
ar
X

iv
:1

41
1.

21
14

v2
  [

m
at

h.
N

A
] 

 2
1 

D
ec

 2
01

5

Approximation order and approximate sum rules in subdivision

Costanza Contia, Lucia Romanib, Jungho Yoonc,∗

aDipartimento di Ingegneria Industriale, Università di Firenze, Viale Morgagni 40/44, 50134 Italy
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Abstract

Several properties of stationary subdivision schemes are nowadays well understood. In particular, it is
known that the polynomial generation and reproduction capability of a stationary subdivision scheme is
strongly connected with sum rules, its convergence, smoothness and approximation order. The aim of this
paper is to show that, in the non-stationary case, exponential polynomials and approximate sum rules play an
analogous role of polynomials and sum rules in the stationary case. Indeed, in the non-stationary univariate
case we are able to show the following important facts: i) reproduction of N exponential polynomials
implies approximate sum rules of order N ; ii) generation of N exponential polynomials implies approximate
sum rules of order N , under the additional assumption of asymptotical similarity and reproduction of
one exponential polynomial; iii) reproduction of an N -dimensional space of exponential polynomials and
asymptotical similarity imply approximation order N ; iv) the sequence of basic limit functions of a non-
stationary scheme reproducing one exponential polynomial converges uniformly to the basic limit function
of the asymptotically similar stationary scheme.

Keywords: Subdivision schemes; exponential polynomial generation and reproduction; asymptotical simi-
larity; approximate sum rules; approximation order.
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1. Introduction

In this paper we investigate theoretical properties of non-stationary subdivision schemes. In particular,
we study their approximation order and the role played by approximate sum rules, a non-stationary extension
of the well-known notion of sum rules. The obtained results allow us to point out similarities and differences
between the stationary and the non-stationary cases.

For unfamiliar readers, we briefly introduce subdivision schemes as efficient tools to design smooth curves and
surfaces out of sequences of initial points. As a matter of fact, a subdivision curve or surface is obtained as the
limit of an iterative procedure based on the repeated application of local refinement rules generating denser
and denser sets of points starting from a coarse initial set roughly describing the desired limit shape [3, 20, 42].
In practical use, however, only a limited number of iterations are needed. As a consequence, subdivision
schemes are very efficient if compared with traditional parametric curve and surface representations. They
also stand out for ease of implementation and versatility in building free-form surfaces of arbitrary topological
genus. All these advantages are the reasons for the overwhelming development of subdivision methods and
their increasing use in many applicative areas such as computer–aided geometric design [20, 42], curve
and surface reconstruction [35], wavelets and multiresolution analysis [16], signal/image processing [15, 39],
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computer games and animation [17]. Within the variety of subdivision methods studied in the literature, the
class of non-stationary subdivision schemes is currently receiving great attention. This is due to the fact that
non-stationary subdivision schemes are general and flexible enough to overcome the restricted capabilities of
stationary subdivision schemes. As an example, we can think of the fact that stationary subdivision schemes
are not capable of representing conic sections or, in general, exponential polynomials. On the contrary, non-
stationary schemes can also generate exponential polynomials or exponential B-splines, that is piecewisely
defined exponential polynomials [1, 6, 11, 21, 26, 30, 33, 34, 37, 38]. Reproduction of piecewise exponential
polynomials is important in several applications, e.g., in biomedical imaging, in geometric design and in
isogeometric analysis. Moreover, non-stationary subdivision schemes include Hermite subdivision schemes.
Hermite subdivision schemes are iterative methods mapping, at each iteration, a set of vector data consisting
of functional values and associated derivatives, to a denser set of vector data of the same type [13, 32]. They
are applied in geometric modeling for the construction of curves and surfaces out of points and directional
derivatives, and have recently found application in other contexts such as, for example, in the design of
one-step numerical methods for the numerical solution of ODE Initial Value Problems.

The main goal of this paper is to investigate the approximation order of non-stationary subdivision schemes
and the role played by approximate sum rules, a non-stationary extension of the well-known notion of sum
rules. Approximate sum rules allow us to link the response of non-stationary subdivision schemes to specific
types of initial data (precisely data sampled from exponential polynomials) with the approximation and
smoothness orders. With some extent we find that exponential polynomials and approximate sum rules
play an analogous role of polynomials and sum rules in the stationary case. However, important differences
unexpectedly arise.

In stationary subdivision, it is well-known that:

• The property of reproducing polynomials of degree N−1 ( i.e., the capability of a stationary subdivision
scheme to reproduce in the limit exactly the same degree-(N − 1) polynomial from which the data
are sampled) implies sum rules of order N (see [4]). Moreover, it implies approximation order N (see
[31]).

• The property of generating polynomials of degree N−1 ( i.e., the capability of a stationary subdivision
scheme to provide polynomials of degree N − 1 as limit functions) is equivalent to the fulfillment of
sum rules of order N (see [4]). Moreover, it guarantees the existence of difference operators whose
spectral properties characterize convergence and regularity of the subdivision scheme (see [20]).

• Sum rules of order N are a necessary condition for convergence and for CN−1-continuity of stationary
subdivision schemes (see, e.g., [2, 7, 22–24] and references therein).

In contrast, in the non-stationary setting, although the notions of generation and reproduction of polynomials
are straightforwardly replaced by the notions of generation and reproduction of exponential polynomials,
the situation is not so clear. For this reason, in this paper, we prove the following important results, which
allow us to point out similarities and differences between the stationary and non-stationary cases:

• As in the stationary case, the property of reproducing N exponential polynomials implies approximate
sum rules of order N . Moreover, we are able to show that it implies approximation order N if
asymptotical similarity to a convergent stationary scheme is assumed.

• The property of generating N exponential polynomials implies approximate sum rules of order N
if asymptotical similarity to a convergent stationary scheme and reproduction of one exponential
polynomial are assumed. Moreover, as in the stationary case, the property of generating exponential
polynomials guarantees the existence of difference operators.

• Approximate sum rules of order N and asymptotical similarity to a stationary CN−1 subdivision
scheme provide sufficient conditions for CN−1 regularity of non-stationary subdivision schemes.
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We emphasize that, in order to maintain the notation and the proofs of the results as simple as possible,
we deliberately focus the discussion on univariate non-stationary subdivision schemes only. Note also that,
motivated by the fact that primal and dual subdivision schemes are essentially the ones of interest in
applications, we restrict our attention to these two subclasses of subdivision schemes, which are known to
include odd and even symmetric subdivision schemes.

