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Abstract

We consider a class of operator-induced norms, acting as finite-dimensional
surrogates to the L2 norm, and study their approximation properties over
Hilbert subspaces of L2. The class includes, as a special case, the usual em-
pirical norm encountered, for example, in the context of nonparametric re-
gression in reproducing kernel Hilbert spaces (RKHS). Our results have impli-
cations to the analysis ofM-estimators in models based on finite-dimensional
linear approximation of functions, and also to some related packing problems.
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1. Introduction

Given a probability measure P supported on a compact set X ⊂ Rd,
consider the function class

L2(P) :=
{
f : X → R | ‖f‖L2(P) <∞

}
, (1)

where ‖f‖L2(P) :=
√∫

X f
2(x) dP(x) is the usual L2 norm1 defined with re-

spect to the measure P. It is often of interest to construct approximations

Email addresses: amini@eecs.berkeley.edu (Arash A. Amini),
wainwrig@stat.berkeley.edu (Martin J. Wainwright)

1We also use L2(X ) or simply L2 to refer to the space (1), with corresponding conven-
tions for its norm. Also, one can take X to be a compact subset of any separable metric
space and P a (regular) Borel measure.
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to this L2 norm that are “finite-dimensional” in nature, and to study the
quality of approximation over the unit ball of some Hilbert space H that
is continuously embedded within L2. For example, in approximation theory
and mathematical statistics, a collection of n design points in X is often used
to define a surrogate for the L2 norm. In other settings, one is given some or-
thonormal basis of L2(P), and defines an approximation based on the sum of
squares of the first n (generalized) Fourier coefficients. For problems of this
type, it is of interest to gain a precise understanding of the approximation
accuracy in terms of its dimension n and other problem parameters.

The goal of this paper is to study such questions in reasonable generality
for the case of Hilbert spaces H. We let Φn : H → Rn denote a continuous
linear operator on the Hilbert space, which acts by mapping any f ∈ H to
the n-vector

(
[Φnf ]1 [Φnf ]2 · · · [Φnf ]n

)
. This operator defines the Φn-

semi-norm

‖f‖Φn :=

√√√√
n∑

i=1

[Φnf ]2i . (2)

In the sequel, with a minor abuse of terminology,2 we refer to ‖f‖Φn as the
Φn-norm of f . Our goal is to study how well ‖f‖Φn approximates ‖f‖L2 over
the unit ball of H as a function of n, and other problem parameters. We
provide a number of examples of the sampling operator Φn in Section 2.2.
Since the dependence on the parameter n should be clear, we frequently omit
the subscript to simplify notation.

In order to measure the quality of approximation over H, we consider the
quantity

RΦ(ε) := sup
{
‖f‖2L2 | f ∈ BH, ‖f‖2Φ ≤ ε2

}
, (3)

where BH := {f ∈ H | ‖f‖H ≤ 1} is the unit ball of H. The goal of
this paper is to obtain sharp upper bounds on RΦ. As discussed in Ap-
pendix Appendix C, a relatively straightforward argument can be used to
translate such upper bounds into lower bounds on the related quantity

TΦ(ε) := inf
{
‖f‖2Φ | f ∈ BH, ‖f‖2L2 ≥ ε2

}
. (4)

2This can be justified by identifying f and g if Φf = Φg, i.e. considering the quotient
H/ kerΦ.
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We also note that, for a complete picture of the relationship between the
semi-norm ‖ · ‖Φ and the L2 norm, one can also consider the related pair

TΦ(ε) := sup
{
‖f‖2Φ | f ∈ BH, ‖f‖2L2 ≤ ε2

}
, and (5a)

RΦ(ε) := inf
{
‖f‖2L2 | f ∈ BH, ‖f‖2Φ ≥ ε2

}
. (5b)

Our methods are also applicable to these quantities, but we limit our treat-
ment to (RΦ, TΦ) so as to keep the contribution focused.

Certain special cases of linear operators Φ, and associated functionals
have been studied in past work. In the special case ε = 0, we have

RΦ(0) = sup
{
‖f‖2L2 | f ∈ BH, Φ(f) = 0

}
,

a quantity that corresponds to the squared diameter of BH ∩ Ker(Φ), mea-
sured in the L2-norm. Quantities of this type are standard in approximation
theory (e.g., [1, 2, 3]), for instance in the context of Kolmogorov and Gelfand
widths. Our primary interest in this paper is the more general setting with
ε > 0, for which additional factors are involved in controlling RΦ(ε). In
statistics, there is a literature on the case in which Φ is a sampling operator,
which maps each function f to a vector of n samples, and the norm ‖ · ‖Φ
corresponds to the empirical L2-norm defined by these samples. When these
samples are chosen randomly, then techniques from empirical process the-
ory [4] can be used to relate the two terms. As discussed in the sequel, our
results have consequences for this setting of random sampling.

As an example of a problem in which an upper bound on RΦ is useful, let
us consider a general linear inverse problem, in which the goal is to recover
an estimate of the function f ∗ based on the noisy observations

yi = [Φf ∗]i + wi, i = 1, . . . , n,

where {wi} are zero-mean noise variables, and f ∗ ∈ BH is unknown. An

estimate f̂ can be obtained by solving a least-squares problem over the unit
ball of the Hilbert space—that is, to solve the convex program

f̂ := arg min
f ∈BH

n∑

i=1

(yi − [Φf ]i)
2.

For such estimators, there are fairly standard techniques for deriving upper
bounds on the Φ-semi-norm of the deviation f̂−f ∗. Our results in this paper
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on RΦ can then be used to translate this to a corresponding upper bound on
the L2-norm of the deviation f̂ − f ∗, which is often a more natural measure
of performance.

As an example where the dual quantity TΦ might be helpful, consider the
packing problem for a subset D ⊂ BH of the Hilbert ball. LetM(ε;D, ‖·‖L2)
be the ε-packing number of D in ‖ · ‖L2, i.e., the maximal number of function
f1, . . . , fM ∈ D such that ‖fi−fj‖L2 ≥ ε for all i, j = 1, . . . ,M . Similarly, let
M(ε;D, ‖ · ‖Φ) be the ε-packing number of D in ‖ · ‖Φ norm. Now, suppose
that for some fixed ε, TΦ(ε) > 0. Then, if we have a collection of functions
{f1, . . . , fM} which is an ε-packing of D in ‖ · ‖L2 norm, then the same
collection will be a

√
TΦ(ε)-packing of D in ‖ · ‖Φ. This implies the following

useful relationship between packing numbers

M(ε ;D, ‖ · ‖L2) ≤M(
√
TΦ(ε) ;D, ‖ · ‖Φ).

The remainder of this paper is organized as follows. We begin in Section 2
with background on the Hilbert space set-up, and provide various examples
of the linear operators Φ to which our results apply. Section 3 contains the
statement of our main result, and illustration of some its consequences for
different Hilbert spaces and linear operators. Finally, Section 4 is devoted to
the proofs of our results.

Notation:. For any positive integer p, we use S
p
+ to denote the cone of p× p

positive semidefinite matrices. For A,B ∈ S
p
+, we write A � B or B � A to

mean A−B ∈ S
p
+. For any square matrix A, let λmin(A) and λmax(A) denote

its minimal and maximal eigenvalues, respectively. We will use both
√
A and

A1/2 to denote the symmetric square root of A ∈ S
p
+. We will use {xk} =

{xk}∞k=1 to denote a (countable) sequence of objects (e.g. real-numbers and
functions). Occasionally we might denote an n-vector as {x1, . . . , xn}. The
context will determine whether the elements between braces are ordered. The
symbols ℓ2 = ℓ2(N) are used to denote the Hilbert sequence space consisting
of real-valued sequences equipped with the inner product 〈{xk}, {yk}〉ℓ2 :=∑∞

k=1 xiyi. The corresponding norm is denoted as ‖ · ‖ℓ2.

