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2 Moduli of smoothness and growth properties of Fourier transforms:

two-sided estimates

D. Gorbachev and S. Tikhonov

Abstract. We prove two-sided inequalities between the integral moduli of smoothness of a function
on Rd/Td and the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained
results in particular is given by the equivalence results for functions satisfying certain regular condi-
tions. Applications include a quantitative form of the Riemann–Lebesgue lemma as well as several
other questions in approximation theory and the theory of function spaces.

1. Introduction

This paper studies the interrelation between the smoothness of a function and growth properties

of Fourier transforms/coefficients. Let us first recall the classical Riemann–Lebesgue lemma: |f̂n| → 0
as |n| → ∞, where f ∈ L1(Td). Its quantitative version, the Lebesgue type estimate for the Fourier
coefficients, is well known [Zy, Vol. I, Ch. 4, § 4] and given by

|f̂n| . ωl

(
f,

1

|n|

)

1

, f ∈ L1(Td), (1.1)

where the modulus of smoothness ωl(f, δ)p of a function f ∈ Lp(X) is defined by

ωl (f, δ)p = sup
|h|≤δ

∥∥∆l
hf(x)

∥∥
Lp(X)

, 1 ≤ p ≤ ∞, (1.2)

and

∆l
hf(x) = ∆l−1

h (∆hf(x)) , ∆hf(x) = f(x+ h)− f(x).

For the Fourier transform, the estimate similar to (1.1) can be found in, e.g., [Tr1]

|f̂(ξ)| . ωl

(
f,

1

|ξ|

)

1

, f ∈ L1(Rd), (1.3)

where the Fourier transform is given by

f̂(ξ) =

∫

Rd

f(x)eiξx dx, ξ ∈ R
d. (1.4)

However, unlike (1.1) the inequality (1.3) cannot be extended for the range p > 1 (see section 7.2
below).

Very recently, Bray and Pinsky [BP1, BP2] and Ditzian [Di] (see also Gioev’s paper [Gi])
extended Lebesgue type estimate for the Fourier transform/coefficients. We will need the following
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avarage function. For a locally integrable function f the average on a sphere in Rd of radius t > 0 is
given by

Vtf(x) :=
1

mt

∫

|y−x|=t

f(y) dy with Vt1 = 1, d ≥ 2.

For l ∈ N we define

Vl,tf(x) :=
−2(
2l
l

)
l∑

j=1

(−1)j
(

2l

l − j

)
Vjtf(x).

Theorem A. Let f ∈ Lp(Rd), d ≥ 2, and 1 ≤ p ≤ 2, 1/p+ 1/p′ = 1. Then for t > 0, l ∈ N,

(∫

Rd

[
min(1, t|ξ|)2l|f̂(ξ)|

]p′

dξ

)1/p′

. ‖f − Vl,tf‖p, 1 < p ≤ 2, (1.5)

and

sup
ξ∈Rd

[
min(1, t|ξ|)2l|f̂(ξ)|

]
. ‖f − Vl,tf‖1. (1.6)

Similar results were also proved for moduli of smoothness of functions on R and Td (see [Di]). In
the rest of the paper we will assume that t > 0, l ∈ N, and

Ωl(f, t)p = ‖f − Vl,tf‖p, θ = 2, (1.7)

if d ≥ 2 and

Ωl(f, t)p = ωl(f, t)p, θ = 1 (1.8)

if d = 1.
The main goal of this paper is to extend inequalities (1.5) and (1.6) in the following sense. First,

we prove sharper estimates by considering the weighted Lq norm of min(1, t|ξ|)θl|f̂(ξ)|, that is,
∥∥∥min(1, t|ξ|)θl|f̂(ξ)|

∥∥∥
Lq(u)

. Ωl(f, t)p, p ≤ q (1.9)

with the certain weight function u. Then varying the parameter q gives us the better bound from
below of Ωl(f, t)p. In particular, if q = p′ we arrive at (1.5) and (1.6).

Second, we prove the reverse inequalities showing how smoothness of a function depends on the
average decay of its Fourier transform:

Ωl(f, t)p .
∥∥∥min(1, t|ξ|)θl|f̂(ξ)|

∥∥∥
Lq(u)

, q ≤ p, (1.10)

Third, we define the class of general monotone functions and prove that for this class the equivalence
result holds:

Ωl(f, t)p ≍
∥∥∥min(1, t|ξ|)θl|f̂(ξ)|

∥∥∥
Lp(u)

. (1.11)

Note that for p = 2, this follows from (1.9) and (1.10) in the general case (see also [BP1, Gi]).
The paper is organized as follows. In Section 2, we prove inequalities (1.9) and (1.10) when

1 < p ≤ 2 and p ≥ 2 respectively. In Section 3 we study inequalities (1.9) and (1.10) in the case of
radial functions and we show that, with a fixed p, the range of the parameter q is extended. In Section
4 we deal with the general monotone functions. Again, we prove inequalities (1.9) and (1.10) under
wider range of the parameter q than in the case of radial functions. Moreover, we show equivalence
(1.11) in this case. Section 5 studies inequalities (1.9) and (1.10) for functions on Td, d ≥ 1. In
Section 6 we obtain the equivalence result of type (1.11) for periodic functions whose sequence of
Fourier coefficients is general monotone. Section 7 considers several application of obtained results in
approximation theory (sharp relations between best approximations and moduli of smoothness) and
functional analysis (embedding theorems, characterization of the Lipschitz/Besov spaces in terms of
the Fourier transforms).

Finally, we remark that inequalities between moduli of smoothness and the Fourier transform in
the Lebesgue and Lorentz spaces were studied earlier in [Cl] and [GK].
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2. Growth of Fourier transforms via moduli of smoothness. The general case

The following theorem is the main result of this section.

Theorem 2.1. Let f ∈ Lp(Rd), d ≥ 1.

(A) Let 1 < p ≤ 2. Then for p ≤ q ≤ p′ we have |ξ|d(1−1/p−1/q)f̂(ξ) ∈ Lq(Rd), and
(∫

Rd

[
min(1, t|ξ|)θl|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

. Ωl(f, t)p. (2.1)

(B) Let 2 ≤ p <∞, |ξ|d(1−1/p−1/q)f̂(ξ) ∈ Lq(Rd), q > 1, and max {q, q′} ≤ p. Then

(∫

Rd

[
min(1, t|ξ|)θl|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

& Ωl(f, t)p. (2.2)

Remark. Theorem A follows from Theorem 2.1 (A) (take q = p′). In part (B) we assume that

for f ∈ Lp(Rd) the Fourier transform f̂ is well defined and such that |ξ|d(1−1/p−1/q)f̂(ξ) ∈ Lq(Rd) for
a certain q > 1 satisfying max {q, q′} ≤ p.

Proof of Theorem 2.1. We will use the following Pitt’s inequality [BH] (see also [GLT]):
(∫

Rd

(
|ξ|−γ |ĝ(ξ)|

)q
dξ

)1/q

.

(∫

Rd

(
|x|β |g(x)|

)p
dx

)1/p

, (2.3)

where

β − γ = d

(
1−

1

p
−

1

q

)
, max

{
0, d

(
1

p
+

1

q
− 1

)}
≤ γ <

d

q
, 1 < p ≤ q <∞. (2.4)

Here the Fourier transform ĝ is understood in the usual sense of weighted Fourier inequality (2.3);
see, e.g., [BL, Sect. 1, 2].

Let us write inequality (2.3) with change of parameters ĝ ↔ f , p ↔ q, β ↔ −γ. Let |ξ|−γ f̂(ξ) ∈
Lq(Rd), then

(∫

Rd

(
|ξ|−γ |f̂(ξ)|

)q
dξ

)1/q

&

(∫

Rd

(
|x|β |f(x)|

)p
dx

)1/p

, (2.5)

where

β − γ = d

(
1−

1

p
−

1

q

)
, max

{
0, d

(
1

p
+

1

q
− 1

)}
≤ −β <

d

p
, 1 < q ≤ p <∞. (2.6)

The case of d ≥ 2. Then by (1.7), Ωl(f, t)p = ‖f − Vl,tf‖p, θ = 2. Let us write the left-hand side
in (2.1) and (2.2) as

I :=
∥∥min(1, t|ξ|)2lh(ξ)

∥∥
q
, h(ξ) = |ξ|d(1−1/p−1/q)|f̂(ξ)|.

In [DD, Cor. 2.3, Th. 3.1], it is shown that for f ∈ Lp(Rd), 1 ≤ p ≤ ∞, t > 0, and integer l,

‖f − Vl,tf‖p ≍ Kl(f,∆, t
2l)p ≍ Rl(f,∆, t

2l)p, (2.7)

where

Kl(f,∆, t
2l)p := inf

{
‖f − g‖p + t2l‖∆lg‖p : ∆

lg ∈ Lp(Rd)
}
,

the Laplacian is given by ∆ = ∂2

∂x2

1

+ · · ·+ ∂2

∂x2

d

,

Rl(f,∆, t
2l)p := ‖f −Rλ,l,b(f)‖p + t2l‖∆lRλ,l,b(f)‖p,

λ = 1/t, b ≥ d+ 2.
(2.8)

Here (see [DD, Sec. 2])

Rλ,l,b(f)(x) = (Gλ,l,b ∗ f)(x), Gλ,l,b(x) = λdGl,b(λx), Ĝl,b(ξ) = ηl,b(|ξ|),

where

ηl,b(s) = (1− s2l)b+, s = |ξ| ≥ 0, (2.9)
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and
[Rλ,l,b(f)]̂(ξ) = ηl,b(t|ξ|)f̂(ξ), [f −Rλ,l,b(f)]̂(ξ) = [1− ηl,b(t|ξ|)]f̂(ξ),
[
∆lRλ,l,b(f)

]
̂(ξ) = (−1)l|ξ|2l [Rλ,l,b(f)]̂(ξ) = (−1)l|ξ|2lηl,b(t|ξ|)f̂ (ξ).

