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THE BOCHNER-RIESZ MEANS FOR FOURIER-BESSEL

EXPANSIONS: NORM INEQUALITIES FOR THE MAXIMAL

OPERATOR AND ALMOST EVERYWHERE CONVERGENCE

ÓSCAR CIAURRI AND LUZ RONCAL

Abstract. In this paper, we develop a thorough analysis of the boundedness
properties of the maximal operator for the Bochner-Riesz means related to
the Fourier-Bessel expansions. For this operator, we study weighted and un-
weighted inequalities in the spaces Lp((0, 1), x2ν+1 dx). Moreover, weak and
restricted weak type inequalities are obtained for the critical values of p. As a
consequence, we deduce the almost everywhere pointwise convergence of these
means.

1. Introduction and main results

Let Jν be the Bessel function of order ν. For ν > −1 we have that
∫ 1

0

Jν(sjx)Jν (skx)x dx =
1

2
(Jν+1(sj))

2δj,k, j, k = 1, 2, . . .

where {sj}j≥1 denotes the sequence of successive positive zeros of Jν . From the
previous identity we can check that the system of functions

(1) ψj(x) =

√
2

|Jν+1(sj)|
x−νJν(sjx), j = 1, 2, . . .

is orthonormal and complete in L2((0, 1), dµν), with dµν(x) = x2ν+1 dx (for the
completeness, see [12]). Given a function f on (0, 1), its Fourier series associated
with this system, named as Fourier-Bessel series, is defined by

(2) f ∼
∞
∑

j=1

aj(f)ψj , with aj(f) =

∫ 1

0

f(y)ψj(y) dµν(y),

provided the integral exists. When ν = n/2− 1, for n ∈ N and n ≥ 2, the functions
ψj are the eigenfunctions of the radial Laplacian in the multidimensional ball Bn.
The eigenvalues are the elements of the sequence {s2j}j≥1. The Fourier-Bessel series
corresponds with the radial case of the multidimensional Fourier-Bessel expansions
analyzed in [1].

For each δ > 0, we define the Bochner-Riesz means for Fourier-Bessel series as

Bδ
R(f, x) =

∑

j≥1

(

1−
s2j
R2

)δ

+

aj(f)ψj(x),
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where R > 0 and (1 − s2)+ = max{1 − s2, 0}. Bochner-Riesz means are a regular
summation method used oftenly in harmonic analysis. It is very common to analyze
regular summation methods for Fourier series when the convergence of the partial
sum fails. Cesàro means are other of the most usual summation methods. B.
Muckenhoupt and D. W. Webb [14] give inequalities for Cesàro means of Laguerre
polynomial series and for the supremum of these means with certain parameters
and 1 < p ≤ ∞. For p = 1, they prove a weak type result. They also obtain similar
estimates for Cesàro means of Hermite polynomial series and for the supremum
of those means in [15]. An almost everywhere convergence result is obtained as a
corollary in [14] and [15]. The result about Laguerre polynomials is an extension of a
previous result in [18]. This kind of matters has been also studied by the first author
and J. L. Varona in [7] for the Cesàro means of generalized Hermite expansions.
The Cesàro means for Jacobi polynomials were analyzed by S. Chanillo and B.
Muckenhoupt in [3]. The Bochner-Riesz means themselves have been analyzed for
the Fourier transform and their boundedness properties in Lp(Rn) is an important
unsolved problem for n > 2 (the case n = 2 is well understood, see [2]).

The target of this paper is twofold. First we will analyze the almost everywhere
(a. e.) convergence, for functions in Lp((0, 1), dµν), of the Bochner-Riesz means for
Fourier-Bessel expansions. By the general theory [8, Ch. 2], to obtain this result
we need to estimate the maximal operator

Bδ(f, x) = sup
R>0

∣

∣Bδ
R(f, x)

∣

∣ ,

in the Lp((0, 1), dµν) spaces. A deep analysis of the boundedness properties of this
operator will be the second goal of our paper. This part of our work is strongly
inspired by the results given in [3] for the Fourier-Jacobi expansions.

Before giving our results we introduce some notation. Being p0 = 4(ν+1)
2ν+3+2δ and

p1 = 4(ν+1)
2ν+1−2δ , we define

p0(δ) =

{

1, δ > ν + 1/2 or − 1 < ν ≤ −1/2,

p0, δ ≤ ν + 1/2 and ν > −1/2,
(3)

p1(δ) =

{

∞, δ > ν + 1/2 or − 1 < ν ≤ −1/2,

p1, δ ≤ ν + 1/2 and ν > −1/2.

Concerning to the a. e. convergence of the Bochner-Riesz means, our result
reads as follows

Theorem 1. Let ν > −1, δ > 0, and 1 ≤ p <∞. Then,

Bδ
R(f, x) → f(x) a. e., for f ∈ Lp((0, 1), dµν)

if and only if p0(δ) ≤ p, where p0(δ) is as in (3).

Proof of Theorem 1 is contained in Section 2 and is based on the following
arguments. On one hand, to prove the necessity part, we will show the existence of
functions in Lp((0, 1), dµν) for p < p0(δ) such that Bδ

R diverges for them. In order
to do this, we will use a reasoning similar to the one given by C. Meaney in [13] that
we describe in Section 2. On the other hand, for the sufficiency, observe that the
convergence result follows from the study of the maximal operator Bδf . Indeed, it
is sufficient to get (p0(δ), p0(δ))-weak type estimates for this operator and this will
be the content of Theorem 3.
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Regarding the boundedness properties of Bδf we have the following facts. First,
a result containing the (p, p)-strong type inequality.

Theorem 2. Let ν > −1, δ > 0, and 1 < p ≤ ∞. Then,
∥

∥Bδf
∥

∥

Lp((0,1),dµν)
≤ C‖f‖Lp((0,1),dµν)

if and only if
{

1 < p ≤ ∞, for −1 < ν ≤ −1/2 or δ > ν + 1/2,

p0 < p < p1, for δ ≤ ν + 1/2 and ν > −1/2.

In the lower critical value of p0(δ) we can prove a (p0(δ), p0(δ))-weak type esti-
mate.

Theorem 3. Let ν > −1, δ > 0, and p0(δ) be the number in (3). Then,
∥

∥Bδf
∥

∥

Lp0(δ),∞((0,1),dµν)
≤ C‖f‖Lp0(δ)((0,1),dµν)

,

with C independent of f .

Finally, for the upper critical value, when 0 < δ < ν + 1/2 and ν > −1/2, it is
possible to obtain a (p1, p1)-restricted weak type estimate.

Theorem 4. Let ν > −1/2 and 0 < δ < ν + 1/2. Then,
∥

∥BδχE

∥

∥

Lp1,∞((0,1),dµν)
≤ C‖χE‖Lp1((0,1),dµν),

for all measurable subsets E of (0, 1) and C independent of E.

The previous results about norm inequalities are summarized in Figure 1 (case
−1 < ν ≤ −1/2) and Figure 2 (case ν > −1/2).
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Figure 2: case ν > − 1
2 .

At this point, a comment is in order. Note that J. E. Gilbert [9] also proves
weak type norm inequalities for maximal operators associated with orthogonal ex-
pansions. The method used cannot be applied in our case, and the reason is the
same as can be read in [3], at the end of Sections 15 and 16 therein. Following the
technique in [9] we have to analyze some weak type inequalities for Hardy opera-
tor and its adjoint with weights and these inequalities do not hold for p = p0 and
p = p1.
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The proof of the sufficiency in Theorem 2 will be deduced from a more general
result in which we analyze the boundedness of the operator Bδf with potential
weights. Before stating it, we need a previous definition. We say that the parame-
ters (b, B, ν, δ) satisfy the Cp conditions if

b >
−2(ν + 1)

p
(≥ if p = ∞),(4)

B < 2(ν + 1)

(

1− 1

p

)

(≤ if p = 1),(5)

b > 2(ν + 1)

(

1

2
− 1

p

)

− δ − 1

2
(≥ if p = ∞),(6)

B ≤ 2(ν + 1)

(

1

2
− 1

p

)

+ δ +
1

2
,(7)

B ≤ b,(8)

and in at least one of each of the following pairs the inequality is strict: (5) and (8),
(6) and (8), and (7) and (8) except for p = ∞. The result concerning inequalities
with potential weights is the following.

Theorem 5. Let ν > −1, δ > 0, and 1 < p ≤ ∞. If (b, B, ν, δ) satisfy the Cp

conditions, then
∥

∥xbBδf
∥

∥

Lp((0,1),dµν)
≤ C‖xBf‖Lp((0,1),dµν),

with C independent of f .