2. Background

We begin with some background on the class of Hilbert spaces of interest
in this paper and then proceed to provide some examples of the sampling
operators of interest.
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2.1. Hilbert spaces

We consider a class of Hilbert function spaces contained within L2(X ),
and defined as follows. Let {ψk}∞k=1 be an orthonormal sequence (not nec-
essarily a basis) in L2(X ) and let σ1 ≥ σ2 ≥ σ3 ≥ · · · > 0 be a sequence
of positive weights decreasing to zero. Given these two ingredients, we can
consider the class of functions

H :=
{
f ∈ L2(P)

∣∣∣ f =

∞∑

k=1

√
σkαkψk, for some {αk}∞k=1 ∈ ℓ2(N)

}
, (6)

where the series in (6) is assumed to converge in L2. (The series con-
verges since

∑∞
k=1(

√
σkαk)

2 ≤ σ1‖{αk}‖ℓ2 < ∞.) We refer to the sequence
{αk}∞k=1 ∈ ℓ2 as the representative of f . Note that this representation is
unique due to σk being strictly positive for all k ∈ N.

If f and g are two members of H, say with associated representatives
α = {αk}∞k=1 and β = {βk}∞k=1, then we can define the inner product

〈f, g〉H :=

∞∑

k=1

αkβk = 〈α, β〉ℓ2. (7)

With this choice of inner product, it can be verified that the space H is a
Hilbert space. (In fact, H inherits all the required properties directly from
ℓ2.) For future reference, we note that for two functions f, g ∈ H with
associated representatives α, β ∈ ℓ2, their L

2-based inner product is given
by3 〈f, g〉L2 =

∑∞
k=1 σkαkβk.

We note that each ψk is in H, as it is represented by a sequence with a
single nonzero element, namely, the k-th element which is equal to σ

−1/2
k . It

follows from (7) that 〈√σkψk,√σjψj〉H = δkj. That is, {√σkψk} is an or-
thonormal sequence inH. Now, let f ∈ H be represented by α ∈ ℓ2. We claim
that the series in (6) also converges in H norm. In particular,

∑N
k=1

√
σkαkψk

is in H, as it is represented by the sequence {α1, . . . , αN , 0, 0, . . . } ∈ ℓ2. It
follows from (7) that ‖f −

∑N
k=1

√
σkαkψk‖H =

∑∞
k=N+1 α

2
k which converges

to 0 as N → ∞. Thus, {√σkψk} is in fact an orthonormal basis for H.

3In particular, for f ∈ H, ‖f‖L2 ≤ √
σ1‖f‖H which shows that the inclusion H ⊂ L2

is continuous.
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We now turn to a special case of particular importance to us, namely the
reproducing kernel Hilbert space (RKHS) of a continuous kernel. Consider
a symmetric bivariate function K : X ×X → R, where X ⊂ Rd is compact4.
Furthermore, assume K to be positive semidefinite and continuous. Consider
the integral operator IK mapping a function f ∈ L2 to the function IKf :=∫
K(·, y)f(y)dP(y). As a consequence of Mercer’s theorem [5, 6], IK is a

compact operator from L2 to C(X ), the space of continuous functions on
X equipped with the uniform norm5. Let {σk} be the sequence of nonzero
eigenvalues of IK, which are positive, can be ordered in nonincreasing order
and converge to zero. Let {ψk} be the corresponding eigenfunctions which are
continuous and can be taken to be orthonormal in L2. With these ingredients,
the space H defined in equation (6) is the RKHS of the kernel function K.
This can be verified as follows.

As another consequence of the Mercer’s theorem, K has the decomposition

K(x, y) :=
∞∑

k=1

σkψk(x)ψk(y) (8)

where the convergence is absolute and uniform (in x and y). In partic-
ular, for any fixed y ∈ X , the sequence {√σkψk(y)} is in ℓ2. (In fact,∑∞

k=1(
√
σkψk(y))

2 = K(y, y) <∞.) Hence, K(·, y) is in H, as defined in (6),
with representative {√σkψk(y)}. Furthermore, it can be verified that the con-
vergence in (6) can be taken to be also pointwise6. To be more specific, for any
f ∈ H with representative {αk}∞k=1 ∈ ℓ2, we have f(y) =

∑∞
k=1

√
σkαkψk(y),

for all y ∈ X . Consequently, by definition of the inner product (7), we have

〈f,K(·, y)〉H =

∞∑

k=1

αk
√
σkψk(y) = f(y),

so that K(·, y) acts as the representer of evaluation. This argument shows
that for any fixed y ∈ X , the linear functional on H given by f 7→ f(y) is

4Also assume that P assign positive mass to every open Borel subset of X .
5In fact, IK is well defined over L1 ⊃ L2 and the conclusions about IK hold as a operator

from L1 to C(X ).
6The convergence is actually even stronger, namely it is absolute and uniform, as can

be seen by noting that
∑m

k=n+1 |αk
√
σkψk(y)| ≤ (

∑m
k=n+1 α

2
k)

1/2(
∑m

k=n+1 σkψ
2
k(y))

1/2 ≤
(
∑m

k=n+1 α
2
k)

1/2 maxy∈X k(y, y).
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bounded, since we have

|f(y)| =
∣∣〈f,K(·, y)〉H

∣∣ ≤ ‖f‖H‖K(·, y)‖H,

hence H is indeed the RKHS of the kernel K. This fact plays an important
role in the sequel, since some of the linear operators that we consider involve
pointwise evaluation.

A comment regarding the scope: our general results hold for the basic
setting introduced in equation (6). For those examples that involve pointwise
evaluation, we assume the more refined case of the RKHS described above.

2.2. Linear operators, semi-norms and examples

Let Φ : H → Rn be a continuous linear operator, with co-ordinates [Φf ]i
for i = 1, 2, . . . , n. It defines the (semi)-inner product

〈f, g〉Φ := 〈Φf,Φg〉Rn, (9)

which induces the semi-norm ‖ · ‖Φ. By the Riesz representation theorem,
for each i = 1, . . . , n, there is a function ϕi ∈ H such that [Φf ]i = 〈ϕi, f〉H
for any f ∈ H.

Let us illustrate the preceding definitions with some examples.

Example 1 (Generalized Fourier truncation). Recall the orthonormal basis
{ψi}∞i=1 underlying the Hilbert space. Consider the linear operator Tψn1 :
H → Rn with coordinates

[Tψn1 f ]i := 〈ψi, f〉L2, for i = 1, 2, . . . , n. (10)

We refer to this operator as the (generalized) Fourier truncation operator,
since it acts by truncating the (generalized) Fourier representation of f to its
first n co-ordinates. More precisely, by construction, if f =

∑∞
k=1

√
σkαkψk,

then
[Φf ]i =

√
σiαi, for i = 1, 2, . . . , n. (11)

By definition of the Hilbert inner product, we have αi = 〈ψi, f〉H, so that we
can write [Φf ]i = 〈ϕi, f〉H, where ϕi :=

√
σiψi. ♦
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Example 2 (Domain sampling). A collection xn1 := {x1, . . . , xn} of points
in the domain X can be used to define the (scaled) sampling operator Sxn1 :
H → Rn via

Sxn1 f := n−1/2
(
f(x1) . . . f(xn)

)
, for f ∈ H. (12)

As previously discussed, when H is a reproducing kernel Hilbert space (with
kernel K), the (scaled) evaluation functional f 7→ n−1/2f(xi) is bounded, and
its Riesz representation is given by the function ϕi = n−1/2K(·, xi). ♦
Example 3 (Weighted domain sampling). Consider the setting of the pre-
vious example. A slight variation on the sampling operator (12) is obtained
by adding some weights to the samples

Wxn1 ,w
n
1
f := n−1/2

(
w1f(x1) . . . wnf(xn)

)
, for f ∈ H. (13)

where wn1 = (w1, . . . , wn) is chosen such that
∑n

k=1w
2
k = 1. Clearly, ϕi =

n−1/2wiK(·, xi).
[As an example of how this might arise, consider approximating f(t) by∑n
k=1 f(xk)Gn(t, xk) where {Gn(· , xk)} is a collection of functions in L2(X )

such that 〈Gn(· , xk), Gn(· , xj)〉L2 = n−1w2
k δkj. Proper choices of {Gn(·, xi)}

might produce better approximations to the L2 norm in the cases where one
insists on choosing elements of xn1 to be uniformly spaced, while P in (1) is not
a uniform distribution. Another slightly different but closely related case is
when one approximates f 2(t) over X = [0, 1], by say n−1

∑n−1
k=1 f

2(xk)W (n(t−
xk)) for some function W : [−1, 1] → R+ and xk = k/n. Again, non-uniform
weights are obtained when P is nonuniform.]

♦

3. Main result and some consequences

We now turn to the statement of our main result, and the development
of some its consequences for various models.