(2.10)

Also,

‖Gλ,l,b(x)‖1 = ‖Gl,b‖1 <∞. (2.11)

Taking into account that, for b > 0,

ηl,b(s) ∼ 1− bs2l, s→ 0, ηl,b(s) = 0, s ≥ 1,

we obtain

1− ηl,b(s) ≍ min(1, s)2l, s ≥ 0. (2.12)

Changing variables b↔ b+ 1 gives

min(1, s)2l ≍ 1− ηl,b+1(s) = 1− (1 − s2l)ηl,b(s) = 1− ηl,b(s) + s2lηl,b(s).

Therefore,

I =
∥∥min(1, t|ξ|)2lh(ξ)

∥∥
q
≍
∥∥[1− ηl,b(t|ξ|) + (t|ξ|)2lηl,b(t|ξ|)

]
h(ξ)

∥∥
q
. (2.13)

Define

h1(ξ) = [1− ηl,b(t|ξ|)]h(ξ), h2(ξ) = (t|ξ|)2lηl,b(t|ξ|)h(ξ). (2.14)

Note that both h1 and h2 are non-negative. For non-negative functions we have

‖h1 + h2‖q ≍ ‖h1‖q + ‖h2‖q, 1 ≤ q ≤ ∞. (2.15)

This, (2.13), and (2.14) yield

I ≍
∥∥∥|ξ|d(1−1/p−1/q) [1− ηl,b(t|ξ|)] |f̂(ξ)|

∥∥∥
q
+
∥∥∥|ξ|d(1−1/p−1/q)(t|ξ|)2lηl,b(t|ξ|)|f̂ (ξ)|

∥∥∥
q
,

or, by (2.10),

I ≍
∥∥∥|ξ|d(1−1/p−1/q) |[f −Rλ,l,b(f)]̂(ξ)|

∥∥∥
q
+ t2l

∥∥∥|ξ|d(1−1/p−1/q)
∣∣[∆lRλ,l,b(f)

]
̂(ξ)

∣∣
∥∥∥
q
. (2.16)

Now to prove (A), we assume that p ≤ q and we use (2.16) and Pitt’s inequality (2.3) with

β = 0. In this case γ = d
(

1
p + 1

q − 1
)
and γ ≥ 0 (see (2.4)). The latter is ensured by q ≤ p′. Then

|ξ|d(1−1/p−1/q)f̂(ξ) ∈ Lq(Rd) and

I . ‖f −Rλ,l,b(f)‖p + t2l
∥∥∆lRλ,l,b(f)

∥∥
p
.

Combining this with (2.7), and (2.8) we get (A).
In part (B) we assume that q ≤ p. Inequality (2.2) follows from (2.16) and inequality (2.5) for

β = 0. In this case, by (2.6), γ = d
(

1
p + 1

q − 1
)
and max{0, γ} ≤ 0, i.e., γ ≤ 0. The latter is q ≥ p′

or, equivalently, q′ ≤ p.
The case of d = 1. According to (1.8), we have Ωl(f, t)p = ωl(f, t)p and θ = 1. The proof of key

steps is similar to the proof in the case of d ≥ 2. The only difference is the realization result ([DHI])
given by

ωl(f, t)p ≍ inf
(
‖f − g‖p + tl‖g(l)‖p : g

(l) ∈ Eλ ∩ Lp(R)
)
≍ ‖f − gλ‖p + tl‖g

(l)
λ ‖p, λ = 1/t,

where Eλ is the collection of all entire functions of exponential type λ and gλ ∈ Eλ is such that

‖f − gλ‖p . Eλ(f)p := inf
g∈Eλ

‖f − g‖p.

Since ‖g
(l)
λ ‖p ≍ ‖Hg

(l)
λ ‖p, 1 < p <∞, where H is the Hilbert transform [Tit, Ch. 5], then ωl(f, t)p ≍

‖f − gλ‖p + tl‖Dlgλ‖p, where Dl = (id/dx)l for even l and Dl = −iH(id/dx)l for odd l.
Let χλ := χ[0,λ]. As Hille and Tamarkin [HT] showed, if Sλ(f) is the partial Fourier integral

of f , i.e.,

[Sλ(f)]̂(ξ) = χλ(|ξ|)f̂ (ξ), (2.17)

we have

‖Sλ(f)‖p . ‖f‖p, 1 < p <∞.
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Then (see also [Tim]) gλ can be taken as Sλ(f), that is, ‖f − Sλ(f)‖p . Eλ(f)p. Therefore, for
1 < p <∞,

ωl(f, t)p ≍ ‖f − Sλ(f)‖p + tl
∥∥S(l)

λ (f)
∥∥
p
≍ ‖f − Sλ(f)‖p + tl ‖DlSλ(f)‖p , (2.18)

where [
S
(l)
λ (f)

]
̂(ξ) = (−iξ)lχλ(|ξ|)f̂ (ξ), [DlSλ(f)]̂(ξ) = |ξ|lχλ(|ξ|)f̂(ξ). (2.19)

For s ≥ 0 we have min(1, s)l = 1− χ1(s) + slχ1(s) and χ1(ts) = χλ(s), which gives

min(1, ts)l = 1− χλ(s) + (ts)lχλ(s). (2.20)

This, (2.15), (2.17), and (2.19) imply

I :=
∥∥∥min(1, t|ξ|)l|ξ|1−1/p−1/q|f̂(ξ)|

∥∥∥
q
=
∥∥∥
[
1− χλ(|ξ|) + (t|ξ|)lχλ(|ξ|)

]
|ξ|1−1/p−1/q|f̂(ξ)|

∥∥∥
q

≍
∥∥∥|ξ|1−1/p−1/q[1− χλ(|ξ|)]|f̂(ξ)|

∥∥∥
q
+
∥∥∥|ξ|1−1/p−1/q(t|ξ|)lχλ(|ξ|)|f̂ (ξ)|

∥∥∥
q

=
∥∥∥|ξ|1−1/p−1/q |[f − Sλ(f)]̂(ξ)|

∥∥∥
q
+ tl

∥∥∥|ξ|1−1/p−1/q |[DlSλ(f)]̂(ξ)|
∥∥∥
q
, (2.21)

which is an analogue of (2.16). Then as in the case of d ≥ 2 we continue by using Pitt’s inequality
(2.3) and its corollary (2.5) with β = 0 and d = 1. This concludes the proof of the case d = 1. �

3. Growth of Fourier transforms via moduli of smoothness. The case of radial functions

Theorem 2.1 was proved under the condition 1 < p ≤ q ≤ p′ <∞ (A) and 1 < max {q, q′} ≤ p <
∞ (B). When d ≥ 2 these conditions can be extended if we restrict ourselves to radial functions

f(x) = f0(|x|).

The Fourier transform of a radial function is also radial f̂(ξ) = F0(|ξ|) (see [SW, Ch. 4]) and it
can be written as the Fourier–Hankel transform

F0(s) = |Sd−1|

∫ ∞

0

f0(t)jd/2−1(st)t
d−1 dt,

where jα(t) = Γ(α+ 1)(t/2)−αJα(t) is the normalized Bessel function (jα(0) = 1), α ≥ −1/2. Useful
properties of Jα can be found in, e.g., [AS, Ch. 9]; see also [GLT] for some properties of jα.

Theorem 3.1. Let f ∈ Lp(Rd) be a radial function and d ≥ 2.

(A) Let 1 < p ≤ q <∞. Then, for p ≤ 2d
d+1 , q <∞ or 2d

d+1 < p ≤ 2, p ≤ q ≤
(

d+1
2 − d

p

)−1

,

(∫

Rd

[
min(1, t|ξ|)2l|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

. ‖f − Vl,tf‖p.

(B) Let 2 ≤ p <∞, |ξ|d(1−1/p−1/q)f̂(ξ) ∈ Lq(Rd), q > 1 and max

{
q, d

(
d+1
2 − 1

q

)−1
}

≤ p. Then

(∫

Rd

[
min(1, t|ξ|)2l|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

& ‖f − Vl,tf‖p.

Remark. 1. Formally, when d = 1 conditions in Theorems 3.1 and 2.1 coincide. However, note
that no regularity condition was assumed in Theorem 2.1.

2. The range of conditions on p and q in Theorem 3.1 is wider than the corresponding range in
Theorem 2.1 for d ≥ 2.

Indeed, in Theorem 2.1 (A) we assume the following conditions: 1 < p ≤ 2 and p ≤ q ≤ p′. If

p ≤ 2d
d+1 , in Theorem 3.1 (A) conditions are p ≤ q < ∞. If 2d

d+1 < p ≤ 2, then
(

d+1
2 − d

p

)−1

≥ p′.

Thus, the conditions p ≤ q ≤
(

d+1
2 − d

p

)−1

are less restrictive than p ≤ q ≤ p′.