A result similar to Theorem 5 for the partial sum operator was proved in [10,
Theorem 1]. It followed from a weighted version of a general Gilbert’s maximal
transference theorem, see [9, Theorem 1]. The weighted extension of Gilbert’s
result given in [10] depended heavily on the Ap theory and it can not be used
in our case because it did not capture all the information relative to the weights.
On the other hand, it is also remarkable the paper by K. Stempak [19] in which
maximal inequalities for the partial sum operator of Fourier-Bessel expansions and
divergence and convergence results are discussed.

The necessity in Theorem 2 will follow by showing that the operator Bδf is
neither (p1, p1)-weak nor (p0, p0)-strong for ν > −1/2 and 0 < δ ≤ ν +1/2. This is
the content of the next theorems.

Theorem 6. Let ν > −1/2. Then

sup
‖f‖Lp1 ((0,1),dµν )=1

‖Bδ
Rf‖Lp1,∞((0,1),dµν) ≥ C(logR)1/p0 ,

if 0 < δ < ν + 1/2; and

sup
‖f‖L∞((0,1),dµν )=1

‖Bδ
Rf‖L∞((0,1),dµν) ≥ C logR,

if δ = ν + 1/2.

Theorem 7. Let ν > −1/2. Then

sup
E⊂(0,1)

‖Bδ
RχE‖Lp0((0,1),dµν)

‖χE‖Lp0((0,1),dµν)
≥ C(logR)1/p0 ,
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if 0 < δ < ν + 1/2; and

sup
‖f‖L1((0,1),dµν )=1

‖Bδ
Rf‖L1((0,1),dµν) ≥ C logR,

if δ = ν + 1/2.

The paper is organized as follows. In the next section, we give the proof of
Theorem 1. In Section 3 we first relate the Bochner-Riesz means Bδ

R to the Bochner-
Riesz means operator associated with the Fourier-Bessel system in the Lebesgue
measure setting. Then, we prove weighted inequalities for the supremum of this
new operator. With the connection between these means and the operator Bδ

R, we
obtain Theorem 5 and, as a consequence, the sufficiency of Theorem 2. Sections 4
and 5 will be devoted to the proofs of Theorems 3 and 4, respectively. The proofs
of Theorems 6 and 7 are contained in Section 6. One of the main ingredients in the
proofs of Theorems 6 and 7 will be Lemma 15, this lemma is rather technical and
it will be proved in the Section 7.

Throughout the paper, we will use the following notation: for each p ∈ [1,∞],
we will denote by p′ the conjugate of p, that is, 1

p + 1
p′

= 1. We shall write X ≃ Y

when simultaneously X ≤ CY and Y ≤ CX .

2. Proof of Theorem 1

The proof of the sufficiency follows from Theorem 3 and standard arguments.
In order to prove the necessity, let us see that, for 0 < δ < ν+1/2 and ν > −1/2,

there exists a function f ∈ Lp((0, 1), dµν), p ∈ [1, p0), for which Bδ
R(f, x) diverges.

We follow some ideas contained in [13] and [19].
First, we need a few more ingredients. Recall the well-known asymptotics for

the Bessel functions (see [20, Chapter 7])

(9) Jν(z) =
zν

2νΓ(ν + 1)
+ O(zν+2), |z| < 1, | arg(z)| ≤ π,

and
(10)

Jν(z) =

√

2

πz

[

cos
(

z − νπ

2
− π

4

)

+O(eIm(z)z−1)
]

, |z| ≥ 1, | arg(z)| ≤ π − θ,

where Dν = −(νπ/2 + π/4). It will also be useful the fact that (cf. [6, (2.6)])

(11) sj = O(j).

For our purposes, we need estimates for the Lp norms of the functions ψj . These
estimates are contained in the following lemma, whose proof can be read in [5,
Lemma 2.1].

Lemma 1. Let 1 ≤ p ≤ ∞ and ν > −1. Then, for ν > −1/2,

‖ψj‖Lp((0,1),dµν) ≃















j(ν+1/2)− 2(ν+1)
p , if p > 2(ν+1)

ν+1/2 ,

(log j)1/p, if p = 2(ν+1)
ν+1/2 ,

1, if p < 2(ν+1)
ν+1/2 ,

and, for −1 < ν ≤ −1/2,

‖ψj‖Lp((0,1),dµν) ≃
{

1, if p <∞,

jν+1/2, if p = ∞.
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We will also use a slight modification of a result by G. H. Hardy and M. Riesz
for the Riesz means of order δ, that is contained in [11, Theorem 21]. We present
here this result, adapted to the Bochner-Riesz means. We denote by SR(f, x) the
partial sum associated to the Fourier-Bessel expansion, namely

SR(f, x) =
∑

0<sj≤R

aj(f)ψj(x).

The result reads as follows.

Lemma 2. Suppose that f can be expressed as a Fourier-Bessel expansion and

for some δ > 0 and x ∈ (0, 1) its Bochner-Riesz means Bδ
R(f, x) converges to c as

R→ ∞. Then, for sn ≤ R < sn+1,

|SR(f, x)− c| ≤ Aδn
δ sup
0<t≤sn+1

|Bδ
t (f, x)|.

By using this lemma, we can write

(12) |aj(f)ψj(x)| = |(Ssj (f, x)− c)− (Ssj−1(f, x)− c)| ≤ Aδj
δ sup
0<t≤sj+1

|Bδ
t (f, x)|.

Let us proceed with the proof of the necessity. Let 1 ≤ p < p0. Note that p′0 = p1.

Therefore, p′ > p′0 > 2(ν+1)
ν+1/2 , and δ < ν + 1/2 − 2(ν+1)

p′
:= λ. By Lemma 1,

‖ψj‖Lp′((0,1),dµν)
≥ Cjλ. Then, we have that the mapping f 7→ aj(f), where

aj(f) was given in (2), is a bounded linear functional on Lp((0, 1), dµν) with norm
bounded below by a constant multiple of jλ. By uniform boundedness principle,
for p conjugate to p′ and each 0 ≤ ε < λ, there is a function f0 ∈ Lp((0, 1), dµν) so
that aj(f0)j

−ε → ∞ as j → ∞. By taking ε = δ, we have that

(13) aj(f0)j
−δ → ∞ as j → ∞.

Suppose now that Bδ
R(f0, x) converges. Then, by Egoroff’s theorem, it converges

on a subset E of positive measure in (0, 1) and, clearly, we can think that E ⊂ (η, 1)
for some fixed η > 0. For each x ∈ E, we can consider j such that sjx ≥ 1 and, by
(10),

|aj(f0)ψj(x)| =
∣

∣aj(f0)
(

√
2

|Jν+1(sj)|
x−νJν(sjx)

−
√
2

|Jν+1(sj)|
x−ν

( 2

πsjx

)1/2

cos(sjx+Dν)
)

+ aj(f0)

√
2

|Jν+1(sj)|
x−ν

( 2

πsjx

)1/2

cos(sjx+Dν)
∣

∣

= Cs
−1/2
j

√
2

|Jν+1(sj)|
|aj(f0)x−ν−1/2

(

O((sjx)
−1) + cos(sjx+Dν)

)

|

≃ |aj(f0)x−ν−1/2(cos(sjx+Dν) +O((sjx)
−1))|.

By (12) on this set E,

|aj(f0)x−ν−1/2(cos(sjx+Dν) +O((j)−1))| ≤ Aδj
δ sup
0<t≤sj+1

|Bδ
t (f0, x)| ≤ KEj

δ,

uniformly on x ∈ E. We also used (11) in the latter. The inequality above is
equivalent to

|aj(f0)(cos(sjx+Dν) +O(j−1))| ≤ KEx
ν+1/2jδ ≤ KEj

δ.
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Therefore,

(14) |aj(f0)j−δ(cos(sjx+Dν) +O((j)−1))| ≤ KE.

Now, taking the functions

Fj(x) = aj(f0)j
−δ(cos(sjx+Dν) +O(j−1)), x ∈ E,

and using an argument based on the Cantor-Lebesgue and Riemann-Lebesgue the-
orems, see [13, Section 1.5] and [21, Section IX.1], we obtain that

∫

E

|Fj(x)|2 dx ≥ C|aj(f0)j−δ|2|E|,

where, as usual, |E| denotes the Lebesgue measure of the set E. On the other hand,
by (14),

∫

E

|Fj(x)|2 dx ≤ K2
E|E|.

