrable and non-irreducible cases.
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4.1. Construction of coorbit spaces. Let S be a Fréchet space and let S∗ be the conjugate
linear dual equipped with the weak∗ topology. We assume that S is continuously imbedded
and weakly dense in S∗. The conjugate dual pairing of elements v ∈ S and v′ ∈ S∗ will be
denoted by 〈v′, v〉. As usual define the contragradient representation (π∗, S∗) by

〈π∗(x)v′, v〉 = 〈v′, π(x−1)v〉.
Then π∗ is a continuous representation of G on S∗. For a fixed vector u ∈ S define the linear
map Wu : S∗ → C(G) by

Wu(v
′)(x) = 〈v′, π(x)u〉.

The map Wu is called the voice transform or the wavelet transform.
In [4] we listed minimal conditions ensuring that spaces of the form

CouSB = {v′ ∈ S∗|Wu(v
′) ∈ B}

equipped with the norm ‖v′‖ = ‖Wu(v
′)‖B are π∗ invariant Banach spaces. The space CouSB

is called the coorbit space of B related to u and S.

Assumption 4.1. Assume there is a non-zero cyclic vector u ∈ S satisfying the following
properties

(R1) the reproducing formula Wu(v) ∗Wu(u) =Wu(v) is true for all v ∈ S
(R2) the mapping Y ∋ F 7→

∫
G
F (x)Wu(u)(x

−1) dx ∈ C is continuous
(R3) if F = F ∗Wu(u) ∈ Y then the mapping S ∋ v 7→

∫
F (x)〈π∗(x)u, v〉 dx ∈ C is in S∗

(R4) the mapping S∗ ∋ φ 7→
∫
〈φ, π(x)u〉〈π∗(x)u, u〉 dx ∈ C is weakly continuous

A vector u satisfying Assumption 4.1 is called an analyzing vector.
The subspace Bu of B defined by

Bu = {F ∈ B|F = F ∗Wu(u)},
is a reproducing kernel Banach space. By [4] it follows that CouSB is Wu : CouSB → Bu is an
isometric isomorphism intertwining π∗ and left translation.

4.2. Sampling of wavelet transform. We now list conditions ensuring that we can obtain
the frame inequality from Theorem 3.8. A vector u ∈ S is called weakly differentiable in the
direction X ∈ g if there is a vector denoted π(X)u ∈ S such that for all v′ ∈ S∗

〈v′, π(X)u〉 = d

dt

∣∣∣
t=0

〈v′, π(etX)u〉

For the differential operators Rα we write π(Rα)u for a vector which satisfies

〈v′, π(Rα)u〉 = 〈v′, π(Xα(k))π(Xα(k−1)) · · ·π(Xα(1))u〉
We use the notation π(Rα) for the differential operators on S because they match the right
differential operators Rα on B: if f(x) = Wu(v)(x), then R

αf(x) = Wπ(Rα)u(v)(x).

Assumption 4.2. Assume there is a non-zero cyclic vector u ∈ S satisfying Assumption 4.1.
Further assume that u is weakly differentiable up to order dim(G) and that

(D1) there are non-zero constants cα such that Wu(v) ∗Wπ(Rα)u(u) = cαWπ(Rα)u(v) for all
v ∈ S

(D2) the mapping S∗ ∋ φ 7→
∫
〈φ, π(x)u〉〈π∗(x)u, π(Rα)u〉 dx ∈ C is weakly continuous

(D3) the mappings Bu ∋ F 7→ F ∗Wπ(Rα)u(u) ∈ B are continuous for all |α| ≤ dim(G)
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Remark 4.3. Notice that for α = 0 the properties (D1) and (D2) correspond to (R1) and
(R4) respectively. The condition (D2) is used to extend the convolution relation from (D1)
to all v ∈ S∗.

Theorem 4.4. If u ∈ S satisfies Assumption 4.2 then we can choose ǫ small enough that
for any Uǫ-relatively separated set {xi} there are 0 < A1 ≤ A2 <∞ such that

A1‖v′‖CouSB
≤ ‖{〈v′, π(xi)u〉}‖B# ≤ A2‖v′‖CouSB

If convolution with Wu(u) is continuous on B, then π(xi)u is a frame for CouSB with recon-
struction operator

v′ =W−1
u T−1

1

(
∑

i

Wu(v
′)(xi)ψi ∗Wu(u)

)

where {ψi} is any Uǫ-BUPU for which supp(ψi) ⊆ xiUǫ.