6 D. GORBACHEV AND S. TIKHONOV

In its turn, in Theorem 2.1 (B) we assume that 2 ≤ p <∞ and max {q, q′} ≤ p. If q < 2, then p ≥

q′ and max

{
q, d

(
d+1
2 − 1

q

)−1
}

= d
(

d+1
2 − 1

q

)−1

< q′. If 2 ≤ q, then max

{
q, d

(
d+1
2 − 1

q

)−1
}

= q.

Hence, we get max

{
q, d

(
d+1
2 − 1

q

)−1
}

≤ max {q, q′}.

Proof of Theorem 3.1. The proof is similar to the proof of Theorem 2.1 but we use Pitt’s
inequality for radial functions. We also remark that for a radial function f , functions f − Rλ,l,b(f)
and ∆lRλ,l,b(f) are radial as well.

De Carli [DC] proved Pitt’s inequality for the Hankel transform. In particular, this gives inequality
(2.3) for radial functions. As it was shown in [DC], in this case the condition on γ is as follows

d

q
−
d+ 1

2
+max

{
1

p
,
1

q′

}
≤ γ <

d

q
, 1 < p ≤ q <∞. (3.1)

Therefore, (2.5) for radial functions holds under the condition

d

p
−
d+ 1

2
+max

{
1

q
,
1

p′

}
≤ −β <

d

p
, 1 < q ≤ p <∞. (3.2)

We will use (3.1) and (3.2) with β = 0 and γ = d
(

1
p + 1

q − 1
)
.

To show (A), we assume (3.1), that is, the following two conditions hold simultaneously

d− 1

2
+

1

p
≤
d

p
,

d− 1

2
+

1

q′
≤
d

p
.

If d ≥ 2, the first condition is equivalent to p ≤ 2. If p ≤ 2d
d+1 , then the second condition is q <∞. If

2d
d+1 < p ≤ 2, then respectively q ≤

(
d+1
2 − d

p

)−1

.

Let us verify all conditions in (B). We assume (3.2), or, equivalently,

d

p
−
d+ 1

2
+

1

q
≤ 0,

d

p
−
d+ 1

2
+

1

p′
≤ 0.

If d ≥ 2, the second inequality is equivalent to the condition p ≥ 2. The first inequality can be rewritten

as p ≥ d
(

d+1
2 − 1

q

)−1

. Since also p ≥ q, we finally arrive at condition max

{
q, d

(
d+1
2 − 1

q

)−1
}

≤ p,

under which needed Pitt’s inequality holds. �

4. Growth of Fourier transforms via moduli of smoothness.
The case of general monotone functions

The following equivalence holds for p = 2 (see [BP1], [Di], [Gi] and Theorem 2.1 (A, B)):
(∫

Rd

[
min(1, t|ξ|)θl|f̂(ξ)|

]p
dξ

)1/p

≍ Ωl(f, t)p, (4.1)

where Ωl(f, t)p and θ are given by (1.7) and (1.8).

In this section we show that similar two sided inequalities also hold for 2d
d+1 < p <∞ provided f̂

is radial, nonnegative and regular in a certain sense.

4.1. General monotone functions and the ĜMd class. A function ϕ(z), z > 0, is called
general monotone (ϕ ∈ GM), if it is locally of bounded variation on (0,∞), vanishes at infinity, and
for some constant c > 1 depending on ϕ, the following is true

∫ ∞

z

|dϕ(u)| .

∫ ∞

z/c

|ϕ(u)|

u
du <∞, z > 0 (4.2)

(see [GLT]). Any monotone function vanishing at infinity satisfies GM-condition. Note also that (4.2)
implies

|ϕ(z)| .

∫ ∞

z/c

|ϕ(u)|

u
du. (4.3)
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In particular, the latter gives, for any b > 1,

|ϕ(z)| .

∫ ∞

z/(bc)

u−1

(∫ bu

u/b

|ϕ(v)|

v
dv

)
du. (4.4)

We will also use the following result on multipliers of general monotone functions.

Lemma 4.1. Let ϕ ∈ GM and a function α(z) be locally of bounded variation on (0,∞) such that

limz→0 α(z) = 0 and ∫ cu

0

|dα(v)| . |α(u)|, u > 0.

Then ϕ1 = αϕ ∈ GM .

Proof. By definition of GM, it is sufficient to verify

I :=

∫ ∞

z

|dϕ1(u)| .

∫ ∞

z/c

|ϕ1(u)|

u
du, z > 0. (4.5)

First,

I .

∫ ∞

z

|ϕ(u)| |dα(u)|+

∫ ∞

z

|α(u)| |dϕ(u)| =: I1 + I2,

and, by (4.3), we get

I1 =

∫ ∞

z

|ϕ(u)| |dα(u)| .

∫ ∞

z

(∫ ∞

u/c

|ϕ(v)|

v
dv

)
|dα(u)| =

∫ ∞

z/c

(∫ cv

z

|dα(u)|

)
|ϕ(v)|

v
dv.

To estimate I2, using

|α(u)| =

∣∣∣∣α(z) +
∫ u

z

dα(v)

∣∣∣∣ . |α(z)|+

∫ u

z

|dα(v)|, u > z,

and condition (4.2), we have

I2 . |α(z)|

∫ ∞

z

|dϕ(u)|+

∫ ∞

z

(∫ u

z

|dα(v)|

)
|dϕ(u)|

. |α(z)|

∫ ∞

z/c

|ϕ(v)|

v
dv +

∫ ∞

z

(∫ ∞

v

|dϕ(u)|

)
|dα(v)|

. |α(z)|

∫ ∞

z/c

|ϕ(v)|

v
dv +

∫ ∞

z

(∫ ∞

v/c

|ϕ(u)|

u
du

)
|dα(v)|

= |α(z)|

∫ ∞

z/c

|ϕ(v)|

v
dv +

∫ ∞

z/c

(∫ cu

z

|dα(v)|

)
|ϕ(u)|

u
du.

Therefore, since

|α(z)| =

∣∣∣∣
∫ z

0

dα(v)

∣∣∣∣ ≤
∫ z

0

|dα(v)|,

we arrive at

I . I1 + I2 .

∫ ∞

z/c

(
|α(z)|+

∫ cu

z

|dα(v)|

)
|ϕ(v)|

v
dv ≤

∫ ∞

z/c

(∫ cu

0

|dα(v)|

)
|ϕ(v)|

v
dv.

Finally, the integral condition on α concludes the proof of (4.5). �

Let ĜMd, d ≥ 1, be the collection of all radial functions f(x) = f0(|x|), x ∈ Rd, which are defined
in terms of the inverse Fourier–Hankel transform

f0(z) =
|Sd−1|

(2π)d

∫ ∞

0

F0(s)jd/2−1(zs)s
d−1 ds, (4.6)

where the function F0 ∈ GM and satisfies the following condition
∫ 1

0

sd−1|F0(s)| ds+

∫ ∞

1

s(d−1)/2 |dF0(s)| <∞. (4.7)
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Applying Lemma 1 from the paper [GLT] to F0, we obtain that the integral in (4.6) converges in the
improper sense and therefore f0(z) is continuous for z > 0. In addition, F0 is a radial component of

the Fourier transform of the function f , that is, f̂(ξ) = F0(|ξ|), ξ ∈ Rd.

Let us give some examples of functions from the class ĜMd.

Example 1. Let f ∈ C(Rd) ∩ Lp(Rd), where 1 ≤ p < 2d/(d+ 1) for d ≥ 2 and p = 1 for d = 1,

be a radial positive-definite function such that F0 ∈ GM . Then f ∈ ĜMd. Indeed, f̂ is continuous

function vanishing at infinity and f̂ ≥ 0 [SW, Ch. 1]. From continuity of f at zero we get f̂ ∈ L1(Rd)
[SW, Cor. 1.26], i.e.,

∫∞

0 sd−1|F0(s)| ds <∞. Since any GM-function F0 satisfies ([GLT, p. 111])
∫ ∞

1

sσ |dF0(s)| .

∫ ∞

1/c

sσ−1|F0(s)| ds, σ ≥ 0,

then, using (d− 1)/2− 1 < d− 1, we get
∫ 1

0

sd−1|F0(s)| ds+

∫ ∞

1

s(d−1)/2 |dF0(s)| .

∫ ∞

0

sd−1|F0(s)| ds <∞.

Therefore, condition (4.7) holds, that is, f ∈ ĜMd. As an example of such function we can take
f(x) = (1 + |x|2)−(d+1)/2 and the corresponding F0(s) = cde

−s.

Example 2. Take f(x) = jd/2(|x|) (for d = 1, f(x) = sin x
x ). Then F0(s) = cχ1(s) ∈ GM and

condition(4.7) holds, i.e., f ∈ ĜMd. Moreover, we have (see, e.g., [GLT])

jd/2(z) ≍ 1, 0 ≤ z ≤ 1, |jd/2(z)| . z−(d+1)/2, z ≥ 1,

and

|jd/2(z)| & z−(d+1)/2, z ∈

∞⋃

k=1

[
ρd/2,k + ε, ρd/2,k+1 − ε

]
,

where ρα,k positive zeros of the Bessel function Jα, infk≥1

(
ρd/2,k+1 − ρd/2,k

)
≥ 3ε > 0. This implies

f ∈ Lp(Rd) if p > 2d
d+1 .

Example 3. Let F0(s) ∈ GM and |ξ|d(1−1/p−1/q)F0(|ξ|) ∈ Lq(Rd), 1 < q ≤ p < ∞, 2d
d+1 < p.

Then, using statement (A.1) below, condition (4.7) for F0 holds, f is defined by (4.6), and f ∈

ĜMd ∩ Lp(Rd). The fact that f ∈ Lp(Rd) follows from Pitt’s inequality (4.8) (take β = 0).