Then, from the previous estimates, it follows that |aj(f0)j−δ| ≤ C, which contra-
dicts (13).

3. Bochner-Riesz means for Fourier-Bessel expansions in the

Lebesgue measure setting. Proof of Theorem 5

For our convenience, we are going to introduce a new orthonormal system. We
will take the functions

φj(x) =

√
2xJν(sjx)

|Jν+1(sj)|
, j = 1, 2, . . . .

These functions are a slight modification of the functions (1); in fact,

(15) φj(x) = xν+1/2ψj(x).

The system {φj(x)}j≥1 is a complete orthonormal basis of L2((0, 1), dx).
In this case, the corresponding Fourier-Bessel expansion of a function f is

f ∼
∞
∑

j=1

bj(f)φj(x), with bj(f) =

(
∫ 1

0

f(y)φj(y) dy

)

provided the integral exists, and for δ > 0 the Bochner-Riesz means of this expan-
sion are

Bδ
R(f, x) =

∑

j≥1

(

1−
s2j
R2

)δ

+

bj(f)φj(x),

where R > 0 and (1− s2)+ = max{1− s2, 0}. It follows that

Bδ
R(f, x) =

∫ 1

0

f(y)Kδ
R(x, y) dy

where

(16) Kδ
R(x, y) =

∑

j≥1

(

1−
s2j
R2

)δ

+

φj(x)φj(y).

Our next target is the proof of Theorem 5. Taking into account that

Bδ
Rf(x) =

∫ 1

0

f(y)Kδ
R(x, y) dµν(y),
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where

Kδ
R(x, y) =

∑

j≥1

(

1−
s2j
R2

)δ

+

ψj(x)ψj(y),

it is clear, from (15), that Kδ
R(x, y) = (xy)−(ν+1/2)Kδ

R(x, y). Then, it is verified
that the inequality

‖xbBδ(f, x)‖Lp((0,1),dµν) ≤ C‖xBf(x)‖Lp((0,1),dµν)

is equivalent to

‖xb+(ν+1/2)(2/p−1)Bδ(f, x)‖Lp((0,1),dx) ≤ C‖xB+(ν+1/2)(2/p−1)f(x)‖Lp((0,1),dx),

that is, we can focus on the study of a weighted inequality for the operator Bδ
R(f, x).

The first results about convergence of this operator can be found in [4].
We are going to prove an inequality of the form

‖xaBδ(f, x)‖Lp((0,1),dx) ≤ C‖xAf(x)‖Lp((0,1),dx)

for δ > 0, 1 < p ≤ ∞, under certain conditions for a,A, ν and δ. Besides, a
weighted weak type result for supR>0 |Bδ

R(f, x)| will be proved for p = 1. The
abovementioned conditions are the following. Let ν > −1, δ > 0 and 1 ≤ p ≤ ∞;
parameters (a,A, ν, δ) will be said to satisfy the cp conditions provided

a > −1/p− (ν + 1/2) (≥ if p = ∞),(17)

A < 1− 1/p+ (ν + 1/2) (≤ if p = 1),(18)

a > −δ − 1/p (≥ if p = ∞),(19)

A ≤ 1 + δ − 1/p,(20)

A ≤ a(21)

and in at least one of each of the following pairs the inequality is strict: (18) and
(21), (19) and (21), and (20) and (21) except for p = ∞.

The main results in this section are the following:

Theorem 8. Let ν > −1, δ > 0 and 1 < p ≤ ∞. If (a,A, ν, δ) satisfy the cp
conditions, then

‖xaBδ(f, x)‖Lp((0,1),dx) ≤ C‖xAf(x)‖Lp((0,1),dx),

with C independent of f .

Theorem 9. Let ν > −1 and δ > 0. If (a,A, ν, δ) satisfy the c1 conditions and

Eλ =

{

x ∈ (0, 1): xa sup
R>0

(

|Bδ
R(f, x)|

)

> λ

}

,

then

|Eλ| ≤ C
‖xAf(x)‖L1((0,1),dx)

λ
,

with C independent of f and λ.

Note that, taking a = b + (ν + 1/2)(2/p− 1) and A = B + (ν + 1/2)(2/p− 1),
Theorem 5 follows from Theorem 8.
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The proofs of Theorem 8 and Theorem 9 will be achieved by decomposing the
square (0, 1) × (0, 1) into five regions and obtaining the estimates therein. The
regions will be:

A1 = {(x, y) : 0 < x, y ≤ 4/R},
A2 = {(x, y) : 4/R < max{x, y} < 1, |x− y| ≤ 2/R},
A3 = {(x, y) : 4/R ≤ x < 1, 0 < y ≤ x/2},(22)

A4 = {(x, y) : 0 < x ≤ y/2, 4/R ≤ y < 1},
A5 = {(x, y) : 4/R < x < 1, x/2 < y < x− 2/R}

∪ {(x, y) : y/2 < x ≤ y − 2/R, 4/R ≤ y < 1}.
Theorem 8 and Theorem 9 will follow by showing that, if 1 ≤ p ≤ ∞, then

(23)

∥

∥

∥

∥

sup
R>0

∫ 1

0

y−Axa|Kδ
R(x, y)||f(y)|χAj dy

∥

∥

∥

∥

Lp((0,1),dx)

≤ C‖f(x)‖Lp((0,1),dx)

holds for j = 1, 3, 4 and that

(24)

∫ 1

0

y−Axa|Kδ
R(x, y)||f(y)|χAj dy ≤ CM(f, x),

for j = 2, 5, where M is the Hardy-Littlewood maximal function of f , and C is
independent of R, x and f . These results and the fact that M is (1, 1)-weak and
(p, p)-strong if 1 < p ≤ ∞ complete the proofs.

To get (23) and (24) we will use a very precise pointwise estimate for the kernel
Kδ

R(x, y), obtained in [4]; there, it was shown that

(25) |Kδ
R(x, y)| ≤ C











(xy)ν+1/2R2(ν+1), (x, y) ∈ A1,

R, (x, y) ∈ A2
Φν(Rx)Φν(Ry)
Rδ|x−y|δ+1 , (x, y) ∈ A3 ∪ A4 ∪A5,

with

(26) Φν(t) =

{

tν+1/2, if 0 < t < 2,

1, if t ≥ 2.

The proof of (24) follows from the given estimate for the kernel Kδ
R(x, y) and

y−Axa ≃ C in A2 ∪ A5 because A ≤ a. In the case of A2, from |Kδ
R(x, y)| ≤

CR we deduce easily the required inequality. For A5 the result is a consequence
of Φν(Rx)Φν(Ry) ≤ C and of a decomposition of the region in strips such that
R|x− y| ≃ 2k, with k = 0, . . . , [log2R]− 1; this can be seen in [4, p. 109]

In this manner, to complete the proofs of Theorem 8 and Theorem 9 we only
have to show (23) for j = 1, 3, 4 in the conditions cp for 1 ≤ p ≤ ∞, and this is
the content of Corollary 1 in Subsection 3.2. In its turn, Corollary 1 follows from
Lemmas 9 and 10 in the same subsection. Previously, Subsection 3.1 contains some
technical lemmas that will be used in the proofs of Lemmas 9 and 10.

3.1. Technical Lemmas. To prove (23) for j = 1, 3, 4 we will use an interpolation
argument based on six lemmas. These are stated below. They are small modifica-
tions of the six lemmas contained in Section 3 of [14] where a sketch of their proofs
can be found.
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Lemma 3. Let ξ0 > 0, if r < −1, r + t ≤ −1 and r + s+ t ≤ −1, then for p = 1
∥

∥

∥

∥

∥

xrχ[1,∞)(x) sup
ξ0≤ξ≤x

ξs
∫ x

ξ

yt|f(y)| dy
∥

∥

∥

∥

∥

Lp((0,∞),dx)

≤ C‖f(x)‖Lp((0,∞),dx)

with C independent of f . If r ≤ 0, r + t ≤ −1 and r + s + t ≤ −1 with equality

holding in at most one of the first two inequalities, then this holds for p = ∞.

Lemma 4. Let ξ0 > 0, if t ≤ 0, r+t ≤ −1 and r+s+t ≤ −1, with strict inequality

in the last two in case of equality in the first, then for p = 1
∥

∥

∥

∥

∥

xrχ[1,∞)(x) sup
ξ0≤ξ≤x

ξs
∫ ∞

x

yt|f(y)| dy
∥

∥

∥

∥

∥

Lp((0,∞),dx)

≤ C‖f(x)‖Lp((0,∞),dx)

with C independent of f . If t < −1, r+ t ≤ −1 and r+ s+ t ≤ −1, then this holds

for p = ∞.

