
ar
X

iv
:1

50
4.

06
97

6v
2 

 [
m

at
h.

FA
] 

 8
 J

an
 2

01
6

Multivariate α-Molecules

Axel Flinth Martin Schäfer ∗
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Abstract

The suboptimal performance of wavelets with regard to the approximation of multivariate data

gave rise to new representation systems, specifically designed for data with anisotropic features. Some

prominent examples of these are given by ridgelets, curvelets, and shearlets, to name a few.

The great variety of such so-called directional systems motivated the search for a common frame-

work, which unites many under one roof and enables a simultaneous analysis, for example with respect

to approximation properties. Building on the concept of parabolic molecules, the recently introduced

framework of α-molecules does in fact include the previous mentioned systems. Until now however it

is confined to the bivariate setting, whereas nowadays one often deals with higher dimensional data.

This motivates the extension of this unifying theory to dimensions larger than 2, put forward in this

work. In particular, we generalize the central result that the cross-Gramian of any two systems of

α-molecules will to some extent be localized.

As an exemplary application, we investigate the sparse approximation of video signals, which are

instances of 3D data. The multivariate theory allows us to derive almost optimal approximation rates

for a large class of representation systems.

Keywords: Wavelets, Shearlets, Anisotropic Scaling, α-Molecules, Multiscale Analysis, Nonlinear

Approximation.
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1 Introduction

1One of the most influential modern developments in applied harmonic analysis has undeniably been the
introduction of wavelets [13]. Their construction is based on dilations and translations of a (finite) set
of generating functions (gλ)λ ⊆ L2(Rd). By carefully choosing the generators, the resulting systems can
become frames or even orthonormal bases of the space L2(Rd). Furthermore, additional properties can
be obtained, such as e.g. smoothness or compact support. Some real-world applications of wavelets today
are e.g. data compression (e.g. JPEG2000) or restoration tasks in imaging sciences [1]. In the field of
PDE’s wavelets nowadays play a central role in solving elliptic equations [7].

The great success of wavelet systems – besides their elegant construction principle and available fast
numerical implementations – rests upon the fact that they provide efficient multiscale representations for
various types of data. In particular, they optimally sparsely approximate functions f : Rd → C, which
are smooth apart from (a finite number of) point singularities, in the sense of fast decay of the N -term
approximation error. Since such singularities are the only ones that occur in ‘reasonable’ 1D data, we
can safely say that wavelets are optimal for approximating one-dimensional functions.

Moving up a dimension however, the situation changes completely. Two-dimensional data may well
have singularities along curves and is often governed by such anisotropic features – think of edges in
images for instance. A widely used model for such data is the class of cartoon-like functions [15], i.e.
functions which are smooth except for a curve-like singularity (see Section 4 for details). For this class,
wavelets do not perform optimally any more [15], and hence other approaches have to be considered.

∗Both authors are affiliated to the Institut für Mathematik, Technische Universität Berlin.
E-mail addresses: flinth@math.tu-berlin.de, schafer@math-tu.berlin.de

1The final publication has been published in Journal of Approximation Theory. It can be found via its DOI
10.1016/j.jat.2015.10.004.

1

http://arxiv.org/abs/1504.06976v2
http://www.dx.doi.org/doi:10.1016/j.jat.2015.10.004


1.1 Directional Representation Systems

The reason for the non-optimal performance of wavelets in a multivariate setting is due to their isotropic
scaling law, which is not optimally suited for resolving anisotropic, i.e. directional, features. Therefore,
many systems employing some form of anisotropic scaling and thus better suited for this task have been
considered in recent years. Subsequently, we briefly recall a few of these constructions for motivation
purposes, but by no means this shall be a complete overview.

1.1.1 Ridgelets

Aiming to approximate functions with line singularities, Candès defined so-called ridgelets [2] as trans-
lated, rotated and dilated versions of a ridge function, which is constant orthogonal to some specified
direction η ∈ S

d−1. Since such functions are not square-integrable, the concept was adjusted by Donoho [3]
allowing ridgelets a slow decay orthogonal to the η-direction, leading to a modified notion adopted for
instance in [23, 26, 25]. In the new sense, a system of ridgelets is constructed performing rotations,
translations and directional scaling on a generator g ∈ L2(Rd) with corresponding scaling matrix

A0,s =

(
s 0
0 1

)
, s > 0.

Tight ridgelet frames of this type were constructed e.g. in [23, 25].

1.1.2 Curvelets and Shearlets

A true breakthrough was achieved by Candès and Donoho in 2002 with the introduction of curvelets [5],
the first system to provide a provably (almost) optimal approximation rate for a certain class of cartoon-
like functions. Again, the idea is to apply certain rotation, translation and scaling operations to a
generating function. The major novelty was the use of parabolic scaling, a compromise between directional
scaling used for ridgelets and isotropic scaling used for wavelets, described by a matrix of the form

A 1
2 ,s

=

(
s 0

0 s1/2

)
, s > 0. (1)

This type of scaling is specifically adapted to data with C2-discontinuity curves, since it leaves the
parabola invariant and produces functions with essential support in a rectangle of size ‘width ≈ length2’.
We mention that in the actual construction of the classical tight frame of curvelets [5], the translations
and rotations are applied to a set of generators, related to each other by a parabolic scaling law realised
not by (1) but by dilations with respect to polar coordinates.

A few years after curvelets in 2005, shearlets were developed mainly by Kutyniok, Labate, Lim, and
Weiss [40]. They also scale parabolically and feature the same celebrated approximation properties as
curvelets for cartoon-like functions [30, 38]. The main difference is that shearings and not rotations are
used for the change of direction. The choice of shears makes shearlets more adapted to a digital grid,
since shearings given by the matrices

Sh =

(
1 0
h 1

)
and ST

h =

(
1 h
0 1

)
, h ∈ R, (2)

leave the digital grid invariant. This is favorable in a discrete setting and bears the advantage of a
unified treatment of the continuum and digital realm. It should be noted that some actual constructions
of shearlet systems are not entirely faithful to the original idea of applying shears, translations, and
parabolic scalings to a single generator: The probably most notable and widely used adjustment is the
idea of cone-adaption, where several generators with different orientations are used in order to avoid large
shear parameters. We will discuss this strategy in greater detail later in the article.

Nowadays, shearlets are a widely used directional representation system with applications ranging
from imaging science [16], simulations of inverse scattering problems [43] to solvers for transport equations
[12]. For more information we refer to the book [39].
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1.1.3 α-Curvelets (and -Shearlets)

The systems we have presented so far all utilize different versions of the scaling matrix

Aα,s =

(
s 0
0 sα

)
, s > 0, (3)

where the parameter α ∈ [0, 1] specifies the degree of anisotropy in the scaling: α = 1 corresponds to
wavelets, α = 1

2 to curvelets and shearlets, and α = 0 to ridgelets. This observation was used in [25] to
define α-curvelets, and associated bandlimited tight frames were constructed for every α ∈ [0, 1]. Similar
to α-curvelets, the notion of a shearlet can be generalized to comprise α-scaling. The resulting α-shearlets
have been defined and examined in [35, 41] (for the range α ∈ [ 12 , 1)).

1.2 A common Framework

The directional systems described above are all constructed using the same idea: start with a set of
generators, and then perform scalings (with some degree of anisotropicity), changes of direction (e.g.
rotations or shears) and translations. Further, in order to obtain systems with desirable properties, some
regularity condition on the generators has to be posed. Having this in mind, it seems possible to regard
all such systems as certain instances of a more general concept.

1.2.1 Parabolic Molecules

In 2011, Grohs and Kutyniok introduced the concept of parabolic molecules [27], which allows to derive
classical curvelets and shearlets as special instances of the same general construction process. Starting
from a set of generators, a system of parabolic molecules is obtained via parabolic dilations, rotations,
and translations. The essential novelty is that the generators can, apart from a certain time-frequency
localization, be chosen freely and each function may have its own generator. Together with the utiliza-
tion of so-called parametrizations to allow generic indexing, the ‘variability’ of the generators provides
the flexibility to cast rotation- and shear-based systems as instances of one unifying construction prin-
ciple. Moreover, it becomes possible to relax the vanishing moment conditions – important for high
approximation rates – imposed on the generators. Rather to demand rigid conditions as in most classical
constructions, it suffices to require the moments of the variable generators to vanish asymptotically at
high scales, without changing the asymptotic approximation behavior.

1.2.2 α-Molecules

The scope of parabolic molecules is limited to parabolically scaled systems, wherefore a major gen-
eralization was pursued in [28], namely the extension to α-molecules. These incorporate more general
α-scaling (3) and can thus bridge the gap between wavelets and ridgelets, as well as curvelets and shearlets
in between.

However, like the framework of parabolic molecules, they are confined to a 2-dimensional setting.
Since nowadays higher dimensional data plays an ever increasing role, an extension of the theory to
higher dimensions is appreciable. A first step in this direction was taken by one of the authors [20]
with an extension of the parabolic molecules framework to 3D. In this paper, we aim to generalize the
framework to arbitrary dimensions d ∈ N, d ≥ 2 and general scaling parameters α ∈ [0, 1].

1.2.3 Why α-Molecules?

The concept of (multivariate) α-molecules covers a great variety of directional multiscale systems and
unifies their treatment and analysis, e.g. with respect to approximation properties. The foundational
result behind this is Theorem 2.5, i.e. the fact that the localization of the cross-Gramian of two sys-
tems of α-molecules – in the sense of a strong off-diagonal decay – merely depends on their respective
parametrizations and orders. Hence, the parametrization and the order of a system of α-molecules alone
is sufficient information to determine the corresponding approximation behavior. This is illustrated by
Theorem 4.4, where a large class of directional representation systems is specified with almost optimal
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approximation performance with respect to cartoon video data. Finally, we remark that apart from the
analysis aspects the framework also promises new design approaches for novel constructions.

1.3 Our Contributions

As mentioned before, the goal of this paper is to generalize the concept of α-molecules to arbitrary
dimensions. The multivariate formulation extends the earlier results from [27, 28, 20] and gives valuable
insights, e.g. on how they scale with the dimension. One should emphasize that the extension beyond
dimension 2 comes with several delicacies such as to determine a suitable definition of the so-called α-
scale index distance. The technical effort to prove the mentioned results is considerably higher when
dealing with more than 2 dimensions, mainly because many arguments take place on the unit sphere
instead of the unit circle. It also gets significantly harder to prove that shearlets, i.e. the main example
of multidimensional directional systems in dimensions higher than 2, can be included in the framework.
Hence already the core results of the theoretical framework themselves do not generalize straightforwardly.

1.4 Outline

The paper is organized as follows. The core part of the theory, in particular Theorem 2.5, is presented
in Section 2. Since the corresponding proof is quite involved it is outsourced to Section 6. The abstract
theory is further developed in Section 3 with a focus on approximation theory. Here Theorem 3.7
derives sufficient conditions for two systems of α-molecules to be sparsity equivalent. In Section 4 we
then exemplarily apply the theory to video data and identify a large class of representation systems
providing almost optimal sparse approximation in Theorem 4.4. Finally, Section 5 is devoted to a large
class of concrete systems of α-molecules, namely multivariate α-shearlet molecules. As specific examples
we present pyramid-adapted shearlet systems, in particular those generated by compactly supported
functions and the smooth Parseval frame of band-limited shearlets by Guo and Labate. This frame is
presented in greater detail in Subsection 5.3.1, thereby fixing some inaccuracies of the original definition.

1.5 Notation

The (strictly) positive real numbers are denoted by R+. The vector space Rd, where d ∈ N, is equipped
with the usual Euclidean scalar product denoted by 〈·, ·〉. N hereby denotes the set of positive integers,
while N0 = N ∪ {0}. For the unit sphere in Rd the symbol Sd−1 is used. The standard unit vectors are
given by e1, . . . , ed and for a vector x ∈ Rd we use the notation [x]i := 〈x, ei〉, i ∈ {1, . . . , d}, for the i:th
component. Its p-(quasi-)norm in the range 0 < p ≤ ∞ is denoted by |x|p. In case of the Euclidean norm

|x|2 =
√
〈x, x〉, we will usually omit the subindex. We further define |x|[d−1] := |([x]1, . . . , [x]d−1, 0)

T |2.
For a matrix M ∈ R

m,n, we denote its operator norm as a mapping from the Euclidean R
n to the

Euclidean Rm by ‖M‖2→2, and its entries by [M ]ji , i = 1, . . . ,m, j = 1, . . . n.
The usual Lebesgue spaces on Rd are denoted by Lp(Rd), where 0 < p ≤ ∞. The corresponding

sequence spaces are given by ℓp(Λ), where Λ is a countable index set. In both cases we use the symbol
‖ · ‖p for the associated (quasi-)norms. Further, the symbol 〈·, ·〉 will also be used for the inner products
on the Hilbert spaces L2(Rd) and ℓ2(Λ). For the weak versions of the sequence spaces we use the notation
ωℓp(Λ) with associated (quasi-)norms ‖ · ‖ωℓp . For their definition we refer to Subsection 3.1.

In addition, we need the following function spaces on Rd: the space of continuous functions C(Rd), the
space of n-times continuously differentiable functions Cn(Rd) for n ∈ N∪{∞}, as well as their respective
restrictions Cc(R

d) and Cn
c (R

d) to functions with compact support.

The Fourier transform f̂ of a function f in the space of Schwarz functions S (Rd) is given by

f̂(ξ) =

∫

Rd

f(x) exp(−2πi〈ξ, x〉)dx.

As usual, it extends to the space of tempered distributions S ′(Rd).
For two entities x, y, usually dependent on a certain set of parameters, the notation ‘x . y’ shall

mean that x ≤ Cy for some fixed constant C > 0, which is independent of the involved parameters.
If both x . y and y . x we write ‘x ≍ y’. We further need the ceiling function on R given by
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⌈x⌉ := min{ℓ ∈ Z : ℓ ≥ x}. A useful abbreviation is also the ubiquitous ‘analyst’s bracket’ defined by
〈x〉 :=

√
1 + x2 for x ∈ R.

2 α-Molecules in d Dimensions

Recalling the definition in [28], a system of bivariate α-molecules consists of functions in L2(R2) obtained
by applying α-scaling, rotations, and translations to a set of generating functions, which need to be
sufficiently localized in time and frequency. Due to this construction, every α-molecule is naturally
associated with a certain scale, orientation and spatial position, which – in the 2-dimensional case – is
conveniently represented by a point in the corresponding parameter space P2 = R+ × S1 × R2.

Aiming for a multivariate generalization, we thus first need a d-dimensional version of this parameter
space. We let Sd−1 denote the unit sphere in Rd and put

Pd = R+ × S
d−1 × R

d.

Each function mλ ∈ L2(Rd) of a system of d-dimensional α-molecules (mλ)λ∈Λ shall by definition then
be associated with a unique point (sλ, eλ, xλ) ∈ Pd, where the variable sλ ∈ R+ shall represent its scale,
the vector eλ ∈ Sd−1 its orientation in Rd, and xλ ∈ Rd the spatial location. The relation between the
index λ of a molecule mλ and its position (sλ, eλ, xλ) in Pd is described by a so-called parametrization,
analogue to [28].

Definition 2.1. A parametrization consists of a pair (Λ,ΦΛ), where Λ is a discrete index set and ΦΛ is
a mapping

ΦΛ :

{
Λ → Pd,

λ ∈ Λ 7→ (sλ, eλ, xλ) .

which associates with each λ ∈ Λ a scale sλ ∈ R+, a direction eλ ∈ S
d−1, and a location xλ ∈ R

d.

For practical purposes it is more convenient to represent an orientation η ∈ Sd−1 by a set of angles.
Therefore we define the rotation matrix Rθ for θ = (θ1, . . . , θd−2) ∈ Rd−2 by

Rθ =



cos(θ1) − sin(θ1)

Id−2

sin(θ1) cos(θ1)


 · . . . ·




cos(θd−2) − sin(θd−2)
1

sin(θd−2) cos(θd−2)
Id−3


 ,

where Id for d ∈ N denotes the d-dimensional identity matrix. Furthermore, we introduce for ϕ ∈ R the
matrix

Rϕ =




cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

Id−2


 .

Note that these definitions pose an inconsistency in the notation, since they depend on the particular
naming of the index. However, since we always use these particular indices, this will not lead to any
problems while improving the readability significantly.

Each orientation η ∈ Sd−1 can now be uniquely represented by a set of angles (θ1, . . . , θd−2, ϕ) ∈
[0, π]× [−π

2 ,
π
2 ]

d−3 × [0, 2π] via the relation

η = RT
ϕR

T
θ ed, (4)

where ed is the dth unit vector of Rd. Explicitly, it is given by

η(θ, ϕ) =



η1(θ, ϕ)

...
ηd(θ, ϕ)


 =




cos(ϕ) cos(θd−2) · · · · · · cos(θ2) sin(θ1)
sin(ϕ) cos(θd−2) · · · · · · cos(θ2) sin(θ1)

− sin(θd−2) cos(θd−3) · · · cos(θ2) sin(θ1)
...

− sin(θ3) cos(θ2) sin(θ1)
− sin(θ2) sin(θ1)

cos(θ1)




.
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Next, we adapt the α-scaling matrix (3) to the multivariate setting. For α ∈ [0, 1], we set

Aα,s =

(
sαId−1

s

)
. (5)

In case α = 1 this matrix scales Rd isotropically, in the range α ∈ [0, 1) it scales uniformly in all directions
except for the ed-direction. Note that here we choose ed as the distinguished direction in which the scaling
is stronger – in contrast to the 2-dimensional case [28], where e1 was chosen.