The remainder of this paper is organized as follows. In Section 2, after providing some basic definitions,
we recall known results concerning exponential polynomial generation and reproduction. Then, in Section
3 we study the link between exponential polynomial generation/reproduction and approximate sum rules.
Section 4 focuses on the uniform convergence of the sequence of basic limit functions of a non-stationary
scheme to the basic limit function of the asymptotically similar stationary scheme. This extends an existing
result in [19], which resorts to the assumption of asymptotical equivalence between the two schemes. Finally,
under the weaker assumption of asymptotical similarity rather than asymptotical equivalence to a stationary
scheme, in Section 5 we also investigate the approximation order of a non-stationary subdivision scheme
reproducing a space of exponential polynomials. All the results of this paper are summarized in Section 6.

2. Symbols, exponential polynomial generation and reproduction

Given an initial set of discrete data f [0] = {f
[0]
i , i ∈ Z}, a univariate, non-stationary subdivision scheme

constructs the sequence of refined data {f [k], k > 0} via the repeated application of the subdivision operators
Sa[0] , · · · , Sa[k−1] associated with the finitely supported sequences of coefficients {a[k−1], k > 0}, a[k] :=

{a
[k]
i ∈ R, i ∈ Z}, named the subdivision masks. We assume that all masks have the same support

{−M, · · · ,M}, M ∈ N, i.e., for all k ≥ 0, a
[k]
i = 0 if i < −M or i > M . To generate the refined

data sequence f [k] = {f
[k]
i , i ∈ Z}, k > 0, the subdivision operator Sa[k−1] is applied to the data sequence

f [k−1] = Sa[k−2] · · ·Sa[0]f [0] acting as

f
[k]
i :=

(
Sa[k−1]f [k−1]

)

i
:=

∑

j∈Z

a
[k−1]
i−2j f

[k−1]
j , i ∈ Z. (2.1)

A non-stationary subdivision scheme is thus identified by the collection of subdivision operators and therefore
denoted as {Sa[k] , k ≥ 0}. When all subdivision operators are the same, the subdivision scheme is called
stationary and is simply denoted as {Sa}.

Definition 1. A subdivision scheme is said to be Cℓ-convergent if, for any initial sequence f [0] ∈ ℓ∞(Z),
there exists a function gf [0] ∈ Cℓ(R) such that

lim
k→∞

sup
i∈Z

|gf [0](i2
−k)− (Sa[k−1] · · ·Sa[0]f [0])i| = 0 .

If ℓ = 0, the scheme is simply said to be convergent.

For the practical use of a convergent subdivision scheme it is important to link the properties of the limit
function gf [0] with the properties of the initial sequence f [0]. This is particularly true in the case when f [0]

consists of samples of special types of functions: polynomial, trigonometric and hyperbolic functions or,
more generally, exponential polynomial functions. Indeed, the response of the subdivision scheme to these
types of starting data is not only important for the design of shapes of practical interest in applications (see,
e.g., [1, 36, 38, 42]), but is also strongly connected to the following key properties of the subdivision scheme:
its smoothness and its approximation order (see [2, 5, 7, 8, 22–24, 27–29] and Section 3 as well as [25] and
Section 5, respectively).

Throughout this paper we use the term generation to refer to the capability of a subdivision scheme of
providing specific types of limit functions. On the contrary, by the term reproduction we refer to the
capability of a subdivision scheme of reproducing in the limit exactly the same function from which the data
are sampled.
To study the capabilities of a non-stationary subdivision scheme {Sa[k], k ≥ 0} of generating/reproducing
exponential polynomial functions, we need the following definition.
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Definition 2. Let x ∈ R and η,N ∈ N. Assume also λn ∈ C n = 1, · · · , η, and µn ∈ N n = 1, · · · , η,
to be such that

∑η
n=1 µn = N . The N -dimensional space spanned by N linearly independent exponential

polynomials is
ΦN := span{xβeλnx, β = 0, · · · , µn − 1, n = 1, · · · , η}.

For simplicity, in the following we write ΦN as ΦN = span{ϕ0(x), · · · , ϕN−1(x)}.

The next definition stresses the difference between the notions of generation and reproduction of the
space of exponential polynomials ΦN .

Definition 3. Let t
[0]
i , i ∈ Z, be ordered values on the real axis such that t

[0]
i+1 − t

[0]
i = 1 for all i ∈ Z. A

convergent, non-stationary subdivision scheme {Sa[k] , k ≥ 0} is said to be

i) ΦN -generating, if for all initial sequences f [0] := {f(t
[0]
i ), i ∈ Z}, f ∈ ΦN , we get

lim
k→∞

Sa[k]Sa[k−1] · · ·Sa[0]f [0] ∈ ΦN ;

ii) ΦN -reproducing, if for all initial sequences f [0] := {f(t
[0]
i ), i ∈ Z}, f ∈ ΦN , we get

lim
k→∞

Sa[k]Sa[k−1] · · ·Sa[0]f [0] = f.

Remark 4. It is easy to see that the space of polynomials of degree at most N − 1, can be obtained from
Definition 2 by choosing λ1 = 0 and β = 0, · · · , N−1. As a consequence, Definition 3 applies also in the sta-
tionary case, namely when {Sa[k] , k ≥ 0} is simply {Sa} and ΦN reduces to ΠN−1 := span{1, x, · · · , xN−1}.

For a given non-stationary subdivision scheme {Sa[k] , k ≥ 0}, its generation and reproduction properties
are encoded in the so-called subdivision symbols

a[k](z) :=
∑

i∈Z

a
[k]
i z

i, z ∈ C \ {0}, k ≥ 0,

associated to the subdivision masks

a[k] := {a
[k]
i ∈ R, i ∈ Z}, k ≥ 0.

Then (2.1) can be written as
f [k+1](z) = a[k](z)f [k](z2), k ≥ 0 (2.2)

where
f [k](z) =

∑

i∈Z

f
[k]
i zi.