Lemma 5. If s < 0, s+ t ≤ 0 and r + s+ t ≤ −1,with equality holding in at most

one of the last two inequalities, then for p = 1
∥

∥

∥

∥

∥

xrχ[1,∞)(x) sup
ξ≥x

ξs
∫ ξ

x

yt|f(y)| dy
∥

∥

∥

∥

∥

Lp((0,∞),dx)

≤ C‖f(x)‖Lp((0,∞),dx)

with C independent of f . If s < 0, s + t ≤ −1 and r + s + t ≤ −1 this holds for

p = ∞.

Lemma 6. If t ≤ 0, s+ t ≤ 0 and r + s+ t ≤ −1,with strict inequality holding in

the first two in case the third is an equality, then for p = 1
∥

∥

∥

∥

∥

xrχ[1,∞)(x) sup
ξ≥x

ξs
∫ ∞

ξ

yt|f(y)| dy
∥

∥

∥

∥

∥

Lp((0,∞),dx)

≤ C‖f(x)‖Lp((0,∞),dx)

with C independent of f . If t < −1, s+ t ≤ −1 and r + s+ t ≤ −1 then this holds

for p = ∞.

Lemma 7. If s < 0, r + s < −1 and r + s+ t ≤ −1, then for p = 1
∥

∥

∥

∥

∥

xrχ[1,∞)(x) sup
ξ≥x

ξs
∫ x

1

yt|f(y)| dy
∥

∥

∥

∥

∥

Lp((0,∞),dx)

≤ C‖f(x)‖Lp((0,∞),dx)

with C independent of f . If s < 0, r + s ≤ 0 and r + s + t ≤ −1, with equality

holding in at most one of the last two inequalities, this holds for p = ∞.

Lemma 8. If r < −1, r + s < −1 and r + s+ t ≤ −1, then for p = 1
∥

∥

∥

∥

∥

xrχ[1,∞)(x) sup
1≤ξ≤x

ξs
∫ ξ

1

yt|f(y)| dy
∥

∥

∥

∥

∥

Lp((0,∞),dx)

≤ C‖f(x)‖Lp((0,∞),dx)

with C independent of f . If r ≤ 0, r + s ≤ 0 and r + s+ t ≤ −1, with equality in

at most one of the last two inequalities, this holds for p = ∞.
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3.2. Proofs of Theorem 8 and Theorem 9 for regions A1, A3 and A4. This
section contains the proofs of the inequality (23) for regions A1, A3 and A4. The
results we will prove are included in the following

Lemma 9. If ν > −1, δ > 0, R > 0, j = 1, 3, 4 and (a,A, ν, δ) satisfy the c1
conditions, then (23) holds for p = 1 with C independent of f .

Lemma 10. If ν > −1, δ > 0, R > 0, j = 1, 3, 4 and (a,A, ν, δ) satisfy the c∞
conditions, then (23) holds for p = ∞ with C independent of f .

Corollary 1. If 1 ≤ p ≤ ∞, ν > −1, δ > 0, R > 0, (a,A, ν, δ) satisfy the cp
conditions and j = 1, 3, 4, then (23) holds with C independent of f .

Proof of Corollary 1. It is enough to observe that if 1 < p <∞ and (a,A, ν, δ)
satisfy the cp conditions, then (a−1+1/p,A−1+1/p, ν, δ) satisfy the c1 conditions.
So, by Lemma 9
∥

∥

∥

∥

sup
R≥0

∫ 1

0

y−A+1−1/pxa−1+1/p|Kδ
R(x, y)|χAj (x, y)|f(y)| dy

∥

∥

∥

∥

L1((0,1),dx)

≤ C‖f(x)‖L1((0,1),dx),

and this is equivalent to
∫ 1

0

xa+1/p

(

sup
R≥0

∫ 1

0

|Kδ
R(x, y)|χAj (x, y)|f(y)| dy

)

dx

x
≤ C

∫ 1

0

xA+1/p|f(x)|dx
x
,

where j = 1, 3, 4. Similarly, if (a,A, ν, δ) verify the cp conditions, then (a+1/p,A+
1/p, ν, δ) satisfy the c∞ conditions. Hence, by Lemma 10

∥

∥

∥

∥

xa+1/p sup
R≥0

∫ 1

0

|Kδ
R(x, y)|χAj (x, y)|f(y)| dy

∥

∥

∥

∥

L∞((0,1),dx)

≤ C‖xA+1/pf(x)‖L∞((0,1),dx).

Now, we can use the Marcinkiewicz interpolation theorem to obtain the inequality

∫ 1

0

(

xa+1/p

(

sup
R≥0

∫ 1

0

|Kδ
R(x, y)|χAj (x, y)|f(y)| dy

))p
dx

x

≤ C

∫ 1

0

(

xA+1/p|f(x)|
)p dx

x
,

for 1 < p <∞ and the proof is finished.
Finally, we will prove Lemmas 9 and 10 for Aj , j = 1, 3 and 4, separately.
Proof of Lemma 9 and Lemma 10 for A1. First of all, we have to note that

Bδ
R(f, x) = 0 when 0 < R < s1, being s1 the first positive zero of Jν . Using the

estimate (25), the left side of (23) in this case is bounded by

C

∥

∥

∥

∥

∥

xa+ν+1/2χ[0,1](x) sup
s1<R≤4/x

R2(ν+1)

∫ 4/R

0

y−A+ν+1/2|f(y)| dy
∥

∥

∥

∥

∥

Lp((0,1),dx)

.

Making the change of variables x = 4/u and y = 4/v, we have

C

∥

∥

∥

∥

u−a−ν− 1
2−

2
pχ[4,∞)(u) sup

s1≤R≤u
R2(ν+1)

∫ ∞

R

vA−(ν+ 1
2 )−2+ 2

p g(v) dv

∥

∥

∥

∥

Lp((0,∞),du)

,
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where ‖ · ‖Lp((0,∞),du) denotes the L
p norm in the variable u, and

g(v) = v−2/p|f(4v−1)|.

Note that function g(v) is supported in (1,∞) and ‖g‖Lp((0,∞),du) = ‖f‖Lp((0,1),dx).
The function g will be used through the subsection, but the value 4 may be changed
by another one, at some points, without comment. Now, splitting the inner integral
at u, we obtain the sum of
(27)

C

∥

∥

∥

∥

u−a−ν− 1
2−

2
pχ[4,∞)(u) sup

s1≤R≤u
R2(ν+1)

∫ u

R

vA−(ν+ 1
2 )−2+ 2

p g(v) dv

∥

∥

∥

∥

Lp((0,∞),du)

and
(28)

C

∥

∥

∥

∥

u−a−ν− 1
2−

2
pχ[4,∞)(u) sup

s1≤R≤u
R2(ν+1)

∫ ∞

u

vA−(ν+ 1
2 )−2+ 2

p g(v) dv

∥

∥

∥

∥

Lp((0,∞),du)

.

From Lemma 3 we get the required estimate for (27), using conditions (17) and
(21); Lemma 4 is applied to inequality (28), there we need conditions (18) and (21)
and the restriction on them. This completes the proof of Lemmas 9 and 10 for
j = 1.

Proof of Lemma 9 and Lemma 10 for A3. Clearly, the left side of (23) is
bounded by

C

∥

∥

∥

∥

∥

xaχ[4/R,1](x) sup
4/x≤R

∫ x/2

0

y−A|Kδ
R(x, y)||f(y)| dy

∥

∥

∥

∥

∥

Lp((0,1),dx)

.

Splitting the inner integral at 2/R, using the bound for the kernel given in (25) and
the definition of Φν , we have this expression majorized by the sum of

(29)

∥

∥

∥

∥

∥

xaχ[0,1](x) sup
4/x≤R

∫ 2/R

0

|f(y)| (Ry)
ν+1/2y−A

Rδ|x− y|δ+1
dy

∥

∥

∥

∥

∥

Lp((0,1),dx)

and

(30)

∥

∥

∥

∥

∥

xaχ[0,1](x) sup
4/x≤R

∫ x/2

2/R

|f(y)|y−A

Rδ|x− y|δ+1
dy

∥

∥

∥

∥

∥

Lp((0,1),dx)

.

For (29), taking into account that |x − y| ≃ x in A3, the changes of variables
x = 4/u, y = 2/v give us

∥

∥

∥

∥

u−a+(δ+1)− 2
pχ[4,∞)(u) sup

u≤R
R−δ+(ν+1/2)

∫ ∞

R

v−(ν+1/2)+A+ 2
p−2g(v) dv

∥

∥

∥

∥

Lp((0,∞),du)

.