After this preparation we are ready to give the definition of d-variate α-molecules, d ∈ N, d ≥ 2, which
essentially reduces to the original definition from [28] for d = 2, except for the interchanged roles of the
directions e1 and ed.

Definition 2.2. Let α ∈ [0, 1], d ∈ N, d ≥ 2 and L,M,N1, N2 ∈ N0 ∪ {∞}. Further let (Λ,ΦΛ) be a
parametrization with ΦΛ(λ) = (sλ, eλ, xλ) ∈ Pd for λ ∈ Λ. The corresponding angles (4) for eλ shall
be denoted by (θλ, ϕλ). A family of functions (mλ)λ∈Λ ⊆ L2(Rd) is called a system of d-dimensional
α-molecules of order (L,M,N1, N2) with respect to the parametrization (Λ,ΦΛ), if each mλ is of the
form

mλ = s
1+α(d−1)

2

λ gλ
(
Aα,sλRθλRϕλ

(x− xλ)
)

(6)

with generators gλ ∈ L2(Rd) satisfying for every multi-index ρ ∈ Nd
0 with |ρ|1 ≤ L the condition

|∂ρĝλ(ξ)| . min
(
1, s−1

λ + |[ξ]d|+ s
−(1−α)
λ |ξ|[d−1]

)M
〈|ξ|〉−N1〈|ξ|[d−1]〉−N2 . (7)

The implicit constant in (7) is required to be uniform in Λ. In case that a control parameter takes the
value ∞, this shall mean that the condition (7) is fulfilled with the respective quantity arbitrarily large.

A system of α-molecules is thus obtained by applying rotations, translations, and α-scaling to a set
of generating functions (gλ)λ, which are required to obey a prescribed time-frequency localization. Every
molecule mλ is thereby allowed to have its own individual generator gλ.

The definition only poses conditions on the Fourier transform of the generators gλ. The number L
describes the spatial localization, M the number of directional (almost) vanishing moments, and N1, N2

the smoothness of an element mλ. Also note that the weighting function on the right hand side of (7) is
symmetric with respect to rotations around the ed-axis, as well as reflections along this axis.

Applying Aα,s with α < 1 and s > 1 to the unit ball B = {x ∈ Rd : |x| ≤ 1} stretches B in the
ed-direction. This results in plate-like support of the characteristic function χB(Aα,s·) for large s ∈ R+,
with the ‘plate’ lying in the plane spanned by the vectors {e1, . . . , ed−1}. Thus, at high scales α-molecules
can be thought of as plate-like objects in the spatial domain. The approximate frequency support on the
other hand is concentrated in a pair of opposite cones in the direction of the respective orientation.

Remark 2.3. It may seem more natural to choose a rotation Rη from ed to η ∈ Sd−1 in the (ed, η)-plane
to adjust the orientation in (6). Due to the symmetries of the weighting function of the generators, this
choice is however not necessary. Since it is easier to use fixed rotation planes, we stick to this more
pragmatic choice of rotation parameters.

Let us conclude this paragraph with some comments on the use of the term ‘molecule’. In the theory
of function spaces, ‘atoms’ originally refer to the basic building blocks of a function space. In the widest
sense, an atomic decomposition of a function space is a countable subset containing functions called
‘atoms’, which allow to represent every function of the space as a countable linear combination.

In the theory of atomic decomposition of so called Hardy spaces Hp, an atom is defined as a func-
tion a supported in some cube Q possessing vanishing moments and satisfying some norm bound, e.g.

‖a‖2 ≤ |Q| 12− 1
p [48]. This definition has also been adapted in a slightly less rigid form in other parts

of mathematics. Here, the term ”atom” often simply refers to a function having compact support and
possessing many vanishing moments. Typically, these atoms also possess additional properties, e.g. they
may be bounded or fulfill smoothness conditions.
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Furthermore, in many instances, the atoms are also related to each other. Classical coorbit spaces e.g.
possess atomic decompositions with atoms obtained from the action of a group on a single generator [18].
A primary example are the (homogeneous) Besov-Triebel-Lizorkin spaces with (compactly supported)
wavelets as atoms.

A system of α-molecules somewhat resembles this structure, whereas in a relaxed form. The compact
support condition is replaced with a less restrictive decay condition, and the moments are only asymptot-
ically vanishing. In addition, the molecules are related to each other via certain group transformations,
namely translations, rotations, and dilations. However, this relation shall not be understood in a strict
sense, since the generators are allowed to vary to some extent. They just need to fulfill a uniform localiza-
tion condition. For the functions of a system featuring these kind of soft conditions the term ‘molecules’
was coined and used e.g. in [4, 32, 27, 28].

2.1 Index Distance in d Dimensions

A central ingredient of the theory of bivariate α-molecules [28] is the fact that the parameter space P2 can
be equipped with a natural (pseudo-)metric with the property, that the distance between two points in
P2 ‘anti-correlates’ with the size of the scalar products of α-molecules associated with those points: The
greater the distance between two indicesλ, λ′ ∈ P2, the smaller the scalar product of the corresponding
α-molecules mλ,mλ′ ∈ L2(Rd).

Our next aim is to find a suitable analogon of this (pseudo-)metric for the parameter space Pd. As
for P2, the distance between two points (sλ, eλ, xλ), (sµ, eµ, xµ) ∈ Pd must certainly take into account
their spatial, scale, and orientational relation. The spatial distance is measured by a rightly balanced
combination of an isotropic term |xλ−xµ|2 and a non-isotropic component |〈eλ, xλ−xµ〉|, which depends
on the orientation of the molecules. For the distance between the orientations eλ and eµ, it seems natural
to consider the angle dS(eλ, eµ) = arccos(〈eλ, eµ〉) with dS(eλ, eµ) ∈ [0, π]. Due to the symmetries of the
weighting function in (7) however, the angle dS(eλ, eµ) is projected onto the interval [−π/2, π/2), with the
projected angle {dS(eλ, eµ)} being the unique element of the set {dS(eλ, eµ) + nπ | n ∈ Z} in the interval
[−π/2, π/2). A suitable measure for the orientational distance is then |{dS(eλ, eµ)}|2. This definition is
in fact consistent with the one in [28], since in two dimensions we have |{dS(eλ, eµ)}| = |{ϕλ − ϕµ}|.
Finally, the distance between different scales sλ, sµ > 0 is measured by the ratio max {sλ/sµ, sµ/sλ}.

Altogether, this leads to the following definition. It directly generalizes the metric introduced in [29],
which is a simplified version of the original metric from [28].

Definition 2.4. Let α ∈ [0, 1]. For given parametrizations (Λ,ΦΛ) and (∆,Φ∆) with (sλ, eλ, xλ) = ΦΛ(λ)
and (sµ, eµ, xµ) = Φ∆(µ), the α-scaled index distance ωα : Λ×∆ → [1,∞) is defined by

ωα(λ, µ) = max

{
sλ
sµ
,
sµ
sλ

}
(1 + dα(λ, µ)) , λ ∈ Λ, µ ∈ ∆,

where with s0 = min{sλ, sµ}

dα(λ, µ) = s2α0 |xλ − xµ|2 + s
2(1−α)
0 |{dS(eλ, eµ)}|2 + s0 |〈eλ, xλ − xµ〉| .

Let (Λ,ΦΛ) be a parametrization. Then the induced index distance on Λ is pseudosymmetric and
satisfies a pseudo triangle inequality. More precisely, it has the following properties:

(i) ωα(λ, λ) = 1 for all λ ∈ Λ,

(ii) ωα(λ, λ
′) ≍ ωα(λ

′, λ) for all λ, λ′ ∈ Λ,

(iii) ωα(λ, λ
′) . ωα(λ, λ

′′)ωα(λ
′′, λ′) for all λ, λ′, λ′′ ∈ Λ.

Hence the function ωα can be viewed as a kind of multiplicative pseudo-metric. A proof of these properties
for the 2-dimensional case can be found in [29], which translates very well to higher dimensions.

Now we are in a position to formulate the main theorem of this paper. It states that the index distance
– in a certain sense – measures the size of the scalar products of α-molecules.
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Theorem 2.5. Let α ∈ [0, 1], d ∈ N, d ≥ 2, and let (mλ)λ∈Λ and (pµ)µ∈∆ be two systems of d-
dimensional α-molecules of order (L,M,N1, N2) with respect to parametrizations (Λ,ΦΛ) and (∆,Φ∆),
respectively. Further assume that there exists some constant c > 0 such that

sλ ≥ c and sµ ≥ c for all λ ∈ Λ, µ ∈ ∆ with (sλ, eλ, xλ) = ΦΛ(λ), (sµ, eµ, xµ) = Φ∆(µ).

If N1 >
d
2 and if there exists some positive integer N ∈ N such that

L ≥ 2N, M > 3N − d+
1+ α(d − 1)

2
, N1 ≥ N +

1 + α(d − 1)

2
, N2 ≥ 2N + d− 2,

then we have

|〈mλ, pµ〉| . ωα(λ, µ)
−N .

The proof of Theorem 2.5 is very long and technical and for this reason not presented here but in Sec-
tion 6. Let us instead discuss the significance of this result. It states that – with appropriate assumptions
on the parametrizations – the cross-Gramian of two systems of α-molecules is well-localized, in the sense
of a fast off-diagonal decay with respect to the index distance ωα. Put differently, the matrix is close
to a diagonal matrix and the corresponding systems are almost orthogonal to each other. This property
has many implications, see for instance [29, 24]. Its significance with respect to sparsity equivalence is
elaborated in the next section.

3 Sparse Approximation with α-Molecules

Based on Theorem 2.5 it is possible to develop a general methodology to categorize frames of α-molecules
according to their sparse approximation behavior. A central concept in this context is the notion of
sparsity equivalence.

Another question that naturally arises in this context is if it is possible develop a theory of smoothness
spaces associated with frames of α-molecules. For such an investigation, coorbit space theory provides an
appropriate abstract framework. Usually however, due to the lack of group structure, this question can
not be handled within the classical theory developed in [18, 17, 19]. In subsequent contributions, among
others [10, 11, 8], the classical theory has seen significant extensions beyond the group setting. In fact,
it is possible to base the theory solely on the notion of an abstract continuous frame, see [21, 47, 46, 36].
In this general setup coorbits associated to frames of α-molecules can be defined and investigated.

Up to now, this has only been carried out to some extent and not yet systematically, i.e., for certain
special instances of α-molecules. A particular example are cone-adapted bivariate shearlet systems [44].
The authors believe that the development of a theory of α-molecule smoothness spaces is beyond the
scope of this paper, but certainly a very interesting possibility for future research. In this paper, we
concentrate on sparse approximations.

3.1 Sparse Approximation and Sparsity Equivalence

Let us briefly recall some aspects of approximation theory in a general (separable) Hilbert space (H, 〈·, ·〉).
Utilizing a system (mλ)λ∈Λ ⊆ H, a signal f ∈ H can be represented by the coefficients cλ ∈ C of the
expansion

f =
∑

λ∈Λ

cλmλ. (8)

Suitable representation systems are provided e.g. by so-called frame systems [6], which ensure stable
measurement of the coefficients and also stable reconstruction. A system (mλ)λ∈Λ in H forms a frame if
there exist constants A,B > 0, called the frame bounds, such that

A‖f‖2 ≤
∑

λ∈Λ

|〈f,mλ〉|2 ≤ B‖f‖2 for all f ∈ H.
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If A and B can be chosen equal, the frame is called tight. In case A = B = 1, one speaks of a Parseval
frame. The associated frame operator S : H → H is given by Sf =

∑
λ∈Λ〈f,mλ〉mλ.

Since S is always invertible, the system (S−1mλ)λ is also a frame, referred to as the canonical dual
frame. It can be used to compute a particular sequence of coefficients in the expansion (8) via

cλ = 〈f, S−1mλ〉, λ ∈ Λ.

This sequence however is usually not the only one possible. Unlike the expansion in a basis, a represen-
tation with respect to a frame need not be unique. The canonical dual frame can also be used to express
f in terms of the frame coefficients (〈f,mλ〉)λ by

f =
∑

λ∈Λ

〈f,mλ〉S−1mλ.

In general, any system (m̃λ)λ∈Λ satisfying this reconstruction formula is called an associated dual frame.
Let us turn to the question of efficient encoding. In practice we have to restrict to finite expansions (8),

which usually leads to an approximation error. Given a positive integerN , the bestN -term approximation
fN of some element f ∈ H with respect to the system (mλ)λ is defined by

fN = argmin
∥∥∥f −

∑

λ∈ΛN

cλmλ

∥∥∥
2

s.t. #ΛN ≤ N.

For efficient approximation, it is desirable to find representation systems which provide good sparse
approximation for the considered data, in the sense that the approximation error ‖f−fN‖ decays quickly
for N → ∞. Typically one wants to approximate signals in some subclass C ⊆ H. The approximation
performance of a system with respect to such a class is then usually judged by the worst-case scenario,
i.e. the worst possible decay rate of the error ‖f − fN‖ for f ∈ C. In this sense a system (mλ)λ provides
optimally sparse approximations with respect to C, if its worst-case approximation rates are the best
among all systems.

It is common to consider not the best N -term approximation but the N -term approximation, obtained
by keeping the N largest coefficients. This approximation is better understood and provides a bound for
the best N -term approximation error. We will also denote it by fN , since the context will always make
the meaning clear.

TheN -term approximation rate achieved by a frame is closely related to the decay of the corresponding
frame coefficients, often measured by a strong or weak ℓp-(quasi-)norm with p > 0. The weak ℓp-(quasi-
)norm is defined by

‖(cλ)λ‖ωℓp :=
(
sup
ε>0

εp ·#{λ : |cλ| > ε}
)1/p

,

and by definition a sequence (cλ)λ ∈ ωℓp if ‖(cλ)λ‖ωℓp < ∞. Since ‖(cλ)λ‖ωℓp ≤ ‖(cλ)λ‖p for every
sequence (cλ)λ, we have the embedding ℓp →֒ ωℓp. Note also that every non-increasing rearrangement
(c∗n)n∈N of a sequence (cλ)λ ∈ ωℓp satisfies

sup
n>0

n1/p|c∗n| = ‖(cλ)λ‖ωℓp .

The well-known result below (see [14]), whose proof can be found e.g. in [28], shows that membership
of the expansion coefficients in an ℓp space for small p > 0 implies good N -term approximation rates.

Lemma 3.1 ([28, Lemma 5.1]). Let (mλ)λ∈Λ be a frame in H and f =
∑
cλmλ an expansion of f ∈ H

with respect to this frame. If (cλ)λ ∈ ωℓ2/(p+1)(Λ) for some p > 0, then the N -term approximation rate
for f achieved by keeping the N largest coefficients is at least of order N−p/2, i.e.

‖f − fN‖22 . N−p.

In particular, the error of best N -term approximation decays at least with order N−p/2.
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As illustrated by Lemma 3.1 the decay rate of the frame coefficients determines the N -term approxi-
mation rate. In particular, if the sequence (〈f,mλ〉)λ∈Λ of frame coefficients lies in ℓp for p < 2, the best

approximation rate of the dual frame (m̃λ)λ∈Λ is at least of order N−(1/p−1/2).
Let us now assume that we have two frames (mλ)λ∈Λ and (pµ)µ∈∆ in the Hilbert space H and

expansion coefficients for f ∈ H with respect to these two systems. Then these frames provide the same
N -term approximation rate for f , if the corresponding expansion coefficients have similar decay, e.g. if
they belong to the same ℓp-space. We recall [28, Proposition 5.2] and formulate this result in an abstract
Hilbert space setting.

Proposition 3.2 ([28, Proposition 5.2]). Let p ∈ (0, 2), and let (mλ)λ∈Λ and (pµ)µ∈∆ be frames in a
Hilbert space H and (m̃λ)λ∈Λ a dual frame for (mλ)λ∈Λ such that

∥∥∥(〈mλ, pµ〉)λ∈Λ,µ∈∆

∥∥∥
ℓp→ℓp

<∞.

Then (〈f, m̃λ〉)λ ∈ ℓp(Λ) implies (〈f, pµ〉)µ ∈ ℓp(∆). In particular, f ∈ H can be encoded by the N largest
frame coefficients from (〈f, pµ〉)µ up to accuracy . N−(1/p−1/2).

This proposition motivates the following notion of sparsity equivalence initially introduced in [27] for
parabolic molecules.

Definition 3.3 ([27, Definition 4.2]). Let p ∈ (0,∞], and let (mλ)λ∈Λ and (pµ)µ∈∆ be frames in a Hilbert
space H. Then (mλ)λ∈Λ and (pµ)µ∈∆ are sparsity equivalent in ℓp, if

∥∥∥(〈mλ, pµ〉)λ∈Λ,µ∈∆

∥∥∥
ℓp→ℓp

<∞.

Sparsity equivalence, as pointed out in [28], is not an equivalence relation. Nevertheless, it allows to
transfer approximation properties from one anchor system to other systems.

3.2 Consistency of Parametrizations

Our aim in this section is to categorize frames of α-molecules in L2(Rd) with respect to their approx-
imation behavior, building upon the notion of sparsity equivalence. We emphasize that a system of
α-molecules does not per se constitute a frame. In fact, the question if a system of functions in L2(Rd)
is a frame is decoupled from the question if it forms a system of α-molecules.

Theorem 3.7 will provide sufficient conditions for two frames of α-molecules to be sparsity equivalent,
based upon the notion of (α, k)-consistency originally introduced in [28]. To motivate this concept, we
recall a simple estimate from [27] for the operator norm of a matrix on discrete ℓp spaces.