To simplify the presentation of the algebraic conditions on non-stationary subdivision symbols that guarantee
certain generation and reproduction properties of the corresponding subdivision scheme, we start from
reviewing the results of the stationary case.
It is well-known that a stationary subdivision scheme {Sa} is ΠN−1-generating if and only if its symbol a(z)
can be written in the form

a(z) = (1 + z)N b(z), (2.3)

for some Laurent polynomial b(z) (see [18, Theorem 3.2]). In [18, Theorems 4.6, 4.7] the authors also showed
that for a ΠN−1-generating subdivision scheme {Sa} with symbol a(z), a necessary and sufficient condition
for reproducing ΠN−1 is given by the existence of a Laurent polynomial c(z) such that

2− a(z1+ν) zν = (1− z)N c(z) with ν ∈ {0, 1}. (2.4)
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To better understand the role of the parameter ν ∈ {0, 1} in (2.4), we need to recall the concept of

parametrization of a subdivision scheme, i.e. the choice of the grid points t
[k]
i , i ∈ Z, to which the k-

level data f
[k]
i , i ∈ Z, are attached. The general definition of the grid points t

[k]
i , i ∈ Z, is

t
[k]
i :=

i+ p

2k
, p := −

(
τ +

ν

2

)
, τ ∈ Z, ν ∈ {0, 1}, (2.5)

where the number p is called the shift parameter (see [12]). When ν = 0, then p ∈ Z and the sets of

parameters t[k] = {t
[k]
i , i ∈ Z}, k ≥ 0, provide the so-called primal parametrization. Subdivision schemes

based on this choice are thus called primal subdivision schemes. In contrast, when ν = 1, then p ∈ 1
2Z

and the parametrization is called dual as well as the corresponding subdivision schemes. To simplify the
notation, it is convenient to assume p = − ν

2 , ν ∈ {0, 1}, namely p ∈ {0,− 1
2}. In fact, if a subdivision scheme

is ΠN−1-reproducing with respect to the shift parameter p, we can always multiply its symbol by zτ to make
it ΠN−1-reproducing with respect to the shift parameter p+ τ , namely to − ν

2 .

In the non-stationary case, conditions on the subdivision symbols that guarantee exponential polynomial
generation were first given in [41]. In case of primal and dual schemes only, a complete set of algebraic condi-
tions to be satisfied by the subdivision symbols of a non-stationary scheme in order to guarantee exponential
polynomial generation and reproduction, can be found both in [14] and in [25]. In the following theorem we
recall the set of conditions given in the second reference. They are the non-stationary counterparts of (2.3)
and (2.4), and are stated in (2.6) and (2.7), respectively.

Theorem 5. Let ΦN denote the N -dimensional space of exponential polynomials given in Definition 2. If
the subdivision scheme {Sa[k] , k ≥ 0} is ΦN -generating, then its symbols {a[k](z), k ≥ 0} satisfy

a[k](z) = b[k](z)

η∏

n=1

(1 + eλn2
−k−1

z)µn , k ≥ 0, (2.6)

for some Laurent polynomials {b[k](z), k ≥ 0}. Moreover, if {Sa[k] , k ≥ 0} is ΦN -reproducing with respect
to the parametrization in (2.5), then

2− a[k](z1+ν)zν = c[k](z)

η∏

n=1

(1− eλn2
−k−1−ν

z)µn , ν ∈ {0, 1}, k ≥ 0, (2.7)

for some Laurent polynomials {c[k](z), k ≥ 0}.

In the stationary case, conditions (2.3) and (2.4) simply express the fact that the symbols a(z) and 2 −
a(z1+ν)zν contain the factors (1 + z)N and (1 − z)N , respectively. The analogous conditions for the non-
stationary case, stated in equations (2.6) and (2.7), are nothing but the requirement that the k-level symbols

a[k](z) and 2−a[k](z1+ν)zν contain the factors
η∏

n=1
(1+eλn2

−k−1

z)µn and
η∏

n=1
(1−eλn2

−k−1−ν

z)µn , respectively.

Remark 6. Condition (2.7) was proven in [25] under the assumption that a[k](z) is a symmetric symbol.
However, (2.7) is valid also for primal/dual subdivision schemes that are not symmetric. In fact, the proof
in [25] actually does not make use of the symmetry assumption. As an example, consider the not symmetric
primal subdivision scheme with k-level symbol

a[k](z) = (1 + z)2(z + rk)(z + r−1
k )

(
1 + b

[k]
1 z + b

[k]
2 z2 + b

[k]
3 z3

)
,

where rk = eλ2
−k−1

and

b
[k]
1 = −

4r4k+6r3k+9r2k+6rk+4

2(r4k+2r3k+2r2k+2rk+1)
, b

[k]
2 =

2r2k+rk+2

2(r2k+1)
, b

[k]
3 = −

rk(2r
2
k+rk+2)

2(r2k+1)(rk+1)2
.
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It is not difficult to show that it is convergent and reproduces Φ4 = span{1, x, e±λx} with respect to the

primal parametrization {t
[k]
i = i

2k , i ∈ Z}, thus it indeed satisfies (2.6) and (2.7) with ν = 0.
Similarly, we can also easily see that the not symmetric dual subdivision scheme with k-level symbol

a[k](z) = (1 + z)(z + rk)(z + r−1
k )

(
b
[k]
1 + b

[k]
2 z + b

[k]
3 z2

)
,

where rk = eλ2
−k−1

and

b
[k]
1 =

r
13/2
k −r4k−r

2
k+r

−1/2
k

(r2k−1)2(r2k+1)
, b

[k]
2 = −

r
13/2
k +r

11/2
k −r5k−2r3k−rk+r

1/2
k +r

−1/2
k

(r2k−1)2(r2k+1)
, b

[k]
3 =

rk(r
9/2
k −r3k−rk+r

−1/2
k )

(r2k−1)2(r2k+1)
,

reproduces Φ3 = span{1, e±λx} with respect to the dual parametrization {t
[k]
i =

i− 1
2

2k , i ∈ Z} and indeed
satisfies (2.6) and (2.7) with ν = 1.

3. Exponential polynomials and approximate sum rules

The notion of approximate sum rules was first introduced in [5] as a possible generalization of the notion
of sum rules to the non-stationary setting. For the reader’s convenience both definitions are recalled here.

Definition 7. Let N ∈ N. The sequence of symbols {a[k](z), k ≥ 0} is said to satisfy sum rules of order
N if for all k ≥ 0 it is verified that

a[k](1) = 2 and
dβa[k](−1)

dzβ
= 0, β = 0, . . . , N − 1. (3.1)

Definition 8. Let N ∈ N. The sequence of symbols {a[k](z), k ≥ 0} is said to satisfy approximate sum
rules of order N if it fulfills

∞∑

k=0

|a[k](1)− 2| <∞ and
∞∑

k=0

2 k(N−1)σk <∞, for σk := max
β=0,...,N−1

2−k β
∣∣∣∣
dβa[k](−1)

dzβ

∣∣∣∣ . (3.2)

In stationary subdivision, it is well-known that generation of ΠN−1 is equivalent to the fact that the subdi-
vision symbol satisfies sum rules of order N , while reproduction of ΠN−1 just implies sum rules of order N
(see, e.g., [2, 8, 10, 23, 27]).