Lemma 6 can be used here. The required conditions for p = 1 are (18), (20) and
(21) with the restriction in the pairs therein. For p = ∞ the same inequalities are
needed.
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On the other hand, in (30), using again that |x−y| ≃ x, by changing of variables
x = 4/u and y = 2/v we have

C

∥

∥

∥

∥

∥

u−a+(δ+1)− 2
pχ[4,∞)(u) sup

u≤R
R−δ

∫ R

2u

vA+ 2
p−2g(v) dv

∥

∥

∥

∥

∥

Lp((0,∞),du)

≤ C

∥

∥

∥

∥

∥

u−a+(δ+1)− 2
pχ[4,∞)(u) sup

u≤R
R−δ

∫ R

u

vA+ 2
p−2g(v) dv

∥

∥

∥

∥

∥

Lp((0,∞),du)

.

Lemma 5 can then be applied. For p = 1, we need δ > 0, which is an hypothesis,
and (20) and (21) with its corresponding restriction. For p = ∞ the inequalities
are the same, with the requirement that (20) is strict. This completes the proof of
Lemmas 9 and 10 for j = 3.

Proof of Lemma 9 and Lemma 10 for A4. In this case, the left hand side
of (23) is estimated by

C

∥

∥

∥

∥

∥

xaχ[0,1/2](x) sup
R>4

∫ 1

max(4/R,2x)

y−A|Kδ
R(x, y)||f(y)| dy

∥

∥

∥

∥

∥

Lp((0,1),dx)

.

To majorize this, we decompose the R-range in two regions: 4 < R ≤ 2/x and
R ≥ 2/x. In this manner, with the bound for the kernel given in (25) and the
definition of Φν , the previous norm is controlled by the sum of

C

∥

∥

∥

∥

∥

xaχ[0,1/2](x) sup
4<R≤2/x

∫ 1

4/R

|f(y)| (Rx)
ν+1/2y−A

Rδ|x− y|δ+1
dy

∥

∥

∥

∥

∥

Lp((0,1),dx)

and

C

∥

∥

∥

∥

∥

xaχ[0,1/2](x) sup
R≥2/x

∫ 1

2x

|f(y)|y−A

Rδ|x− y|δ+1
dy

∥

∥

∥

∥

∥

Lp((0,1),dx)

.

Next, using that |x − y| ≃ y in A4, with the changes of variables x = 2/u and
y = 1/v the previous norms are controlled by
(31)

C

∥

∥

∥

∥

∥

u−a− 2
p−(ν+ 1

2 )χ[4,∞)(u) sup
4<R≤u

R−δ+(ν+ 1
2 )

∫ R/4

1

vA+ 2
p−2+(δ+1)g(v) dv

∥

∥

∥

∥

∥

Lp((0,∞),du)

and

(32) C

∥

∥

∥

∥

∥

u−a− 2
pχ[4,∞)(u) sup

R≥u
R−δ

∫ u/4

1

vA+ 2
p−2+(δ+1)g(v) dv

∥

∥

∥

∥

∥

Lp((0,∞),du)

.

In (31), we use Lemma 8; for p = 1, conditions (17), (19) and (21) are needed; we
need the same for p = ∞. For (32), Lemma 7 requires the hypothesis δ > 0 and
conditions (19) and (21) for p = 1 and the same for p = ∞ with the restrictions in
the pairs therein. This proves Lemmas 9 and 10 for j = 4.

4. Proof of Theorem 3

Now we shall prove Theorem 3. First note that, by (15), we can write

Bδ
R(f, x) =

∫ 1

0

f(y)
(y

x

)ν+1/2

Kδ
R(x, y) dy,
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where Kδ
R is the kernel in (16). By taking g(y) = f(y)yν+1/2, to prove the result it

is enough to check that
∫

E

dµν(x) ≤
C

λp

∫ 1

0

|g(x)|px(ν+1/2)(2−p) dx,

whereE =
{

x ∈ (0, 1) : supR>0 x
−(ν+1/2)

∫ 1

0
|g(y)||Kδ

R(x, y)| dy > λ
}

and p = p0(δ).

We decompose E into four regions, such that E =
⋃4

i=1 Ji, where

Ji =

{

x ∈ (0, 1) : sup
R>0

x−(ν+1/2)

∫ 1

0

|g(y)|χBi(x, y)|Kδ
R(x, y)| dy > λ

}

for i = 1, . . . , 4, with B1 = A1, B2 = A2 ∪ A5, B3 = A3, and B4 = A4 where the
sets Ai were defined in (22). Note also that

∫

E
dµν(x) ≤

∑4
i=1

∫

Ji
dµν(x), then we

need to prove that

(33)

∫

Ji

dµν(x) ≤
C

λp

∫ 1

0

|g(x)|px(ν+1/2)(2−p) dx,

for i = 1, . . . , 4 and p = p0(δ). At some points along the proof we will use the
notation

(34) Ip :=

∫ 1

0

|g(y)|py(ν+1/2)(2−p) dy.

In J1, by applying (25) and Hölder inequality with p = p0, we have

x−(ν+1/2)

∫ 1

0

|g(y)|χB1(x, y)|Kδ
R(x, y)| dy

≤ Cx−(ν+1/2)

∫ 4/R

0

|g(y)|(xy)ν+1/2R2(ν+1) dy

≤ CR2(ν+1)

(

∫ 4/R

0

|g(y)|p0y(ν+1/2)(2−p0) dy

)1/p0
(

∫ 4/R

0

y(2ν+1) dy

)1/p′

0

= CR
2(ν+1)

p0

(

∫ 4/R

0

|g(y)|p0y(ν+1/2)(2−p0) dy

)1/p0

≤ CR
2(ν+1)

p0 I1/p0
p0

.

Therefore,

sup
R>0

x−(ν+1/2)

∫ 1

0

|g(y)|χB1(x, y)|Kδ
R(x, y)| dy ≤ C sup

R>0
χ[0,4/R](x)R

2(ν+1)
p0 I1/p0

p0

≤ Cx−
2(ν+1)

p0 I1/p0
p0

.

In the case p = 1, it is clear that

x−(ν+1/2)

∫ 1

0

|g(y)|χB1(x, y)|Kδ
R(x, y)| dy ≤ CR2(ν+1)I1

and

sup
R>0

x−(ν+1/2)

∫ 1

0

|g(y)|χB1(x, y)|Kδ
R(x, y)| dy ≤ Cx−2(ν+1)I1.

Hence, for p = p0(δ),

J1 ⊆ {x ∈ (0, 1) : Cx−
2(ν+1)

p I1/pp > λ},
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and this gives (33) for i = 1.
In J3, note first that

sup
R>0

x−(ν+1/2)

∫ 1

0

|g(y)|χB3(x, y)|Kδ
R(x, y)| dy

= sup
R>0

x−(ν+1/2)χ[4/R,1](x)

(

∫ 2/R

0

|g(y)||Kδ
R(x, y)| dy +

∫ x/2

2/R

|g(y)||Kδ
R(x, y)| dy

)

:= R1 +R2.

For R1, using (25), the inequality x/2 < x − y, which holds in B3, and Hölder
inequality with p = p0,

R1 ≤ sup
R>0

x−(ν+3/2+δ)χ[4/R,1](x)

∫ 2/R

0

Rν+1/2−δyν+1/2|g(y)| dy

≤ sup
R>0

x−(ν+3/2+δ)χ[4/R,1](x)R
ν+1/2−δR

−
2(ν+1)

p′0 I1/p0
p0

≤ Cx−
2(ν+1)

p0 I1/p0
p0

,

where Ip0 is the same as in (34). In the case p = 1, the estimate R1 ≤ Cx−2(ν+1)I1
can be obtained easily.

On the other hand, for R2, by using (25) and Hölder inequality with p = p0
again,

R2 ≤ sup
R>0

x−(ν+3/2+δ)χ[4/R,1](x)I
1/p0
p0

R−δ

(

∫ x/2

2/R

y
−(ν+1/2)

(2−p0)p′0
p0 dy

)1/p′

0

≤ sup
R>0

x−(ν+3/2+δ)χ[4/R,1](x)I
1/p0
p0

R−δ

(

∫ x/2

2/R

y
(ν+1/2)

2−p0
1−p0 dy

)1/p′

0

.