Lemma 3.4 ([27, Lemma 4.4]). Let Λ,∆ be two discrete index sets, and let A : ℓp(Λ) → ℓp(∆), p > 0
be a linear mapping defined by its matrix representation A = (Aλ,µ)λ∈Λ, µ∈∆. Then we have the bound

‖A‖ℓp(Λ)→ℓp(∆) ≤ max

{
sup
λ

∑

µ

|Aλ,µ|min{1,p}, sup
µ

∑

λ

|Aλ,µ|min{1,p}

}1/min{1,p}

.

We apply this lemma to the cross-Gramian A of two systems of α-molecules, and aim for sufficient
conditions for the right hand side to be finite. The following notion was introduced in [28].

Definition 3.5 ([28, Definition 5.5]). Let α ∈ [0, 1] and k > 0. Two parametrizations (Λ,ΦΛ) and
(∆,Φ∆) are called (α, k)-consistent, if

sup
λ∈Λ

∑

µ∈∆

ωα (λ, µ)
−k

<∞ and sup
µ∈∆

∑

λ∈Λ

ωα (λ, µ)
−k

<∞. (9)

Remark 3.6. Note that due to symmetry of the distance function ωα it suffices to check only one of the
two conditions in equation (9) to prove (α, k)-consistency.
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In view of Theorem 2.5, the consistency of the parametrizations of two systems of α-molecules provides
a convenient sufficient condition for their sparsity equivalence.

Theorem 3.7. Let α ∈ [0, 1], d ∈ N, d ≥ 2, k > 0, and p ∈ (0,∞]. Let (mλ)λ∈Λ and (pµ)µ∈∆ be
two frames of d-dimensional α-molecules of order (L,M,N1, N2) with (α, k)-consistent parametrizations
(Λ,ΦΛ) and (∆,Φ∆) satisfying

sλ ≥ c, sµ ≥ c for all λ ∈ Λ, µ ∈ ∆

and with q := min{1, p}

L ≥ 2
k

q
, M > 3

k

q
− d+

1 + α(d − 1)

2
, N1 >

d

2
, N1 ≥ k

q
+

1 + α(d− 1)

2
, N2 ≥ 2

k

q
+ d− 2.

Then (mλ)λ∈Λ and (pµ)µ∈∆ are sparsity equivalent in ℓp.

Proof. Let q := min{1, p}. By Lemma 3.4, it suffices to prove that

max



sup

λ∈Λ

∑

µ∈∆

|〈mλ, pµ〉|q, sup
µ∈∆

∑

λ∈Λ

|〈mλ, pµ〉|q




1/q

<∞.

Since, by Theorem 2.5, we have |〈mλ, pµ〉| . ωα(λ, µ)
−k/q , we can conclude that

max



sup

λ∈Λ

∑

µ∈∆

|〈mλ, pµ〉|q, sup
µ∈∆

∑

λ∈Λ

|〈mλ, pµ〉|q


 . max



sup

λ∈Λ

∑

µ∈∆

ωα(λ, µ)
−k, sup

µ∈∆

∑

λ∈Λ

ωα(λ, µ)
−k





with the expression on the right hand side being finite due to the (α, k)-consistency of the parametri-
zations (Λ,ΦΛ) and (∆,Φ∆). The proof is completed.

This theorem allows to categorize frames of α-molecules according to their sparse approximation
behavior. The general strategy is as follows. If an approximation result for a specific system of α-
molecules is known and a class of α-molecules satisfies the hypotheses of Theorem 3.7, i.e. they are all
sparsity equivalent to this specific system, they automatically inherit its known approximation behavior.
In this way, one in the end obtains a stand-alone result for frames of α-molecules to exhibit sparse
approximation, depending solely on the parametrization and the order.

4 Sparse Approximation of Video Data

In this section we demonstrate with a specific example how the machinery of α-molecules can be applied
in practice. In our exemplary application, we are interested in the sparse representation of video signals,
modelled by the class of cartoon-like functions E2(R3) introduced below.

Following the general methodology, we first need a suitable anchor system, for which a sparse approx-
imation result with respect to E2(R3) is known. Utilizing Theorem 3.7 the framework can then transfer
the approximation rate from this reference system to other systems. In this way we will be able to identify
a large class of representation systems, which provide almost optimal sparse approximation for E2(R3).

4.1 Cartoon-like Functions

A suitable model for image and video data is provided by the class of cartoon-like functions, first in-
troduced by Donoho [15] and later extended e.g. in [41]. We shall use the following simplified model in
dimensions d = 2 and d = 3.

Definition 4.1 ([15],[41, Definition 2.1]). For fixed ν > 0 and d ∈ {2, 3} the class E2(Rd) of cartoon-like
functions consists of functions f : Rd → C of the form

f = f0 + f1χB,
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where B ⊂ [0, 1]d and fi ∈ C2(Rd) with supp fi ⊂ [0, 1]d and ‖fi‖C2 ≤ 1 for each i = 0, 1. For dimension
d = 2, we assume that the boundary ∂B is a closed C2-curve with curvature bounded by ν, and, for d = 3,
the discontinuity ∂B shall be a closed C2-surface with principal curvatures bounded by ν.

This model is justified by the observation that real-life images and video data typically consist of
smooth regions, separated by piecewise smooth boundaries. Without loss of generality we restrict in
Definition 4.1 to cartoon-like functions with smooth boundaries.

4.2 Optimal Approximation for Cartoon-like Functions

In [15, 41] the optimal approximation rates for E2(R2) and E2(R3), achievable with algorithms satisfying
a polynomial depth search constraint, were derived. An algorithm for sparse approximation is thereby
restricted to polynomial depth search in a given (countable) dictionary, if there exists a polynomial π
such that the algorithm only chooses from the first π(N) vectors of the dictionary when forming the
N :th sparse approximation [15]. Such a constraint is very natural from a practical standpoint and has
the nice side-effect that it ensures the existence of the best N -term approximation. In general, this may
not be the case, as the instance of a countable dense subset of L2(Rd) as a dictionary shows. Here the
best 1-term approximation does not always exist.

We now cite the result of [15, 41]. In [41] it is conjectured that the result also generalizes to higher
dimensions.

Theorem 4.2 ([15, Theorem 7.2],[41, Theorem 3.2]). Let d ∈ {2, 3}. The best N -term approximation
rate for E2(Rd), achieved by an arbitrary dictionary under the restriction of polynomial depth search,
cannot exceed

‖f − fN‖22 . N− 2
d−1 ,

where fN is the best N -term approximation of f ∈ E2(Rd).

For d = 2 it has been shown that this rate can indeed be achieved [15] using so-called wedgelets,
which are adaptive to the data. Moreover, there are several examples of non-adaptive frames in two and
three dimensions which almost provide these optimal rates [5, 31, 38, 33, 41], typically up to log-terms.
In particular, it was proven by Guo and Labate in [33] that the smooth Parseval frame of band-limited
3D-shearlets SH constructed by them in [34] sparsely approximates the class E2(R3) with an almost
optimal approximation rate. We recall the definition of this particular system in Subsection 5.3.1 and
state the approximation result below.

Theorem 4.3 ([33, Theorem 3.1]). Let SH = {ψλ}λ∈ΛSH
be the smooth Parseval frame of 3D-shearlets

defined in Subsection 5.3.1. Then the sequence of shearlet coefficients θλ(f) := 〈f, ψλ〉, λ ∈ ΛSH ,
associated with f ∈ E2(R3) satisfies

sup
f∈E2(R3)

|θλ(f)|N . N−1 · log(N),

where |θλ(f)|N denotes the N :th largest shearlet coefficient.

Theorem 4.3 shows that the shearlet coefficients belong to ωℓp(ΛSH) for every p > 1. In view of
Lemma 3.1, for every f ∈ E2(R3), the frame SH therefore provides at least the approximation rate

‖f − fN‖22 . N−1+ε , ε > 0 arbitrary, (10)

where fN denotes the N -term approximation obtained from the N largest coefficients. According to
Theorem 4.2, this is almost the optimal approximation rate achievable for cartoon-like functions E2(R3).
For small ε > 0, we get arbitrarily close to the optimal rate.

The idea to use 3D-shearlets for processing video data has been tested in practice in [45]. The
authors of said article develop a clever discretisation procedure, allowing a fast computation of the
shearlet coefficients. They then test how their discrete shearlet transform can be used to denoise and
enhance video sequences, with promising results.
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4.3 Transfer of the Approximation Rate

Our final goal is to find a large class of representation systems which achieve the almost optimal rate (10).
For this, we put the machinery of α-molecules to work. Via Theorem 3.7 it is possible to transfer the
approximation rate (10) established for the smooth Parseval frame of 3D-shearlets SH to other systems
of 3-dimensional 1

2 -molecules. In fact, the frame SH is a suitable choice for the reference system, since by
Proposition 5.9 it constitutes a system of 3-dimensional 1

2 -molecules of order (∞,∞,∞,∞) with respect
to the parametrization (ΛSH ,ΦSH) The following result is then a direct application of the general theory.

Theorem 4.4. Assume that a frame (mλ)λ∈Λ of 3-dimensional 1
2 -molecules satisfies, for some k > 0,

the following two conditions:

(i) its parametrization (Λ,ΦΛ) is ( 12 , k)-consistent with (ΛSH ,ΦSH),

(ii) its order (L,M,N1, N2) satisfies

L ≥ 2k, M ≥ 3k − 2, N1 ≥ k + 1, N1 > 3/2, N2 ≥ 2k + 1.

Then each dual frame (m̃λ)λ∈Λ possesses an almost optimal N -term approximation rate for the class of
cartoon-like functions E2(R3), i.e. for all f ∈ E2(R3)

‖f − fN‖22 . N−1+ε, ε > 0 arbitrary,

where fN denotes the N -term approximation obtained from the N largest frame coefficients.

Proof. Let SH = {ψλ}λ∈ΛSH
be the Parseval frame of 3D-shearlets from Subsection 5.3.1, and take

f ∈ E2(R3). By Theorem 4.3 the sequence of shearlet coefficients (θλ)λ given by θλ = 〈f, ψλ〉 belongs to
ωℓp(ΛSH) for every p > 1. Since ωℓp →֒ ℓp+ǫ for arbitrary ε > 0, this further implies (θλ)λ ∈ ℓp(ΛSH)
for every p > 1. Let now

f =
∑

µ∈Λ

cµm̃µ

be the canonical expansion of f with respect to the dual frame (m̃µ)µ, with frame coefficients (cµ)µ. Note
that since SH is a Parseval frame, the canonical dual frame of SH is equal to SH itself. Therefore the
coefficents are given by

cµ = 〈f,mµ〉 =
〈∑

λ

θλψλ,mµ

〉
=
∑

λ

〈ψλ,mµ〉θλ.

Thus, they are related to the shearlet coefficients (θλ)λ by the cross-Gramian (〈ψλ,mµ〉)λ,µ. By Theo-
rem 3.7, conditions (i) and (ii) guarantee that the frame (mµ)µ∈Λ is sparsity equivalent to (ψλ)λ∈ΛSH

in ℓp for every p > 1. This implies that the cross-Gramian is a bounded operator ℓp(ΛSH) → ℓp(Λ),
which maps (θλ)λ to (cµ)µ. Hence, (cµ)µ ∈ ℓp(Λ) for every p > 1. The embedding ℓp →֒ ωℓp then proves
(cµ)µ ∈ ωℓp(Λ) for every p > 1. Finally, for arbitrary ε > 0, the application of Lemma 3.1 yields

‖f − fN‖22 . N−1+ε,

where fN denotes the N -term approximation with respect to the system (m̃µ)µ obtained by choosing the
N largest coefficients.

Theorem 4.4 specifies a large class of multiscale systems with almost optimal approximation perfor-
mance for video data E2(R3). According to Remark 5.11 condition (i) is in particular fulfilled by every
1
2 -shearlet parametrization (see Theorem 5.3) for k > 3. Hence, due to condition (ii) all systems of
3-dimensional 1

2 -shearlet molecules of order

L ≥ 7, M ≥ 8, N1 ≥ 5, N2 ≥ 8,

provide almost optimal approximation for E2(R3).
Taking into account Proposition 5.12, the statement of Theorem 4.4 in particular includes the following

result for compactly supported shearlet frames.
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Corollary 4.5. Any dual frame of a shearlet frame of the form (27) generated by compactly supported
functions φ, ψ1, ψ2, ψ3 ∈ L2(R3), so that φ ∈ C13(R3) and so that for each ε ∈ {1, 2, 3}

(i) ∂γψε exists and is continuous for every γ = (γ1, γ2, γ3)
T ∈ N3

0 with |γ|∞ ≤ 13 and γε ≤ 5,

(ii) ψε has at least 15 vanishing directional moments in direction eε,

provides the almost optimal approximation rate (10) for the cartoon video class E2(R3).

This corollary is a new result for compactly supported shearlets on its own. A similar result was
proved in [41]. In comparison the most intriguing fact is the simplicity of its deduction: The framework
of α-molecules enables a simple transport of the decay rates.

Remark 4.6. The 2-dimensional counterpart of Theorem 4.4 is contained in [28, Theorem 5.12] for
the choice α = 1

2 . In [28] it is further shown that not only any system of bivariate 1
2 -shearlet molecules

satisfies the conditions of this theorem, provided that the order is sufficiently high, but also every system
of sufficiently high order 1

2 -curvelet molecules. This implies that also curvelet-like constructions yield
almost optimal approximation for the class E2(R2), including the classical curvelet frame.

In contrast, a ‘true’ curvelet construction in 3D is not known to the authors. Note that, despite the
misleading name, the construction of the ‘3D discrete curvelet transform’ in [49] is actually shear-based.
Still, it can be expected that any curvelet-like system would fall into our framework, and thus Theorem 4.4
would immediately establish the almost optimal approximation rate.

5 Shearlet Systems in d Dimensions

We introduce a very general class of shear-based systems, namely systems of α-shearlet molecules. The
definition in d dimensions is analogue to the 2-dimensional case [28]. Roughly speaking, they are shear-
based systems obtained from variable generators, where similar to α-molecules the conditions on the
generators have been relaxed to a mere time-frequency localization requirement. The notion of α-shearlet
molecules comprises many specific shear-based constructions and simplifies the treatment of such systems
within the general framework of α-molecules.

5.1 Multidimensional α-Shearlet Molecules

As explained in Section 1, shearlet-like constructions are based on anisotropic scaling, shearings, and
translations. For the change of scale, we utilize α-scaling as defined by (5). The change of orientation is
provided by shearings, in d dimensions given by the shearing matrices

Sh =

(
Id−1 0
hT 1

)
and ST

h =

(
Id−1 h
0 1

)
, h ∈ R

d−1,

which are the natural generalizations of (2). The matrix ST
h shears parallel to the (e1, . . . , ed−1)-plane

and the shear vector h ∈ Rd−1 determines the direction of the shearing in this plane. The transformations
associated with shearings and α-scalings naturally form a group [9].

To avoid directional bias, the frequency domain is divided into cone-like regions along the coordinate
axes and a coarse-scale box for the low frequencies. Note that this comes at the cost of losing the group
properties mentioned above. This division procedure is however crucial for applications, and also, as the
subsequent arguments will show, for including α-shearlets in the concept of α-molecules. The cone-like
regions along the eε-axes shall be called pyramids and are explicitly given by

Pε =
{
(ξ1, . . . , ξd)

T ∈ R
d | ∀i ∈ {1, . . . , d} : |ξi| ≤ |ξε|

}
,

where ε ∈ {1, . . . , d}. ε = 0 shall refer to a coarse-scale box of the form R = {ξ ∈ Rd : |ξ|∞ ≤ C}, where
C > 0 is a suitably chosen constant. In the sequel we will always stay in this so-called cone-adapted
setting. For an illustration of this specific setting in 3D, we refer to Subsection 5.3.
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In each cone we require different versions of the scaling and shearing operators. The cyclic permutation
matrix

Z =

(
0 1

Id−1 0

)
(11)

allows to elegantly define these operators associated with the respective cones by ZεShZ
−ε and ZεAα,sZ

−ε.
Before we come to the definition of α-shearlet molecules, we need to introduce a set of characteristic pa-

rameters, associated with these systems. The resolution of the underlying sampling grid is determined by
the parameters σ > 1, τ1, . . . , τd > 0, and a sequence Θ = (ηj)j∈N0 ⊂ R+. The parameter σ specifies the
fineness of the scale sampling. The parameters τε, ε ∈ {1, . . . , d}, determine the spatial resolution in the
eε-direction. For convenience they are summarized in the diagonal matrix T := diag(τ1, . . . , τd) ∈ Rd×d.
The angular resolution at each scale j ∈ N0 is given by the value ηj of the sequence Θ. Last but not
least, in each cone ε ∈ {1, . . . , d} and at each scale j ∈ N0 the shearing parameter ℓ is restricted to a set
Lε,j ⊆ Zd−1. These sets are collected in L := {Lε,j : ε ∈ {1, . . . , d}, j ∈ N0}.

After the introduction of this sampling data D := {σ,Θ,L , T } we can now give the definition of a
system of α-shearlet molecules in d dimensions, depending on D. The scale-dependent step size ηj of the
directional sampling is assumed to satisfy ηj ≍ σ−j(1−α) for j ∈ N0. Further, we require the upper bounds
Lj := max

{
|ℓ|∞ : ℓ ∈ Lε,j , ε ∈ {1, . . . , d}

}
, j ∈ N0, to fulfill the complementary condition Lj . σj(1−α).