4.2. Two-sided inequalities.

Theorem 4.1. Let f ∈ ĜMd ∩ Lp(Rd), d ≥ 1.

(A) If f̂ ≥ 0 and 1 < p ≤ q <∞, then
(∫

Rd

[
min(1, t|ξ|)θl|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

. Ωl(f, t)p.

(B) If |ξ|d(1−1/p−1/q)f̂(ξ) ∈ Lq(Rd), 1 < q ≤ p <∞, 2d
d+1 < p, then

(∫

Rd

[
min(1, t|ξ|)θl|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

& Ωl(f, t)p.

Remark. Conditions on p and q in Theorem 4.1 (A, B) are less restrictive than corresponding

conditions in Theorem 3.1. It is clear for (A). Since 2d
d+1 ≤ d

(
d+1
2 − 1

q

)−1

, conditions q ≤ p and 2d
d+1 <

p in Theorem 4.1 (B) are weaker than max

{
2, q, d

(
d+1
2 − 1

q

)−1
}

≤ p, which is the corresponding

condition in Theorem 3.1 (B).

In case of p = q Theorem 4.1 gives the following equivalence result.

Corollary 4.1. If f ∈ ĜMd ∩ Lp(Rd), d ≥ 1, f̂ ≥ 0, 2d
d+1 < p <∞, then

(∫

Rd

[
min(1, t|ξ|)θl|ξ|d(1−2/p)|f̂(ξ)|

]p
dξ

)1/p

≍ Ωl(f, t)p.
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Example. Take f(x) = jd/2(|x|) (see Example 2). By Corollary 4.1, for 0 < t < 1 and 2d
d+1 <

p <∞, we have

Ωl(f, t)p ≍
∥∥∥min(1, t|ξ|)θl|ξ|d(1−2/p)χ1(|ξ|)

∥∥∥
p
≍ tθl.

4.3. Weighted Fourier inequalities. To prove Theorem 4.1, we will use several auxiliary re-
sults from the paper [GLT].

Let d ≥ 1, 1 < p, q <∞, β − γ = d
(
1− 1

p − 1
q

)
, g(x) = g0(|x|), and ĝ(ξ) = G0(|ξ|).

(A.1) If g0 ∈ GM , p ≤ q, and
d

q
−
d+ 1

2
< γ <

d

q
,

then the following Pitt’s inequality holds [GLT, Th. 2 (A)]
∥∥|ξ|−γ ĝ(ξ)

∥∥
q
.
∥∥|x|βg(x)

∥∥
p
.

Then changing variables g ↔ f̂ , p↔ q, and β ↔ −γ, we get

∥∥|x|βf(x)
∥∥
p
.
∥∥∥|ξ|−γ f̂(ξ)

∥∥∥
q
,

d

p
−
d+ 1

2
< −β <

d

p
, q ≤ p. (4.8)

Here f̂(ξ) = F0(|ξ|) and F0 ∈ GM . Note [GLT, Sect. 5.1] that the condition |ξ|−γ f̂(ξ) ∈ Lq(Rd)
implies condition (4.7).

(A.2) Let g0 ∈ GM , g0 ≥ 0 and g0 satisfy condition (4.7). Then if q ≤ p and

d

q
−
d+ 1

2
< γ,

then [GLT, Th. 2(B)] ∥∥|ξ|−γ ĝ(ξ)
∥∥
q
&
∥∥|x|βg(x)

∥∥
p
.

Again, changing variables g ↔ f̂ , p↔ q, and β ↔ −γ, we arrive at

∥∥|x|βf(x)
∥∥
p
&
∥∥∥|ξ|−γ f̂(ξ)

∥∥∥
q
,

d

p
−
d+ 1

2
< −β, p ≤ q. (4.9)

Here f̂(ξ) = F0(|ξ|) ≥ 0 and F0 ∈ GM .
From (A.1) and (A.2) (see also [GLT, Th. 1]), for a non-negative GM-function F0 satisfying

condition (4.7), we have
∥∥∥|ξ|d(1−2/p)f̂(ξ)

∥∥∥
p
≍ ‖f(x)‖p ,

2d

d+ 1
< p <∞. (4.10)

(A.3) Let g0 ≥ 0. For z > 0 we get (see [GLT, formula (53)])
∫ ∞

z/(bc)

u−1

(∫ bu

u/b

g0(v)

v
dv

)
du .

∫ 2bc/z

0

u(d−1)/2−1

(∫ u

0

v(d−1)/2|G0(v)| dv

)
du, (4.11)

where 1 < b < ρd/2,1.

(A.4) The following inequality was shown in [GLT, pp. 115-116]

[∫ ∞

0

u−γp+dp/q−dp−1

(∫ u

0

v(d−1)/2−1

(∫ v

0

z(d−1)/2|G0(z)| dz

)
dv

)p

du

]1/p

.

(∫

Rd

[
|x|−γ |ĝ(x)|

]q
dx

)1/q

,
d

q
−
d+ 1

2
< γ, q ≤ p.

Noting u−γp+dp/q−dp−1 = u−pβ−d−1 and changing variables ĝ ↔ f , p↔ q, β ↔ −γ, we obtain

[∫ ∞

0

uqγ−d−1

(∫ u

0

v(d−1)/2−1

(∫ v

0

z(d−1)/2|f0(z)| dz

)
dv

)q

du

]1/q

.

(∫

Rd

[
|x|β |f(x)|

]p
dx

)1/p

,
d

p
−
d+ 1

2
< −β, p ≤ q. (4.12)
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4.4. Proof of Theorem 4.1 in the case d ≥ 2. Let t > 0, f ∈ ĜMd ∩Lp(Rd), f(x) = f0(|x|),

and f̂(ξ) = F0(|ξ|). Note that F0 ∈ GM . We use notations from the proof of Theorem 2.1.

First, we prove (B). Let |ξ|d(1−1/p−1/q)f̂(ξ) ∈ Lq(Rd). We have

I =
∥∥∥min(1, t|ξ|)2l|ξ|d(1−1/p−1/q)|f̂(ξ)|

∥∥∥
q

≍
∥∥∥|ξ|d(1−1/p−1/q) [1− ηl,b(t|ξ|)] |f̂(ξ)|

∥∥∥
q
+
∥∥∥|ξ|d(1−1/p−1/q)(t|ξ|)2lηl,b(t|ξ|)|f̂(ξ)|

∥∥∥
q
=: I1 + I2.

Then inequalities

∫ cu

0

|d(1− ηl,b(tv))| ≍ t2l
∫ cu

0

v2l−1ηl,b−1(tv) dv ≤ t2l
∫ min(cu,1/t)

0

v2l−1 dv

≍ min(1, ctu)2l ≍ 1− ηl,b(tu), b > 1,

and Lemma 4.1 imply that the function [1− ηl,b(ts)]F0(s) = [1− ηl,b(t|ξ|)]f̂(ξ) is a GM-function.

Using Pitt’s inequality (4.8) for β = 0 and γ = d
(

1
p + 1

q − 1
)
yields

I1 =
∥∥∥|ξ|d(1−1/p−1/q) [f −Rλ,l,b(f)]̂(ξ)

∥∥∥
q
& ‖f −Rλ,l,b(f)‖p (4.13)

for

p >
2d

d+ 1
, q ≤ p. (4.14)

Since ηl,b(s) = 0 when s ≥ 1, then (ts)2lηl,b(ts) = min(1, ts)2lηl,b(ts). This and (2.10) give

(−1)lt2l
[
∆lRλ,l,b(f)

]
̂(ξ) = ηl,b(ts)min(1, ts)2lF0(s), s = |ξ|.

Also, since ηl,b(t|ξ|) = Ĝl,λ,b(ξ), then

(−1)lt2l∆lRλ,l,b(f) = Gλ,l,b ∗ h, ĥ(ξ) = min(1, t|ξ|)2lF0(|ξ|).

Using Young’s convolution inequality, we obtain
∥∥t2l∆lRλ,l,b(f)

∥∥
p
≤ ‖Gλ,l,b‖1‖h‖p = ‖Gl,b‖1‖h‖p . ‖h‖p.

We remark that

min(1, ts)2lF0(s) ∈ GM. (4.15)

This follows from the estimate
∫ cu

0

|dmin(1, tv)2l| ≍ t2l
∫ min(cu,1/t)

0

v2l−1 dv ≍ min[(ctu)2l, 1] ≍ min(1, tu)2l,

and Lemma 4.1.
Using again Pitt’s inequality (4.8), we have

I =
∥∥∥|ξ|d(1−1/p−1/q)ĥ(ξ)

∥∥∥
q
& ‖h‖p &

∥∥t2l∆lRλ,l,b(f)
∥∥
p
. (4.16)

Adding estimates (4.13) and (4.16), we get

‖f − Vl,tf‖p ≍ ‖f −Rλ,l,b(f)‖p + t2l
∥∥∆lRλ,l,b(f)

∥∥
p
. I1 + I . I.

This and (4.14) give the part (B) of the theorem.

Let us now prove the part (A). If p ≤ 2d
d+1 , the proof follows from Theorem 3.1. Suppose f̂(ξ) =

F0(|ξ|) ≥ 0. By [DD, Lemma 3.4],

[f − Vl,tf ]̂(ξ) = [1−ml(t|ξ|)]f̂(ξ),

where the function ml(s) satisfies for d ≥ 2 the following conditions

0 < C1s
2l ≤ 1−ml(s) ≤ C2s

2l, 0 < s ≤ π, 0 < ml(s) ≤ vd,l < 1, s ≥ π.