3.1. General upper bounds on RΦ(ε)

We now turn to upper bounds on RΦ(ε) which was defined previously
in (3). Our bounds are stated in terms of a real-valued function defined as
follows: for matrices D,M ∈ S

p
+,

L(t,M,D) := max

{
λmax

(
D − t

√
DM

√
D
)
, 0

}
, for t ≥ 0. (14)
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Here
√
D denotes the matrix square root, valid for positive semidefinite ma-

trices.

The upper bounds on RΦ(ε) involve principal submatrices of certain
infinite-dimensional matrices—or equivalently linear operators on ℓ2(N)—
that we define here. Let Ψ be the infinite-dimensional matrix with entries

[Ψ]jk := 〈ψj , ψk〉Φ, for j, k = 1, 2, . . . , (15)

and let Σ = diag{σ1, σ2, . . . , } be a diagonal operator. For any p = 1, 2, . . .,
we use Ψp and Ψp̃ to denote the principal submatrices of Ψ on rows and
columns indexed by {1, 2, . . . , p} and {p + 1, p + 2, . . . }, respectively. A
similar notation will be used to denote submatrices of Σ.

Theorem 1. For all ε ≥ 0, we have:

RΦ(ε) ≤ inf
p∈N

inf
t≥ 0

{
L(t,Ψp,Σp) + t

(
ε+

√
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )
)2

+ σp+1

}
.

(16)

Moreover, for any p ∈ N such that λmin(Ψp) > 0, we have

RΦ(ε) ≤
(
1− σp+1

σ1

) 1

λmin(Ψp)

(
ε+

√
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )
)2

+ σp+1. (17)

Remark (a):. These bounds cannot be improved in general. This is most
easily seen in the special case ε = 0. Setting p = n, bound (17) implies that
RΦ(0) ≤ σn+1 whenever Ψn is strictly positive definite and Ψñ = 0. This
bound is sharp in a “minimax sense”, meaning that equality holds if we take
the infimum over all bounded linear operators Φ : H → Rn. In particular, it
is straightforward to show that

inf
Φ: H→Rn

Φ surjective

RΦ(0) = inf
Φ: H→Rn

Φ surjective

sup
f ∈BH

{
‖f‖2L2 | Φf = 0

}
= σn+1, (18)

and moreover, this infimum is in fact achieved by some linear operator. Such
results are known from the general theory of n-widths for Hilbert spaces (e.g.,
see Chapter IV in Pinkus [2] and Chapter 3 of [7].)

In the more general setting of ε > 0, there are operators for which the
bound (17) is met with equality. As a simple illustration, recall the (gen-
eralized) Fourier truncation operator Tψn1 from Example 1. First, it can be

9



Figure 1: Geometry of Fourier truncation. The plot shows the set {(‖f‖L2, ‖f‖Φ) : ‖f‖H ≤
1} ⊂ R

2 for the case of (generalized) Fourier truncation operator Tψn

1
.

verified that 〈ψk, ψj〉Tψn
1
= δjk for j, k ≤ n and 〈ψk, ψj〉Tψn

1
= 0 otherwise.

Taking p = n, we have Ψn = In, that is, the n-by-n identity matrix, and
Ψñ = 0. Taking p = n in (17), it follows that for ε2 ≤ σ1,

RTψn
1
(ε) ≤

(
1− σn+1

σ1

)
ε2 + σn+1, (19)

As shown in Appendix Appendix E, the bound (19) in fact holds with equal-
ity. In other words, the bounds of Theorems 1 are tight in this case. Also,
note that (19) implies RTψn1

(0) ≤ σn+1 showing that the (generalized) Fourier

truncation operator achieves the minimax bound of (18). Fig 1 provides a
geometric interpretation of these results.

Remark (b):. In general, it might be difficult to obtain a bound on λmax(Σ
1/2
p̃ Ψp̃Σ

1/2
p̃ )

as it involves the infinite dimensional matrix Ψp̃. One may obtain a simple
(although not usually sharp) bound on this quantity by noting that for a pos-
itive semidefinite matrix, the maximal eigenvalue is bounded by the trace,
that is,

λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
≤ tr

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
=
∑

k>p

σk[Ψ]kk. (20)

Another relatively easy-to-handle upper bound is

λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
≤ |||Σ1/2

p̃ Ψp̃Σ
1/2
p̃ |||∞ = sup

k>p

∑

r >p

√
σk
√
σr
∣∣[Ψ]kr

∣∣. (21)
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These bounds can be used, in combination with appropriate block partition-
ing of Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ , to provide sharp bounds on the maximal eigenvalue. Block

partitioning is useful due to the following: for a positive semidefinite matrix

M =
(
A1 C
CT A2

)
, we have λmax(M) ≤ λmax(A1) + λmax(A2). We leave the the

details on the application of these ideas to examples in Section 3.2.

3.2. Some illustrative examples

Theorem 1 has a number of concrete consequences for different Hilbert
spaces and linear operators, and we illustrate a few of them in the following
subsections.

3.2.1. Random domain sampling

We begin by stating a corollary of Theorem 1 in application to random
time sampling in a reproducing kernel Hilbert space (RKHS). Recall from
equation (12) the time sampling operator Sxn1 , and assume that the sample
points {x1, . . . , xn} are drawn in an i.i.d. manner according to some distri-
bution P on X . Let us further assume that the eigenfunctions ψk, k ≥ 1 are
uniformly bounded7 on X , meaning that

sup
k≥1

sup
x∈X

|ψk(x)| ≤ Cψ. (22)

Finally, we assume that ‖σ‖1 :=
∑∞

k=1 σk <∞, and that

σpk ≤ Cσ σk σp, for some positive constant Cσ and for all large p, (23)∑
k>pm σk ≤ σp, for some positive integer m and for all large p. (24)

Let mσ be the smallest m for which (24) holds. These conditions on {σk} are
satisfied, for example, for both a polynomial decay σk = O(k−α) with α > 1
and an exponential decay σk = O(ρk) with ρ ∈ (0, 1). In particular, for the
polynomial decay, using the tail bound (B.1) in Appendix Appendix B, we
can take mσ = ⌈ α

α−1
⌉ to satisfy (24). For the exponential decay, we can take

mσ = 1 for ρ ∈ (0, 1
2
) and mσ = 2 for ρ ∈ (1

2
, 1) to satisfy (24).

Define the function

Gn(ε) :=
1√
n

√√√√
∞∑

j=1

min{σj , ε2}, (25)

7One can replace supx∈X with essential supremum with respect to P.
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as well as the critical radius

rn := inf{ε > 0 : Gn(ε) ≤ ε2}. (26)

Corollary 1. Suppose that rn > 0 and 64C2
ψmσ r

2
n log(2nr

2
n) ≤ 1. Then for

any ε2 ∈ [r2n, σ1), we have

P

[
RSxn

1
(ε) > (C̃ψ + C̃σ) ε

2
]
≤ 2 exp

(
− 1

64C2
ψ r

2
n

)
, (27)

where C̃ψ := 2(1 + Cψ)
2 and C̃σ := 3(1 + C−1

ψ )Cσ‖σ‖1 + 1.

We provide the proof of this corollary in Appendix Appendix A. As
a concrete example consider a polynomial decay σk = O(k−α) for α > 1,
which satisfies assumptions on {σk}. Using the tail bound (B.1) in Ap-
pendix Appendix B, one can verify that r2n = O(n−α/(α+1)). Note that, in
this case,

r2n log(2nr
2
n) = O(n− α

α+1 logn
1

α+1 ) = O(n− α
α+1 logn) → 0, n→ ∞.

Hence conditions of Corollary 1 are met for sufficiently large n. It follows
that for some constants C1, C2 and C3, we have

RSxn
1
(C1n

− α
2(α+1) ) ≤ C2 n

− α
α+1

with probability 1− 2 exp(−C3n
α
α+1 ) for sufficiently large n.

3.2.2. Sobolev kernel

Consider the kernel K(x, y) = min(x, y) defined on X 2 where X = [0, 1].
The corresponding RKHS is of Sobolev type and can be expressed as

{
f ∈ L2(X ) | f is absolutely continuous, f(0) = 0 and f ′ ∈ L2(X )

}
.

Also consider a uniform domain sampling operator Sxn1 , that is, that of (12)
with xi = i/n, i ≤ n and let P be uniform (i.e., the Lebesgue measure
restricted to [0, 1]).