We remark that the translation parameters τε may also vary with the indices (ε, j, ℓ), as long as their
values are restricted to some fixed interval [τmin, τmax] with 0 < τmin ≤ τmax <∞. However, this is not
indicated in the notation.

Definition 5.1. Let α ∈ [0, 1], d ∈ N, d ≥ 2, and L,M,N1, N2 ∈ N0 ∪ {∞}. Further the sampling data
D shall be given as above. For ε ∈ {1, . . . , d}, a system of functions

Σε :=
{
mε

j,ℓ,k ∈ L2(Rd) : (j, ℓ, k) ∈ Λs
ε

}
,

indexed by the set Λs
ε :=

{
(j, ℓ, k) : j ∈ N0, ℓ ∈ Lε,j ⊆ Zd−1, k ∈ Zd

}
, is called a system of d-dimensional

α-shearlet molecules of order (L,M,N1, N2) associated with the orientation ε, if it is of the form

mε
j,ℓ,k(x) = σ

(1+α(d−1))j
2 γεj,ℓ,k

(
ZεAj

α,σSℓηj
Z−εx− T k

)
(12)

with generating functions γεj,ℓ,k ∈ L2(Rd) satisfying for every ρ ∈ Nd
0 with |ρ|1 ≤ L

∣∣∂ργ̂εj,ℓ,k(ξ)
∣∣ . min{1, σ−j + σ−(1−α)j |Z−εξ|[d−1] + |[Z−εξ]d|}M

〈|ξ|〉N1〈|Z−εξ|[d−1]〉N2
. (13)

The implicit constant is required to be uniform over Λs
ε. If one of the parameters L,M,N1, N2 takes the

value ∞, this shall mean that condition (13) is fulfilled with the respective quantity arbitrarily large.

Combining systems of α-shearlet molecules of order (L,M,N1, N2) for each orientation ε ∈ {1, . . . , d}
with a system of coarse-scale elements

Σ0 :=
{
m0

0,0,k := γ00,0,k(· − T k) : k ∈ Z
d
}
, (14)

where the generators γ00,0,k ∈ L2(Rd) fulfill |∂ργ̂00,0,k(ξ)| . 〈|ξ|〉−N1〈|ξ|[d−1]〉−N2 for every ρ ∈ Nd
0 with

|ρ|1 ≤ L, yields a system of α-shearlet molecules of order (L,M,N1, N2). The associated index set is

Λs
0 :=

{
(0,0, k) : k ∈ Z

d
}
⊆ N0 × Z

d−1 × Z
d.

Definition 5.2. For each ε ∈ {1, . . . , d}, let Σε be a system of α-shearlet molecules of order (L,M,N1, N2)
associated with the respective orientation. Further, let Σ0 be a system of coarse-scale scale elements de-
fined as in (14). Then the union

Σ :=

d⋃

ε=0

Σε
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is called a system of α-shearlet molecules of order (L,M,N1, N2). The associated shearlet index set is
given by

Λs = {(ε, j, ℓ, k) : ε ∈ {0, . . . , d}, (j, ℓ, k) ∈ Λs
ε}.

Next, we prove that the system Σ is a system of α-molecules.

Theorem 5.3. Let α ∈ [0, 1] and Σ be a system of α-shearlet molecules of order (L,M,N1, N2). Then
Σ constitutes a system of α-molecules of the same order. The associated α-shearlet parametrization
(Λs,Φs) is given by the map Φs(λ) = (sλ, eλ, xλ) ∈ Pd for λ = (ε, j, ℓ, k) ∈ Λs, where

sλ = σj , eλ = nλ · Zε

(
ηjℓ
1

)
, xλ = ZεS−1

ℓηj
A−j

α,σZ
−εT k, (15)

and nλ = (1 + η2j |ℓ|22)−1/2 is a normalization constant.

In particular for ε = 0 we have sλ = 1, eλ = ed and xλ = T k for every λ = (0, 0,0, k) ∈ Λs.

Proof. Since a finite union of systems of α-molecules is itself a system of α-molecules, we can prove this
theorem separately for each system Σε, ε ∈ {0, . . . , d}. For Σ0 the statement is obvious. For the other
systems it suffices to give the proof for ε = d, since they are all related by a mere permutation of indices.
We subsequently drop the index ε to simplify the notation and note Zε = I for ε = d.

For the proof we introduce the index set Λs,d := {(d, j, ℓ, k) : (j, ℓ, k) ∈ Λs
d}. Let λ = (d, j, ℓ, k) ∈ Λs,d

and mλ := md
j,ℓ,k the associated α-shearlet molecule with corresponding generating function γλ := γdj,ℓ,k.

As usual we denote the angles representing the orientation eλ by (θλ, ϕλ), i.e. eλ = RT
ϕλ
RT

θλ
ed. The

molecule mλ can clearly be written in the form (6) with respect to the generator

gλ(x) := γλ(A
j
α,σSℓηj

RT
ϕλ
RT

θλA
−j
α,σx), x ∈ R

d.

It remains to check condition (7) for these functions. On the Fourier side we have

ĝλ(ξ) = γ̂λ(A
−j
α,σS

−T
ℓηj

RT
ϕλ
RT

θλ
Aj

α,σξ), ξ ∈ R
d.

For λ = (d, j, ℓ, k) ∈ Λs,d let us first examine the matrix

Mλ := S−T
ℓηj
RT

ϕλ
RT

θλ
. (16)

A simple calculation shows Mλed = S−T
ℓηj

RT
ϕλ
RT

θλ
ed = S−T

ℓηj
eλ = S−T

ℓηj
nλ(ηjℓ, 1)

T = nλed. Hence, the
entries of the last column of Mλ vanish except for the last one. Next, we prove the uniform boundedness
of the set of operators {Mλ}λ∈Λs,d . It holds uniformly for λ ∈ Λs,d

‖Mλ‖2→2 = ‖S−T
ℓηj

‖2→2 =
√
1 + η2j |ℓ|22 .

√
1 + η2jL

2
j . 1.

Note that this implies that each entry in Mλ is bounded in modulus. Since similar considerations hold
for the inverse M−1

λ = RθλRϕλ
ST
ℓηj
, we can conclude that both M̃λ := A−j

α,σMλA
j
α,σ and its inverse M̃−1

λ

have the form



∗ . . . ∗ 0
...

. . .
...

...
∗ . . . ∗ 0
� . . . � ∗


 ,

where the entries ∗ are the same as in Mλ (or M−1
λ ) and the entries � are of the form σ−j(1−α)[Mλei]d

(or σ−j(1−α)[M−1
λ ei]d) for i ∈ {1, . . . , d − 1}. In particular, the entries of M̃λ and M̃−1

λ are uniformly

bounded in modulus. This implies ‖M̃λ‖2→2 . 1 and ‖M̃−1
λ ‖2→2 . 1. Altogether, we obtain

|M̃λξ| ≍ |ξ| uniformly for ξ ∈ R
d and λ ∈ Λs,d. (17)
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Due to the structure of the last column of M̃λ we further have for ξ = (ξ1, . . . , ξd)
T ∈ Rd

|M̃λξ|[d−1] = |M̃λ(ξ1, . . . , ξd−1, 0)
T |[d−1] ≤ ‖M̃λ‖2→2|(ξ1, . . . , ξd−1, 0)

T | = ‖M̃λ‖2→2|ξ|[d−1].

For the inverse M̃−1 it holds analogously |M̃−1
λ ξ|[d−1] ≤ ‖M̃−1

λ ‖2→2 |ξ|[d−1]. We conclude

|M̃λξ|[d−1] ≍ |ξ|[d−1] uniformly for ξ ∈ R
d and λ ∈ Λs,d. (18)

Finally, the following estimate holds uniformly for ξ = (ξ1, . . . , ξd)
T ∈ R

d and λ ∈ Λs,d,

|[M̃λξ]d| ≤ |[Mλ]
d
d||ξd|+

d−1∑

i=1

σ−j(1−α)|[Mλ]
i
d||ξi| . σ−(1−α)j |ξ|[d−1] + |ξd| . (19)

Finally, we can prove (7) for every ρ ∈ N
d
0 with |ρ|1 ≤ L,

|∂ρĝλ(ξ)| . sup
|β|1≤L

∣∣∣
(
∂β γ̂λ

)
(M̃λξ)

∣∣∣ .
min{1, σ−j + σ−(1−α)j |M̃λξ|[d−1] + |[M̃λξ]d|}M

〈|M̃λξ|〉N1〈|M̃λξ|[d−1]〉N2

.
min{1, σ−j + σ−(1−α)j |ξ|[d−1] + |[ξ]d|}M

〈|ξ|〉N1〈|ξ|[d−1]〉N2
.

The first estimate holds true, since ĝλ(ξ) = γ̂λ(M̃λξ) and the entries of M̃λ are uniformly bounded in λ.
The second estimate is due to (13). For the last estimate we used (17), (18), and (19). The observation
sλ = σj finishes the proof.

5.2 Consistency of the Shearlet Parametrizations

The properties of α-molecules depend essentially on their parametrizations. In view of Theorem 3.7 the
consistency is of particular interest when investigating approximation properties. In this paragraph we
shall prove, in Proposition 5.6, that shearlet parametrizations are consistent with each other. This allows
to establish approximation rates for various shearlet-like constructions simultaneously, as long as they
fall under the umbrella of the shearlet-molecule concept.

Lemma 5.4. Consider the gnomonic projection φ : Rd\
{
x ∈ Rd | [x]d = 0

}
→ Rd, x 7→ 1

[x]d
x, and let

1 ≥ c > 0 be fixed. For v, w ∈ Sd−1 ∩
{
x ∈ Rd : [x]d ≥ c

}
we then have |φ(v) − φ(w)| ≍ |v − w| and

|v − w|[d−1] ≍ |v − w|.

Proof. First note that |v − w|[d−1] = |π(v) − π(w)|, where π is the orthogonal projection of Rd onto the

(e1, . . . , ed−1)-plane. On the set Sd−1 ∩
{
x ∈ Rd : [x]d ≥ c

}
, the mappings φ and π are diffeomorphisms

with bounded derivatives in both directions. This implies the statement.

In order to apply the previous lemma it is useful to record the following observation.

Lemma 5.5. Let 1 ≥ c > 0 be fixed and let w = (w1, . . . , wd)
T ∈ Sd−1 be a vector such that wd < c.

Then there exists a point w̃ = (w̃1, . . . , w̃d)
T ∈ Sd−1 with w̃d ≥ c such that

|w̃ − v| ≤ |w − v| for every v ∈ S
d−1 ∩

{
x ∈ R

d : [x]d ≥ c
}
.

Proof. If wd ≤ −c simply take w̃ to be the reflection of w at the (e1, . . . , ed−1)-plane. Then we have
w̃d ≥ c > 0 and we can conclude for every v = (v1, . . . , vd)

T ∈ Sd−1 with vd ≥ c > 0

|v − w|2 = |v − w|2[d−1] + |vd − wd|2 = |v − w̃|2[d−1] + |vd + w̃d|2 ≥ |v − w̃|2[d−1] + |vd − w̃d|2 = |v − w̃|2.

In the other case |wd| < c we argue as follows. Applying a rotation about the ed-axis, we may assume
that w is of the form [

√
1− w2

d, 0, . . . 0, wd]
T . The vector w̃ = [

√
1− c2, 0, . . . , 0, c]T then has the desired

properties. To verify this it suffices to show 〈w̃, v〉 ≥ 〈w, v〉, because then

|w̃ − v|2 = |w̃|2 + |v|2 − 2〈w̃, v〉 = 2− 2〈w̃, v〉 ≤ |w|2 + |v|2 − 2〈w, v〉 = |w − v|2.
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In order to show 0 ≤ 〈w̃ − w, v〉 = v1(
√
1− c2 −

√
1− w2

d) + vd(c − wd), we first observe that√
1− c2 <

√
1− w2

d since |wd| < c. Moreover, every v ∈ Sd−1 ∩
{
x ∈ Rd : [x]d ≥ c

}
satisfies |v1| ≤√

1− v2d. It follows

v1

(√
1− c2 −

√
1− w2

d

)
+ vd(c− wd) ≥

√
1− v2d

(√
1− c2 −

√
1− w2

d

)
+ vd(c− wd).

Hence, it just remains to prove the inequality
√
1− v2d

(√
1− c2 −

√
1− w2

d

)
+ vd(c− wd) ≥ 0 under

the condition 0 ≤ |wd| < c ≤ vd ≤ 1. The associated angles θw, θc, θv ∈ [0, π] defined by cos θw = wd,
cos θc = c, and cos θv = vd, satisfy π ≥ θw ≥ θc ≥ θv ≥ 0, and the inequality reads as

cos(θc − θv) = 〈(sin θv, cos θv), (sin θc, cos θc)〉 ≥ 〈(sin θv, cos θv), (sin θw, cos θw)〉 = cos(θw − θv).

This however is obviously true since 0 ≤ θc − θv ≤ θw − θv ≤ π.

After this preparation we are in the position to prove the consistency.

Proposition 5.6. Let α ∈ [0, 1] and assume that (Λ,ΦΛ) and (∆,Φ∆) are α-shearlet parametrizations
(possibly with different parameters). Then (Λ,ΦΛ) and (∆,Φ∆) are (α, k)-consistent for every k > d.

Proof. As already was noted in Remark 3.6, it suffices to prove that for N > d it holds

sup
µ∈∆

∑

λ∈Λ

ωα(λ, µ)
−N <∞.

For this task it is convenient to decompose the shearlet index set Λ = Λ0 ∪ · · · ∪ Λd into the sets Λε

associated with the respective pyramidal regions Pε for ε ∈ {1, . . . , d} and the low-frequency box R for
ε = 0. The sum then splits accordingly into d+ 1 parts, which we handle separately below.

Λ0: Let µ ∈ ∆ and λ = (0, 0,0, k) ∈ Λ0 with k ∈ Zd. The shearlet parametrization (15) yields sλ = 1,
eλ = ed, and xλ = T k. Furthermore, sµ ≥ 1 for all µ ∈ Λ. Hence we have

ωα(λ, µ) = sµ(1 + |T k − xµ|2 + |{dS(ed, eµ)}|2 + |〈ed, T k − xµ〉|) ≥ sµ(1 + |T k − xµ|2).

We conclude
∑

λ∈Λ0

ωα(λ, µ)
−N ≤

∑

k∈Zd

s−N
µ (1 + |T k − xµ|2)−N .

∑

k∈Zd

(1 + |k|2)−N ,

where for N > d/2 the sum on the right converges.

Λε, ε ∈ {1, . . . , d}: We only deal with the special case ε = d, since the other cases can be transformed

to this case via rotations. Let µ ∈ ∆ and write sµ = σj′ with j′ ∈ R. In view of sλ = σj for
λ = (d, j, ℓ, k) ∈ Λd we then have

∑

λ∈Λd

ωα(λ, µ)
−N =

∑

j∈N0

σ−N|j−j′| ∑

λ∈Λd

sλ=σj

(1 + dα(λ, µ))
−N

.

If we can prove that

S :=
∑

λ∈Λd

sλ=σj

(1 + dα(λ, µ))
−N

. σd|j−j′|, (20)

independently of j ∈ N0 and µ ∈ ∆, we are done, since σ > 1, sµ = σj′ , max{sλ/sµ, sµ/sλ} = σ|j−j′|

and thus if N > d

∑

λ∈Λd

ωα(λ, µ)
−N .

∑

j∈N0

σ(d−N)|j−j′| ≤ 2
∑

j∈N0

σ(d−N)j =
2

1− σd−N
<∞.
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Putting in the definition of dα(λ, µ) and abbreviating j0 := min{j, j′}, the sum S becomes

S =
∑

λ∈Λd

sλ=σj

(
1 + σ2αj0 |xλ − xµ|2 + σ2(1−α)j0 |{dS(eλ, eµ)}|2 + σj0 |〈eλ, xλ − xµ〉|

)−N

. (21)

In order to prove the estimate (20) for S, we first study the different terms of the summand indepen-
dently. Let λ = (d, j, ℓ, k) ∈ Λd and recall the matrix Mλ from (16). It holds

MT
λ = RθλRϕλ

S−1
ℓηj
,

and – according to the discussion ofMλ in the proof of Theorem 5.3 – its last row is given by (0, . . . , 0, nλ)

with nλ = (1+ η2j |ℓ|22)−
1
2 . Since ηj ≍ σ−j(1−α) and |ℓ|2 . Lj . σj(1−α) this implies nλ ≍ 1 uniformly for

all λ ∈ Λd.
As a direct consequence [MT

λ x]d = nλ[x]d ≍ [x]d uniformly for λ ∈ Λd and x ∈ R
d. In addition,

we have |MT
λ x| ≍ |x| uniformly for λ ∈ Λd and x ∈ Rd since ‖MT

λ ‖2→2 = ‖Mλ‖2→2 . 1 and also
‖M−T

λ ‖2→2 = ‖M−1
λ ‖2→2 . 1.