This gives

1−ml(s) ≍ min(1, s)2l, s ≥ 0. (4.17)
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Define h(x) = f(x) − Vl,tf(x) and its radial component by h0 := G0. Using (4.11) for the
non-negative function g0(s) = [1−ml(ts)]F0(s), we obtain

J(z) :=

∫ ∞

z/(bc)

u−1

(∫ bu

u/b

g0(v)

v
dv

)
du .

∫ 2bc/z

0

u(d−1)/2−1

(∫ u

0

v(d−1)/2|h0(v)| dv

)
du. (4.18)

Using (4.17), we get

J(z) ≍

∫ ∞

z/(bc)

u−1

(∫ bu

u/b

min(1, tv)2lF0(v)

v
dv

)
du, z > 0.

where, by (4.15), min(1, tv)2lF0(v) ∈ GM . Therefore, (4.4) for z > 0 yields

min(1, tz)2lF0(z) . J(z).

Further, the latter and (4.18) imply

I =
∥∥∥min(1, t|ξ|)2l|ξ|d(1−1/p−1/q)|f̂(ξ)|

∥∥∥
q
≍

(∫ ∞

0

[
zd(1−1/p−1/q) min(1, tz)2lF0(z)

]q
zd−1 dz

)1/q

.

(∫ ∞

0

[
zd(1−1/p−1/q)J(z)

]q
zd−1 dz

)1/q

.

(∫ ∞

0

[
zd(1−1/p−1/q)

(∫ 2bc/z

0

u(d−1)/2−1

(∫ u

0

v(d−1)/2|h0(v)| dv

)
du

)]q
zd−1 dz

)1/q

.

Changing variables 2bc/z → z, we obtain

I .

(∫ ∞

0

z−qd(1−1/p−1/q)−d−1

[∫ z

0

u(d−1)/2−1

(∫ u

0

v(d−1)/2|h0(v)| dv

)
du

]q
dz

)1/q

. (4.19)

Let us now use (4.12) for β = 0 and γ = d
(

1
p + 1

q − 1
)
. Since, in this case

z−qd(1−1/p−1/q)−d−1 = zqγ−d−1

inequalities (4.19) and (4.12) give

I .

(∫

Rd

|h(x)|p dx

)1/p

= ‖f − Vl,tf‖p . (4.20)

when d
p − d+1

2 < 0 and p ≤ q. The latter is 2d
d+1 < p ≤ q. The proof of (A) is now complete. �

4.5. Proof of Theorem 4.1 in the case d = 1. We follow the proof of Theorem 2.1. We have

ωl(f, t)p ≍ inf
(
‖f − g‖p + tl‖g(l)‖p : g

(l) ∈ Eλ ∩ Lp(R)
)
, λ = 1/t.

To show the estimate of ωl(f, t)p from above, that is, to prove (B), we take gλ(x) such that

ĝλ(ξ) =
[
1− (t|ξ|)l

]b
+
f̂(ξ), b ≥ 3.

Note that the function gλ is analogues to the Riesz-type means Rλ,l,b(f) and satisfies all required

properties (2.9)–(2.12) with l in place of 2l. In particular, 1−
[
1− (ts)l

]b
+
≍ min(1, ts)l. Proceeding

similarly to the proof of (B) in the case d ≥ 2, we arrive at the statement (B) in the case d = 1.

Let us now show (A). Let 2d
d+1 < p ≤ q <∞ and f̂ ≥ 0. Equivalence (2.18) gives

ωl(f, t)p ≍ ‖f − Sλ(f)‖p + tl ‖DlSλ(f)‖p ≥ ‖h‖p ,

where h = f − Sλ(f) + tlDlSλ(f). Moreover, ĥ(ξ) =
[
1− χλ(|ξ|) + (t|ξ|)lχλ(|ξ|)

]
f̂(ξ). Because of

(2.20) and (4.15) with s ≥ 0, we have ĥ(ξ) = min(1, ts)lF0(s) ∈ GM . Using then (4.9) with β = 0,
we obtain

ωl(f, t)p & ‖h‖p &
∥∥∥|ξ|1−1/p−1/qĥ(ξ)

∥∥∥
p
=
∥∥∥min(1, t|ξ|)l|ξ|1−1/p−1/q f̂(ξ)

∥∥∥
p
. �
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5. Growth of Fourier coefficients via moduli of smoothness. The case of functions on Td

Let f ∈ Lp(Td), 1 < p <∞, and

f̂n =

∫

Td

f(x)einx dx, n ∈ Z
d,

∥∥f̂n
∥∥
lq(Zd)

:=

(∑

n∈Zd

∣∣f̂n
∣∣q
)1/q

.

In the paper [Di, Th. 4.1] the following was proved
∥∥∥min(1, t|n|)θl

∣∣f̂n
∣∣
∥∥∥
lp′ (Zd)

. Ωl(f, t)p, 1 < p ≤ 2,

where Ωl(f, t)p is given by (1.7) and (1.8) with ‖ · ‖p = ‖ · ‖Lp(Td).
The goal of the section is to obtain the generalization of this result which is a periodic analogue

of inequalities (2.1)–(2.2).

Theorem 5.1. Let f ∈ Lp(Td), d ≥ 1, 1 < q <∞ and γ = d
(

1
p + 1

q − 1
)
.

(A) Let 1 < p ≤ 2. Then for p ≤ q ≤ p′ we have
{
(1 + |n|)−γ f̂n

}
∈ lq(Zd), and

∥∥∥min(1, t|n|)θl(1 + |n|)−γ
∣∣f̂n
∣∣
∥∥∥
lq(Zd)

. Ωl(f, t)p. (5.1)

(B) Let 2 ≤ p <∞,
{
(1 + |n|)−γ f̂n

}
∈ lq(Zd), and max {q, q′} ≤ p. Then

∥∥∥min(1, t|n|)θl(1 + |n|)−γ
∣∣f̂n
∣∣
∥∥∥
lq(Zd)

& Ωl(f, t)p. (5.2)

The proof of this theorem is similar to the proof of estimates (2.1)-(2.2) from Theorem 2.1. The
key points are Pitt’s inequalities of form∥∥∥f̂n(1 + |n|)−γ

∥∥∥
lq(Zd)

. ‖f‖Lp(Td), 1 < p ≤ 2 (5.3)

and ∥∥∥f̂n(1 + |n|)−γ
∥∥∥
lq(Zd)

& ‖f‖Lp(Td), p ≥ 2, (5.4)

under the corresponding conditions on q, as well as the realization results for the K-functionals in the
periodic case (see [Di] and [DHI]).

Proof of (5.3). Let us show that the proof of (5.3) follows from Pitt’s inequality for functions
on Rd. Note that γ ≥ 0. Let f∗ be the function on Rd such that f∗ = f on (−π, π]d and f∗ = 0
outside (−π, π]d. Then

‖f∗‖Lp(Rd) = ‖f‖Lp(Td), f̂∗(ξ) =

∫

Td

f(x)eiξx dx, ξ ∈ R
d, f̂∗(n) = f̂n, n ∈ Z

d.

Further, we use the results from [Ni, Ch. 3]. For an entire function g of exponential type σe,
σ > 0, we have

‖g‖lq(Zd) ≤ (1 + σ)d‖g‖Lq(Rd), q ≥ 1. (5.5)

Note that the function f̂∗ is an entire function of exponential type πe, where e = (1, . . . , 1) ∈ Rd.
We cannot use (5.5) since the weight function |ξ|−γ , γ ≥ 0, is not an entire function. However, it
is possible to construct a positive radial entire function of exponential (spherical) type such that for
|ξ| ≥ 1 this function is equivalent to |ξ|−γ .

We consider

ψγ(u) = jν

(u+ i

2

)
jν

(u− i

2

)
, u ∈ C, 2ν + 1 = γ ≥ 0,

where jν is the normalized Bessel function. The function ψγ is an even positive entire function of
type 1. Positivity of ψγ follows from the fact that all its zeros lie on lines t± i, t ∈ R. The asymptotic
expansion of Bessel functions [AS, formula 9.2.1] yields, for |z| → ∞,

jν(z) =
Cν

zν+1/2

(
cos (z − cν) +O(|z|−1)

)
, Re z ≥ 0, | Im z| . 1.

This and ψγ(0) > 0 give ψγ(u) ≍ (1 + |u|)−γ , u ∈ R.
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Let us now consider the radial function ψγ(|ξ|), ξ ∈ Rd, which is an entire function of (spherical)
type 1, and therefore, of type e. Also,

ψγ(|ξ|) ≍ (1 + |ξ|)−γ , ξ ∈ R
d. (5.6)

Define g(ξ) = f̂∗(ξ)ψγ(|ξ|), which is an entire function of type (π + 1)e. Using (5.6), we get

‖g‖lq(Zd) =

(∑

n∈Zd

∣∣∣f̂∗(n)ψγ(|n|)
∣∣∣
q
)1/q

≍

(∑

n∈Zd

∣∣∣f̂n(1 + |n|)−γ
∣∣∣
q
)1/q

,

‖g‖Lq(Rd) =

(∫

Rd

∣∣∣f̂∗(ξ)ψγ(|ξ|)
∣∣∣
q

dξ

)1/q

.

(∫

Rd

∣∣∣f̂∗(ξ)|ξ|−γ
∣∣∣
q

dξ

)1/q

.