This setting has the benefit that many interesting quantities can be com-
puted explicitly, while also having some practical appeal. The following can

12



be shown about the eigen-decomposition of the integral operator IK intro-
duced in Section 2,

σk =
[(2k − 1)π

2

]−2

, ψk(x) =
√
2 sin

(
σ
−1/2
k x

)
, k = 1, 2, . . . .

In particular, the eigenvalues decay as σk = O(k−2).
To compute the Ψ, we write

[Ψ]kr = 〈ψk, ψr〉Φ =
1

n

n∑

ℓ=1

{
cos

(k − r)ℓπ

n
− cos

(k + r − 1)ℓπ

n

}
. (28)

We note that Ψ is periodic in k and r with period 2n. It is easily verified
that n−1

∑n
ℓ=1 cos(qℓπ/n) is equal to −1 for odd values of q and zero for even

values, other than q = 0,±2n,±4n, . . . . It follows that

[Ψ]kr =





1 + 1
n

if k − r = 0,

−1− 1
n

if k + r = 2n + 1
1
n
(−1)k−r otherwise

, (29)

for 1 ≤ k, r ≤ 2n. Letting Is ∈ Rn be the vector with entries, (Is)j =
(−1)j+1, j ≤ n, we observe that Ψn = In +

1
n
IsI

T
s . It follows that λmin(Ψn) =

1. It remains to bound the terms in (17) involving the infinite sub-block Ψñ.
The Ψ matrix of this example, given by (29), shares certain properties

with the Ψ obtained in other situations involving periodic eigenfunctions
{ψk}. We abstract away these properties by introducing a class of periodic
Ψ matrices. We call Ψñ a sparse periodic matrix, if each row (or column) is
periodic and in each period only a vanishing fraction of elements are large.
More precisely, Ψñ is sparse periodic if there exist positive integers γ and η,
and positive constants c1 and c2, all independent of n, such that each row
of Ψñ is periodic with period γn. and for any row k, there exits a subset of
elements Sk = {ℓ1, . . . , ℓη} ⊂ {1, . . . , γn} such that

∣∣[Ψ]k,n+r
∣∣ ≤ c1, r ∈ Sk, (30a)∣∣[Ψ]k,n+r
∣∣ ≤ c2 n

−1, r ∈ {1, . . . , γn} \ Sk, (30b)

The elements of Sk could depend on k, but the cardinality of this set should be
the constant η, independent of k and n. Also, note that we are indexing rows
and columns of Ψñ by {n+1, n+2, . . . }; in particular, k ≥ n+1. For this class,
we have the following whose proof can be found in Appendix Appendix B.

13



(a) (b)

Figure 2: Sparse periodic Ψ matrices. Display (a) is a plot of the N -by-N leading principal
submatrix of Ψ for the Sobolev kernel (s, t) 7→ min{s, t}. Here n = 9 and N = 6n; the
period is 2n = 18. Display (b) is a the same plot for a Fourier-type kernel. The plots
exhibit sparse periodic patterns as defined in Section 3.2.2.

Lemma 1. Assume Ψñ to be sparse periodic as defined above and σk =
O(k−α), α ≥ 2. Then,

(a) for α > 2, λmax

(
Σ

1/2
ñ ΨñΣ

1/2
ñ

)
= O(n−α), n→ ∞,

(b) for α = 2, λmax

(
Σ

1/2
ñ ΨñΣ

1/2
ñ

)
= O(n−2 logn), n→ ∞.

In particular (29) implies that Ψñ is sparse periodic with parameters
γ = 2, η = 2, c1 = 2 and c2 = 1. Hence, part (b) of Lemma 1 applies. Now,
we can use (17) with p = n to obtain

RSxn
1
(ε) ≤ 2ε2 +O

(
n−2 log n

)
(31)

where we have also used (a + b)2 ≤ 2a2 + 2b2.

3.2.3. Fourier-type kernels

In this example, we consider an RKHS of functions on X = [0, 1] ⊂ R,
generated by a Fourier-type kernel defined as K(x, y) := κ(x−y), x, y ∈ [0, 1],
where

κ(x) = ζ0 +

∞∑

k=1

2ζk cos(2πkx), x ∈ [−1, 1]. (32)

14



We assume that (ζk) is a R+-valued nonincreasing sequence in ℓ1, i.e.
∑

k ζk <
∞. Thus, the trigonometric series in (32) is absolutely (and uniformly)
convergent. As for the operator Φ, we consider the uniform time sampling
operator Sxn1 , as in the previous example. That is, the operator defined
in (12) with xi = i/n, i ≤ n. We take P to be uniform.

This setting again has the benefit of being simple enough to allow for
explicit computations while also practically important. One can argue that
the eigen-decomposition of the kernel integral operator is given by

ψ1 = ψ
(c)
0 , ψ2k = ψ

(c)
k , ψ2k+1 = ψ

(s)
k , k ≥ 1 (33)

σ1 = ζ0, σ2k = ζk, σ2k+1 = ζk, k ≥ 1 (34)

where ψ
(c)
0 (x) := 1, ψ

(c)
k (x) :=

√
2 cos(2πkx) and ψ

(s)
k (t) :=

√
2 sin(2πkx) for

k ≥ 1.
For any integer k, let ((k))n denote k modulo n. Also, let k 7→ δk be the

function defined over integers which is 1 at k = 0 and zero elsewhere. Let
ι :=

√
−1. Using the identity n−1

∑n
ℓ=1 exp(ι2πkℓ/n) = δ((k))n , one obtains

the following,

〈ψ(c)
k , ψ

(c)
j 〉Φ =

[
δ((k−j))n + δ((k+j))n

]( 1√
2

)δk+δj
, (35a)

〈ψ(s)
k , ψ

(s)
j 〉Φ = δ((k−j))n − δ((k+j))n , (35b)

〈ψ(c)
k , ψ

(s)
j 〉Φ = 0, valid for all j, k ≥ 0. (35c)

It follows that Ψn = In if n is odd and Ψn = diag{1, 1, . . . , 1, 2} if n is even.
In particular, λmin(Ψn) = 1 for all n ≥ 1. It is also clear that the principal
submatrix of Ψ on indices {2, 3, . . . } has periodic rows and columns with
period 2n. If follows that Ψn is sparse periodic as defined in Section 3.2.2
with parameters γ = 2, η = 2, c1 = 2 and c2 = 0.

Suppose for example that the eigenvalues decay polynomially, say as ζk =
O(k−α) for α > 2. Then, applying (17) with p = n, in combination with
Lemma 1 part (a), we get

RSxn1
(ε) ≤ 2ε2 +O(n−α). (36)

As another example, consider the exponential decay ζk = ρk, k ≥ 1 for some
ρ ∈ (0, 1), which corresponds to the Poisson kernel. In this case, the tail sum
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of {σk} decays as the sequence itself, namely,
∑

k>n σk ≤ 2
∑

k>n ρ
k = 2ρ

1−ρρ
k.

Hence, we can simply use the trace bound (20) together with (17) to obtain

RSxn
1
(ε) ≤ 2ε2 +O(ρn). (37)

4. Proof of Theorem 1

We now turn to the proof of our main theorem. Recall from Section 2.1
the correspondence between any f ∈ H and a sequence α ∈ ℓ2; also, recall
the diagonal operator Σ : ℓ2 → ℓ2 defined by the matrix diag{σ1, σ2, . . .}.
Using the definition of (15) of the Ψ matrix, we have

‖f‖2Φ = 〈α,Σ1/2ΨΣ1/2α〉ℓ2,

By definition (6) of the Hilbert space H, we have ‖f‖2H =
∑∞

k=1 α
2
k and

‖f‖2L2 =
∑

k σkα
2
k. Letting Bℓ2 =

{
α ∈ ℓ2 | ‖α‖ℓ2 ≤ 1

}
be the unit ball in

ℓ2, we conclude that RΦ can be written as

RΦ(ε) = sup
α∈Bℓ2

{
Q2(α) | QΦ(α) ≤ ε2

}
, (38)

where we have defined the quadratic functionals

Q2(α) := 〈α,Σα〉ℓ2, and QΦ(α) := 〈α,Σ1/2ΨΣ1/2α〉ℓ2. (39)

Also let us define the symmetric bilinear form

BΦ(α, β) := 〈α,Σ1/2ΨΣ1/2β〉ℓ2, α, β ∈ ℓ2, (40)

whose diagonal is BΦ(α, α) = QΦ(α).
We now upper bound RΦ(ε) using a truncation argument. Define the set

C := {α ∈ Bℓ2 | QΦ(α) ≤ ε2}, (41)

corresponding to the feasible set for the optimization problem (38). For each
integer p = 1, 2, . . ., consider the following truncated sequence spaces

Tp :=
{
α ∈ ℓ2 | αi = 0, for all i > p

}
, and

T ⊥
p :=

{
α ∈ ℓ2 | αi = 0, for all i = 1, 2, . . . p

}
.
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Note that ℓ2 is the direct sum of Tp and T ⊥
p . Consequently, any fixed α ∈ C

can be decomposed as α = ξ+γ for some (unique) ξ ∈ Tp and γ ∈ T ⊥
p . Since

Σ is a diagonal operator, we have

Q2(α) = Q2(ξ) +Q2(γ).