These observations allow the following estimate,

|xλ − xµ| =
∣∣∣S−1

ℓηj
A−j

α,σT k − xµ

∣∣∣ =
∣∣∣RθλRϕλ

S−1
ℓηj
A−j

α,σT k −RθλRϕλ
xµ

∣∣∣

=
∣∣MT

λ

(
T A−j

α,σk −M−T
λ RθλRϕλ

xµ
)∣∣ ≍

∣∣A−j
α,σk − T −1M−T

λ RθλRϕλ
xµ
∣∣

&
∣∣A−j

α,σk − T −1Sℓηj
xµ
∣∣
[d−1]

=
∣∣σ−jαk − T −1Sℓηj

xµ
∣∣
[d−1]

. (22)

In view of eλ = RT
ϕλ
RT

θλ
ed we also have the estimate

|〈eλ, xλ − xµ〉| =
∣∣∣〈eλ, S−1

ℓηj
A−j

α,σT k − xµ〉
∣∣∣ =

∣∣∣〈ed, RθλRϕλ
S−1
ℓηj
A−j

α,σT k −RθλRϕλ
xµ〉
∣∣∣

=
∣∣〈ed,MT

λ

(
T A−j

α,σk −M−T
λ RθλRϕλ

xµ
)
〉
∣∣ ≍

∣∣〈ed, A−j
α,σk − T −1Sℓηj

xµ〉
∣∣

=
∣∣〈ed, σ−jk − T −1Sℓηj

xµ〉
∣∣ . (23)

According to the shearlet parametrization (15) we have eλ = nλ(ℓηj , 1)
T , where nλ ≍ 1 as shown

above. Hence, there is a constant c > 0 such that nλ ≥ c for all λ ∈ Λd. It follows [eλ]d ≥ c > 0 for
all λ ∈ Λd. Without loss of generality we can further assume that [eµ]d ≥ 0 since |{dS(eλ,−eµ)}| =
|{dS(eλ, eµ)}|.

In this situation Lemma 6.3 applies and tells us that |{dS(eλ, eµ)}| ≍ |eλ − eµ|. Moreover, possibly
after changing eµ to ẽµ as in Lemma 5.5 to enforce [ẽµ]d ≥ c, we have |eλ − eµ| ≥ |eλ − ẽµ| for all λ ∈ Λd.

Let φ be the gnomonic projection from Lemma 5.4. Then φ(eλ) = (ℓηj , 1)
T ∈ Rd and Lemma 5.4

together with the observation |φ(v) − φ(w)|[d−1] = |φ(v) − φ(w)| implies the estimate,

|eλ − ẽµ| ≍ |(ℓηj , 1)T − φ(ẽµ)| = |(ℓηj , 1)T − φ(ẽµ)|[d−1].

Subsequently, let νµ ∈ Rd−1 be defined by φ(ẽµ) = (νµ, 1)
T . Altogether we arrive at

|{dS(eλ, eµ)}| & |(ℓηj , 1)T − φ(ẽµ)|[d−1] = |ℓηj − νµ|. (24)

We now use (22), (23) and (24) to estimate the sum S in (21). Introducing the quantities q1(ℓ) :=
σjαT −1Sℓηj

xµ, q2(ℓ) := σjT −1Sℓηj
xµ, and q3 := η−1

j νµ, and taking into account ηj ≍ σ−(1−α)j we
obtain

S .
∑

k∈Zd

∑

ℓ∈Ld,j

(
1 + σ2α(j0−j) |k − q1(ℓ)|2[d−1] + σ(j0−j) |〈ed, k − q2(ℓ)〉|+ σ2(1−α)(j0−j)|ℓ− q3|2

)−N

.

Next, we distinguish the cases j > j′ and j ≤ j′. For j ≤ j′ we have j0 = j and we obtain

S .
∑

k∈Zd

∑

ℓ∈Zd−1

(
1 + |k − q1(ℓ)|2[d−1] + |〈ed, k − q2(ℓ)〉|+ |ℓ− q3|2

)−N

.
∑

k∈Zd

∑

ℓ∈Zd−1

(
1 + |k|2[d−1] + |〈ed, k〉|+ |ℓ|2[d−1]

)−N

<∞.
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In case j > j′ it holds j0 = j′ and p := j′ − j ≤ 0. The term σpdS is – up to a multiplicative constant
– bounded by

∑

ℓ∈Zd−1

σp(1−α)(d−1)
∑

k∈Zd

σpα(d−1)σp
(
1 + σ2αp |k − q1(ℓ)|2[d−1] + σp |〈ed, k − q2(ℓ)〉|+ σ2(1−α)p|ℓ− q3|2

)−N
.

The last sum can be interpreted as a Riemann sum, which is bounded – up to a multiplicative constant
independent of j and j′ as long as j > j′ – by the corresponding integral

∫

y∈Rd−1

∫

x∈Rd

(
1 + |x− σαpq1(y)|2[d−1] + |〈ed, x− σpq2(y)〉|+ |y − σ(1−α)pq3|2

)−N

dx dy.

All in all we end up with S . σd(j−j′)
∫
y∈Rd−1

∫
x∈Rd

(
1 + |x|2[d−1] + |〈ed, x〉| + |y|2

)−N

dx dy. To see that

the integral converges for N > d, we carry out the integration over xd, which yields up to a fixed constant

∫

y∈Rd−1

∫

x̃∈Rd−1

(1 + |x̃|2[d−1] + |y|2)−(N−1) dx̃ dy =

∫

z∈R2(d−1)

(1 + |z|2)−(N−1).

The integral on the right converges precisely for N > d. This observation concludes the proof.

5.3 Pyramid-adapted Shearlet Systems in 3D

In the sequel we focus on some concrete shearlet systems in 3 dimensions, which are already on the
market and for which we verify that they are instances of α-shearlet molecules for α = 1

2 and thus by
Theorem 5.3 also systems of 3-dimensional parabolic molecules.

Let us first recall the classic definition [39] of a shearlet system in L2(R3). A system of 3D-shearlets
is defined as a collection of functions in L2(R3) of the form

{
ψj,ℓ,k = 2jψ(SℓA

j
1
2 ,2

· −k) : j ∈ Z, ℓ ∈ Z
2, k ∈ Z

3
}
, (25)

where ψ ∈ L2(R3) is a suitable generating function. The classical choice for the generator is a function
ψ defined on the frequency domain by

ψ̂(ξ) = w(ξ3)v(
ξ1
ξ3
)v( ξ2ξ3 ), ξ = (ξ1, ξ2, ξ3)

T ∈ R
3, (26)

where v ∈ C∞
c (R) is a bump function and w ∈ C∞

c (R) the Fourier transform of a suitable univariate
discrete wavelet. It is possible to choose v and w so that (25) becomes a Parseval frame for L2(R3).

Unfortunately, the shearlet system (25) has a directional bias due to the fact, that for large shearings
the frequency support of the elements becomes more and more elongated along the (e1, e2)-plane. This
directional bias affects negatively the approximation properties of (25) and makes this system impractical
in most applications.

To avoid this problem, the Fourier domain is usually partitioned into three pyramidal regions

P1 =
{
(ξ1, ξ2, ξ3) ∈ R

3 : | ξ2ξ1 | ≤ 1, | ξ3ξ1 | ≤ 1
}
,

P2 =
{
(ξ1, ξ2, ξ3) ∈ R

3 : | ξ1ξ2 | ≤ 1, | ξ3ξ2 | ≤ 1
}
,

P3 =
{
(ξ1, ξ2, ξ3) ∈ R

3 : | ξ1ξ3 | ≤ 1, | ξ2ξ3 | ≤ 1
}
,

and for each pyramid a separate shearlet system is used. Then, since each system only has to cover one
pyramid, the shear parameters can be restricted avoiding large shears. To take care of low frequencies, it
is common to use distinguished coarse-scale elements with frequencies in a centered box. Here this will
be the cube

R =
{
ξ ∈ R

3 : |ξ|∞ ≤ 1
8

}
.
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This cube together with the truncated pyramids P̃1 := P1\R, P̃2 := P2\R, and P̃3 := P3\R partitions
the Fourier domain into 4 regions.

With each of these regions, different operators are associated. The coarse-scale functions are only
translated, in the other regions we also scale and shear. The scaling and shearing operators associated

with the respective regions ε ∈ {1, 2, 3} are given by A
(ε)
1
2 ,s

= ZεA 1
2 ,s
Z−ε and S

(ε)
h = ZεShZ

−ε, and take

the concrete form

A
(1)
1
2 ,s

=



s 0 0

0 s
1
2 0

0 0 s
1
2


 , A

(2)
1
2 ,s

=



s

1
2 0 0
0 s 0

0 0 s
1
2


 , A

(3)
1
2 ,s

= A 1
2 ,s

=



s

1
2 0 0

0 s
1
2 0

0 0 s


 ,

for s > 0, and for h ∈ R2

S
(1)
h =



1 h1 h2
0 1 0
0 0 1


 , S

(2)
h =




1 0 0
h2 1 h1
0 0 1


 , S

(3)
h = Sh =




1 0 0
0 1 0
h1 h2 1


 .

Now we are ready to define a modified shearlet system, which is adapted to our partition of the Fourier
domain and therefore called cone-adapted. These systems do not exhibit the directional bias as (25). In
the 3D cone-adapted setting they are called pyramid-adapted 3D shearlet systems.

Definition 5.7 ([41, 42]). For fixed τ1, τ2 > 0 let T = diag(τ1, τ2, τ2) ∈ R
3×3. The (affine) pyramid-

adapted 3D shearlet system generated by the functions φ ∈ L2(R3) and ψε ∈ L2(R3), ε ∈ {1, 2, 3}, is
defined as the union

SH(φ, ψ1, ψ2, ψ3; τ1, τ2) := Φ(φ; τ1) ∪Ψ1(ψ
1; τ1, τ2) ∪Ψ2(ψ

2; τ1, τ2) ∪Ψ3(ψ
3; τ1, τ2) (27)

of the coarse-scale functions Φ(φ; τ1) := {φk = φ(· − τ1k) : k ∈ Z3} and the functions

Ψε(ψ
ε; τ1, τ2) :=

{
ψε
j,ℓ,k = 2jψε(ZεSℓA

j
1
2 ,2
Z−ε · −ZεT Z−εk) : j ∈ N0, ℓ ∈ Z

2, |ℓ|∞ ≤ ⌈2j/2⌉, k ∈ Z
3
}

associated with the pyramids P̃ε for ε ∈ {1, 2, 3}.
These pyramid-adapted affine systems are the prime examples of 1

2 -shearlet-molecules. In practice,
one wants them to be frames, especially tight frames. However, the construction of tight frames of
pyramid-adapted shearlets is not trivial.

The simplest way to obtain a Parseval frame of pyramid-adapted shearlets starts with a Parseval
shearlet frame of the type (25), which is easier to construct. It yields a shearlet system associated with
the pyramid P̃3 by removing all elements, whose frequency support does not intersect P̃3. Truncating the
remaining functions in the frequency domain outside of P̃3, one obtains a Parseval frame for the space

L2(P̃3)
∨ := {f ∈ L2(R3) : supp f̂ ⊂ P̃3}.

A similar procedure yields Parseval frames associated with the the other parts of the Fourier domain,
namely for L2(P̃ε)

∨, ε ∈ {1, 2}, and L2(R)∨. The union of these frames then is a Parseval frame for the
whole space L2(R3).

This approach has the drawback that it leads to bad spatial localization of the shearlets due to
their lack of smoothness in the frequency domain, which is a consequence of the truncation. A different
approach was taken by Candès, Demanet, and Ying in [49]. They gave up on the affine structure of
the system and found a shearlet-like construction of a Parseval frame. Guo and Labate modified this
approach [33, 34] and found another shearlet-type construction, which is even close to affine.

5.3.1 Bandlimited Tight Frames of Pyramid-adapted Shearlets

The construction we present here is the one due to Guo and Labate [33, 34]. It starts with a Meyer

scaling function φ ∈ S (R) satisfying 0 ≤ φ̂ ≤ 1, supp φ̂ ⊆ [− 1
8 ,

1
8 ], and φ̂ = 1 on [− 1

16 ,
1
16 ], which is used

to define Φ ∈ S (R3) on the Fourier side by

Φ̂(ξ) := φ̂(ξ1)φ̂(ξ2)φ̂(ξ3), ξ = (ξ1, ξ2, ξ3)
T ∈ R

3. (28)
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Then the function

W (ξ) :=

√
Φ̂2(2−2ξ)− Φ̂2(ξ), ξ ∈ R

3,

is defined, with supp W ⊆ [− 1
2 ,

1
2 ]

3\(− 1
16 ,

1
16 )

3 and W = 1 on [− 1
4 ,

1
4 ]

3\(− 1
8 ,

1
8 )

3, such that Φ̂2(ξ) +∑
j≥0W

2(2−2jξ) = 1.for every ξ ∈ R3. These functions thus produce a smooth tiling of the frequency
domain into cartesian coronae. To take care of the directional scaling, a bump-like function v ∈ C∞

c (R)
is used, which satisfies supp v ⊆ [−1, 1] and

|v(t− 1)|2 + |v(t)|2 + |v(t+ 1)|2 = 1 for t ∈ [−1, 1],

v(0) = 1 and v(n)(0) = 0 for n ≥ 1.

For an explicit construction of such a function we refer to [31]. Then V ∈ C∞(R3) is defined by

V (ξ) = v( ξ1ξ3 )v(
ξ2
ξ3
), ξ = (ξ1, ξ2, ξ3)

T ∈ R3,

with support fully contained in the pyramid P3. After this preparation the smooth Parseval frame of
band-limited 3D-shearlets introduced by Guo and Labate in [34] can be defined.

The coarse-scale functions, which take care of the low frequencies in R, are translates of the function
Φ from (28),

SH0 :=
{
ψ0
0,0,k(x) = Φ(· − k) : k ∈ Z

3
}
. (29)

The shearlets, whose frequency support is fully contained in the respective pyramids, are called interior
shearlets. They are defined as the collection of functions

SHint :=
{
ψε
j,ℓ,k : (ε, j, ℓ, k) ∈ Λint

}

indexed by Λint := {(ε, j, ℓ, k) ∈ {1, 2, 3} × N0 × Z2 × Z3 : |ℓ|∞ < 2j} and with Fourier transforms

ψ̂ε
j,ℓ,k(ξ) = 2−2jW (2−2jξ)V (S−T

ℓ A−j
1
2 ,4
Z−εξ) exp(−2πi〈ZεS−T

ℓ A−j
1
2 ,4
Z−εξ, k〉), ξ ∈ R

3, (30)

where W and V are the auxiliary functions from above. Observe that

V (S−T
ℓ A−j

1
2 ,4
ξ) = v(2j ξ1

ξ3
− ℓ1)v(2

j ξ2
ξ3

− ℓ2),

and compare this to (26). Finally, the so-called boundary shearlets, obtained by carefully glueing together
shearlets from adjacent pyramidal regions, are added to obtain a smooth well-localized frame. The glueing
process is rather delicate, since it is important to select the right shearlets matching together. In fact,
even in the original construction [34] there are some inaccuracies. We correct them here, which leads to
a slight modification of the original definition.

We make a distinction between boundary shearlets defined between two pyramidal regions and those
at the corners, where three pyramidal regions meet. Following [34] we also distinguish between the scales
j ≥ 1 and j = 0.

Let us begin with the scales j ≥ 1 and the functions at the boundary where only two pyramidal
regions meet. We define, for j ≥ 1, ε1 ∈ {−1, 1}, ℓ1 = ε12

j, |ℓ2| < 2j, and k ∈ Z3,

ψ̂1
j,ℓ,k(ξ) =

{
2−2j−3W (2−2jξ)v(2j ξ2

ξ1
− ℓ1)v(2

j ξ3
ξ1

− ℓ2) exp(−2πi〈2−2ZS−T
ℓ A 1

2 ,2
−2jZ−1ξ, k〉) , ξ ∈ P1;

2−2j−3W (2−2jξ)v(2j ξ1
ξ2

− ℓ1)v(2
j ξ3
ξ2

− ε1ℓ2) exp(−2πi〈2−2ZS−T
ℓ A−j

1
2 ,4
Z−1ξ, k〉) , ξ ∈ P2;

ψ̂2
j,ℓ,k(ξ) =

{
2−2j−3W (2−2jξ)v(2j ξ3

ξ2
− ℓ1)v(2

j ξ1
ξ2

− ℓ2) exp(−2πi〈2−2Z2S−T
ℓ A−j

1
2 ,4
Z−2ξ, k〉) , ξ ∈ P2;

2−2j−3W (2−2jξ)v(2j ξ2
ξ3

− ℓ1)v(2
j ξ1
ξ3

− ε1ℓ2) exp(−2πi〈2−2Z2S−T
ℓ A−j

1
2 ,4
Z−2ξ, k〉) , ξ ∈ P3;

ψ̂3
j,ℓ,k(ξ) =

{
2−2j−3W (2−2jξ)v(2j ξ1

ξ3
− ℓ1)v(2

j ξ2
ξ3

− ℓ2) exp(−2πi〈2−2S−T
ℓ A−j

1
2 ,4
ξ, k〉) , ξ ∈ P3;

2−2j−3W (2−2jξ)v(2j ξ3
ξ1

− ℓ1)v(2
j ξ2
ξ1

− ε1ℓ2) exp(−2πi〈2−2S−T
ℓ A−j

1
2 ,4
ξ, k〉) , ξ ∈ P1.

(31)
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Note that we only give the definition in the regions where the functions have non-trivial support.
Outside they are supposed to be zero.

Next, we come to the corners where three pyramidal regions meet. Here we have to glue together
three shearlet parts, each coming from a different pyramid. For convenience the corner elements will be
associated to the first pyramid P1. For j ≥ 1, ℓ1 = ε12

j , ℓ2 = ε22
j with ε1, ε2 ∈ {−1, 1}, and k ∈ Z3,

they are defined as follows:

ψ̂1
j,ℓ,k(ξ) =





2−2j−3W (2−2jξ)v(2j ξ2
ξ1

− ℓ1)v(2
j ξ3
ξ1

− ℓ2) exp(−2πi〈2−2ZS−T
ℓ A−j

1
2 ,4
Z−1ξ, k〉) , ξ ∈ P1;

2−2j−3W (2−2jξ)v(2j ξ1
ξ2

− ℓ1)v(2
j ξ3
ξ2

− ε1ℓ2) exp(−2πi〈2−2ZS−T
ℓ A−j

1
2 ,4
Z−1ξ, k〉) , ξ ∈ P2;

2−2j−3W (2−2jξ)v(2j ξ2
ξ3

− ε2ℓ1)v(2
j ξ1
ξ3

− ℓ2) exp(−2πi〈2−2ZS−T
ℓ A−j

1
2 ,4
Z−1ξ, k〉) , ξ ∈ P3.