The goal of this section is to study the link between generation/reproduction of exponential polynomials
and approximate sum rules. In particular, in Theorem 10 we show that reproduction of the exponential
polynomial space ΦN implies approximate sum rules of order N , if the N × N Wronskian matrix of ΦN
defined by

WΦN (x) :=
( 1

β!

dβϕα(x)

dxβ
, α, β = 0, . . . , N − 1

)
, (3.3)

is invertible for all x in a neighborhood of zero. Moreover, in Theorem 13, we prove that generation of
ΦN and reproduction of just one exponential polynomial in ΦN imply approximate sum rules of order N if,
besides the invertibility of WΦN (x) for all x in a neighborhood of zero, we additionally assume asymptotical
similarity of the non-stationary scheme to some convergent stationary scheme.
Thus, for the sake of completeness, before formulating Theorem 13 we provide the definition of the notion
of asymptotical similarity, originally introduced in [9] to weaken the notion of asymptotical equivalence
proposed earlier in [19].

Definition 9. A non-stationary subdivision scheme {Sa[k] , k ≥ 0} and a stationary one {Sa} are said to
be asymptotically similar, respectively asymptotically equivalent, if the associated sequence of subdivision
masks {a[k], k ≥ 0} and the subdivision mask {a} satisfy

lim
k→∞

‖a[k] − a‖ = 0, respectively

∞∑

k=0

‖a[k] − a‖ <∞ .

6



Note that, here and in the sequel, ‖ · ‖ stands for the infinity norm of subdivision operators, sequences or

functions, i.e., ‖Sa[k]‖ := max
{∑

i∈Z
|a

[k]
2i |,

∑
i∈Z

|a
[k]
2i+1|

}
, ‖f‖ := supi∈Z

|fi| and ‖F‖ := supx∈R
|F (x)|.

Theorem 10. Let ΦN denote the N -dimensional space of exponential polynomials given in Definition 2 and
let {a[k](z), k ≥ 0} be the symbols of a ΦN -reproducing non-stationary subdivision scheme {Sa[k] , k ≥ 0}.
If the Wronskian matrix of ΦN , WΦN (x), is invertible for all x in a neighborhood of zero, then for β =
0, · · · , N − 1 it is verified that

|a[k](1)− 2| = O(2−kN ) and

∣∣∣∣
dβa[k](−1)

dzβ

∣∣∣∣ = O(2−k(N−β)), k → ∞. (3.4)

Proof. We first note that the β-th derivative of a[k](z) evaluated at z = −1 can be expressed as

dβa[k](−1)

dzβ
=

β∑

ℓ=0

θβ,ℓ
∑

i∈Z

a
[k]
i i

ℓ(−1)i, (3.5)

for some constants θβ,ℓ, ℓ = 0, · · · , β such that θβ,0 = δβ,0. Thus, to verify (3.4), it suffices to show that
∣∣∣∣∣
∑

i∈Z

a
[k]
i − 2

∣∣∣∣∣ = O(2−kN ) and

∣∣∣∣∣
∑

i∈Z

(−1)iiβa
[k]
i

∣∣∣∣∣ = O(2−k(N−β)), k → ∞. (3.6)

Our approach for this task is to separate the summation in equations (3.6) into two parts, and then estimate
them separately. To do this, for each β = 0, · · · , N − 1, we define the pair of functions

Pj,β(x) :=

N−1∑

n=0

m
[k]
j,β,n ϕn(x), j = 0, 1, (3.7)

where the coefficient vector m
[k]
j,β = (m

[k]
j,β,n, n = 0, · · · , N − 1) is obtained by solving the Hermite interpo-

lation problem

dℓPj,β(j2
−k−1)

dxℓ
= δβ,ℓ(−1)ℓℓ!, ℓ = 0, . . . , N − 1, j = 0, 1. (3.8)

Denoting by δβ,ℓ the Kronecker symbol, equations (3.8) translate into the linear systems

WΦN (j2−k−1) · (m
[k]
j,β)

T = cTβ , j = 0, 1 (3.9)

with cβ := (δβ,ℓ(−1)ℓℓ!, ℓ = 0, · · · , N − 1). Due to the assumption that WΦN (x) is invertible for all x in a
neighborhood of zero, such a linear system clearly has a unique solution. Next we define

Qj,β :=
∑

i∈Z

a
[k]
j−2i

(
(j2−1 − i)2−k

)β
− Pj,β(j2

−k−1), j = 0, 1, (3.10)

and note that, in view of (3.8),
P0,β(0) = P1,β(2

−k−1) = δβ,0. (3.11)

Thus, noting that P0,0(0) = P1,0(2
−k−1) = 1, we get

∑

i∈Z

a
[k]
i − 2 = Q0,0 +Q1,0. (3.12)

Moreover, due to (3.11), we have

2−β(k+1)
∑

i∈Z

(−1)iiβa
[k]
i =

∑

i∈Z

a
[k]
−2i(−i2

−k)β −
∑

i∈Z

a
[k]
1−2i

(
(2−1 − i)2−k

)β
= Q0,β −Q1,β. (3.13)
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We first estimate Q0,β. The other term Q1,β can be handled analogously. Since P0,β is a linear combination
of exponential polynomials in ΦN and the non-stationary scheme {Sa[k] , k ≥ 0} reproduces ΦN , we get the

identity P0,β(0) =
∑

i∈Z
a
[k]
−2i P0,β(i2

−k). Plugging this into (3.10) for j = 0 leads to

Q0,β =
∑

i∈Z

a
[k]
−2i

(
(−i2−k)β − P0,β(i2

−k)
)
. (3.14)

Here, we will use the arguments of Taylor expansion for P0,β . Precisely, let TNP0,β
be the degree-(N − 1)

Taylor polynomial of the function P0,β around 0, that is, TNP0,β
(x) :=

∑N−1
ℓ=0

xℓ

ℓ!
dℓP0,β(0)

dxℓ . Then, we replace

P0,β in Q0,β by its Taylor polynomial TNP0,β
plus the remainder term, say RNP0,β

, such that we have the form

P0,β(i2
−k) = TNP0,β

(i2−k) +RNP0,β
(i2−k). In fact, from the Hermite interpolation conditions in (3.8), we find

that TNP0,β
(i2−k) = (−i2−k)β . Hence, it leads to the equations

Q0,β = −
∑

i∈Z

a
[k]
−2iR

N
P0,β

(i2−k). (3.15)

On the other hand, by (3.9), (m
[k]
0,β)

T = WΦN (0)
−1cTβ such that for a given β, the coefficient vector m

[k]
0,β

for P0,β in (3.7) can be bounded independently of k ≥ 0. It implies that the α-th derivative of P0,β for each
α = 0, . . . , N − 1, is uniformly bounded around the origin. Consequently, we get |RNP0,β

(i2−k)| = O(2−kN )

and hence, by (3.15), |Q0,β | = O(2−kN ) as k → ∞. Similarly, we can prove the same convergence rate
for Q1,β, namely |Q1,β| = O(2−kN ) as k → ∞. Combining these two convergence properties and applying
equations (3.12) and (3.13), we finally get (3.6). Thus, referring back to the identity in (3.5), the proof is
completed.