Moreover, since any α ∈ C is feasible for the optimization problem (38), we
have

QΦ(α) = QΦ(ξ) + 2BΦ(ξ, γ) +QΦ(γ) ≤ ε2. (42)

Note that since γ ∈ T ⊥
p , it can be written as γ = (0p, c), where 0p is a vector

of p zeroes, and c = (c1, c2, . . .) ∈ ℓ2. Similarly, we can write ξ = (x, 0) where
x ∈ Rp. Then, each of the terms QΦ(ξ), BΦ(ξ, γ), QΦ(γ) can be expressed in
terms of block partitions of Σ1/2ΨΣ1/2. For example,

QΦ(ξ) = 〈x,Ax〉Rp , QΦ(γ) = 〈y,Dy〉ℓ2, (43)

where A := Σ
1/2
p ΨpΣ

1/2
p and D := Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ , in correspondence with the

block partitioning notation of Appendix Appendix F. We now apply in-
equality (F.2) derived in Appendix Appendix F. Fix some ρ2 ∈ (0, 1) and
take

κ2 := ρ2λmax(Σ
1/2
p̃ Ψp̃Σ

1/2
p̃ ), (44)

so that condition (F.5) is satisfied. Then, (F.2) implies

QΦ(ξ) + 2BΦ(ξ, γ) +QΦ(γ) ≥ ρ2QΦ(ξ)−
κ2

1− ρ2
‖γ‖22. (45)

Combining (42) and (45), we obtain

QΦ(ξ) ≤
ε2

ρ2
+
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )

1− ρ2
‖γ‖22. (46)

We further note that ‖γ‖22 ≤ ‖γ‖22 + ‖ξ‖22 = ‖α‖22 ≤ 1. It follows that

QΦ(ξ) ≤ ε̃2, where ε̃2 :=
ε2

ρ2
+
λmax(Σ

1/2
p̃ Ψp̃Σ

1/2
p̃ )

1− ρ2
. (47)
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Let us define

C̃ := {ξ ∈ Bℓ2 ∩ Tp | QΦ(ξ) ≤ ε̃2}. (48)

Then, our arguments so far show that for α ∈ C,

Q2(α) = Q2(ξ) +Q2(γ) ≤ sup
ξ∈ C̃

Q2(ξ)

︸ ︷︷ ︸
Sp

+ sup
γ ∈Bℓ2∩T ⊥

p

Q2(γ)

︸ ︷︷ ︸
S⊥
p

. (49)

Taking the supremum over α ∈ C yields the upper bound

RΦ(ε) ≤ Sp + S⊥
p .

It remains to bound each of the two terms on the right-hand side. Begin-
ning with the term S⊥

p and recalling the decomposition γ = (0p, c), we have
Q2(γ) =

∑∞
k=1 σk+pc

2
k, from which it follows that

S⊥
p = sup

{ ∞∑

k=1

σk+p c
2
k |

∞∑

k=1

c2k ≤ 1
}

= σp+1,

since {σk}∞k=1 is a nonincreasing sequence by assumption.
We now control the term Sp. Recalling the decomposition ξ = (x, 0)

where x ∈ Rp, we have

Sp = sup
ξ ∈ C̃

Q2(ξ) = sup
{
〈x,Σp x〉 : 〈x, x〉 ≤ 1, 〈x,Σ1/2

p ΨpΣ
1/2
p x〉 ≤ ε̃2

}

= sup
〈x,x〉≤ 1

inf
t≥ 0

{
〈x,Σpx〉 + t

(
ε̃2 − 〈x,Σ1/2

p ΨpΣ
1/2
p x〉

)}

(a)

≤ inf
t≥ 0

{
sup

〈x,x〉≤ 1

〈x,Σ1/2
p (Ip − tΨp)Σ

1/2
p x〉+ t ε̃2

}

where inequality (a) follows by Lagrange (weak) duality. It is not hard to
see that for any symmetric matrix M , one has

sup
{
〈x,Mx〉 : 〈x, x〉 ≤ 1

}
= max

{
0, λmax(M)

}
.

Putting the pieces together and optimizing over ρ2, noting that

inf
r∈(0,1)

{a
r
+

b

1− r

}
= (

√
a+

√
b)2
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for any a, b > 0, completes the proof of the bound (16).

We now prove bound (17), using the same decomposition and notation
established above, but writing an upper bound on Q2(α)slightly different
form (49). In particular, the argument leading to (49), also shows that

RΦ(ε) ≤ sup
ξ∈Tp, γ ∈T ⊥

p

{
Q2(ξ) +Q2(γ) | ξ + γ ∈ Bℓ2 , QΦ(ξ) ≤ ε̃2

}
. (50)

Recalling the expression (39) for QΦ(ξ) and noting that Ψp � λmin(Ψp)Ip
implies A = Σ

1/2
p ΨpΣ

1/2
p � λmin(Ψp)Σp, we have

QΦ(ξ) ≥ λmin(Ψp)Q2(ξ). (51)

Now, since we are assuming λmin(Ψp) > 0, we have

RΦ(ε) ≤ sup
ξ∈Tp, γ ∈T ⊥

p

{
Q2(ξ) +Q2(γ)

∣∣∣ ξ + γ ∈ Bℓ2 , Q2(ξ) ≤
ε̃2

λmin(Ψp)

}
.

(52)

The RHS of the above is an instance of the Fourier truncation problem with
ε2 replaced with ε̃2/λmin(Ψp). That problem is workout in detail in Ap-
pendix Appendix E. In particular, applying equation (E.1) in Appendix Appendix E
with ε2 changed to ε̃2/λmin(Ψp) completes the proof of (17). Figure 3 provides
a graphical representation of the geometry of the proof.

5. Conclusion

We considered the problem of bounding (squared) L2 norm of functions
in a Hilbert unit ball, based on restrictions on an operator-induced norm
acting as a surrogate for the L2 norm. In particular, given that f ∈ BH and
‖f‖2Φ ≤ ε2, our results enable us to obtain, by estimating norms of certain
finite and infinite dimensional matrices, inequalities of the form

‖f‖2L2 ≤ c1ε
2 + hΦ,H(σn)

where {σn} are the eigenvalues of the operator embedding H in L2, hΦ,H(·) is
an increasing function (depending on Φ and H) and c1 ≥ 1 is some constant.
We considered examples of operators Φ (uniform time sampling and Fourier
truncation) and Hilbert spacesH (Sobolev, Fourier-type RKHSs) and showed
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(a) (b)

Figure 3: Geometry of the proof of (17). Display (a) is a plot of the set Q :=
{(Q2(α), QΦ(α)) : ‖α‖ℓ2 = 1} ⊂ R2. This is a convex set as a consequence of Hausdorff-
Toeplitz theorem on convexity of the numerical range and preservation of convexity under
projections. Display (b) shows the set Q̃ := conv(0,Q), i.e., the convex hull of {0} ∪ Q.