Using that (ν + 1/2)2−p0

1−p0
< −1 and 4/R < x < 1, we have that

R−δ

(

∫ x/2

2/R

y
(ν+1/2)

2−p0
1−p0 dy

)1/p′

0

≤ C
(

R
−(ν+1/2)

2−p0
1−p0

−1
)1/p′

0

R−δ = C

and the last inequality is true because the exponent of R is zero. Then

R2 ≤ Cx
−2(ν+1)

p0 I1/p0
p0

.

In the case p = 1 applying Hölder inequality, then

R2 ≤ sup
R>0

x−(ν+3/2+δ)χ[4/R,1](x)I1 R
−δ sup

y∈[2/R,x/2]

y−(ν+1/2).

Now, if ν + 1/2 > 0 and ν + 1/2 < δ,

sup
R>0

χ[4/R,1](x)R
−δ sup

y∈[2/R,x/2]

y−(ν+1/2)

= C sup
R>0

χ[4/R,1](x)R
ν+1/2−δ ≤ Cx−ν−1/2+δ;
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and if ν + 1/2 ≤ 0,

sup
R>0

χ[4/R,1](x)R
−δ sup

y∈[2/R,x/2]

y−(ν+1/2)

= C sup
R>0

χ[4/R,1](x)R
−δx−(ν+1/2) ≤ Cx−ν−1/2+δ.

In this manner

R2 ≤ Cx−2(ν+1)I1.

Therefore, collecting the estimates for R1 and R2 for p = p0 and p = 1, we have
shown that

J3 ⊆ {x ∈ (0, 1) : Cx
−2(ν+1)

p (x)I1/p > λ},

hence we can deduce (33) for i = 3.
For the region J4, we proceed as follows

sup
R>0

x−(ν+1/2)

∫ 1

0

|g(y)|χB4(x, y)|Kδ
R(x, y)| dy

≤ sup
R>0

x−(ν+1/2)χ[0,2/R](x)

∫ 1

4/R

|g(y)||Kδ
R(x, y)| dy

+ sup
R>0

x−(ν+1/2)χ[2/R,1](x)

∫ 1

2x

|g(y)||Kδ
R(x, y)| dy

≤ C sup
R>0

x−(ν+1/2)χ[0,2/R](x)(Rx)
ν+1/2

∫ 1

4/R

|g(y)|
Rδ|x− y|δ+1

dy

+ C sup
R>0

x−(ν+1/2)χ[2/R,1](x)

∫ 1

2x

|g(y)|
Rδ|x− y|δ+1

dy := S1 + S2.

We first deal with S1, we use that y − x > y/2, then

S1 ≤C sup
R>0

χ[0,2/R](x)R
ν+1/2−δ

∫ 1

4/R

|g(y)|
yδ+1

dy

≤ C sup
R>0

χ[0,2/R](x)R
ν+1

∫ 1

4/R

|g(y)|√
y

dy ≤ Cx−(ν+1)

∫ 1

x

|g(y)|√
y

dy.

Now for p = p0 or p = 1, we have that 2ν+1−p(ν+1) > −1 and Hardy’s inequality
[17, Lemma 3.14, p. 196] is applied in the following estimate

∫ 1

0

|S1(x)|px2ν+1 dx ≤ C

∫ 1

0

(
∫ 1

x

|g(y)|√
y

dy

)p

x2ν+1−p(ν+1) dx

≤ C

∫ 1

0

∣

∣

∣

∣

g(y)√
y

∣

∣

∣

∣

p

y2ν+1−pν dy = C

∫ 1

0

|g(y)|py(ν+1/2)(2−p) dy.

Concerning S2, observe that supR>0 χ[2/R,1](x)R
−δ ≤ Cxδ, thus

S2 ≤ Cx−ν−1/2+δ

∫ 1

x

|g(y)|
yδ+1

dy.
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Since for p = p0 or p = 1 we have that 2ν + 1 − p(ν + 1/2− δ) > −1, we can use
again Hardy’s inequality to complete the required estimate. Indeed,

∫ 1

0

|S2(x)|px2ν+1 dx ≤ C

∫ 1

0

(
∫ 1

x

|g(y)|
yδ+1

dy

)p

x2ν+1−p(ν+1/2−δ) dx

≤ C

∫ 1

0

∣

∣

∣

∣

g(y)

yδ+1

∣

∣

∣

∣

p

y2ν+1−p(ν+1/2−δ)+p dy

= C

∫ 1

0

|g(y)|py(ν+1/2)(2−p) dy.

With the inequalities for S1 and S2, we can conclude (33) for i = 4.
To prove (33) for i = 2 we define, for k a nonnegative integer, the intervals

Ik = [2−k−1, 2−k], Nk = [2−k−3, 2−k+2]

and the function gk(y) = |g(y)|χIk(y). By using (25) for x/2 < y < 2x, with
x ∈ (0, 1), we have the bound

|Kδ
R(x, y)| ≤

C

Rδ(|x− y|+ 2/R)δ+1
.

Then

J2 ⊂
{

x ∈ (0, 1) : sup
R>0

∞
∑

k=0

∫ min {2x,1}

x/2

gk(t)

Rδ(|x− y|+ 2/R)δ+1
dy > Cλxν+1/2

}

.

Since at most three of these integrals are not zero for each x ∈ (0, 1)

J2 ⊂
∞
⋃

k=0

{

x ∈ (0, 1) : 3 sup
R>0

∫ min {2x,1}

x/2

gk(t)

Rδ(|x − y|+ 2/R)δ+1
dy > Cλxν+1/2

}

⊂
∞
⋃

k=0

{

x ∈ Nk :M(gk, x) > Cλxν+1/2
}

where in the las step we have used that

sup
R>0

∫ min {2x,1}

x/2

gk(t)

Rδ(|x− y|+ 2/R)δ+1
dy ≤ CM(gk, x).

By using the estimate x ≃ 2−k for x ∈ Nk, we can check easily that

J2 ⊂
∞
⋃

k=1

{

x ∈ Nk :M(gk, x) > Cλ2−k(ν+1/2)
}

.

Finally by using again that x ≃ 2−k for x ∈ Ik, Nk and the weak type norm
inequality for the Hardy-Littlewood maximal function we have

∫

J2

x2ν+1 dx ≤ C

∞
∑

k=0

2−k(2ν+1)

∫

{x∈Nk:M(gk,x)>Cλ2−k(ν+1/2)}
dx

≤ C

∞
∑

k=0

2pk(ν+1/2)−k(2ν+1)

λp

∫

Ik

|g(y)|p dy

≤ C

λp

∫ 1

0

|g(y)|py(ν+1/2)(2−p) dy

and the proof is complete.
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5. Proof of Theorem 4

To conclude the result we have to prove (33) with g(x) = χE(x) and p = p1.
For J1 and J2 the result follows by using the steps given in the proof of Theorem
3 for the same intervals. To analyze J3 we proceed as we did for J4 in the proof of
Theorem 3. In this case we obtain that

sup
R>0

x−(ν+1/2)

∫ 1

0

|g(y)|χB3(x, y)|Kδ
r (x, y)|

≤ C

(

x−(ν+1)

∫ x

0

|g(y)|√
y

dy + x−(ν+3/2+δ)

∫ x

0

|g(y)|yδ dy
)

.

Now taking into account that for p = p1 we have 2ν + 1 − p(ν + 1) < −1 and
2ν + 1− p(ν + 3/2 + δ) < −1 we can apply Hardy’s inequalities to obtain that

∫ 1

0

(

x−(ν+1)

∫ x

0

|g(y)|√
y

dy

)p

x2ν+1 dx ≤ C

∫ 1

0

|g(y)|py(ν+1/2)(2−p) dy

and

∫ 1

0

(

x−(ν+3/2+δ)

∫ x

0

|g(y)|yδ dy
)p

x2ν+1 dx ≤ C

∫ 1

0

|g(y)|py(ν+1/2)(2−p) dy,

with these two inequalities we can deduce that (33) holds for J3 with p = p1 in this
case.

The main difference with the previous proof appears in the analysis of J4. To
deal with this case, we have to use the following lemma [3, Lemma 16.5]

Lemma 11. If 1 < p <∞, a > −1, and E ⊂ [0,∞), then

(
∫

E

xa dx

)p

≤ 2p(a+ 1)1−p

∫

E

x(a+1)p−1 dx.