Then by (5.5) and Pitt’s inequality for function on Rd, we have∥∥∥f̂n(1 + |n|)−γ
∥∥∥
lq(Zd)

≍ ‖g‖lq(Zd) ≤ (π + 2)d‖g‖Lq(Rd) .
∥∥∥f̂∗(ξ)|ξ|−γ

∥∥∥
Lq(Rd)

. ‖f∗‖Lp(Rd) = ‖f‖Lp(Td).

Thus we have proved the Pitt inequality (5.3) for function on Td. �

Proof of (5.4). The following inequality is a consequence of [Nu, Th. 7] and Hardy’s inequality
for rearrangements:

‖f‖Lp
.

(∑

k∈Zd

d∏

j=1

(|kj |+ 1)q/p
′−1|f̂k|

q

)1/q

, max {q, q′} ≤ p. (5.7)

The latter immediately gives (5.4). We would like to thank Erlan Nursultanov for drawing our
attention to his result (5.7), which simplifies the proof. �

6. An equivalence result for periodic functions

A complex null-sequence a = {an}n∈N is said to be general monotone, written a ∈ GM , if (see
[DT]) there exists c > 1 such that (∆ak = ak − ak+1)

∞∑

k=n

|∆ak| .

∞∑

k=[n/c]

|ak|

k
, n ∈ N.

Theorem 6.1. Let f ∈ Lp(T), 1 < p <∞, and

f(x) ∼

∞∑

n=1

(an cosnx+ bn sinnx),

where nonnegative {an}n∈N, {bn}n∈N are general monotone sequences. Then

ωl (f, t)p ≍

( ∞∑

ν=1

min(1, νt)lpνp−2 (apν + bpν)

)1/p

. (6.1)

We will use the following lemma (see [AW]).

Lemma 6.1. Let 1 < p <∞ and let
∑∞

ν=1 aν cos νx be the Fourier series of f ∈ L1(T).

(A) If the sequences {an} and {βn} are such that

∞∑

k=ν

|∆ak| . βν , ν ∈ N, (6.2)

then

‖f‖pp .

∞∑

ν=1

νp−2βp
ν . (6.3)

(B) If a = {an} is a nonnegative sequence, then

∞∑

n=1

( n∑

k=[n/2]

ak

)p

n−2 . ‖f‖pp. (6.4)
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Proof of Theorem 6.1. First, we remark that since 1 < p <∞ it is sufficient to prove that

ωp
l

(
f,

1

n

)
p
≍ I1 + I2,

where

I1 = n−lp
n∑

ν=1

apνν
(l+1)p−2, I2 =

∞∑

ν=n+1

apνν
p−2,

f(x) ∼

∞∑

n=1

an cosnx, {an}n∈N ∈ GM.

We will also use the realization result for the modulus of smoothness (see [DHI]), that is,

ωp
l

(
f,

1

n

)
p
≍
∥∥f(x)− Tn(x)

∥∥p
p
+ n−lp

∥∥T (l)
n (x)

∥∥p
p
, (6.5)

where Tn(f) is the n-th almost best approximant, i.e., ‖f(x)− Tn(x)‖p . En(f)p. In particular we

can take Tn as Sn = Sn(f), i.e., the n-th partial sum of
∑∞

k=1 ak cos kx.
Let us prove estimate of I1 and I2 from above. Since {an} ∈ GM , we have

aν ≤

∞∑

l=ν

|∆al| .

∞∑

l=[ν/c]

al
l
, (6.6)

then Hölder’s inequality yields

I1 . n−lp
n∑

ν=1

( ∞∑

j=[ν/c]

aj
j

)p

ν(l+1)p−2

. n−lp
n∑

ν=1

( n∑

j=[ν/c]

aj
j

)p

ν(l+1)p−2 + np−1

( ∞∑

j=n

aj
j

)p

. n−lp
n∑

ν=1

( n∑

j=ν

aj
j

)p

ν(l+1)p−2 +

∞∑

j=n+1

apj j
p−2 =: I3 + I2.

To estimate I2 and I3, we are going to use the following inequalities

∞∑

s=n

as .

∞∑

s=n

1

s

s∑

m=[s/2]

am and

n∑

s=1

as .

2n∑

s=1

1

s

s∑

m=[s/2]

am. (6.7)

Then by Hardy’s inequality [HLP], we have

I3 . n−lp
n∑

ν=1

( 2n∑

j=ν

1

j2

l∑

m=[j/2]

am

)p

ν(l+1)p−2

. n−lp
2n∑

j=1

( j∑

m=[j/2]

am

)p

jlp−2.

Then Lemma 6.1 (B) and (6.5) yield

I3 . n−lp

∥∥∥∥
2n∑

ν=1

νlaν cos νx

∥∥∥∥
p

p

≍ n−lp
∥∥S(l)

2n(f)
∥∥p
p
. ωp

l

(
f,

1

2n

)
p
. ωp

l

(
f,

1

n

)
p
.

Further, using (6.6), (6.7), and Hardy’ inequality, we have

I2 .

∞∑

j=n+1

jp−2

( ∞∑

s=[j/c]

as
s

)p

.

∞∑

j=n+1

jp−2

( ∞∑

s=[j/c]

1

s2

s∑

m=[s/2]

am

)p

.

∞∑

s=[n/c]

s−2

( s∑

m=[s/2]

am

)p

.

∞∑

s=2n

s−2

( s∑

m=[s/2]

am

)p

+ n−lp
2n∑

s=1

slp−2

( s∑

m=[s/2]

am

)p

.
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The last sum was estimated above. Again, by Lemma 6.1 (B) and (6.5),

∞∑

s=2n

s−2

( s∑

m=[s/2]

am

)p

.

∥∥∥∥
∞∑

ν=n

aν cos νx

∥∥∥∥
p

p

. ωp
l

(
f,

1

n

)

p

.

So, we showed that

I1 + I2 . ωp
l

(
f,

1

n

)
p
.

To prove the reverse, we use Lemma 6.1 (A), the definition of the GM class, Hölder’s and Hardy’s
inequalities:

‖f − Sn‖
p
p .

∞∑

j=1

βp−2
j jp−2 . np−1

( ∞∑

s=n

|∆as|

)p

+

∞∑

j=n

jp−2

( ∞∑

s=l

|∆as|

)p

. np−1

( ∞∑

s=[n/c]

as
s

)p

+

∞∑

j=n

jp−2

( ∞∑

s=[j/c]

as
s

)p

.

∞∑

j=[n/c]

apj j
p−2 . I1 + I2,

where βj =
∑∞

s=max(j,n) |∆as|. Similarly,

n−lp
∥∥S(l)

n (f)
∥∥p
p
. n−lp

∥∥∥∥
n∑

ν=1

νlaν cos νx

∥∥∥∥
p

p

. n−lp
n∑

ν=1

νp−2

( n∑

s=ν

|∆(slas)|

)p

.

Further,
n∑

s=ν

|∆(slas)| .

n∑

s=ν

sl−1as +

n∑

s=ν

sl|∆as| .

n∑

s=ν

sl−1as +

n∑

s=ν

|∆as|

( s∑

m=ν

ml−1 + νl
)
,

and after routine calculations, we arrive at
n∑

s=ν

|∆(slas)| .

n∑

s=[ν/c]

sl−1as + nl
∞∑

m=n

am
m
.

Using this and Hardy’s inequality, we get n−lp
∥∥S(l)

n (f)
∥∥p
p
. I1 + I2. Finally, by (6.5),

ωp
l

(
f,

1

n

)
p
. I1 + I2. �

7. Discussion and applications

7.1. Riemann–Lebesgue-type results. From Theorem A and [Di, Th. 2.2], one has the fol-
lowing estimate of the Fourier transform

tθl

(∫

|ξ|<1/t

|ξ|θlp
′

|f̂(ξ)|p
′

dξ

)1/p′

+

(∫

1/t≤|ξ|

|f̂(ξ)|p
′

dξ

)1/p′

. Ωl(f, t)p, 1 < p ≤ 2. (7.1)

On the other hand, Theorem 2.1 gives (p ≤ q ≤ p′, 1 < p ≤ 2)

tθl

(∫

|ξ|<1/t

|ξ|θlq+dq(1−1/p−1/q)|f̂(ξ)|q dξ

)1/q

+

(∫

1/t≤|ξ|

|ξ|dq(1−1/p−1/q)|f̂(ξ)|q dξ

)1/q

. Ωl(f, t)p.

(7.2)
If q = p′ (7.2) reduces to (7.1). The following example shows that (7.2), in general, provides better
estimates than (7.1).

Example. Let f̂(ξ) = F0(|ξ|),

F0(s) =
s−d/p′

ln2/p(2 + s)
,

2d

d+ 1
< p <∞.

Note that F0 is decreasing to zero and therefore F0 ∈ GM . Also, it is easy to see that |ξ|d(1−2/p)f̂(ξ) ∈

Lp(Rd). Hence, as in Example 3 (for q = p) we get f ∈ ĜMd ∩ Lp(Rd).
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We have

tθl

(∫

|ξ|<1/t

|ξ|θlq+dq(1−1/p−1/q)|f̂(ξ)|q dξ

)1/q

+

(∫

|ξ|≥1/t

|ξ|dq(1−1/p−1/q)|f̂(ξ)|q dξ

)1/q

≍
[
ln(2 + 1/t)

]−2/p+1/q
.