Observe that RΦ(ε) = sup{x : (x, y) ∈ Q̃, y ≤ ε2}. For any fixed r ∈ (0, 1), the bound

of (17) is a piecewise linear approximation to one side of Q̃ as shown in Display (b).

that it is possible to obtain optimal scaling hΦ,H(σn) = O(σn) in most of those
cases. We also considered random time sampling, under polynomial eigen-
decay σn = O(n−α), and effectively showed that hΦ,H(σn) = O(n−α/(α+1))
(for ε small enough), with high probability as n→ ∞. This last result com-
plements those on related quantities obtained by techniques form empirical
process theory, and we conjecture it to be sharp.
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Appendix A. Analysis of random time sampling

This section is devoted to the proof of Corollary 1 on random time sam-
pling in reproducing kernel Hilbert spaces. The proof is based on an auxiliary
result, which we begin by stating. Fix some positive integer m and define

ν(ε) = ν(ε;m) := inf
{
p :
∑

k>pm

σk ≤ ε2
}
. (A.1)

With this notation, we have
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Lemma 2. Assume ε2 < σ1 and 32C2
ψmν(ε) log ν(ε) ≤ n. Then,

P
{
RSxn

1
(ε) > C̃ψ ε

2 + C̃σ σν(ε)
}
≤ 2 exp

(
− 1

32C2
ψ

n

ν(ε)

)
. (A.2)

We prove this claim in Section Appendix A.2 below.

Appendix A.1. Proof of Corollary 1

To apply the lemma, recall that we assume that there exists m such that
for all (large) p, one has

∑

k>pm

σk ≤ σp. (A.3)

and we let mσ be the smallest such m. We define

µ(ε) := inf
{
p : σp ≤ ε2

}
, (A.4)

and note that by (A.3), we have ν(ε;mσ) ≤ µ(ε). Then, Lemma 2 states
that as long as ε2 < σ1 and 32C2

ψmσµ(ε) logµ(ε) ≤ n, we have

P
{
RSxn

1
(ε) > (C̃ψ + C̃σ)ε

2
}
≤ 2 exp

(
− 1

32C2
ψ

n

µ(ε)

)
. (A.5)

Now by the definition of µ(ε), we have σj > ε2 for j < µ(ε), and hence

G2
n(ε) ≥

1

n

∑

j < µ(ε)

min{σj , ε2} =
µ(ε)− 1

n
ε2 ≥ µ(ε)

2n
ε2,

since µ(ε) ≥ 2 when ε2 < σ1. One can argue that ε 7→ Gn(ε)/ε is nonincreas-
ing. It follows from definition (26) that for ε ≥ rn, we have

µ(ε) ≤ 2n
(G(ε)

ε

)2
≤ 2n

(G(rn)
rn

)2
≤ 2nr2n,

which completes the proof of Corollary 1.
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Appendix A.2. Proof of Lemma 2

For ξ ∈ Rp, let ξ ⊗ ξ be the rank-one operator on Rp given by η 7→
〈ξ, , η〉2 ξ. For an operator A on Rp, let |||A|||2 denote its usual operator norm,
|||A|||2 := sup‖x‖2≤1 ‖Ax‖2. Recall that for a symmetric (i.e., real self-adjoint)
operator A on Rp, |||A|||2 = sup{|λ| : λ an eigenvalue of A}. It follows that
|||A|||2 ≤ α is equivalent to −αIp � A � αIp.

Our approach is to first show that |||Ψp− Ip|||2 ≤ 1
2
for some properly cho-

sen p with high probability. It then follows that λmin(Ψp) ≥ 1
2
and we can use

bound (17) for that value of p. Then, we need to control λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
.

To do this, we further partition Ψp̃ into blocks. In order to have a consistent
notation, we look at the whole matrix Ψ and let Ψ(k) be the principal sub-
matrix indexed by {(k − 1)p + 1, . . . , (k − 1)p + p}, for k = 1, 2, . . . , pm−1.
Throughout the proof, m is assumed to be a fixed positive integer. Also,
let Ψ(∞) be the principal submatrix of Ψ indexed by {pm + 1, pm + 2, . . . }.
This provides a full partitioning of Ψ for which Ψ(1), . . . ,Ψ(pm−1) and Ψ(∞)

are the diagonal blocks, the first pm−1 of which are p-by-p matrices and the
last an infinite matrix. To connect with our previous notations, we note that
Ψ(1) = Ψp and that Ψ(2), . . . ,Ψ(pm−1),Ψ(∞) are diagonal blocks of Ψp̃. Let us
also partition the Σ matrix and name its diagonal blocks similarly.

We will argue that, in fact, we have |||Ψ(k) − Ip|||2 ≤ 1
2
for all k =

1, . . . , pm−1, with high probability. Let Ap denote the event on which this
claim holds. In particular, on event Ap, we have Ψ(k) � 3

2
Ip for k =

2, . . . , pm−1; hence, we can write

λmax

(
Σ

1/2
p̃ Ψp̃Σ

1/2
p̃

)
≤

pm−1∑

k=2

λmax

(√
Σ(k)Ψ(k)

√
Σ(k)

)
+ λmax

(√
Σ(∞)Ψ(∞)

√
Σ(∞)

)

≤ 3

2

pm−1∑

k=2

λmax

(
Σ(k)

)
+ tr

(√
Σ(∞)Ψ(∞)

√
Σ(∞)

)

=
3

2

pm−1∑

k=2

σ(k−1)p+1 +
∑

k>pm

σk[Ψ]kk. (A.6)

Using assumptions (23) on the sequence {σk}, the first sum can be bounded
as

pm−1∑

k=2

σ(k−1)p+1 ≤
pm−1∑

k=2

σ(k−1)p ≤
pm−1∑

k=2

Cσσk−1σp ≤ Cσ‖σ‖1σp
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Using the uniform boundedness assumption (A.1), we have [Ψ]kk = n−1
∑n

i=1 ψ
2
k(xi) ≤

C2
ψ. Hence the second sum in (A.6) is bounded above by C2

ψ

∑
k>pm σk.

We can now apply Theorem 1. Assume for the moment that ε2 ≥∑
k>pm σk so that the right-hand side of (A.6) is bounded above by 3

2
Cσ‖σ‖1σp+

C2
ψε

2. Applying bound (17), on event Ap, with
8 r = (1 + Cψ)

−1, we get

RSxn
1
(ε2) ≤ 2

{
r−1ε2 + (1− r)−1

(3
2
Cσ‖σ‖1σp + C2

ψε
2
)}

+ σp+1

= 2(1 + Cψ)
2ε2 + 3(1 + C−1

ψ )Cσ‖σ‖1σp + σp+1.

≤ C̃ψ ε
2 + C̃σ σp

where C̃ψ := 2(1 + Cψ)
2 and C̃σ := 3(1 + C−1

ψ )Cσ‖σ‖1 + 1. To summarize,
we have shown the following

Event Ap and ε2 ≥
∑

k>pm

σk =⇒ RSxn
1
(ε2) ≤ C̃ψ ε

2 + C̃σ σp. (A.7)

It remains to control the probability of Ap :=
⋂pm−1

k=1

{
|||Ψ(k) − Ip|||2 ≤ 1

2

}
.

We start with the deviation bound on Ψ(1) − Ip, and then extend by union
bound. We will use the following lemma which follows, for example, from
the Ahlswede-Winter bound [8], or from [9]. (See also [10, 11, 12].)

Lemma 3. Let ξ1, . . . , ξn be i.i.d. random vectors in Rp with E ξ1 ⊗ ξ1 = Ip
and ‖ξ1‖2 ≤ Cp almost surely for some constant Cp. Then, for δ ∈ (0, 1),

P

{∣∣∣
∣∣∣
∣∣∣n−1

n∑

i=1

ξi ⊗ ξi − Ip

∣∣∣
∣∣∣
∣∣∣
2
> δ
}
≤ p exp

(
− nδ2

4C2
p

)
. (A.8)

Recall that for the time sampling operator, [Φψk]i =
1√
n
ψk(xi) so that

from (15),

Ψkℓ =
1

n

n∑

i=1

ψk(xi)ψℓ(xi)

8We are using the alternate form of the bound based on (
√
A +

√
B)2 =

infr∈(0,1)

{
Ar−1 +B(1− r)−1

}
.
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Let ξi := (ψk(xi), 1 ≤ k ≤ p) ∈ Rp for i = 1, . . . , n. Then, {ξi} satisfy the
conditions of Lemma 3. In particular, letting ek denote the k-th standard
basis vector of Rp, we note that

〈ek,E(ξi ⊗ ξi)eℓ〉2 = E〈ek, ξi〉2〈eℓ, ξi〉2 = 〈ψk, ψℓ〉L2 = δkℓ

and ‖ξi‖2 ≤ √
pCψ, where we have used uniform boundedness of {ψk} as

in (22). Furthermore, we have Ψ(1) = n−1
∑n

i=1 ξi ⊗ ξi. Applying Lemma 3
with Cp =

√
pCψ yields,

P
{
|||Ψ(1) − Ip|||2 > δ

}
≤ p exp

(
− δ2

4C2
ψ

n

p

)
. (A.9)

Similar bounds hold for Ψ(k), k = 2, . . . , pm−1. Applying the union bound,
we get

P

pm−1⋃

k=1

{
|||Ψ(k) − Ip|||2 > δ

}
≤ exp

(
m log p− δ2

4C2
ψ

n

p

)
.