In this case, it is enough to prove that

∫

J

dµν(x) ≤
C

λp

∫ 1

0

χE(y) dµν(y),

where

J =

{

x ∈ (0, 1) : sup
R>0

x−(ν+1/2)

∫ 1

0

χE(y)χB4(x, y)y
ν+1/2|Kδ

R(x, y)| dy > λ

}

,

and this can be deduced immediately by using the inclusion

(35) J ⊆ [0,min{1, H}]

with

H2(ν+1) =
C

λp

∫ 1

0

χE(y) dµν(y).
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Let’s prove (35). By using (16) and the estimate y − x > y/2, we have

sup
R>0

x−(ν+1/2)

∫ 1

0

χE(y)χB4(x, y)y
ν+1/2|Kδ

R(x, y)| dy

≤ C sup
R>0

R−δ+ν+1/2χ[0,2/R](x)

∫ 1

4/R

χE(y)y
−δ+ν−1/2 dy

+ C sup
R>0

R−δx−(ν+1/2)χ[2/R,1](x)

∫ 1

2x

χE(y)y
−δ+ν−1/2 dy.

In the first summand we can use that R−δ+ν+1/2 ≤ Cxδ−ν−1/2 and in the second
one that R−δ ≤ xδ. Moreover observing that with p = p1 it holds −δ + ν + 1/2 =
2(ν + 1)/p we obtain that

sup
R>0

x−(ν+1/2)

∫ 1

0

χE(y)χB4y
ν+1/2|Kδ

R(x, y)| dy ≤ Cx−2(ν+1)/p

∫

E

y−1+2(ν+1)/p dy

≤ Cx−2(ν+1)/p

∫

E

dµν(y),

where in the last step we have used Lemma 11, and this is enough to deduce the
inclusion in (35).

6. Proofs of Theorem 6 and Theorem 7

This section will be devoted to the proofs of Theorem 6 and Theorem 7. To this
end we need a suitable identity for the kernel and in order to do that we have to

introduce some notation. H
(1)
ν will denote the Hankel function of the first kind,

and it is defined as follows

H(1)
ν (z) = Jν(z) + iYν(z),

where Yν denotes the Weber’s function, given by

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
, ν /∈ Z, and Yn(z) = lim

ν→n

Jν(z) cos νπ − J−ν(z)

sin νπ
.

From these definitions, we have

H(1)
ν (z) =

J−ν(z)− e−νπiJν(z)

i sin νπ
, ν /∈ Z, and H(1)

n (z) = lim
ν→n

J−ν(z)− e−νπiJν(z)

i sin νπ
.

For the function H
(1)
ν , the asymptotic

(36) H(1)
ν (z) =

√

2

πz
ei(z−νπ/2−π/4)[A+O(z−1)], |z| > 1, −π < arg(z) < 2π,

holds for some constant A.
In [4, Lemma 1] the following lemma was proved

Lemma 12. For R > 0 the following holds:

Kδ
R(x, y) = IδR,1(x, y) + IδR,2(x, y)

with

IδR,1(x, y) = (xy)1/2
∫ R

0

z

(

1− z2

R2

)δ

Jν(zx)Jν(zy) dz
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and

IδR,2(x, y) = lim
ε→0

(xy)1/2

2

∫

Sε

(

1− z2

R2

)δ
zH

(1)
ν (z)Jν(zx)Jν(zy)

Jν(z)
dz,

where, for each ε > 0, Sε is the path of integration given by the interval R+ i[ε,∞)
in the direction of increasing imaginary part and the interval −R + i[ε,∞) in the

opposite direction.

Then, by Lemma 12 we have

Kδ
R(x, y) = Iδ

R,1(x, y) + Iδ
R,2(x, y)

where Iδ
R,j(x, y) = (xy)−(ν+1/2)IδR,j(x, y) for j = 1, 2. The main tool to deduce our

negative results will be the following lemma

Lemma 13. For ν > −1/2, δ > 0, and R > 0 it is verified that

Kδ
R(0, y) =

2δ−νΓ(δ + 1)

Γ(ν + 1)
R2(ν+1) Jν+δ+1(yR)

(yR)ν+δ+1
+ Iδ

R,2(0, y),

where

(37)
∣

∣Iδ
R,2(0, y)

∣

∣ ≤ C

{

R2ν−δ+1, yR ≤ 1,

Rν−δ+1/2y−(ν+1/2), yR > 1.

Proof. From (9), it is clear that

Iδ
R,1(0, y) =

y−ν

2νΓ(ν + 1)

∫ R

0

zν+1

(

1− z2

R2

)δ

Jν(zy) dz.

Now, by using Sonine’s identity [20, Ch. 12, 12.11, p. 373]
∫ 1

0

sν+1
(

1− s2
)δ
Jν(sy) ds = 2δΓ(δ + 1)

Jν+δ+1(y)

yδ+1
, ν, δ > −1,

we deduce the leading term of the expression for Kδ
R(0, y).

To control the term

Iδ
R,2(0, y) = lim

ε→0

y−(ν+1/2)

2

∫

Sε

(

1− z2

R2

)δ
zν+1/2H

(1)
ν (z)(zy)1/2Jν(zy)

Jν(z)
dz,

we start by using the asymptotic expansions given in (36) and (10) for H
(1)
ν (z)

and Jν(z). We see that on Sε, the path of integration described in Lemma 12, for
t = Im(z) the estimate

∣

∣

∣

∣

Hν(z)

Jν(z)

∣

∣

∣

∣

≤ Ce−2t,

holds for t > 0. Now, from (9) and (10), it is clear that for z = ±R+ it

|√zyJν(zy)| ≤ CeytΦν((R + t)y)

where Φν is the function in (26). Then

|Iδ
R,2(0, y)| ≤ Cy−(ν+1/2)R−2δ

∫ ∞

0

tδ(R + t)ν+δ+1/2Φν((R + t)y)e−(2−y)t dt.
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If y > 1/R we have the inequality Φν((R + t)y) ≤ C, then

|Iδ
R,2(0, y)| ≤ Cy−(ν+1/2)R−2δ

∫ ∞

0

tδ(R+ t)ν+δ+1/2e−(2−y)t dt

≤ Cy−(ν+1/2)R−δ(Rν+1/2 +R−δ) ≤ CRν−δ+1/2y−(ν+1/2)

and (37) follows in this case. If y ≤ 1/R we obtain the bound in (37) with the
estimate Φν((R + t)y) ≤ C(Φν(yR) + (yt)ν+1/2). Indeed,

|Iδ
R,2(0, y)| ≤ Cy−(ν+1/2)R−2δΦν(yR)

∫ ∞

0

tδ(R+ t)ν+δ+1/2e−(2−y)t dt

+ CR−2δ

∫ ∞

0

tν+δ+1/2(R+ t)ν+δ+1/2e−(2−y)t dt

≤ C(R2ν−δ+1 +Rν−2δ+1/2 +Rν−δ+1/2 +R−2δ) ≤ R2ν−δ+1.

�

Lemma 14. For ν > −1/2 and 0 < δ ≤ ν + 1/2, the estimate

‖Kδ
R(0, y)‖Lp0((0,1),dµν) ≥ CRν−δ+1/2(logR)1/p0

holds.

Proof. We will use the decomposition in Lemma 13. By using (9) and (10) as was
done in [5, Lemma 2.1] we obtain that

∥

∥

∥

∥

R2(ν+1) Jν+δ+1(yR)

(yR)ν+δ+1

∥

∥

∥

∥

Lp0((0,1),dµν)

≥ CRν−δ+1/2(logR)1/p0 .

With the bound (37) it can be deduced that
∥

∥Iδ
R,2(0, y)

∥

∥

Lp0((0,1),dµν)
≤ CRν−δ+1/2.

With the previous estimates the proof is completed. �

Finally, the last element that we need to prove Theorems 6 and 7 is the norm
inequality for finite linear combinations of the functions {ψj}j≥1 contained in the
next lemma. Its proof is long and technical and it will be done in the last section.

Lemma 15. For ν > −1/2, R > 0, 1 < p < ∞ and f a linear combination of

the functions {ψj}1≤j≤N(R) with N(R) a positive integer such that N(R) ≃ R, the
inequality

‖f‖L∞((0,1),dµν) ≤ CR2(ν+1)/p‖f‖Lp,∞((0,1),dµν)

holds.