Corollary 11. Let {Sa[k] , k ≥ 0} be a ΦN -reproducing non-stationary subdivision scheme with WΦN (x)
invertible for all x in a neighborhood of zero. Then {Sa[k] , k ≥ 0} satisfies approximate sum rules of order
N .

Remark 12. It is easy to see that conditions (3.4) are not sufficient for the reproduction of any exponential
polynomial. As a counterexample, consider the level-dependent perturbation of quadratic B-splines (still a
dual scheme with ν = 1) given by the k-level symbol

a[k](z) =
1

4
+ 2−k +

(
3

4
− 2−k

)
z +

(
3

4
− 2−k

)
z2 +

(
1

4
− 2−k

)
z3, (3.16)

which satisfies a[k](1) = 2(1− 2−k) and a[k](−1) = 2−k+1.

Although (3.4) are satisfied with N = 1, no exponential polynomials can be reproduced by this scheme. To

see it, it suffices to observe that, for k = 1 and λ ∈ C, the complex function 2− a[k]((e−λ/2
k+2

)2)e−λ/2
k+2

is
always different from 0.

In the next theorem we replace the assumption that {Sa[k] , k ≥ 0} is ΦN -reproducing with the weaker
assumption that it is ΦN -generating and reproduces only one exponential polynomial in ΦN ; to compensate
the latter weaker conditions, we additionally require asymptotical similarity of {Sa[k], k ≥ 0} to a convergent
stationary scheme {Sa}. Therefore, we consider subdivision schemes {Sa[k] , k ≥ 0} satisfying the first
condition in Definition 9.

Theorem 13. Let ΦN denote the N -dimensional space of exponential polynomials given in Definition 2
and let {a[k](z), k ≥ 0} be the symbols of a non-stationary subdivision scheme {Sa[k] , k ≥ 0} which is ΦN -
generating and reproduces one exponential polynomial in ΦN . If {Sa[k] , k ≥ 0} is asymptotically similar to
a convergent stationary subdivision scheme {Sa}, and the Wronskian matrix WΦN (x), defined in (3.3), is
invertible for all x in a neighborhood of zero, then for β = 0, · · · , N − 1

|a[k](1)− 2| = O(2−k) and

∣∣∣∣
dβa[k](−1)

dzβ

∣∣∣∣ = O(2−k(N−β)), k → ∞. (3.17)
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Proof. Since {Sa[k] , k ≥ 0} is ΦN -generating, in view of Theorem 5 we know that equation (2.6) holds true
for all k ≥ 0. By the asymptotical similarity assumption, as k → ∞ the left hand side of (2.6) tends to a(z)

(the symbol of the stationary subdivision scheme {Sa}) and the term
η∏

n=1
(1 + eλn2

−k−1

z)µn , appearing in

the right hand side, tends to (1 + z)N . Therefore, we can conclude that limk→∞ b[k](z) = b(z) for a suitable
b(z). The latter means that, for k large enough, ‖b[k]‖ < C where C > 0 is a constant independent of k.

Next, we observe that each dβa[k](z)
dzβ

contains at least N − β factors of the form (1 + eλn2
−k−1

z) and, since

1− eλn2
−k−1

= O(2−k), we conclude that dβa[k](−1)
dzβ = O(2−k(N−β)) as k → ∞. Thus the second part of the

claim is proven. Since the Wronskian matrix WΦN (x) is invertible for all x in a neighborhood of zero, the
first part of the claim is obtained from Theorem 10 with N = 1, so completing the proof.

Corollary 14. Let {Sa[k] , k ≥ 0} be a ΦN -generating non-stationary subdivision scheme which reproduces
at least one exponential polynomial in ΦN with WΦN (x) invertible for all x in a neighborhood of zero. If
{Sa[k], k ≥ 0} is asymptotically similar to a convergent stationary scheme, then it satisfies approximate sum
rules of order N .

Remark 15. Note that, the assumption that WΦN (x) is invertible for all x in a neighborhood of zero,
is needed to prove only the first of conditions (3.17). We additionally emphasize that the assumptions in
Theorem 13 do not guarantee asymptotical equivalence between {Sa[k] , k ≥ 0} and {Sa}. For example, the
k-level subdivision mask

a[k] =
{
0, · · · , 0, 1

(r−1
k +rk)(r

−
1
2

k +r
1
2
k )

− 1
k ,

(r
−

1
2

k +r
1
2
k )2−1

(r−1
k +rk)(r

−
1
2

k +r
1
2
k )

− rk
k ,

(r
−

1
2

k
+r

1
2
k
)2−1

(r−1
k +rk)(r

−
1
2

k +r
1
2
k )

+ 1
k r2k

, 1

(r−1
k +rk)(r

−
1
2

k +r
1
2
k )

+ 1
k rk

, 0, · · · , 0
}
, rk = eλ2

−k−1

,

is such that limk→∞ ‖a[k]−a‖ = 0 with a denoting the mask of the quadratic B-spline scheme having symbol

a(z) = 1
4z2 (1+z)

3. The associated symbols satisfy a[k](−rk) = a[k](−r−1
k ) = 0 as well as a[k](r−1

k ) = 2r
1
2

k for
all k ≥ 0, so that e±λx are generated whereas only eλx is reproduced with respect to the dual parametrization

t[k] = {t
[k]
i =

i− 1
2

2k
, i ∈ Z}. Thus, in view of Theorem 13, conditions |a[k](1) − 2| = O(2−k),

∣∣a[k](−1)
∣∣ =

O(2−2k),
∣∣∣da

[k](−1)
dz

∣∣∣ = O(2−k), are all satisfied for k → ∞. However, since
∑∞

k=0

∣∣∣∣
1

(r−1
k +rk)(r

−
1
2

k +r
1
2
k )

− 1
k − 1

4

∣∣∣∣
is not convergent, {Sa[k] , k ≥ 0} and {Sa} are not asymptotically equivalent.

We conclude this section by recalling that, in stationary subdivision, sum rules of order N are known to be
necessary conditions for CN−1-continuity [2, 8, 20, 23, 27]. As a consequence of the results in [5], in the
non-stationary setting, approximate sum rules of order N and asymptotical similarity to a stationary CN−1

subdivision scheme provide sufficient conditions for CN−1 regularity of non-stationary subdivision schemes.
More precisely, in view of [5, Corollary 1], we can state the following.