Then (7.1) gives
[
ln(2 + 1/t)

]1−3/p
. Ωl(f, t)p, p ≤ 2,

and (7.2) implies (with q = p)
[
ln(2 + 1/t)

]−1/p
. Ωl(f, t)p, p ≤ 2.

The latter estimate is stronger. Moreover, it is sharp since by Corollary 4.1 we in fact have

[
ln(2 + 1/t)

]−1/p
≍ Ωl(f, t)p,

2d

d+ 1
< p <∞. �

7.2. Pointwise Riemann–Lebesgue-type results. For f ∈ L1(Rd) ∩ Lp(Rd), 1 < p ≤ 2, the
Riemann–Lebesgue inequality

|f̂(ξ)| . Ωl(f, 1/|ξ|)p (7.3)

does not hold in general.
Let us consider the case of d = 1 and l ≥ 2. Define

f(x) =
∑

n∈Z

anψn(x), ψn(x) = εnϕ(εnx)e
−inx,

ϕ(x) = (2π)−1

(
sin(x/2)

x/2

)2

, ϕ̂(ξ) = (1 − |ξ|)+,

an = (1 + |n|)−3/2, εn = (1 + |n|)−αp′

, 1 < α < 3/2.

Changing variables, we have

‖ϕ(εnx)‖q = ε−1/q
n ‖ϕ‖q ≍ ε−1/q

n .

Hence

‖f‖q ≤
∑

n∈Z

anεn‖ϕ(εnx)‖q ≍
∑

n∈Z

anε
1/q′

n ≤
∑

n∈Z

(1 + |n|)−3/2 <∞, q ≥ 1. (7.4)

This implies f ∈ L1(R) ∩ Lp(R). The Fourier transform of f is written as

f̂(ξ) =
∑

n∈Z

anψ̂n(ξ), ψ̂n(ξ) = ϕ̂

(
ξ − n

εn

)
.

Let us estimate ωl(f, 1/t)p from above. We will use the realization result (see (2.18)) given by

ωl(f, 1/t)p ≍ ‖f − St(f)‖p + t−l
∥∥S(l)

t (f)
∥∥
p
, t > 0, 1 < p <∞. (7.5)

Since supp ψ̂n ⊂ [n− εn, n+ εn], then

St(f)(x) =
∑

|n|≤[t]

anψn(x), f(x)− St(f)(x) =
∑

|n|>[t]

anψn(x).

The function ϕ and its derivatives are given by

ϕ(l)(x) =
1

2π

∫ 1

−1

(1 − |ξ|)(−iξ)le−iξx dξ, l ∈ Z+.

Then |ϕ(l)(x)| ≤ 1, x ∈ R. For |x| ≥ 1 we get

∣∣ϕ(l)(x)
∣∣ =

∣∣∣∣(2π)−1
l∑

j=0

(
l

j

)[
sin2(x/2)

](l−j) [
(x/2)−2

](j)
∣∣∣∣ .

1

x2
.
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Thus,
∣∣ϕ(l)(x)

∣∣ .
(
1 + x2

)−1
and then

∣∣ψ(l)
n (x)

∣∣ = εn

∣∣∣∣
l∑

j=0

(
l

j

)[
e−inx

](l−j)
[ϕ(εnx)]

(j)

∣∣∣∣ = εn

∣∣∣∣
l∑

j=0

(
l

j

)
(−in)l−jεjnϕ

(j)(εnx)

∣∣∣∣

.
εn

1 + (εnx)2

l∑

j=0

(
l

j

)
|n|l−jεjn =

εn(|n|+ εn)
l

1 + (εnx)2
.

Then we arrive at

‖ψ(l)
n ‖q . (|n|+ εn)

lε1/q
′

n . (1 + |n|)lε1/q
′

n .

Using these relations and proceeding similarly to (7.4), we get

‖f − St(f)‖p ≤
∑

|n|>[t]

anε
1/p′

n =
∑

|n|>[t]

(1 + |n|)−3/2−α . t−1/2−α,

t−l
∥∥S(l)

t (f)
∥∥
p
. t−l

∑

|n|≤[t]

an(1 + |n|)lε1/p
′

n . t−l
∑

|n|≤[t]

(1 + |n|)l−3/2−α.

For l ≥ 2, α < 3/2 we get l − 3/2− α > −1. Then t−l
∥∥S(l)

t (f)
∥∥
p
. t−1/2−α. Finally, (7.5) implies

ωl(f, 1/t)p . t−1/2−α.

For any large enough t ∈ N

f̂(t) = atϕ̂(0) = at ≍ t−3/2.

Since ε = α− 1 > 0, we finally get

f̂(t) & tεωl(f, 1/t)p. �

However, let us remark that for functions from the class ĜMd class, it is possible to obtain the
pointwise bound of the Fourier transform.

Corollary 7.1. Let f ∈ ĜMd ∩ Lp(Rd), d ≥ 1, f̂(ξ) = F0(|ξ|) ≥ 0, and 2d
d+1 < p <∞. Then

F0(t) . t−d/p′

Ωl(f, 1/t)p. (7.6)

Proof. Since f ∈ ĜMd, using (4.3) and Hölder’s inequality, we get

F0(s) .

∫ ∞

s/c

F0(u)

u
du =

∫ ∞

s/c

F0(u)u
d−d/p−1/pu−d+(d+1−p)/p du

. sd/p−d

(∫ ∞

s/c

F p
0 (u)u

dp−d−1 du

)1/p

. (7.7)

Then using Corollary 4.1, we have

Ωp
l (f, t)p ≍ tθlp

∫ 1/t

0

sθlp+dp−d−1F p
0 (s) ds+

∫ ∞

1/t

sdp−d−1F p
0 (s) ds (7.8)

and by (7.7), we finally get

F0(t) . td/p−d

(∫ ∞

t/c

F p
0 (u)u

dp−d−1 du

)1/p

. t−d/p′

Ωl(f, 1/t)p. �
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7.3. Moduli of smoothness and best approximations: sharp relations. The following
direct and inverse theorems of trigonometric approximation are well known (see e.g. [DL, p. 210],
[DDT, Intr.]):

1

nl

(
n∑

ν=0

(ν + 1)τl−1Eτ
ν (f)p

)1/τ

. ωl

(
f,

1

n

)
p
.

1

nl

(
n∑

ν=0

(ν + 1)ql−1Eq
ν(f)p

)1/q

, (7.9)

where f ∈ Lp(T), 1 < p < ∞, l, n ∈ N, q = min(2, p), τ = max(2, p), En(f)p denotes the n-th best
trigonometric approximation of f in Lp, and ωl(f, δ)p is the Lp-modulus of smoothness, see (1.2) with
X = T.

We remark that (7.9) is the sharp version of classical Jackson and weak-type inequalities ([DL,
p. 205, 208]) and it can be written equivalently as follows ([DDT]):

tl
(∫ 1

t

u−τl−1ωτ
l+1(f, u)p du

)1/τ

. ωl(f, t)p . tl
(∫ 1

t

u−ql−1ωq
l+1(f, u)p du

)1/q

. (7.10)

Constructing individual functions shows ([DDT]) that the parameters q = min(2, p) and τ = max(2, p)
are optimal in (7.9) and (7.10). For functions on [−1, 1] inequalities of type (7.9) and (7.10) were
obtained in [To, DDT].

For functions on Lp(Rd), similar results were also proved for Ωk(f, t)p and En(f)p, i.e., the best
Lp-approximation by functions of exponential type n (see [DDT]). For example, an analogue of (7.9)
is given by

1

2θln

(
n∑

ν=0

2θlτνEτ
2ν (f)p

)1/τ

. Ωl

(
f,

1

2n

)
p
.

1

2θln

(
n∑

ν=0

2θlqνEq
2ν (f)p

)1/q

, ‖ · ‖p = ‖ · ‖Lp(Rd).

Below we show that for functions from the class ĜMd we can completely solve the problem of de-
scription of relationships between Ωl(f, t)p and En(f)p as well as Ωl(f, t)p and Ωl+1(f, t)p.

Theorem 7.1. If f ∈ ĜMd ∩ Lp(Rd), d ≥ 1, f̂ ≥ 0, and 2d
d+1 < p <∞, then

Ωl(f, t)p ≍

(
tθlp

∫ 1

t

u−θlpΩp
l+1(f, u)p

du

u

)1/p

+ tθlA(f)p, 0 < t <
1

2
, (7.11)

where A(f)p :=
∥∥|ξ|θl+d(1−2/p)χ1(|ξ|)f̂ (ξ)

∥∥
p
. Ωl(f, 1)p. In particular, we have

(
tθlp

∫ 1

t

u−θlpΩp
l+1(f, u)p

du

u

)1/p

. Ωl(f, t)p .

(
tθlp

∫ 1

t

u−θlpΩp
l+1(f, u)p

du

u

)1/p

+ tθl‖f‖p

and

1

2θln

(
n∑

ν=0

2θlpνEp
2ν (f)p

)1/p

. Ωl

(
f,

1

2n

)
p
.

1

2θln

(
n∑

ν=0

2θlpνEp
2ν (f)p

)1/p

+
1

2θln
‖f‖p. (7.12)

Remark 1. In (7.11) one cannot drop tθlA(f)p. Indeed, consider

F p
0 (s) = s−(dp−d−1)χ1/n(s).

Then

Ωp
l (f, t)p ≍ tθlp

∫ 1/n

0

sθlp+dp−d−1F p
0 (s) ds ≍ tθlp

∫ 1/n

0

sθlp ds ≍ tθlpn−θlp−1.