Proof of Theorem 6. With the bound in Lemma 14 we have

(logR)1/p0 ≤ CR−2(ν+1)/p1
∥

∥Kδ
R(0, y)

∥

∥

Lp0((0,1),dµν)

= CR−2(ν+1)/p1 sup
‖f‖Lp1 ((0,1),dµν )=1

∣

∣

∣

∣

∫ 1

0

Kδ
R(0, y)f(y) dµν

∣

∣

∣

∣

= CR−2(ν+1)/p1 sup
‖f‖Lp1 ((0,1),dµν )=1

∣

∣Bδ
Rf(0)

∣

∣ .
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From the previous estimate the result for δ = ν+1/2 follows. In the case δ < ν+1/2
it is obtained by using Lemma 15 because

R−2(ν+1)/p1 sup
‖f‖Lp1 ((0,1),dµν )=1

∣

∣Bδ
Rf(0)

∣

∣

≤ C sup
‖f‖Lp1 ((0,1),dµν )=1

∥

∥Bδ
Rf(x)

∥

∥

Lp1,∞((0,1),dµν)

since Bδ
Rf(x) is a linear combination of the functions {ψj}1≤j≤N(R) with N(R) ≃

R. �

Proof of Theorem 7. In the case δ < ν+1/2, the result follows from Theorem 6 by
using a duality argument. Indeed, it is clear that

sup
E⊂(0,1)

‖Bδ
RχE‖Lp0((0,1),dµν)

‖χE‖Lp0((0,1),dµν)
= sup

E⊂(0,1)

sup
‖f‖Lp1 ((0,1),dµν )=1

∣

∣

∣

∫ 1

0
f(y)Bδ

RχE(y) dµν

∣

∣

∣

‖χE‖Lp0((0,1),dµν)

= sup
‖f‖Lp1 ((0,1),dµν )=1

sup
E⊂(0,1)

∣

∣

∣

∫ 1

0
χE(y)Bδ

Rf(y) dµν

∣

∣

∣

‖χE‖Lp0((0,1),dµν)
.(38)

By Theorem 6 it is possible to choose a function g such that ‖g‖Lp1((0,1),dµν) = 1
and

‖Bδ
Rg(x)‖Lp1,∞((0,1),dµν) ≥ C(logR)1/p0 .

Then, with the notation

µν(E) =

∫

E

dµν ,

we have

(39) λp1µν(A) ≥ C(logR)p1/p0 ,

for some positive λ and A = {x ∈ (0, 1) : |Bδ
Rg(x)| > λ}. Now, we consider the

subsets of A

A1 = {x ∈ (0, 1) : Bδ
Rg(x) > λ} and A2 = {x ∈ (0, 1) : Bδ

Rg(x) < −λ}

and we define D = A1 if µν(A1) ≥ µν(A)/2 and D = A2 otherwise. Then, by (39),
we deduce that

(40) λ ≥ C
(logR)1/p0

µν(D)1/p1
.

Taking f = g and E = D in (38) and using (40), we see that

sup
E⊂(0,1)

‖Bδ
RχE‖Lp0((0,1),dµν)

‖χE‖Lp0((0,1),dµν)
≥ Cλ

µν(D)

‖χD‖Lp0((0,1),dµν)
≥ C(logR)1/p0

and the proof is complete in this case. For δ = ν + 1/2 the result follows from
Theorem 6 with a standard duality argument. �
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7. Proof of Lemma 15

To proceed with the proof of Lemma 15 we need some auxiliary results that are
included in this section.

We start by defining a new operator. For each non-negative integer r, we consider
the vector of coefficients α = (α1, . . . , αr+1) and we define

Tr,R,αf(x) =

r+1
∑

ℓ=1

αℓBr
ℓRf(x).

This new operator is an analogous of the generalized delayed means considered in
[16]. In [16] the operator is defined in terms of the Cesàro means instead of the
Bochner-Riesz means. The properties of Tr,R,α that we need are summarized in the
next lemma

Lemma 16. For each non-negative integer r and ν ≥ −1/2, the following state-

ments hold

a) Tr,R,αf is a linear combination of the functions {ψj}1≤j≤N((r+1)R), where

N((r + 1)R) is a non-negative integer such that N((r + 1)R) ≃ (r + 1)R;
b) there exists a vector of coefficients α, verifying that |αℓ| ≤ A, for ℓ =

1, . . . , r + 1, with A independent of R and such that Tr,R,αf(x) = f(x) for

each linear combination of the functions {ψj}1≤j≤N(R) where N(R) is a

positive integer. Moreover, in this case, for r > ν + 1/2,

‖Tfr,R,α‖L1((0,1),dµν) ≤ C‖f‖L1((0,1),dµν)

and

‖Tr,R,αf‖L∞((0,1),dµν) ≤ C‖f‖L∞((0,1),dµν),

with C independent of R and f .

Proof. Part a) is a consequence of the definition of Tr,R,α and the fact that the
m-th zero of the Bessel function Jν , with ν ≥ −1/2, is contained in the interval
(mπ + νπ/2 + π/2,mπ + νπ/2 + 3π/4).

To prove b) we consider f(x) =
∑N(R)

j=1 ajψj(x). In order to obtain the vector of

coefficients such that Tr,R,αf(x) = f(x) the equations

r+1
∑

ℓ=1

αℓ

(

1− s2k
(ℓR)2

)r

= 1,

for all k = 1, . . . , N(R), should be verified. After some elementary manipulations
each one of the previous equations can be written as

r
∑

j=0

s2jk

(

r

j

)

(−1)j

R2j

r+1
∑

ℓ=1

αℓ

ℓ2j
= 1

and this can be considered as a polynomial in s2k which must be equal 1, therefore
we have the system of equations

r+1
∑

ℓ=1

αℓ

ℓ2j
= δj,0, j = 0, . . . , r.

This system has an unique solution because the determinant of the matrix of coef-
ficients is a Vandermonde’s one. Of course for each ℓ = 1, . . . , r + 1, it is verified
that |αℓ| ≤ A, with A a constant depending on r but not on N(R).
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The norm estimates are consequence of the uniform boundedness

‖Bδ
Rf‖Lp((0,1),dµν) ≤ C‖f‖Lp((0,1),dµν),

for p = 1 and p = ∞ when δ > ν + 1/2 (see [4]). �

In the next lemma we will control the L∞-norm of a finite linear combination of
the functions {ψj}j≥1 by its L1-norm.

Lemma 17. If ν > −1/2 and f(x) is a linear combination of the functions

{ψj}1≤j≤N(R) with N(R) a positive integer such that N(R) ≃ R, the inequality

‖f‖L∞((0,1),dµν) ≤ CR2(ν+1)‖f‖L1((0,1),dµν)

holds.

Proof. It is clear that

f(x) =

N(R)
∑

j=1

ψj(x)

∫ 1

0

f(y)ψj(y) dµν(y).

Now, using Hölder inequality and Lemma 1 we have

‖f‖L∞((0,1),dµν) ≤ C

N(R)
∑

j=1

‖ψj‖2L∞((0,1),dµν)
‖f‖L1((0,1),dµν)

≤ C‖f‖L1((0,1),dµν)

N(R)
∑

j=1

j2ν+1 ≤ CR2(ν+1)‖f‖L1((0,1),dµν).

�

The following lemma is a version in the space ((0, 1), dµν) of Lemma 19.1 in [3].
The proof can be done in the same way, with the appropriate changes, so we omit
it.

Lemma 18. Let ν > −1, 1 < p < ∞ and T be a linear operator defined for

functions in L1((0, 1), dµν) and such that

‖Tf‖L∞((0,1),dµν) ≤ A‖f‖L1((0,1),dµν) and ‖Tf‖L∞((0,1),dµν) ≤ B‖f‖L∞((0,1),dµν),

then

‖Tf‖L∞((0,1),dµν) ≤ CA1/pB1/p′‖f‖Lp,∞((0,1),dµν).

Now, we are prepared to conclude the proof of Lemma 15.

Proof of Lemma 15. We consider the operator Tr,R,αf given in Lemma 16 b) with
r > ν + 1/2. By Lemma 16 and Lemma 17 we have

‖Tr,R,αf‖L∞((0,1),dµν) ≤ C((r + 1)R)2(ν+1)‖Tr,R,αf‖L1((0,1),dµν)

≤ CR2(ν+1)‖f‖L1((0,1),dµν).

From b) in Lemma 16 we obtain the estimate

‖Tr,R,αf‖L∞((0,1),dµν) ≤ C‖f‖L∞((0,1),dµν).

So, by using Lemma 18, we obtain the inequality

‖Tr,R,αf‖L∞((0,1),dµν) ≤ CR2(ν+1)/p‖f‖Lp,∞((0,1),dµν)
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for any f ∈ L1((0, 1), dµν). Now, since Tr,R,αf(x) = f(x) for a linear combination
of the functions {ψj}1≤j≤N(R), the proof is complete. �
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