Corollary 16. Let {Sa[k] , k ≥ 0} be a ΦN -generating non-stationary subdivision scheme which reproduces
at least one exponential polynomial in ΦN . Moreover, let {Sa[k] , k ≥ 0} be asymptotically similar to a
Cℓ-convergent subdivision scheme, ℓ ∈ N0 and assume that WΦN (x) is invertible for all x in a neighborhood
of zero. Then, setting ρ := min{ℓ,N − 1}, it follows that {Sa[k] , k ≥ 0} is at least Cρ-convergent.

4. Asymptotic behavior of basic limit functions

It is well-known that a convergent non-stationary subdivision scheme {Sa[k] , k ≥ 0} defines a family of
basic limit functions. For δ := {δi,0, i ∈ Z}, they are

φm := lim
ℓ→∞

Sa[m+ℓ] · · ·Sa[m]δ, m ≥ 0. (4.1)
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The goal of this section is to weaken the assumptions used in [19, Lemma 15] to prove that, as m → ∞,
the sequence of basic limit functions {φm, m ≥ 0} of the non-stationary subdivision scheme {Sa[k] , k ≥ 0}
converges uniformly to the basic limit function φ of a C0 stationary scheme {Sa}. Precisely, in Theorem
20 we prove that limm→∞ ‖φm − φ‖ = 0 without requiring that {Sa[k] , k ≥ 0} is asymptotically equivalent
to {Sa}. Differently, we just assume that {Sa[k] , k ≥ 0} is a non-stationary subdivision scheme reproducing
one exponential polynomial in ΦN , say eλx, λ ∈ C, and it is asymptotically similar to {Sa}. We remark
that, the assumption that {Sa[k] , k ≥ 0} reproduces eλx, λ ∈ C, is not restrictive. In fact, if {Sa[k] , k ≥ 0}
reproduces a higher order exponential polynomial xreλx, r ∈ N, then it obviously reproduces eλx as well.
Moreover, if {Sa[k] , k ≥ 0} reproduces constants, with the choice λ = 0 we can also recover this case. For
the proof of Theorem 20 we also recall that, accordingly to [14, Theorem 1], a non-stationary subdivision

scheme {Sa[k] , k ≥ 0} reproduces eλx, λ ∈ C with respect to the parametrization t[k] = {t
[k]
i = i+p

2k
, i ∈ Z},

p ∈ {0,− 1
2}, if its symbol a[k](z) is such that a[k](−r−1

k ) = 0 and a[k](r−1
k ) = 2r−pk , for all k ≥ 0, with

rk = eλ2
−k−1

.
Before proving Theorem 20, we additionally need the following auxiliary results.

Proposition 17. For p ∈ {0, − 1
2}, let {Sh

[k]
p
, k ≥ 0} be the non-stationary subdivision scheme with k-level

symbol

h[k]p (z) :=
r−pk

(r−1
k + rk)z

(1 + r−1
k z)(1 + rkz), rk = eλ2

−k−1

, λ ∈ C. (4.2)

Then

(a) for p ∈ {0, − 1
2}, {S

h
[k]
p
, k ≥ 0} is C0 and stable (in the sense of [19]). Moreover, the scheme is

interpolatory when p = 0 while approximating when p = − 1
2 .

(b) for p ∈ {0, − 1
2}, the basic limit functions

Hm,p := lim
ℓ→∞

S
h

[m+ℓ]
p

. . . S
h

[m]
p

δ, m ≥ 0 (4.3)

of {S
h

[k]
p
, k ≥ 0} are such that limm→∞Hm,p = H, where H is the linear B-spline supported on [−1, 1].

Moreover, Hm,0(0) = 1 while Hm,− 1
2
(0) → 1 as m→ ∞.

Proof. a) The observation that |1 − rk| ≤ C2−k for some constant C > 0, implies that the non-stationary
subdivision scheme {S

h
[k]
p
, k ≥ 0} is asymptotically equivalent to the linear B-spline scheme, which is C0

and stable (in the sense of [19]). Accordingly, the scheme {S
h

[k]
p
, k ≥ 0} is also C0 and stable. Moreover, by

definition of h
[k]
p (z) in (4.2), h

[k]
p (−r−1

k ) = 0 and h
[k]
p (r−1

k ) = 2r−pk , p ∈ {0, − 1
2}. Since by definition (4.2)

we can immediately write that h
[k]
p (−z) + h

[k]
p (z) = 2r−pk , the claim follows.

b) Since the basic limit function of the linear B-spline scheme is the degree-1 B-spline H supported on
[−1, 1], in view of [19, Lemma 15] we have that Hm,p → H uniformly as m → ∞. Moreover, since the
mask of the scheme {S

h
[k]
p
, k ≥ 0} has the same support as the one of the linear B-spline scheme, we have

that for all m ≥ 0 the basic limit function Hm,p of {S
h

[k]
p
, k ≥ 0} is supported on [−1, 1] and is such

that Hm,p(0) = (eλ2
−m

)−p. Hence, we can conclude that, Hm,0(0) = 1 implying that Hm,− 1
2
(0) → 1 as

m→ ∞.

We continue by providing an additional intermediate result that will be exploited in the proof of Theorem 20.
This result is in Theorem 19. It extends [9, Theorem 11], where the assumption that {Sa[k] , k ≥ 0} reproduces
constants, is replaced by the reproduction of at least one exponential polynomial eλx, λ ∈ C. For the proof

of Theorem 19, we need to replace the classical notion of backward difference operator (∆kf [k])i := f
[k]
i − f

[k]
i−1

with
(∆k

λf
[k])i := f

[k]
i − rk−1f

[k]
i−1,
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where rk−1 := eλ2
−k

, λ ∈ C, k ≥ 0; see also [40] for the details of this difference operator. Obviously, ∆k
λ

reduces to ∆k if λ = 0. The following lemma is useful for our further analysis.

Note that, from now on, C will be used to denote any generic positive constant.