Using this,

tθlp
∫ 1

t

u−θlpΩp
l+1(f, u)p

du

u
≍ tθlp

∫ 1

t

uθpn−θ(l+1)p−1 du

u
≍ tθlpn−θ(l+1)p−1.

Hence, writing

tθln−θl−1/p . Ωl(f, t)p . tθl
(∫ 1

t

u−θlpΩp
l+1(f, u)p

du

u

)1/p

. n−θtθln−θl−1/p

we arrive at a contradiction as n→ ∞.
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Proof of Theorem 7.1. Using Corollary 4.1, we get

Ωp
l (f, t)p ≍ tθlp

∫ 1/t

0

sθlp+dp−d−1F p
0 (s) ds+

∫ ∞

1/t

sdp−d−1F p
0 (s) ds =: J1(t) + J2(t)

and

tθlp
∫ 1

t

u−θlpΩp
l+1(f, u)p

du

u
≍ tθlp

∫ 1/t

1

u−θp−1

[∫ u

0

sθ(l+1)p+dp−d−1F p
0 (s) ds

]
du

+ tθlp
∫ 1/t

1

uθlp−1

[∫ ∞

u

sdp−d−1F p
0 (s) ds

]
du =: I1(t) + I2(t).

Then

I1(t) = tθlp
∫ 1/t

1

u−θp−1

[(∫ 1

0

+

∫ u

1

)
sθ(l+1)p+dp−d−1F p

0 (s) ds

]
du

≍ tθlp
∫ 1

0

sθ(l+1)p+dp−d−1F p
0 (s) ds+ tθlp

∫ 1/t

1

sθ(l+1)p+dp−d−1F p
0 (s)

∫ 1/t

s

u−θp−1 du ds

. J1(t)

and

I2(t) = tθlp
∫ 1/t

1

uθlp−1

[(∫ 1/t

u

+

∫ ∞

1/t

)
sdp−d−1F p

0 (s) ds

]
du

≍ tθlp
∫ 1/t

1

sdp−d−1F p
0 (s)

∫ s

1

uθlp−1 du ds+

∫ ∞

1/t

sdp−d−1F p
0 (s) ds

. J1(t) + J2(t).

Using again Corollary 4.1,

A(f)p ≍

(∫ 1

0

sθlp+dp−d−1F p
0 (s) ds

)1/p

.

(∫ ∞

0

sdp−d−1min(1, s)θlpF p
0 (s) ds

)1/p

≍
∥∥∥min(1, |ξ|)θl|ξ|d(1−2/p)f̂(ξ)

∥∥∥
p
≍ Ωl(f, 1)p.

Moreover, Ap(f)p . J1(t). Thus,

I1(t) + I2(t) + tθlpAp(f)p . J1(t) + J2(t).

To prove the inverse inequality, we first remark that s−θp .
∫ 1/t

s
u−θp−1du, 1 < s < 1/(2t) and

therefore using (4.10),

J1(2t) . tθlp
∫ 1

0

sθlp+dp−d−1F p
0 (s) ds+ tθlp

∫ 1/2t

1

sθ(l+1)p+dp−d−1F p
0 (s)

(∫ 1/t

s

u−θp−1 du

)
ds

. tθlpAp(f)p + I1(t).

Also,

J2(2t) .

∫ ∞

1/(2t)

sdp−d−1F p
0 (s) ds

.

∫ 1/t

1/(2t)

sdp−d−1F p
0 (s) ds+ tθlp

∫ 1/t

1/(2t)

uθlp−1

∫ ∞

u

sdp−d−1F p
0 (s) ds du

. I1(t) + I2(t).

Finally, to verify (7.12), we apply [DDT, (5.7) and (5.8)]. �

Using (6.1), we state the analogous result for periodic functions; compare with (7.9) and (7.10).
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Theorem 7.2. Let f ∈ Lp(T), 1 < p <∞, and

f(x) ∼

∞∑

n=1

(an cosnx+ bn sinnx),

where non-negative {an}n∈N, {bn}n∈N are general monotone sequences. Then

ωl(f, t)p ≍

(
tlp
∫ 1

t

u−lpωp
l+1(f, u)p

du

u

)1/p

, 0 < t <
1

2
.

In particular,

ωl(f, 1/n)p ≍

(
n−lp

n∑

ν=0

(ν + 1)lp−1Ep
ν (f)p

)1/p

,

where Eν(f)p is the best Lp-approximation of f by trigonometric polynomials of degree ν.

Note that similar equivalence results for continuous functions were obtained in [Tik, Ths. 5.1,
5.2].

7.4. A characterization of the Besov spaces. For 1 ≤ p ≤ ∞ and τ, r > 0, define the Besov
space Br

p,τ (R
d) as the collection of functions f ∈ Lp(Rd) such that

‖f‖Br
p,τ(R

d) = ‖f‖Lp(Rd) +

(∫ 1

0

(Ωl(f, t)p
tr

)τ dt
t

)1/τ

<∞,

where 0 < r < θl. Similarly we define the Lipschitz space Liprp(R
d) ≡ Br

p,∞(Rd), i.e.,

‖f‖Lipr
p(R

d) = ‖f‖Lp(Rd) + sup
t

Ωl(f, t)p
tr

, 0 < r < θl.

It turns out that it is possible to characterize functions from the Besov space Br
p,τ (R

d) in terms
of growth properties of their Fourier transforms.

Theorem 7.3. Let d ≥ 1, 1 < τ ≤ ∞, and 2d
d+1 < p ≤ τ . If f ∈ ĜMd ∩ Lp(Rd) and f̂ ≥ 0, then

a necessary and sufficient condition for f ∈ Br
p,τ (R

d) is
∫ ∞

0

srτ+dτ−dτ/p−1F τ
0 (s) ds <∞ if 1 < τ <∞ (7.13)

and

sup
s
sr+d−d/pF0(s) <∞ if τ = ∞. (7.14)

Proof. The case of 1 < τ <∞. Let first (7.13) hold. By (7.8), we get

|f |Br
p,τ

≍ K1 +K2 +K3 :=

∫ 1

0

t(θl−r)τ−1

(∫ 1

0

sθlp+dp−d−1F p
0 (s) ds

)τ/p

dt

+

∫ ∞

1

t(r−θl)τ−1

(∫ t

1

sθlp+dp−d−1F p
0 (s) ds

)τ/p

dt+

∫ 1

0

trτ−1

(∫ ∞

1/t

sdp−d−1F p
0 (s) ds

)τ/p

dt.

Then by Hölder’s inequality with parameters α = τ/p and α′, we get

K1 .

∫ 1

0

srτ+dτ−dτ/p−1F τ
0 (s) ds.

By Hardy’s inequalities (see e.g. [BSh, p. 124]), we have

K2 +K3 .

∫ ∞

1

srτ+dτ−dτ/p−1F τ
0 (s) ds.

Hence, if (7.13) holds, f ∈ Br
p,τ (R

d).
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Let f ∈ Br
p,τ (R

d). By (7.7),

F0(s)
τ . sdτ/p−dτ

(∫ ∞

s/c

F p
0 (u)u

dp−d−1 du

)τ/p

.

Therefore, making use of this, we have

∫ ∞

0

srτ+dτ−dτ/p−1F τ
0 (s) ds .

∫ ∞

1

srτ−1

(∫ ∞

s

F p
0 (u)u

dp−d−1 du

)τ/p

ds

+

∫ 1

0

srτ−1

(∫ ∞

s

F p
0 (u)u

dp−d−1 du

)τ/p

ds . |f |Br
p,τ

+
∥∥|ξ|d(1−2/p)f̂(ξ)

∥∥τ
p

∫ 1

0

srτ−1ds.

Finally, since
∥∥∥|ξ|d(1−2/p)f̂(ξ)

∥∥∥
p
. ‖f‖p (see (4.10)), (7.13) holds.

The case of τ = ∞. Let first (7.14) hold. Then by (7.8), (7.14) yields

Ωp
l (f, t)p . tθlp

∫ 1/t

0

sθlp−rp−1 ds+

∫ ∞

1/t

s−rp−1 ds . trp,

i.e., f ∈ Liprp(R
d).

On the other hand, if f ∈ Liprp(R
d), we use (7.7) and (7.8)

F p
0 (s) . sd−dp

∫ ∞

s/c

F p
0 (u)u

dp−d−1 du . sd−dpΩp
l (f, 1/s)p . sd−dp−rp,

which is (7.14). �

7.5. Embedding theorems. The following Sobolev-type embedding result for the Besov space
with the limiting smoothness parameter is well known: Br

p,q →֒ Lq, r = d
(
1
p − 1

q

)
(see, e.g., [Pe,

(8.2)]). Theorem 7.3 gives the sharpness of this result in the following sense.

Corollary 7.2. Let d ≥ 1 and 2d
d+1 < p < q <∞. If f ∈ ĜMd ∩ Lp(Rd) and f̂ ≥ 0, then

f ∈ Br
p,q(R

d), r = d
(1
p
−

1

q

)
⇐⇒ f ∈ Lq(Rd). (7.15)

Proof. To show (7.15), we combine Theorem 7.3 and
∥∥|ξ|d(1−2/p)f̂(ξ)

∥∥
p
≍ ‖f‖p,

2d
d+1 < p < ∞

(see (4.10)). �

Note that the embedding Br
p,q →֒ Lq is equivalent to the sharp (Ul’yanov) inequalities for moduli

of smoothness in different metrics, as recently shown in [Tr2, Th. 2.4].
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