Proof. Let us first show that (D1) and (D2) ensure that

Wu(v
′) ∗Wπ(Rα)u(u) = cαWπ(Rα)u(v

′)

for v′ ∈ S∗. Let vβ be a net in S converging to v′. Then

cαWπ(Rα)u(v
′)(x) = lim

β
cαWπ(Rα)u(vβ)(x)

= lim
β
Wu(vβ) ∗Wπ(Rα)u(u)(x)

= lim
β

∫
〈vβ, π(xy)u〉〈π∗(y)u, π(Rα)u〉 dy

= lim
β

∫
〈π∗(x−1)vβ, π(y)u〉〈π∗(y)u, π(Rα)u〉 dy

=

∫
〈π∗(x−1)v′, π(y)u〉〈π∗(y)u, π(Rα)u〉 dy

=

∫
〈v′, π(y)u〉〈u, π(y−1x)π(Rα)u〉 dy

=Wu(v
′) ∗Wπ(Rα)u(u)(x)

Therefore, if v′ ∈ CouSB we have

Wπ(Rα)u(v
′) =

1

cα
Wu(v

′) ∗Wπ(Rα)u(u)

and the continuity requirement (D3) ensures that Wπ(Rα)u(v
′) ∈ B and

‖Wπ(Rα)u(v
′)‖B ≤ Cα‖Wu(v

′)‖B
By Theorem 3.5 there is a constant Cǫ such that

‖M ǫ
rWu(v

′)‖B ≤ Cǫ‖Wu(v
′)‖B

and Cǫ → 0 as ǫ→ 0. Theorem 3.8 shows that there are A1, A2 such that

A1‖v′‖CouSB
≤ ‖{〈v′, π(xi)u〉}‖B# ≤ A2‖v′‖CouSB

which proves the norm equivalence. If convolution with Wu(u) is continuous on B the
reconstruction operator can be found using Theorem 3.10. �
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Remark 4.5. For B = Lp(G) the sequence space is B# = ℓp and in this case a reconstruction
operator is automatic when the frame inequality is given (see [15]).

4.3. G̊arding vectors and smooth representations. In this section we will focus on
square integrable group representations and its smooth vectors. In particular we will show
that G̊arding vectors are particularly nice to work with.

A unitary irreducible representation (π,H) is square integrable if there is a non-zero
u ∈ H such that the function Wu(u)(x) = (u, π(x)u) is in L2(G). Any such vector u is called
admissible. Duflo and Moore [6] proved the following

Theorem 4.6 (Duflo-Moore). If (π,H) is square integrable, then there is a positive densely
defined operator C with domain D(C) such that Wu(u) is in L

2(G) if and only if u ∈ D(C).
Furthermore, if u1, u2 ∈ D(C) then

∫

G

(v1, π(x)u1)H(π(x)u2, v2)H dx = (Cu2, Cu1)H(v1, v2)H

By choosing u such that ‖Cu‖H = 1 we automatically obtain a reproducing formula

Wu(v) ∗Wu(u) = Wu(v)

for all v ∈ H .
A vector v ∈ H is called smooth if the mapping

G ∈ x 7→ π(x)v ∈ H

is smooth in the norm topology of H . The space of smooth vector is denoted H∞
π and is a

Fréchet space when equipped with the seminorms

‖v‖k = sup
|α|≤k

‖π(Rα)v‖H

For any v ∈ H and any f ∈ C∞
c (G) the vector π(f)v defined by

π(f)v =

∫
f(x)π(x)v dx

is smooth and called a G̊arding vector.
The following statement is an extension of a result found in [3] without proof.

Lemma 4.7. If u ∈ H∞
π is in the domain of the operator C from Theorem 4.6, then the

map

H−∞
π ∋ φ 7→

∫
〈φ, π(x)u〉〈π(x)u, v〉 dx ∈ C

is continuous in the weak topology for v ∈ H∞
π . Thus both (R4) and (D2) are satisfied.