For simplicity, let A = An,p := n/(4C2
ψ p). We impose m log p ≤ A

2
δ2 so

that the exponent in (A.9) is bounded above by −A
2
δ2. Furthermore, for our

purpose, it is enough to take δ = 1
2
. It follows that

P(Ac
p) = P

pm−1⋃

k=1

{
|||Ψ(k) − Ip|||2 >

1

2

}
≤ exp

(
− 1

32C2
ψ

n

p

)
, (A.10)

if 32C2
ψmp log p ≤ n. Now, by (A.7), under ε2 ≥ ∑

k>pm σk, RSxn
1
(ε2) >

C̃ψ ε
2 + C̃σ σp implies Ac

p. Thus, the exponential bound in (A.10) holds for

P{RSxn1
(ε2) > C̃ψ ε

2+ C̃σ σp} under the assumptions. We are to choose p and

the bound is optimized by making p as small as possible. Hence, we take p
to be ν(ε) := inf{p : ε2 ≥ ∑

k>pm σk} which proves Lemma 2. (Note that,

in general, ν(ε) takes its values in {0, 1, 2, . . .}. The assumption ε2 < σ1
guarantees that ν(ε) 6= 0.)

Appendix B. Proof of Lemma 1

Assume σk = Ck−α, for some α ≥ 2. First, note the following upper
bound on the tail sum

∑

k>p

σk ≤ C

∫ ∞

p

x−α dx = C1(α) p
1−α. (B.1)
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Furthermore, from the bounds (30a) and (30b), we have, for k ≥ n+ 1,

[Ψ]kk ≤ min{c1, c2}. (B.2)

To simplify notation, let us define In := {1, 2, . . . , γn}.
Consider the case α > 2. We will use the ℓ∞– ℓ∞ upper bound of (21),

with p = n. Fix some k ≥ n + 1. Note that σk ≤ σn+1. Then, recalling the
assumptions on Ψ and the definition of Sk, we have

∑

ℓ≥n+1

√
σk
√
σℓ
∣∣[Ψ]k,ℓ

∣∣ ≤ √
σn+1

∞∑

q=0

γn∑

r=1

√
σn+r+qγn

∣∣[Ψ]k,n+r+qγn
∣∣

=
√
σn+1

∞∑

q=0

γn∑

r=1

√
σn+r+qγn

∣∣[Ψ]k,n+r
∣∣

≤ √
σn+1

∞∑

q=0

{
c1
∑

r ∈Sk

√
σn+r+qγn +

c2
n

∑

r ∈ In\Sk

√
σn+r+qγn

}
.

(B.3)

Using (B.1), the second double sum in (B.3) is bounded by

∞∑

q=0

∑

r ∈ In\Sk

√
σn+r+qγn ≤

∑

ℓ>n

√
σℓ ≤ C2(α)n

1−α/2. (B.4)

Recalling that Sk ⊂ In and |Sk| = η, the first double sum in (B.3) can be
bounded as follows

∞∑

q=0

∑

r ∈Sk

√
σn+r+qγn =

√
C

∞∑

q=0

∑

r ∈Sk

(n+ r + qγn)−α/2

≤
√
C

∞∑

q=0

∑

r∈Sk

(n+ qγn)−α/2

≤
√
C η

∞∑

q=0

(1 + qγ)−α/2n−α/2

≤
√
C η
(
1 + γ−α/2

∞∑

q=1

q−α/2
)
n−α/2

= C3(α, γ, η)n
−α/2 (B.5)
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where in the last line we have used
∑∞

q=1 q
−α/2 < ∞ due to α/2 > 1. Com-

bining (B.3), (B.4) and (B.5) and noting that
√
σn+1 ≤

√
Cn−α/2, we obtain

∑

ℓ≥n+1

√
σk
√
σℓ
∣∣[Ψ]k,ℓ

∣∣ ≤
√
Cn−α/2

{
c1C3(α, γ, η)n

−α/2 +
c2
n
C2(α)n

1−α/2
}
= C4(α, η, γ)n

−α.

(B.6)

Taking supremum over k ≥ 1 and applying the ℓ∞– ℓ∞ bound of (21), with
p = n, concludes the proof of part (a).

Now, consider the case α = 2. The above argument breaks down in this
case because

∑∞
q=1 q

−α/2 does not converge for α = 2. A remedy is to further

partition the matrix Σ
1/2
ñ ΨñΣ

1/2
ñ . Recall that the rows and columns of this

matrix are indexed by {n + 1, n+ 2, . . . }. Let A be the principal submatrix
indexed by {n+1, n+2, . . . , n2} and D be the principal submatrix indexed by
{n2+1, n2+2, . . . }. We will use a combination of the bounds (30a) and (30b),
and the well-known perturbation bound λmax

[(
A C
CT D

)]
≤ λmax(A)+λmax(D),

to write

λmax

(
Σ

1/2
ñ ΨñΣ

1/2
ñ

)
≤ λmax(A) + λmax(D) ≤ |||A|||∞ + tr(D). (B.7)

The second term is bounded as

tr(D) =
∑

k>n2

σk [Ψ]kk ≤ min{c1, c2}
∑

k>n2

σk = min{c1, c2} (n2)1−2 = C5(γ)n
−2,

(B.8)

where we have used (B.1) and (B.2). To bound the first term, fix k ∈
{n+ 1, . . . , n2}. By an argument similar to that of part (a) and noting that
γ ≥ 1, hence γn2 ≥ n2, we have

n2∑

ℓ=n+1

√
σk
√
σℓ
∣∣[Ψ]k,ℓ

∣∣ ≤ √
σn+1

n∑

q=0

γn∑

r=1

√
σn+r+qγn

∣∣[Ψ]k,n+r
∣∣

≤ √
σn+1

n∑

q=0

{
c1
∑

r ∈Sk

√
σn+r+qγn +

c2
n

∑

r ∈ In\Sk

√
σn+r+qγn

}
.

(B.9)
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Using γ ≥ 1 again, the second double sum in (B.9) is bounded as

n∑

q=0

∑

r∈ In\Sk

√
σn+r+qγn ≤

3γn2∑

ℓ=n+1

√
σℓ ≤

√
C

3γn2∑

ℓ=2

1

ℓ
≤

√
C log(3γn2) ≤ C6(γ) logn,

(B.10)

for sufficiently large n. Note that we have used the bound
∑p

ℓ=2 ℓ
−1 ≤∫ p

1
x−1 dx = log p. The first double sum in (B.9) is bounded as follows

∞∑

q=0

∑

r ∈Sk

√
σn+r+qγn =

√
C

n∑

q=0

∑

r∈Sk

(n+ r + qγn)−1

≤
√
C η

n∑

q=0

(1 + qγ)−1n−1

≤
√
C η
(
1 + γ−1 + γ−1

n∑

q=2

q−1
)
n−1

= C7(γ, η)n
−1 logn, (B.11)

for n sufficiently large. Combining (B.9), (B.10) and (B.11), taking supre-
mum over k and using the simple bound

√
σn+1 ≤

√
Cn−1, we get

|||A|||∞ ≤
√
Cn−1

{
c1C7(γ, η)

logn

n
+
c2
n
C6(γ) log n

}
= C8(γ, η)

logn

n2

(B.12)

which in view of (B.8) and (B.7) completes the proof of part (b).