Lemma 18. Let {Sa[k] , k ≥ 0} be a non-stationary subdivision scheme reproducing eλx, λ ∈ C with respect
to the shift parameter p ∈ {0,− 1

2}, and let {Sa[k] , k ≥ 0} be asymptotically similar to a convergent stationary
scheme {Sa}. For all m ≥ 0, let

f [k+1]
m := Sa[m+k] · · ·Sa[m]f [0]. (4.4)

Then, there exist a constant C > 0, µ ∈ (0, 1) and K large enough such that

‖∆
[m+k+1]
λ f [k+1]

m ‖ ≤ Cµk, ∀k ≥ K. (4.5)

Proof. The proof of this result is very similar to the proof of [9, Theorem 3]. However, there are some crucial
different points that we need to put in evidence. From the generation properties of {Sa[k], k ≥ 0} we know
that a[k](z) factorizes as a[k](z) = (1 + rkz)b

[k](z) for some Laurent polynomial b[k](z). In view of (2.2) and

(4.4), we have f
[k+1]
m (z) = a[k+m](z)f

[k]
m (z2) with f

[k]
m (z) :=

∑
i∈Z

(f
[k]
m )iz

i . Multiplying both sides of this
equation by 1− rk+mz and using the relation r2k+m = rk+m−1, we arrive at

∆k+m+1
λ f [k+1]

m (z) = (1 − rk+mz)f
[k+1]
m (z) = (1− r2k+mz

2)b[k+m](z)f [k]
m (z2)

= (1 − rk+m−1z
2)b[k+m](z)f [k]

m (z2) = b[k+m](z)∆k+m
λ f [k]

m (z2).

The latter means that, under the assumption that the non-stationary subdivision scheme {Sa[k] , k ≥ 0}
generates eλx, there exists a non-stationary subdivision scheme {Sb[k] , k ≥ 0} such that for the sequence

{f
[k+1]
m := Sa[k+m]f

[k]
m , k ≥ 0}, it is verified that

∆k+m+1
λ f [k+1]

m = Sb[k+m]∆k+m
λ f [k]m , k ≥ 0 (4.6)

where f
[0]
m := f [0]. We next show that there exist µ ∈ (0, 1) and K large enough such that, for all k ≥ K,

‖∆
[k+m+1]
λ f [k+1]

m ‖ ≤ Cµk,

with a constant C > 0.
From the assumption that {Sa[k] , k ≥ 0} reproduces eλx, we know that, in addition to a[k](z) = (1 +
rkz)b

[k](z), a[k](z) verifies the condition a[k](r−1
k ) = 2r−pk , p ∈ {0,− 1

2}. Therefore, we can conclude that

b[k](r−1
k ) = r−pk . Moreover, since {Sa[k] , k ≥ 0} is asymptotically similar to a convergent scheme {Sa}, we

have that a(z) = (1 + z)b(z) with limk→∞ ‖b[k] − b‖ = 0, and there exists a positive integer L such that

‖SL
b
‖ < 1. Writing the symbol a[k](z) as a[k](z) =

∑M
j=−M a

[k]
j z

j, for the Laurent polynomial b[k](z) =
∑M−1
j=−M b

[k]
j zj we have that its coefficients b

[k]
j , j = −M, · · · ,M − 1 satisfy

b
[k]
−M = a

[k]
−M , b

[k]
j =

j−M+1∑

i=0

(−1)i(r−1
k )i+1b

[k]
j+1−i, j = −M + 1, . . . ,M − 1. (4.7)

Due to r−1
k ≤ max(1, e−λ), we have

‖b[k]‖ ≤ 2MC‖a[k]‖ (4.8)

with a suitable constant C > 0. Since limk→∞ ‖b[k] − b‖ = 0, for all ǫ > 0, there exists a positive integer
Kǫ such that for k > Kǫ

‖Sb[k]‖ ≤ ‖Sb[k] − Sb‖+ ‖Sb‖ < ‖Sb‖+ ǫ. (4.9)
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Since for all k > Kǫ

‖Sb[k+L−1] · · ·Sb[k] − SL
b
‖ ≤

L∑

ℓ=1

‖Sb[k+L−1]‖ · · · ‖Sb[k+L−ℓ+1]‖‖Sb[k+L−ℓ] − Sb‖‖S
L−ℓ
b

‖ ,

due to (4.9) we get

‖Sb[k+L−1] · · ·Sb[k] − SL
b
‖ ≤ Lǫ (‖Sb‖+ ǫ)ℓ−1 ‖Sb‖

L−ℓ < Cǫ,

for a suitable constant C > 0. Therefore,

‖Sb[k+L−1] · · ·Sb[k]‖ ≤ ‖SL
b
‖+ Cǫ, ∀k > Kǫ. (4.10)

Further, since ‖SL
b
‖ < 1, we especially choose a number ǫ̃ > 0 such that

µ̃ := ‖SLb‖+ Cǫ̃ < 1.

Letting Kǫ̃ be the corresponding number satisfying (4.9), put K = max(Kǫ̃,m). Then, from (4.6), we have
that for an arbitrary integer n > 0,

∆
[K+m+n+1]
λ f [K+n+1]

m = Sb[K+m+n] · · ·Sb[K+1] (Sb[K] · · ·Sb[m])∆
[m]
λ f [0] .

Hence, applying (4.10) and using the value of µ̃

‖∆
[K+m+n+1]
λ f [K+n+1]

m ‖ ≤ C̃µ̃⌊n+m
L ⌋ ≤ C̃µ̃

n+m
L −1

with

C̃ = max
r=0,··· ,L−1

(K+r∏

j=m

‖Sb[j]‖
)
‖∆

[m]
λ f [0]‖.

Moreover, introducing the notation C := C̃ µ̃
m−K

L −1 and µ := µ̃
1
L , we arrive at the bound

‖∆
[K+m+n+1]
λ f [K+n+1]

m ‖ ≤ CµK+n.

As a conclusion, there exists a constant C > 0 such that ‖∆
[m+k+1]
λ f

[k+1]
m ‖ ≤ Cµk for µ ∈ (0, 1).

Theorem 19. Let {Sa[k] , k ≥ 0} be a non-stationary subdivision scheme reproducing eλx, λ ∈ C with respect
to the shift parameter p ∈ {0,− 1

2}, and let {Sa[k] , k ≥ 0} be asymptotically similar to a convergent stationary
scheme {Sa}. Then, for all m ≥ 0, there exist a constant C > 0, µ ∈ (0, 1) and K large enough such that

∥∥∥∥ lim
ℓ→∞

f [ℓ]m − F km,p

∥∥∥∥ ≤ Cµk ∀ k ≥ K, (4.11)

where f
[k]
m is in (4.4) and F km,p is the function defined by

F km,p :=
∑

i∈Z

(f [k]m )iHm+k,p(2
k · −i), (4.12)

with Hm+k,p in (4.3).

Proof. Let d[k] = a[k] − h
[k]
p with h

[k]
p the subdivision mask associated with the symbol in (4.2). Since

d[k](±r−1
k ) = 0 we can obviously write it as

d[k](z) = (1− r2kz
2)e[k](z), (4.13)
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for a suitable Laurent polynomial e[k](z). With the same arguments as in (4.7) and (4.8) and using the fact

that limk→∞ ‖h
[k]
p − h‖ = 0 in view of Proposition 17-(b), we obtain

‖e[k]‖ ≤ 2M‖d[k]‖ ≤ 2M
(
‖a[k]‖+ ‖h‖

)
= 2M

(
‖a[k]‖+ 1

)
.