(32)

As in the original construction the definition of the boundary shearlets is slightly different at the
lowest scale j = 0. For j = 0, ℓ1 = ±1, ℓ2 = 0, and k ∈ Z3, we set

ψ̂1
j,ℓ,k(ξ) =

{
W (ξ)v( ξ2ξ1 − ℓ1)v(

ξ3
ξ1
) exp(−2πi〈ξ, k〉) , ξ ∈ P1;

W (ξ)v( ξ1ξ2 − ℓ1)v(
ξ3
ξ2
) exp(−2πi〈ξ, k〉) , ξ ∈ P2;

ψ̂2
j,ℓ,k(ξ) =

{
W (ξ)v( ξ3ξ2 − ℓ1)v(

ξ1
ξ2
) exp(−2πi〈ξ, k〉) , ξ ∈ P2;

W (ξ)v( ξ2ξ3 − ℓ1)v(
ξ1
ξ3
) exp(−2πi〈ξ, k〉) , ξ ∈ P3;

(33)

ψ̂3
j,ℓ,k(ξ) =

{
W (ξ)v( ξ1ξ3 − ℓ1)v(

ξ2
ξ3
) exp(−2πi〈ξ, k〉) , ξ ∈ P3;

W (ξ)v( ξ3ξ1 − ℓ1)v(
ξ2
ξ1
) exp(−2πi〈ξ, k〉) , ξ ∈ P1.

Finally, we come to the corner elements at the scale j = 0. Again they are associated with the first
pyramid. Let ε1, ε2 ∈ {−1, 1}. Then we define them for j = 0, ℓ = (ε1, ε2), and k ∈ Z

3 by

ψ̂1
j,ℓ,k(ξ) =





W (ξ)v( ξ2ξ1 − ℓ1)v(
ξ3
ξ1

− ℓ2) exp(−2πi〈ξ, k〉) , ξ ∈ P1;

W (ξ)v( ξ1ξ2 − ℓ1)v(
ξ3
ξ2

− ε1ℓ2) exp(−2πi〈ξ, k〉) , ξ ∈ P2;

W (ξ)v( ξ2ξ3 − ε2ℓ1)v(
ξ1
ξ3

− ℓ2) exp(−2πi〈ξ, k〉) , ξ ∈ P3.

(34)

All boundary shearlets are collected in the family SHbound. Together with the coarse-scale functions
SH0 and the interior shearlets SHint they provide a Parseval frame for L2(R3).

Theorem 5.8 ([34]). The system of 3D-shearlets

SH := SH0 ∪ SHint ∪ SHbound

is a smooth (well-localized) Parseval frame for L2(R3), consisting of band-limited Schwarz functions.

The corresponding index set ΛSH ⊂ {0, 1, 2, 3}× N0 × Z2 × Z3 is given by

ΛSH :=
{
(0, 0,0, k) : k ∈ Z

3
}
∪
{
(ε, j, ℓ, k) : ε ∈ {1, 2, 3}, j ∈ N0, ℓ ∈ Lε,j ⊆ Z

2, k ∈ Z
3
}

(35)

with the shear parameters Lε,j = {(ℓ1, ℓ2) ∈ Z2 : |ℓ1| ≤ 2j , |ℓ2| < 2j} for ε ∈ {2, 3} and L1,j = {(ℓ1, ℓ2) ∈
Z2 : |ℓ1| ≤ 2j, |ℓ2| < 2j} ∪ {(±2j,±2j)} at each scale j ∈ N0.

The system SH is another instance of a system of 1
2 -shearlet molecules (at least after an appropriate

re-indexing). In particular, it falls within the framework of α-molecules for α = 1
2 .

Proposition 5.9. Appropriately re-indexed, the smooth Parseval frame of band-limited shearlets SH
constitutes a system of 3-dimensional 1

2 -shearlet molecules of order (∞,∞,∞,∞).

Proof. We first re-index the coarse-scale functions (29) as well as the boundary elements (33) and (34)
at scale j = 0. For this we utilize the index set Γ ⊂ {0, 1, 2, 3}× N0 × Z2 given by

Γ :=
{
(0, 0,0)

}
∪
{
(ε, 0, ℓ) : ε ∈ {1, 2, 3}, ℓ = (±1, 0)

}
∪
{
(1, 0, ℓ) : ℓ = (±1,±1)

}
.
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The functions we want to re-index are then precisely those functions ψε
j,ℓ,k ∈ SH with (ε, j, ℓ, k) ∈ ∆ :=

Γ × Z3. It holds #Γ = 11, and we enumerate the set Γ in lexicographic order from 0 to 10, described
by a bijective function N : Γ → {0, . . . , 10}. For (ε, j, ℓ, k) ∈ ∆ we then re-index as follows. Writing
k̃(ε, j, ℓ, k) := (k1, k2, 11 · k3 +N (ε, j, ℓ)) ∈ Z

3 the re-indexed elements are given by

ψ̃0
0,0,k̃(ε,j,ℓ,k)

:= ψε
j,ℓ,k for (ε, j, ℓ, k) ∈ ∆.

For (ε, j, ℓ, k) ∈ ΛSH\∆ the functions ψ̃ε
j,ℓ,k := ψε

j,ℓ,k remain the same. The relabelling is thus given by

Flabel : ΛSH → Λ̃SH , (ε, j, ℓ, k) 7→
{
(0, 0,0, k̃(ε, j, ℓ, k)) , (ε, j, ℓ, k) ∈ ∆;

(ε, j, ℓ, k) , (ε, j, ℓ, k) /∈ ∆.
(36)

The newly obtained system

S̃H :=
{
ψ̃ε
j,ℓ,k

}
(ε,j,ℓ,k)∈Λ̃SH

(37)

is equipped with a shearlet index set Λ̃SH ⊂ {0, 1, 2, 3}×N0 ×Z2 ×Z3 similar to (35), however with the
modified shear parameters L1,0 = L2,0 = L3,0 = {(0, 0)} at scale j = 0.

In the remainder we show that (37) is a system of 1
2 -shearlet molecules of order (∞,∞,∞,∞). As

parameters we fix σ = 4 and ηj = 2−j for j ∈ N0. The translation parameters T = diag(τ1, τ2, τ3) vary

with the indices and are chosen suitably later. Clearly, we have SℓA
j
1
2 ,4

= Aj
1
2 ,4
Sℓηj

. Thus, defining

γεj,ℓ,k(x) := 2−2jψ̃ε
j,ℓ,k

(
ZεA−j

1
2 ,4
S−1
ℓ Z−ε(x+ T k)

)
, x ∈ R

3, (38)

for every (ε, j, ℓ, k) ∈ Λ̃SH we get the desired representation (12), i.e.

ψ̃ε
j,ℓ,k(x) = 22jγεj,ℓ,k(Z

εSℓA
j
1
2 ,4
Z−εx− T k) = 22jγεj,ℓ,k(Z

εAj
1
2 ,4
Sℓηj

Z−εx− T k), x ∈ R
3.

On the Fourier side the generators (38) take the form

γ̂εj,ℓ,k(ξ) = 22j
ˆ̃
ψε
j,ℓ,k

(
ZεAj

1
2 ,4
ST
ℓ Z

−εξ
)
exp(2πi〈ξ, T k〉), ξ ∈ R

3, (39)

and it remains to show that these functions satisfy (13). For this task we distinguish between the coarse-
scale elements, the interior shearlets and the boundary shearlets of (37).

Coarse-Scale: The coarse-scale elements {ψ̃0
0,0,k}k∈Z3 of (37) are precisely those functions ψε

j,ℓ,k ∈ SH

where (ε, j, ℓ, k) ∈ ∆. For them (38) simplifies to γ00,0,k = ψ̃0
0,0,k(·+ T k), and we just need to show (13)

for γ̂00,0,k with k ∈ Z3. For this T = diag(1, 1, 1
11 ) is the right choice. A calculation yields for every

(ε, j, ℓ, k) ∈ ∆ and k̃ = k̃(ε, j, ℓ, k) ∈ Z3

γ̂0
0,0,k̃(ε,j,ℓ,k)

(ξ) = ψ̂ε
j,ℓ,k(ξ) exp(

2πi
11 ξ3 · N (ε, j, ℓ)), ξ = (ξ1, ξ2, ξ3)

T ∈ R
3.

Hence, looking at the definitions (29), (33), (34), it follows γ̂00,0,k ∈ C∞
c (R3) with support in [− 1

2 ,
1
2 ]

3.

Interior Shearlets: Choosing T = diag(1, 1, 1), Equation (39) together with (30) yields for ξ ∈ R3

γ̂εj,ℓ,k(ξ) =W (ZεMj,ℓZ
−εξ)V (Z−εξ),

where the matrix Mj,ℓ := 2−2jAj
1
2 ,4
ST
ℓ has the form

Mj,ℓ =



2−j 0 ℓ12

−j

0 2−j ℓ22
−j

0 0 1


 . (40)
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We check (13) exemplarily for the case ε = 3 where Z3 = I. A calculation yields

Mj,ℓξ =



2−j(ξ1 + ℓ1ξ3)
2−j(ξ2 + ℓ2ξ3)

ξ3


 , ξ = (ξ1, ξ2, ξ3)

T ∈ R
3.

Subsequently we prove that for j ∈ N0 and |ℓ|∞ ≤ 2j

supp (γ̂3j,ℓ,k) ⊆ P3 ∩
{
ξ ∈ R

3 : 1
32 ≤ |ξ3| ≤ 1

2

}
. (41)

First observe that clearly supp (γ̂3j,ℓ,k) ⊆ P3. Now take ξ ∈ P3 and ξ /∈
{
ξ ∈ R3 : 1

32 ≤ |ξ3| ≤ 1
2

}
. With

|ξ3| > 1
2 also |[Mj,ℓξ]3| > 1

2 and thus Mj,ℓξ /∈ supp W . If on the other hand |ξ3| < 1
32 then |[Mj,ℓξ]3| < 1

32
and, since j ≥ 0, |ξ1| ≤ |ξ3| and |ℓ|∞ ≤ 2j ,

|[Mj,ℓξ]1| = |2−j(ξ1 + ℓ1ξ3)| ≤ 2−j(1 + |ℓ1|)|ξ3| ≤ 2−j(1 + 2j)|ξ3| ≤ (1 + 2−j)|ξ3| ≤ 2|ξ3| < 1
16 .

Analogously, one obtains |[Mj,ℓξ]2| < 1
16 . Altogether, this yields |Mj,ℓξ|∞ < 1

16 if |ξ3| < 1
32 , which implies

Mj,ℓξ /∈ supp W . Consequently, γ̂3j,ℓ,k(ξ) = 0 outside P3 ∩ {ξ ∈ R3 : 1
32 ≤ |ξ3| ≤ 1

2}, which proves (41).

Using analogous estimates for ε ∈ {2, 3} it follows that supp γ̂εj,ℓ,k ⊆ [− 1
2 ,

1
2 ]

3\(− 1
32 ,

1
32 )

3 for every

(ε, j, ℓ, k) ∈ Λint = {(ε, j, ℓ, k) ∈ {1, 2, 3} × N0 × Z2 × Z3 : |ℓ|∞ < 2j}.
The derivatives of γ̂εj,ℓ,k are linear combinations of functions ∂βW (ZεMj,ℓZ

−εξ)∂δV (Z−εξ) with co-
efficients uniformly bounded, since the entries of Mj,ℓ are. This fact together with the support condition
implies that (13) is fulfilled for arbitrary order.

Boundary Shearlets: The boundary shearlets of (37) satisfy j ≥ 1 and are precisely the functions
in (31) and (32). We exemplarily handle the functions (31), the argumentation for the functions (32) is
similar. Let us first look at the boundary between P1 and P3, i.e. the functions ψ̃

ε
j,ℓ,k, where ε = 3, j ≥ 1,

ℓ1 = ±2j, |ℓ2| < 2j , and k ∈ Z3. Plugging (31) into (39) and choosing T = 1
4diag(1, 1, 1) we obtain

γ̂3j,ℓ,k(ξ) = 2−3

{
W (Mj,ℓξ)V (ξ) , ξ ∈M−1

j,ℓ P3;

W (Mj,ℓξ)V (Nj,ℓξ) , ξ ∈M−1
j,ℓ P1;

for the generators, where Mj,ℓ is the matrix (40) and where

Nj,ℓ :=




−ℓ12−j 0 2j − ℓ212
−j

− sgn(ℓ1)ℓ22
−j 1 ℓ2 − 2−j |ℓ1|ℓ2

2−j 0 2−jℓ1


 .

Similar calculations as for the interior shearlets then prove

supp (γ̂3j,ℓ,k) ⊆
{
ξ ∈ R

3 : | ξ1ξ3 | ≤ 2, | ξ2ξ3 | ≤ 4
}
∩
{
ξ ∈ R3 : 1

64 ≤ |ξ3| ≤ 1
2

}
.

For ε ∈ {1, 2} complementary results hold true. Altogether, it follows supp γ̂εj,ℓ,k ⊆ [−2, 2]3\(− 1
64 ,

1
64 )

3

for the generators of the functions (31). Hence, condition (13) is fulfilled for arbitrary order.

Proposition 5.9 in particular shows that the system SH is a system of 1
2 -molecules, however not

with respect to a shearlet parametrization because of the necessary relabelling Flabel in (36). The actual
parametrization is given by

ΦSH := Φ̃SH ◦ Flabel,

where Φ̃SH denotes the 1
2 -shearlet parametrization of the relabeled system.

Corollary 5.10. The smooth shearlet frame SH is a system of 3-dimensional 1
2 -molecules of order

(∞,∞,∞,∞) with respect to the parametrization (ΛSH ,ΦSH).

Remark 5.11. Although (ΛSH ,ΦSH) is not a shearlet parametrization, it clearly is (12 , k)-consistent with
every 1

2 -shearlet parametrization for k > 3. This follows from Proposition 5.6 and the observation that
relabelling of elements does not make any difference here.
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5.3.2 Compactly Supported Pyramid-adapted Shearlets

There also exist shearlet frames for L2(R2) and L2(R3) consisting of compactly supported functions.
Compactly supported frames of the form (27) have been constructed in [41, 37]. They are also instances
of 1

2 -shearlet molecules and their order can be controlled by the regularity of the generators.

Proposition 5.12. Let φ, ψ1, ψ2, ψ3 ∈ L2(R3) be compactly supported and L,M,N1, N2 ∈ N0 ∪ {∞}. If
φ ∈ CN1+N2(R3) and if, for every ε ∈ {1, 2, 3},

(i) the derivatives ∂γψε exist and are continuous for every γ ∈ N3
0 with [Zεγ]1, [Z

εγ]2 ≤ N1 +N2 and
[Zεγ]3 ≤ N1, where Z is the cyclic permutation matrix (11),

(ii) the generator ψε has M + L directional vanishing moments in eε-direction, i.e.

∀(x1, x2) ∈ R
2 :

∫

R

ψε(Zεx)xN3 dx3 = 0 for every N ∈ {0, . . . ,M + L− 1},

then the system (27) obtained from these generators is a system of 1
2 -shearlet molecules of order (L,M,N1, N2).

Proof. It is obvious that – rightly indexed – a system of the form (27) constitutes a system of
1
2 -shearlet molecules. Hence we just need to verify the order of the system. For this, little more is
needed than utilizing the facts that spatial decay implies smoothness in Fourier domain (and vice versa),
and that vanishing moments in spatial domain implies estimates of the form |ĝ(ξ)| . min(1, |ξ|)M in
Fourier domain. We refer to [27, Proposition 3.11] for details, where a similar two-dimensional version of
the theorem is proven.

6 Proof of Theorem 2.5

This final section is devoted to the technical proof of Theorem 2.5. It is split up into several pieces and
has the same general structure as the proof of the corresponding 2-dimensional result [28, Theorem 4.2].
In d dimensions however it takes more effort and the arguments are more involved.

6.1 Auxiliary Lemmas

Let us first collect some simple elementary facts, which turn out to be useful. Subsequently O(d,R) shall
denote the orthogonal group of Rd. Recall also the notation {θ} for the ‘projection’ of θ ∈ R onto the
interval [−π

2 ,
π
2 ) in the sense of Subsection 2.1.

Lemma 6.1. For θ ∈ R let {θ} denote its ‘projection’ onto the interval [−π
2 ,

π
2 ) as introduced in Subsec-

tion 2.1. It then holds |{θ}| ≍ |sin(θ)|.

Proof. Due to π-periodicity it suffices to verify the relation for θ ∈ [−π
2 ,

π
2 ). In this range we have

2
π |θ| ≤ | sin(θ)| ≤ |θ|.

An immediate corollary is the following result. Recall the notation dS(v, w) for the angle arccos(〈v, w〉) ∈
[0, π] between two vectors v, w ∈ S

d−1.

Lemma 6.2. Let ed ∈ Rd be the d:th unit vector. For η ∈ Sd−1 we have |{dS(η, ed)}| ≍ |η|[d−1].