Proof. For vectors v in H∞
π and w ∈ H the dual pairing 〈w, v〉 is the inner product (w, v)

on H . For v ∈ H∞
π we have

H ∈ w 7→
∫

(w, π(x)u)(π(x)u, v) dx = Cu(w, v)

and therefore the weakly defined vector

π(Wu(v)
∨)u =

∫
(π(x)u, v)π(x)u dx = Cuv ∈ H∞

π

This proves the statement of the lemma. �
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Theorem 4.8. Let (π,H) be a square integrable representation with smooth vectors S =
H∞

π . Let B be a left and right invariant Banach function space and let u ∈ S be such that
Assumption 4.1 is satisfied and further the mapping

B ∋ F 7→ F ∗Wu(u) ∈ B

is continuous. Then CouS = CoũS for any (properly normalized) G̊arding vector ũ and the
vectors π(xi)ũ form a Banach frame for both CoũS and CouS. Further π(xi)ũ provide atomic
decompositions for CouS through Theorem 3.12 and Theorem 3.13.

Proof. Note, that if f, g ∈ C∞
c (G) then admissible u and v ∈ H we have

Wπ(f)u(π(g)v) = g ∗Wu(u) ∗ (f∨)

Since g ∗ L2(G) ∗ g∨ ⊆ L2(G) we thus see that any non-zero G̊arding vector ũ = π(g)u is
also admissible. Therefore we can normalize π(g)u such that the reproducing formula

Wũ(v) ∗Wũ(ũ) = Wũ(v)

is true. From now on let ũ be normalized accordingly. Further∫

G

F (x)Wπ(g)u(v)(x
−1) dx =

∫

G

F (x)(v, π(x−1)π(g)u) dx

=

∫

G

∫

G

F (x)(v, π(x−1)π(y)u)g(y)dy dx

=

∫

G

∫

G

F (yx)(v, π(x−1)u)g(y)dy dx

=

∫

G

∫

G

F (y−1x)(v, π(x−1)u)g∨(y)dy dx

=

∫

G

g∗ ∗ F (x)Wu(v)(x) dx

where g∗(x) = g(y−1). Since g∗ ∗ F ∈ Y and depends continuously on F (in the sense of
Bochner integrals) the mapping

(F, v) 7→
∫

G

F (x)Wπ(g)u(v)(x
−1) dx

is continuous. This shows that Co
π(g)u
S B is a well-defined π∗-invariant Banach space.

We now show that the norms on CouSB and Co
π(g)u
S B are equivalent. By the square

integrability it follows that for any v ∈ H

Wu(v) ∗Wũ(u) = CuWũ(v)

and
Wũ(v) ∗Wu(ũ) = CũWu(v)

These two formulas can be extended to all v ∈ S∗ = H∞
π by Lemma 4.7. Since

F 7→ F ∗Wu(π(g)u) = F ∗ g ∗Wu(u)

F 7→ F ∗Wũ(u) = F ∗Wu(u) ∗ (g∨)
are both continuous mappings it follows that

‖Wu(v)‖B = C‖Wũ(v) ∗Wu(ũ)‖B ≤ C‖Wũ(v)‖B
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and

‖Wũ(v)‖B = C‖Wu(v) ∗ (g∨)‖B ≤ C‖Wu(v)‖B
Thus the norms on CouSB and Co

π(g)u
S B are equivalent.

Finally we need to show that we can reconstruct φ ∈ Co
π(g)u
S B from it samples. For this

it suffices to show that
‖RαWũ(φ)‖B ≤ C‖Wũ(φ)‖B

and apply Theorem 3.5 and for example Theorem 3.10. Note, that

RαWũ(φ) = Wu(φ) ∗ (Rαg)∨

By the continuity of convolution with Rαg we thus see that ‖RαWũ(φ)‖B ≤ C‖Wu(φ)‖B and
the previously proven norm equivalence gives

‖RαWũ(φ)‖B ≤ C‖Wũ(φ)‖B
to finish the proof that π(xi)ũ is a frame. The statements about atomic decompositions
follow similarly. �

Remark 4.9. Note that we need not necessarily work with the smooth vectors H∞
π . In the

coorbit theory introduced by Feicthinger and Gröchenig [9] the space

S = H1
w = {v ∈ H | Wu(v) ∈ L1

w}
is used in the construction of coorbit. Here w is a submultiplicative weight. In order to
obtain sampling theorems they need to choose the analyzing vector in the space

Bw = {u ∈ H |Wu(u),M
r
ǫWu(u) ∈ L1

w}
For any u withWu(u) ∈ H1

w it follows from our calculations that any G̊arding vector π(g)u is
in Bw. Thus it is natural to use G̊arding vectors in the discretization machinery of Feichtinger
and Gröchenig.
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[8] H. G. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via integrable group

representations. In Function spaces and applications (Lund, 1986), volume 1302 of Lecture Notes in
Math., pages 52–73. Springer, Berlin, 1988.
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