Appendix C. Relationship between RΦ(ε) and T
Φ
(ε)

In this appendix, we prove the claim made in Section 1 about the relation
between the upper quantities RΦ and TΦ and the lower quantities TΦ and
RΦ. We only carry out the proof for RΦ; the dual version holds for TΦ. To
simplify the argument, we look at slightly different versions of RΦ and TΦ,
defined as

R◦
Φ(ε) := sup

{
‖f‖2L2 : f ∈ BH, ‖f‖2Φ < ε2

}
, (C.1)

T ◦
Φ(δ) := inf

{
‖f‖2Φ : f ∈ BH, ‖f‖2L2 > δ2

}
(C.2)
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and prove the following

R◦
Φ
−1(δ) = T ◦

Φ(δ) (C.3)

where R◦
Φ
−1(δ) := inf{ε2 : R◦

Φ(ε) > δ2} is a generalized inverse of R◦
Φ. To

see (C.3), we note thatRΦ(ε) > δ2 iff there exists f ∈ BH such that ‖f‖2Φ < ε2

and ‖f‖2L2 > δ2. But this last statement is equivalent to T ◦
Φ(δ) < ε2. Hence,

R◦
Φ
−1(δ) = inf{ε2 : T ◦

Φ(δ) < ε2} (C.4)

which proves (C.3).
Using the following lemma, we can use relation (C.3) to convert upper

bounds on RΦ to lower bounds on TΦ.

Lemma 4. Let t 7→ p(t) be a nondecreasing function (defined on the real line
with values in the extended real line.). Let q be its generalized inverse defined
as q(s) := inf{t : p(t) > s}. Let r be a properly invertible (i.e., one-to-one)
function such that p(t) ≤ r(t), for all t. Then,

(a) q(p(t)) ≥ t, for all t,

(b) q(s) ≥ r−1(s), for all s.

Proof. Assume (a) does not hold, that is, inf{α : p(α) > p(t)} < t. Then,
there exists α0 such that p(α0) > p(t) and α0 < t. But this contradicts p(t)
being nondecreasing. For part (b), note that (a) implies t ≤ q(p(t)) ≤ q(r(t)),
since q is nondecreasing by definition. Letting t := r−1(s) and noting that
r(r−1(s)) = s, by assumption, proves (b).

Let p = R◦
Φ, q = T ◦

Φ and r(t) = At+B for some constant A > 0. Noting
that R◦

Φ ≤ RΦ and TΦ(·+ γ) ≥ T ◦
Φ for any γ > 0, we obtain from Lemma 4

and (C.3) that

RΦ(ε) ≤ Aε2 +B =⇒ TΦ(δ+) ≥ δ2

A
− B, (C.5)

where TΦ(δ+) denotes the right limit of TΦ as δ2. This may be used to
translate an upper bound of the form (17) on RΦ to a corresponding lower
bound on TΦ.
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Appendix D. The 2 × 2 subproblem

The following subproblem arises in the proof of Theorem 1.

F (ε2) := sup
{(

r s
)(u2 0

0 v2

)(
r
s

)

︸ ︷︷ ︸
=: x(r,s)

: r2 + s2 ≤ 1,
(
r s

)(a2 0
0 d2

)(
r
s

)

︸ ︷︷ ︸
=: y(r,s)

≤ ε2
}
,

(D.1)

where u2, v2, a2 and d2 are given constants and the optimization is over (r, s).
Here, we discuss the solution in some detail; in particular, we provide explicit
formulas for F (ε2). Without loss of generality assume u2 ≥ v2. Then, it is
clear that F (ε2) ≤ u2 and F (ε2) = u2 for ε2 ≥ u2. Thus, we are interested
in what happens when ε2 < u2.

The problem is easily solved by drawing a picture. Let x(r, s) and y(r, s)
be as denoted in the last display. Consider the set

S :=
{(
x(r, s), y(r, s)

)
: r2 + s2 ≤ 1}

=
{
r2(u2, a2) + s2(v2, d2) + q2(0, 0) : r2 + s2 + q2 = 1

}

= conv
{
(u2, a2), (v2, d2), (0, 0)

}
. (D.2)

That is, S is the convex hull of the three points (u2, a2), (v2, d2) and the
origin (0, 0).

Then, two (or maybe three) different pictures arise depending on whether
a2 > d2 (and whether d2 ≥ v2 or d2 < v2) or a2 ≤ d2; see Fig. D.4. It follows
that we have two (or three) different pictures for the function ε2 7→ F (ε2).
In particular, for a2 > d2 and d2 < v2,

F (ε2) = v2min
{ε2
d2
, 1
}
+ (u2 − v2)max

{
0,
ε2 − d2

a2 − d2

}
, (D.3)

for a2 > d2 and d2 ≥ v2, F (ε2) = ε2, and for a2 ≤ d2,

F (ε2) = u2min
{ε2
a2
, 1
}
.

All the equations above are valid for ε2 ∈ [0, σ1].
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Figure D.4: Top plots illustrate the set S as defined in (D.2), in various cases. The bottom
plots are the corresponding ε2 7→ F (ε2).

Appendix E. Details of the Fourier truncation example

Here we establish the claim that the bound (19) holds with equality.
Recall that for the (generalized) Fourier truncation operator Tψn1 , we have

RTψn1
(ε2) = sup

{ ∞∑

k=1

σkα
2
k :

∞∑

k=1

α2
k ≤ 1,

n∑

k=1

σkα
2
k ≤ ε2

}

Let α = (tξ, sγ), where t, s ∈ R, ξ = (ξ1, . . . , ξn) ∈ Rn, γ = (γ1, γ2 . . . ) ∈ ℓ2
and ‖ξ‖2 = 1 = ‖γ‖2. Let u2 = u2(ξ) :=

∑n
k=1 σkξ

2
k and v2 = v2(γ) :=∑

k>n σkγ
2
k.

Let us fix ξ and γ for now and try to optimize over t and s. That is, we
look at

G(ε2; ξ, γ) := sup
{
t2u2 + s2v2 : t2 + s2 ≤ 1, t2u2 ≤ ε2

}
.

This is an instance of the 2-by-2 problem (D.1), with a2 = u2 and d2 = 0.
Note that our assumption that u2 ≥ v2 holds in this case, for all ξ and γ,
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because {σk} is a nonincreasing sequence. Hence, we have, for ε2 ≤ σ1,

G(ε2; ξ, γ) = v2 + (u2 − v2)
ε2

u2
= v2(γ) +

(
1− v2(γ)

u2(ξ)

)
ε2.

Now we can maximize G(ε2; ξ, γ) over ξ and then γ. Note that G is
increasing in u2. Thus, the maximum is achieved by selecting u2 to be
sup‖ξ‖2=1 u

2(ξ) = σ1. Thus,

sup
ξ
G(ε2; ξ, γ) =

(
1− ε2

σ1

)
v2(γ) + ε2.

For ε2 < σ1, the above is increasing in v2. Hence the maximum is achieved
by setting v2 to be sup‖γ‖2=1 v

2(γ) = σn+1. Hence, for ε
2 ≤ σ1

RTψn
1
(ε2) := sup

ξ, γ
G(ε2; ξ, γ) =

(
1− σn+1

σ1

)
ε2 + σn+1. (E.1)

Appendix F. An quadratic inequality

In this appendix, we derive an inequality which will be used in the proof
of Theorem 1. Consider a positive semidefinite matrix M (possibly infinite-
dimensional) partitioned as

M =

(
A C
CT D

)
.

Assume that there exists ρ2 ∈ (0, 1) and κ2 > 0 such that

(
A C
CT (1− ρ2)D + κ2I

)
� 0. (F.1)

Let (x, y) be a vector partitioned to match the block structure of M . Then
we have the following.

Lemma 5. Under (F.1), for all x and y,

xTAx+ 2xTCy + yTDy ≥ ρ2xTAx− κ2

1− ρ2
‖y‖22. (F.2)

31



Proof. By assumption (F.1), we have

(√
1− ρ2 xT 1√

1−ρ2
yT
)( A C

CT (1− ρ2)D + κ2I

)(√
1− ρ2 x
1√
1−ρ2

y

)
≥ 0.

(F.3)

Writing (F.1) as a perturbation of the original matrix,

(
A C
CT D

)
+

(
0 0
0 −ρ2D + κ2I

)
� 0, (F.4)

we observe that a sufficient condition for (F.1) to hold is ρ2D � κ2I. That
is, it is sufficient to have

ρ2λmax(D) ≤ κ2. (F.5)

Rewriting (F.1) differently, as

(
(1− ρ2)A 0

0 (1− ρ2)D

)
+

(
ρ2A C
CT κ2I

)
� 0, (F.6)

we find another sufficient condition for (F.1), namely, ρ2A − κ−2CCT � 0.
In particular, it is also sufficient to have

κ−2λmax(CC
T ) ≤ ρ2λmin(A). (F.7)
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