Proof. Using a suitable rotation R ∈ O(d,R) of the form

R =

(
Rd−1 0
0 1

)
,

where Rd−1 ∈ O(d − 1,R), we can achieve Rη = (sin(θ), 0, . . . , 0, cos(θ))T with θ = dS(η, ed). Since
|η|[d−1] = |η−ed|[d−1] = |R(η−ed)|[d−1] = |Rη−ed|[d−1] = | sin(θ)|, it just remains to prove |sin(θ)| ≍ |{θ}|,
which is true by Lemma 6.1.
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Lemma 6.3. Let c > 0 be a constant. Then we have for all v, w ∈ S
d−1 with [v]d ≥ c and [w]d ≥ 0

|{dS(v, w)}| ≍ |v − w|.

Proof. Under the assumptions there exists ε > 0 dependent on c, such that 0 ≤ dS(v, w) ≤ π−ε. It follows
ε

π−ε |dS(v, w)| ≤ |{dS(v, w)}| ≤ |dS(v, w)|. The observation dS(v, w) ≍ |v − w| finishes the proof.

Lemma 6.4. Let R ∈ O(d,R) be a rotation and θ0 = dS(ed, Red) ∈ [0, π] the angle between the d:th unit
vector ed ∈ Rd and its image Red under R. Then it holds for all η ∈ Sd−1

|Rη|[d−1] = sin(dS(Rη, ed)) ≥ min{|sin(dS(η, ed) + θ0)| , |sin(dS(η, ed)− θ0)|}.

Note dS(η, ed) = dS(Rη,Red).

Proof. Let η = (η1, . . . , ηd)
T ∈ Sd−1 and put θ1 := dS(η, ed) = arccos(〈η, ed〉) ∈ [0, π]. The rotation

R ∈ O(d,R) can be decomposed in the form R = R̃Rθ0 with R̃, Rθ0 ∈ O(d,R) such that

R̃ =

(
Rd−1

1

)
and Rθ0 =



cos(θ0) − sin(θ0)

Id−2

sin(θ0) cos(θ0)


 ,

where Rd−1 ∈ O(d−1,R) is some (d−1)-dimensional rotation matrix and Id−2 is the (d−2)-dimensional
identity matrix. The rotation R̃ leaves | · |[d−1] invariant, whence

|Rη|[d−1] = |R̃Rθ0η|[d−1] = |Rθ0η|[d−1].

Using ηd = cos(θ1) and |η|2[d−1] = η21 + η22 + . . .+ η2d−1 = 1− η2d, it further follows

|Rθ0η|2[d−1] = (cos(θ0)η1 − sin(θ0)ηd)
2 + η22 + · · ·+ η2d−1

= cos2(θ0)η
2
1 + sin2(θ0) cos

2(θ1)− 2 cos(θ0) sin(θ0)η1 cos(θ1) + (1− η21 − cos2(θ1))

= 1− (η1 sin(θ0) + cos(θ1) cos(θ0))
2.

The last expression is a second-degree polynomial in the variable η1 with a negative leading coefficient.
Since η21 ≤ 1 − η2d = 1 − cos2(θ1) = sin2(θ1), the variable η1 can take values only in [− sin(θ1), sin(θ1)].
The polynomial attains its minimum on this interval at the endpoints. Hence, we can conclude

|Rθ0η|2[d−1] ≥ min
ǫ∈{−1,1}

{
1− (ǫ sin(θ1) sin(θ0) + cos(θ1) cos(θ0))

2
}

= min
ǫ∈{−1,1}

{
1− cos2(θ1 − ǫθ0)

}
= min

ǫ∈{−1,1}

{
sin2(θ1 − ǫθ0)

}
,

which proves the claim.

6.2 Integral Estimates

We start with an estimate for the generators in (6), which will allow us to work in polar coordinates.

Lemma 6.5. Let the family of functions {gλ}λ∈Λ satisfy (7) uniformly for a multi-index ρ ∈ N
d
0, and

assume that there is a constant c > 0 such that sλ ≥ c for all λ ∈ Λ. Then the following estimate holds
true uniformly for λ ∈ Λ and ξ ∈ Rd

∣∣(∂ρĝλ)(A−1
α,sλRθλRϕλ

ξ)
∣∣ . min

{
1, s−1

λ (1 + |ξ|)
}M

(
1 + s−1

λ |ξ|
)N1

(1 + s−α
λ |RθλRϕλ

ξ|[d−1])
N2

. (42)

Proof. We have |A−1
α,sλξ| ≥ min{s−1

λ , s−α
λ } |ξ| & s−1

λ |ξ| uniformly for ξ ∈ Rd and λ ∈ Λ, since sλ ≥ c > 0

for every λ ∈ Λ. It follows |A−1
α,sλRθλRϕλ

ξ| & s−1
λ |RθλRϕλ

ξ| = s−1
λ |ξ|. Further, we observe |A−1

α,sλξ|[d−1] =

s−α
λ |ξ|[d−1] and |[A−1

α,sλξ]d| = s−1
λ |[ξ]d|. Finally, it holds 〈|ξ|〉 ≍ 1+ |ξ| and |[ξ]d|+ |ξ|[d−1] ≍ |ξ|. Collecting

all of these estimates, one obtains
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∣∣(∂ρĝλ
)
(A−1

α,sλ
RθλRϕλ

ξ)
∣∣ .

min
{
1, s−1

λ + |[A−1
α,sλRθλRϕλ

ξ]d|+ s
−(1−α)
λ |A−1

α,sλRθλRϕλ
ξ|[d−1]

}M

〈|A−1
α,sλRθλRϕλ

ξ|〉N1〈|A−1
α,sλRθλRϕλ

ξ|[d−1]〉N2

.
min

{
1, s−1

λ (1 + |ξ|)
}M

(
1 + s−1

λ |ξ|
)N1

(1 + s−α
λ |RθλRϕλ

ξ|[d−1])
N2

.

The expression on the right hand side of (42) can further be estimated by the function

Sλ,M,N1,N2(ξ) :=
min

{
1, s−1

λ (1 + |ξ|)
}M

(1 + s−1
λ |ξ|)N1(1 + s1−α

λ |RθλRϕλ
(ξ/|ξ|)|[d−1])

N2
, ξ ∈ R

d. (43)

As already discussed in [28], this function can be separated into angular and radial components, allowing
us to treat these parts independently in the integration later. Since the notation in this article differs
slightly from the one in [28], we choose to state the lemma once more here, but refer to said article for a
proof.

Lemma 6.6. ([28, Lemma 6.4]) Assume that sλ ≥ c > 0 for all λ ∈ Λ. For every M,N1, N2,K ∈ N0

such that K ≤ N2 we have with respect to λ ∈ Λ and ξ ∈ Rd the uniform estimate

min
{
1, s−1

λ (1 + |ξ|)
}M

(
1 + s−1

λ |ξ|
)N1

(1 + s−α
λ |RθλRϕλ

ξ|[d−1])
N2

. Sλ,M−K,N1,K(ξ).

Next, we want to estimate the scalar product of two functions of the form (43). Before the actual
result, Lemma 6.10, we need some preparation. This is the part of the proof of Theorem 2.5 which differs
the most from the situation in two dimensions.

Lemma 6.7. Let a ≥ a′ > 0, d ∈ N, d ≥ 2, and N > 1. Then we have uniformly for y ∈ R

∫

R

|x|d−2
dx

(1 + a |x|)N+d−2(1 + a′ |x− y|)N+d−2
. a−(d−1)(1 + a′ |y|)−N .

Proof. Utilizing the following result from Grafakos [22][Appendix K.1]

∫

R

dx

(1 + a |x|)N (1 + a′ |x− y|)N . max{a, a′}−1(1 + min{a, a′} |y|)−N

we can estimate

∫

R

|x|d−2
dx

(1 + a |x|)N+d−2(1 + a′ |x− y|)N+d−2
= a−(d−2)

∫

R

|ax|d−2
dx

(1 + a |x|)N+d−2(1 + a′ |x− y|)N+d−2

≤ a−(d−2)

∫

R

(1 + |ax|)d−2dx

(1 + a |x|)N+d−2(1 + a′ |x− y|)N+d−2
= a−(d−2)

∫

R

dx

(1 + a |x|)N (1 + a′ |x− y|)N+d−2

. a−(d−2)max{a, a′}−1(1 + min{a, a′} |y|)−N = a−(d−1)(1 + a′ |y|)−N .

We can immediately deduce the following corollary.

Corollary 6.8. Let a ≥ a′ > 0, d ∈ N\{1}, and N > 1. Then we have uniformly for θ0 ∈ R

∫ π

0

| sind−2(θ)| dθ
(1 + a |sin(θ)|)N+d−2(1 + a′ |sin(θ − θ0)|)N+d−2

. a−(d−1)
(
1 + a′ |{θ0}|

)−N
.
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Proof. Let us call the integral to be estimated S. Since the integrand on the left hand side is π-periodic,
we may change the domain of integration to [−π/2, π/2]. Applying Lemma 6.1, we can further conclude

S ≍
π/2∫

−π/2

|θ|d−2
dθ

(1 + a |θ|)N+d−2(1 + a′ |{θ − θ0}|)N+d−2
,

Since |{θ0}| ≤ π
2 we can estimate

S .
∑

ϑ∈{−π,0,π}

∫

R

|θ|d−2 dθ

(1 + a |θ|)N+d−2(1 + a′ |θ − ({θ0}+ ϑ)|)N+d−2
,

We now use Lemma 6.7 to estimate this by

S .
∑

ϑ∈{−π,0,π}

a−(d−1)(1 + a′ |{θ0}+ ϑ|)−N . a−(d−1)(1 + a′ |{θ0}|)−N .

This result is used to estimate the integral of the angular parts of (43) over the sphere Sd−1.

Lemma 6.9. Let a, a′ > 0, d ∈ N, d ≥ 2, θλ, θµ ∈ [0, π] × [−π
2 ,

π
2 ]

d−3, ϕλ, ϕµ ∈ [0, 2π] and N > 1.
Further, let dσ denote the standard surface measure on the sphere Sd−1. We then have the estimate

∫

Sd−1

dσ(η)

(1 + a|RθµRϕµ
η|[d−1])N+d−2(1 + a′ |RθλRϕλ

η|[d−1])
N+d−2

. max{a, a′}−(d−1)
(
1 + min{a, a′}|{dS(eλ, eµ)}|

)−N
,

where eλ = RT
ϕλ
RT

θλ
ed and eµ = RT

ϕµ
RT

θµ
ed.

Proof. Note the symmetry of the statement with respect to interchanging the entities a, a′ and λ, µ.
Without loss of generality we can therefore restrict to the case a ≥ a′ > 0.

Since the mapping RθµRϕµ
is an isometry, the integral is equal to

S :=

∫

Sd−1

dσ(η)

(1 + a |η|[d−1])
N+d−2(1 + a′|RθλRϕλ

RT
ϕµ
RT

θµ
η|[d−1])N+d−2

.

For the integration we parameterize the sphere Sd−1 by standard spherical coordinates, i.e. coordinates
(θ1, . . . θd−2, ϕ) ∈ [0, π]d−2 × [0, 2π) such that for η ∈ Sd−1

η(θ, ϕ) =




sin(θ1) · · · · · · sin(θd−2) cos(ϕ)
sin(θ1) · · · · · · sin(θd−2) sin(ϕ)
sin(θ1) · · · sin(θd−3) cos(θd−2)

...
cos(θ1)



.

Observe that 〈η, ed〉 = cos(θ1) and thus θ1 = dS(η, ed). Also note |η|[d−1] = | sin(θ1)|. Letting θ0 :=
dS(eλ, eµ) ∈ [0, π] denote the angle between eλ and eµ we have θ0 = dS(ed, RθλRϕλ

RT
ϕµ
RT

θµ
ed). Since

RθλRϕλ
RT

ϕµ
RT

θµ
∈ O(d,R) we can apply Lemma 6.4 to estimate |RθλRϕλ

RT
ϕµ
RT

θµ
η|[d−1]. We obtain

S ≤
∫ 2π

0

∫ π

0

. . .

∫ π

0

sind−2(θ1) sin
d−3(θ2) . . . sin(θd−2)dθ1dθ2 . . . dθd−2dϕ

(1 + a| sin(θ1)|)N+d−2(1 + a′ min{|sin(θ1 + θ0)| , |sin(θ1 − θ0)|})N+d−2

.

∫ π

0

sind−2(θ1) dθ1
(1 + a| sin(θ1)|)N+d−2(1 + a′ min{|sin(θ1 + θ0)| , |sin(θ1 − θ0)|})N+d−2

≤
∑

ǫ∈{−1,1}

∫ π

0

| sin(θ1)|d−2 dθ1
(1 + a| sin(θ1)|)N+d−2(1 + a′ |sin(θ1 − ǫθ0)|)N+d−2

.

Using Corollary 6.8 we finally arrive at S . max{a, a′}−(d−1)
(
1 + min{a, a′} |{θ0}|

)−N
.
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With this estimate for the angular components in our toolbox, we proceed to prove the main result
concerning the correlation of functions of the form (43).

Lemma 6.10. Let α ∈ [0, 1], d ∈ N, d ≥ 2, and M,N1, N2 ∈ N0. Further, let (Λ,ΦΛ) and (∆,Φ∆) be
parametrizations with (sλ, eλ, xλ) = ΦΛ(λ) and (sµ, eµ, xµ) = Φ∆(µ) for λ ∈ Λ, µ ∈ ∆, such that c ≤ sλ
and c ≤ sµ for a fixed constant c > 0. Then for A > 0 and B > 1 satisfying

N1 >
d

2
, M + d > N1 ≥ A+

1 + α(d− 1)

2
, and N2 ≥ B + d− 2

the following estimate holds true with an implicit constant independent of λ ∈ Λ and µ ∈ ∆,

(sλsµ)
− 1+α(d−1)

2

∫

Rd

Sλ,M,N1,N2(x)Sµ,M,N1,N2(x) dx . max

{
sλ
sµ
,
sµ
sλ

}−A (
1 + min{sλ, sµ}1−α|{dS(eλ, eµ)}|

)−B
.

Proof. Without loss of generality we subsequently assume sλ ≤ sµ. The strategy is to separate the
integration into an angular and a radial part and estimate these independently. For the estimate of the
angular part we can use Lemma 6.9, which yields

(sλsµ)
− (1+α(d−1)

2

∫ ∞

0

∫

Sd−1

Sλ,M,N1,N2(η, r)Sµ,M,N1,N2(η, r)r
d−1 dσ(η)dr

. (sλsµ)
−

1+α(d−1)
2 s−(1−α)(d−1)

µ sdµ
(
1 + s1−α

λ |{dS(eλ, eµ)}|
)−B · S

with a remaining radial integral

S := s−d
µ

∫ ∞

0

min
{
1, s−1

λ (1 + r)
}M

(1 + s−1
λ r)N1

min
{
1, s−1

µ (1 + r)
}M

(1 + s−1
µ r)N1

rd−1 dr.

Note that for the estimate we used the assumptions sλ ≤ sµ, B > 1 and N2 ≥ B + d− 2. It remains to

verify the relation (sµsλ)
−(1+α(d−1))/2s

−(1−α)(d−1)
µ sdµ · S . (sµ/sλ)

−A, or equivalently

S .
(sµ
sλ

)−A− 1+α(d−1)
2

.

To prove this, we split the integration of S into three parts S1,S2,S3 corresponding to the integration
ranges 0 ≤ r ≤ 1, 1 ≤ r ≤ sµ, and sµ ≤ r respectively.

0 ≤ r ≤ 1: Here we estimate min
{
1, s−1

λ (1 + r)
}M ≤ s−M

λ (1 + r)M ≤ 2Ms−M
λ and (1 + s−1

λ r)N1 ≥ 1,
and similarly for the index µ. Hence, the integral over this part can be estimated by

S1 . s−d
µ s−M

λ s−M
µ

∫ 1

0

rd−1 dr ≍ s−(M+d)
µ s−M

λ .

(
sµ
sλ

)−(M+d)

,

where the last inequality holds because of the uniform lower bound 0 < c ≤ sλ for λ ∈ Λ. Finally observe

that the assumed inequalities imply M + d > A+ 1+α(d−1)
2 .

1 ≤ r ≤ sµ We estimate the terms involving µ as follows: (1 + s−1
µ r)N1 ≥ 1 and (r + 1) ≤ 2r. Hence

min
{
1, s−1

µ (1 + r)
}M ≤ s−M

µ (1 + r)M ≤ s−M
µ (r + r)M ≤ 2Ms−M

µ rM .

For the terms with λ’s, we have (1+ s−1
λ r)N1 ≥ s−N1

λ rN1 and min
{
1, s−1

λ (1 + r)
}M ≤ 1. The integral S2

hence satisfies

S2 . s−d
µ sN1

λ s−M
µ

∫ sµ

1

rM−N1+d−1 dr . s−(M+d)
µ sN1

λ sM+d−N1
µ =

(sµ
sλ

)−N1

,

where it was used that M + d > N1, which implies M + d − N1 − 1 > −1, for the integration. By

assumption N1 ≥ A+ 1+α(d−1)
2 , giving the desired result.
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sµ ≤ r We estimate both terms like the λ-terms above to obtain

S3 . s−d
µ sN1

λ sN1
µ

∫ ∞

sµ

rd−1−2N1 dr . sN1−d
µ sN1

λ sd−2N1
µ .

(sµ
sλ

)−N1

.

The integral converges since N1 >
d
2 . Since N1 ≥ A+ 1+α(d−1)

2 the proof is finished.

6.3 Cancellation Estimate

Theorem 2.5 provides estimates for the scalar products of α-molecules. To derive them we evaluate
these scalar products on the Fourier side, where we can take advantage of cancellation phenomena.
Technically, the method is based on a clever integration by parts involving the following differential
operator, depending on λ ∈ Λ, µ ∈ ∆,

Lλ,µ := I − s2α0 ∆− s20

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2

〈eλ,∇〉2, (44)

where s0 = min{sλ, sµ}, I is the identity operator, ∇ the gradient and ∆ the standard Laplacian.
Lemma 6.11 shows how Lλ,µ acts on products of functions aλ, bµ which satisfy (7).

Lemma 6.11. Let aλ and bµ satisfy (7) for every multi-index ρ ∈ N
d
0 with |ρ|1 ≤ L and assume

sλ, sµ ≥ c > 0. Then we can write the expression

Lλ,µ

(
aλ(A

−1
α,sλRθλRϕλ

ξ)bµ(A
−1
α,sµRθµRϕµ

ξ)
)

as a finite linear combination of terms of the form

pλ(A
−1
α,sλ

RθλRϕλ
ξ)qµ(A

−1
α,sµRθµRϕµ

ξ)

with functions pλ, qµ, which satisfy (7) for all multi indices ρ ∈ Nd
0 with |ρ|1 ≤ L− 2.

Proof. For convenience we introduce the operators Oλ := A−1
α,sλRθλRϕλ

and Oµ := A−1
α,sµRθµRϕµ

. Fur-

ther, we define the functions ãλ(ξ) := aλ(Oλξ) and b̃µ(ξ) := bµ(Oµξ). We also abbreviate ξλ := Oλξ and
ξµ := Oµξ. Taking into account sλ & 1, we observe ‖Oλ‖2→2 = ‖A−1

α,sλ‖2→2 = max{s−α
λ , s−1

λ } . s−α
λ .

Analogously, it holds ‖Oµ‖2→2 = ‖A−1
α,sµ‖2→2 . s−α

µ . Finally, we introduce the ‘transfer’ matrix

Tλ,µ := RθµRϕµ
RT

ϕλ
RT

θλ
∈ O(d,R). (45)

After these remarks we turn to the proof, where we treat the components of Lλ,µ separately.

I This term causes no pain.

s2α0 ∆ By the product rule we have

∆(ãλb̃µ) = 2〈∇ãλ,∇b̃µ〉︸ ︷︷ ︸
A

+ ãλ∆b̃µ + b̃µ∆ãλ︸ ︷︷ ︸
B

.

In the following we first treat part A and then part B.

A The chain rule yields ∇ãλ(ξ) = OT
λ∇aλ(ξλ) for every ξ ∈ Rd and an analogous formula for b̃µ. Thus

we obtain
〈
∇ãλ(ξ),∇b̃µ(ξ)

〉
=
〈
OT

λ∇aλ(ξλ), OT
µ∇bµ(ξµ)

〉
=
〈
OµO

T
λ∇aλ(ξλ),∇bµ(ξµ)

〉
.

The expression
〈
OµO

T
λ∇aλ,∇bµ

〉
is a linear combination of the products ∂iaλ∂jbµ, where i, j ∈ {1, . . . , d},

with the entries of the matrix OµO
T
λ as coefficients. The functions ∂iaλ and ∂jbµ clearly satisfy (7) for

every ρ ∈ Nd
0 with |ρ|1 ≤ L − 1. Moreover, the entries of the matrix OµO

T
λ are bounded in modulus by

‖OµO
T
λ ‖2→2, which in turn obeys the estimate

‖OµO
T
λ ‖2→2 = ‖A−1

α,sµTλ,µA
−1
α,sλ‖2→2 ≤ ‖A−1

α,sµ‖2→2‖A−1
α,sλ‖2→2 . (sµsλ)

−α ≤ s−2α
0 ,

where s0 = min{sλ, sµ}. This shows that the function s2α0 A can be written as claimed.
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B Due to symmetry it suffices to treat the term b̃µ∆ãλ. Since b̃µ(ξ) = bµ(ξµ) for ξ ∈ R
d and since bµ

fulfills condition (7) for every ρ ∈ Nd
0 with |ρ|1 ≤ L, the function bµ is a suitable first factor with the

required properties. Let us investigate the second factor ∆ãλ.
The second derivative of ãλ is at each ξ ∈ Rd a bilinear mapping Rd × Rd → R, which by the chain

rule satisfies for v, w ∈ Rd

ã ′′
λ (ξ)[v, w] = a′′λ(ξλ)[Oλv,Oλw].

Thus, we have the expansion

∆ãλ(ξ) =

d∑

i=1

ã′′λ(ξ)[ei, ei] =

d∑

i=1

a′′λ(ξλ)[Oλei, Oλei].

Let ρ ∈ Nd
0 be a multi-index with |ρ|1 ≤ L − 2. Then the partial derivative with respect to ρ of the

function ξ 7→∑d
i=1 s

2α
0 a′′λ(ξ)[Oλei, Oλei] clearly exists. It remains to prove the frequency localization (7).

In view of ∂ρ(a′′λ) = (∂ρaλ)
′′ we can estimate for every i ∈ {1, . . . , d} and every ξ ∈ Rd

s2α0 |∂ρa′′λ(ξ)[Oλei, Oλei]| ≤ s2α0 |||∂ρa′′λ(ξ)|||‖Oλ‖22→2 . |||∂ρa′′λ(ξ)|||.

The norm of the bilinear mapping is given by |||∂ρa′′λ(ξ)||| = sup|v|,|w|=1 |∂ρa′′λ(ξ)[v, w]|. This is equal to the
spectral norm of the corresponding Hesse matrix. Therefore we can deduce |||∂ρa′′λ(ξ)||| . sup|β|1=2

∣∣∂β∂ρaλ(ξ)
∣∣.

The functions ∂β∂ρaλ satisfy (7) for every β ∈ Nd
0 with |β|1 = 2 due to the assumption on aλ. The re-

quired frequency localization follows.

s20(1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2)−1〈eλ,∇〉2 First we put w1 := s20, w2 := s2α0 |{dS(eλ, eµ)}|−2, and w3 :=

s1+α
0 |{dS(eλ, eµ)}|−1

and notice that the pre-factor satisfies

s20(1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2)−1 ≤ min{w1, w2, w3}. (46)

The first two estimates are obvious. For the third, recall that 1 + t2 ≥ 2t for all t ∈ R. Hence,

s20(1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2)−1 ≤ 1

2s
2
0(s

1−α
0 |{dS(eλ, eµ)}|)−1 ≤ s1+α

0 |{dS(eλ, eµ)}|−1
.

We begin with the product rule, which yields

〈eλ,∇〉2
(
ãλb̃µ

)
= b̃µ〈eλ,∇〉2ãλ + 2(〈eλ,∇〉ãλ)(〈eλ,∇〉̃bµ) + ãλ〈eλ,∇〉2b̃µ. (47)

Recall that eλ = RT
ϕλ
RT

θλ
ed. We calculate with the chain rule for ξ ∈ Rd

〈
eλ,∇ãλ(ξ)

〉
=
〈
Oλeλ,∇aλ(ξλ)

〉
=
〈
A−1

α,sλed,∇aλ(ξλ)
〉
= s−1

λ ∂daλ(ξλ),

where we used Oλeλ = A−1
α,sλed. Using the ‘transfer’ matrix Tλ,µ from (45), we similarly obtain

〈
eλ,∇b̃µ(ξ)

〉
=
〈
Oµeλ,∇bµ(ξµ)

〉
=
〈
A−1

α,sµTλ,µed,∇bµ(ξµ)
〉
.

Next, we note that 〈eλ,∇〉2ãλ(ξ) = ã′′λ(ξ)[eλ, eλ]. Together with the chain rule, this implies

〈eλ,∇〉2ãλ(ξ) = a′′λ(ξλ)[Oλeλ, Oλeλ] = a′′λ(ξλ)[A
−1
α,sλed, A

−1
α,sλed] = s−2

λ ∂2daλ(ξλ).

We also obtain

〈eλ,∇〉2b̃µ(ξ) = b′′µ(ξµ)[Oµeλ, Oµeλ] =
(
〈A−1

α,sµTλ,µed,∇〉2bµ
)
(ξµ).

Let us henceforth use the abbreviation η := Tλ,µed ∈ Sd−1. Plugging the above calculations into (47)

leads to the following expression for 〈eλ,∇〉2
(
ãλb̃µ

)
(ξ) at ξ ∈ R

d

s−2
λ bµ(ξµ) · ∂2daλ(ξλ) + 2s−1

λ ∂daλ(ξλ) · 〈A−1
α,sµη,∇bµ(ξµ)〉+ aλ(ξλ) ·

(
〈A−1

α,sµη,∇〉2bµ
)
(ξµ). (48)
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For the first summand of (48) we consider the product of the functions s−2
λ ∂2daλ and bµ. Since

s−2
λ ≤ s−2

0 and in view of (46) the pre-factor w1 is compensated. Due to the assumptions on aλ and bµ
the product is thus of the desired form.

Let us put η[d−1] := (η1, . . . , ηd−1, 0)
T ∈ Rd and η[d] := (0, . . . , 0, ηd)

T ∈ Rd and observe that

A−1
α,sµη = A−1

α,sµ(η[d−1] + η[d]) = s−α
µ η[d−1] + s−1

µ η[d].

The second summand of (48) then becomes – up to the factor 2 –

∂daλ(ξλ) ·
(
s−1
λ s−α

µ 〈η[d−1],∇bµ(ξµ)〉+ s−1
λ s−1

µ ηd∂dbµ(ξµ)
)
.

We choose the function ∂daλ as the first factor, which clearly has the required properties, and the function

ξ 7→ s−1
λ s−α

µ 〈η[d−1],∇bµ(ξ)〉+ s−1
λ s−1

µ ηd∂dbµ(ξ).

as the second factor. The second component of this function causes no problems because |ηd| ≤ 1 and
the pre-factor w1 is compensated due to (sλsµ)

−1 ≤ s−2
0 . To deal with the other term, notice that by

Lemma 6.2 |η[d−1]| = |η|[d−1] ≍ |{dS(eλ, eµ)}|. Thus

s−1
λ s−α

µ |〈η[d−1],∇bµ〉|.s−1
λ s−α

µ |{dS(eλ, eµ)}| |∇bµ|.

The fact that ∂ibµ, i ∈ {1, . . . , d}, satisfy (7) by assumption, and that s−1
λ s−α

µ |{dS(eλ, eµ)}| compensates
w3, implies that also the first component satisfies the required properties.

Let us turn to the last summand of (48). The first factor aλ is of the desired form. For the second
factor we expand the function 〈A−1

α,sµη,∇〉2bµ in the form

s−2α
µ 〈η[d−1],∇〉2bµ + 2s−1−α

µ ηd〈η[d−1],∇〉∂dbµ + s−2
µ η2d∂

2
dbµ.

Its partial derivatives of order ρ ∈ Nd
0 with |ρ|1 ≤ L− 2 clearly exist, and we get the estimate

|〈A−1
α,sµη,∇〉2∂ρbµ| . s−2α

0 |dS(eλ, eµ)|2
d−1∑

i,j=1

|∂i∂j∂ρbµ|+ 2s−1−α
0 |dS(eλ, eµ)||∇∂d∂ρbµ|+ s−2

0 |∂2d∂ρbµ|.

Here we again used that |η[d−1]| ≍ |{dS(eλ, eµ)}| according to Lemma 6.2. This estimate completes the
proof, taking into account the estimate (46) of the pre-factor and the fact that the partial derivatives of
bµ up to order L satisfy (7).

6.4 Proof of Theorem 2.5

At last we have all the tools available to prove Theorem 2.5. Write ∆x = xµ − xλ. An application of the
Plancherel identity yields

〈mλ, pµ〉 = 〈m̂λ, p̂µ〉

= (sλsµ)
−

α(d−1)+1
2

∫

Rd

âλ(A
−1
α,sλRθλRϕλ

ξ)b̂µ(A
−1
α,sµRθµRϕµ

ξ) exp(2πi〈ξ,∆x〉) dξ

for two α-moleculesmλ and pµ with respective generators aλ and bµ. According to Lemma 6.5 the Fourier
transforms of the generators therefore satisfy (42) for every ρ ∈ Nd

0 with |ρ|1 ≤ L
Next, we want to exploit cancellation. For this we utilize the differential operator Lλ,µ from (44).

First, we observe that partial integration yields

〈
L

N
λ,µ exp(2πi〈ξ,∆x〉), âλ(A−1

α,sλ
RθλRϕλ

ξ)b̂µ(A
−1
α,sµRθµRϕµ

ξ)
〉

=
〈
exp(2πi〈ξ,∆x〉),L N

λ,µ

(
âλ(A

−1
α,sλ

RθλRϕλ
ξ)b̂µ(A

−1
α,sµRθµRϕµ

ξ)
)〉
,
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since the boundary terms vanish due to the decay properties (7) of the generators and its derivatives.
Note that we assume N1 > d/2 and L ≥ 2N . Second, we calculate for ξ ∈ Rd

L
N
λ,µ

(
exp(2πi〈ξ,∆x〉)

)
=

(
1 + 4π2s2α0 |∆x|2 + 4π2s20〈eλ,∆x〉2

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2

)N

exp(2πi〈ξ,∆x〉).

Consequently, we have

〈mλ, pµ〉 =
(
1 + 4π2s2α0 |∆x|2 + 4π2s20〈eλ,∆x〉2

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2

)−N

· Sλ,µ,

with

Sλ,µ := (sλsµ)
−α(d−1)+1

2

∫

Rd

L
N
λ,µ

(
âλ(A

−1
α,sλ

RθλRϕλ
ξ)b̂µ(A

−1
α,sµRθµRϕµ

ξ)
)
exp(2πi〈ξ,∆x〉) dξ.

Since L ≥ 2N by assumption, Lemma 6.11 can iteratively be applied N times, and we conclude that

L
N
λ,µ

(
âλ(A

−1
α,sλRθλRϕλ

ξ)b̂µ(A
−1
α,sµRθµRϕµ

ξ)
)

can be written as a finite linear combination of terms of the form

pλ(A
−1
α,sλRθλRϕλ

ξ)qµ(A
−1
α,sµRθµRϕµ

ξ)),

where pλ and qµ satisfy (7) (for the multi-index just containing zeros).
Using Lemma 6.5 and putting K = 2N + d− 2 ≤ N2 in Lemma 6.6 then yields

∣∣L N
λ,µ

(
âλ(A

−1
α,sλRθλRϕλ

ξ)b̂µ(A
−1
α,sµRθµRϕµ

ξ)
)∣∣

. Sλ,M−(2N+d−2),N1,2N+d−2(ξ)Sµ,M−(2N+d−2),N1,2N+d−2(ξ).

Due to the assumptions, we can further choose a number Ñ ≤ N1 which satisfies

(M − (2N + d− 2)) + d > Ñ ≥ N +
1 + α(d− 1)

2
. (49)

Since Ñ ≤ N1 we have the estimate Sη,M−(2N+d−2),N1,2N+d−2 ≤ Sη,M−(2N+d−2),Ñ,2N+d−2 for η = λ, µ.

Hence, we obtain

|Sλ,µ| . (sλsµ)
−α(d−1)+1

2

∫

Rd

Sλ,M−(2N+d−2),N1,2N+d−2)(ξ)Sµ,M−(2N+d−2),N1,2N+d−2(ξ) dξ

. (sλsµ)
−α(d−1)+1

2

∫

Rd

Sλ,M−(2N+d−2),Ñ ,2N+d−2(ξ)Sµ,M−(2N+d−2),Ñ ,2N+d−2(ξ) dξ

. max

{
sλ
sµ
,
sµ
sλ

}−N

(1 + s
(1−α)
0 |{dS(eλ, eµ)}|)−2N .

Here we used (49) and Lemma 6.10 in the last line (using this S and setting M̃ = M − (2N + d − 2),
A = N and B = 2N (B > 1, A > 0 since N > 1)).

Altogether, we arrive at the desired estimate

|〈mλ, pµ〉| . max

{
sλ
sµ
,
sµ
sλ

}−N
(
1 + s2α0 |∆x|2 + s20〈eλ,∆x〉2

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2

)−N (
1 + s

(1−α)
0 |{dS(eλ, eµ)}|

)−2N

. max

{
sλ
sµ
,
sµ
sλ

}−N
(
1 + s

2(1−α)
0 |{dS(eλ, eµ)}|2 + s2α0 |∆x|2 + s20〈eλ,∆x〉2

1 + s
2(1−α
0 |{dS(eλ, eµ)}|2

)−N

. ωα(λ, µ)
−N .
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For the last estimate observe that the inequality between the arithmetic and the geometric mean

(
1 + s

2(1−α)
0 |{dS(eλ, eµ)}|2

)
+

s20〈eλ,∆x〉2

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2

≥ 2s0|〈eλ,∆x〉|

implies

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2 + s2α0 |∆x|2 + s20〈eλ,∆x〉2

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2

≥

1

2

(
1 + s

2(1−α)
0 |{dS(eλ, eµ)}|2 + s2α0 |∆x|2

)
+

1

2

(
1 + s

2(1−α)
0 |{dS(eλ, eµ)}|2 +

s20〈eλ,∆x〉2

1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2

)

& 1 + s
2(1−α)
0 |{dS(eλ, eµ)}|2 + s2α0 |∆x|2 + s0 |〈eλ,∆x〉| = 1 + dα(λ, µ).

This concludes the proof.
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