Moreover, since limk→∞ ‖a[k] − a‖ = 0, the sequence {a[k], k ≥ 0} is uniformly bounded independent of k,
so that we conclude that

‖e[k]‖ ≤ C, (4.14)

with C a positive constant.

The rest of the proof mimics [9, Theorem 11] where ∆λ replaces ∆ and Hm,p replaces the hat function H .
By using standard arguments (see, e.g., [20, Theorem 4.11]), to show (4.11) it suffices to show that, for the
sequence of approximating functions {F km,p, k ≥ 0} defined in (4.12), there exists K > 0 such that for all

k ≥ K, ‖F k+1
m,p − F km,p‖ ≤ Cµk with µ ∈ (0, 1) and C a positive constant. For this purpose we write F km,p as

F km,p =
∑

i∈Z

(
S
h

[k+m]
p

f [k]m

)

i
Hm+k+1,p(2

k+1 · −i) .

Hence, it is clear from the relation f
[k+1]
m = Sa[k+m]f

[k]
m and the refinability of F k+1

m,p that

F k+1
m,p − F km,p =

∑

i∈Z

((
Sa[k+m] − S

h
[k+m]
p

)
f [k]m

)

i
Hm+k+1,p(2

k+1 · −i) .

Next, we define the sequence g
[k+1]
m as

g[k+1]
m :=

(
Sa[k+m] − S

h
[k+m]
p

)
f [k]m = Sd[k+m]f [k]m . (4.15)

By the expression g
[k+1]
m (z) :=

∑
i∈Z

(g
[k+1]
m )iz

i, we write (4.15) as g
[k+1]
m (z) = d[k+m](z)f

[k]
m (z2), where

f
[k]
m (z) :=

∑
i∈Z

(f
[k]
m )iz

i. Then, using (4.13) we have

g[k+1]
m (z) = (1− r2k+mz

2)e[k+m](z)f [k]
m (z2) = e[k+m](z)

∑

i∈Z

(
(f [k]m )i − rk+m−1(f

[k]
m )i−1

)
z2i ,

or equivalently

(g[k+1]
m )i =

∑

j∈Z

e
[k+m]
i−2j

(
(f [k]m )j − rk+m−1(f

[k]
m )j−1

)
,

implying that

|(g[k+1]
m )i| ≤

∑

j∈Z

|e
[k+m]
i−2j |

∣∣∣(f [k]m )j − rk+m−1(f
[k]
m )j−1

∣∣∣ ≤ 2M max
j

|e
[k+m]
j | max

j

∣∣∣∣
(
∆

[k+m]
λ f [k]m

)

j

∣∣∣∣ .

Hence, recalling (4.5) and (4.14), there exists K > 0 such that for all k ≥ K we have ‖g
[k+1]
m ‖ ≤ Cµk

with µ ∈ (0, 1) and C a positive constant, resulting in that for the sequence of functions {F k+1
m,p , k ≥ 0}

‖F k+1
m,p −F km,p‖ ≤ Cµk for all k ≥ K with µ ∈ (0, 1) and C a positive constant. Thus we can obtain that for

any positive integer ℓ,

‖F k+ℓm,p − F km,p‖ ≤

ℓ−1∑

j=0

‖F k+j+1
m,p − F k+jm,p ‖ ≤

ℓ−1∑

j=0

Cµk+j ≤ C
µk

1− µ
, (4.16)

from which it follows that {F k+1
m,p , k ≥ 0} is a Cauchy sequence in the L∞-norm and therefore converges uni-

formly to a continuous limit. To show that such limit is exactly limℓ→∞ f
[ℓ]
m we use standard arguments (see
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[19, Lemma 14]): since {Hm+k,p, k ≥ 0} is a stable sequence of continuous, compactly supported functions
which approximate partition of unity uniformly, the uniform convergence of the sequence {F k+1

m,p , k ≥ 0}
implies the uniform convergence of the subdivision scheme {Sa[k] , k ≥ 0} and also

lim
ℓ→∞

F k+ℓm,p = lim
ℓ→∞

∑

i∈Z

(
f [k+ℓ]m

)

i
Hm+k+ℓ,p(2

k+ℓ · −i) = lim
ℓ→∞

f [ℓ]m ,

so concluding the proof.

We are finally ready to prove the main result of this section.

Theorem 20. Let {Sa[k] , k ≥ 0} be a non-stationary subdivision scheme reproducing eλx, λ ∈ C with respect
to the shift parameter p ∈ {0,− 1

2}. Let {φm, m ≥ 0} be the associated sequence of basic limit functions.
Assume further that {Sa[k] , k ≥ 0} is asymptotically similar to a convergent stationary scheme {Sa} with
stable basic limit function φ having Hölder continuity α ∈ (0, 1). Then limm→∞ ‖φm − φ‖ = 0.

Proof. Let k ∈ N0 be a non-negative integer, δ[k]
m := Sa[m+k−1] · · ·Sa[m]δ and φ[k]

m := {φm(i2−k), i ∈ Z}.
Then

Sa[m+k] · · ·Sa[m]δ − Sk+1
a δ =

k−1∑

j=0

Sja (Sa[m+k−j] − Sa) δ
[k−j]
m + Ska(Sa[m] − Sa)δ. (4.17)

The last term on the right hand side of the above equation can be estimated as

‖Sk
a
(Sa[m] − Sa)δ‖ ≤ ‖Sk

a
‖ ‖a[m] − a‖.

Due to the convergence assumption of {Sa}, there exists a constant C > 0 such that for all k, ‖Sk
a
‖ < C (see

[19, Section 2]). Hence, from the asymptotical similarity of {Sa[k] , k ≥ 0} and {Sa}, it is immediate that

lim
m→∞

‖Sk
a
(Sa[m] − Sa) δ‖ = 0.

Now, to estimate the other summands in (4.17) note that

((Sa[m+k−j] − Sa)δ
[k−j]
m )i =

∑

ℓ∈Z

(a
[m+k−j]
i−2ℓ − ai−2ℓ)(δ

[k−j]
m )ℓ, i ∈ Z, j = 0, · · · , k − 1. (4.18)

To estimate the expression in (4.18) we approximate δ[k−j]
m by using φ[k−j]

m , i.e. the values of the basic
limit functions φm on the grids 2−(k−j)Z. For each ℓ ∈ Z we write

(δ[k−j]
m )ℓ =

(
(δ[k−j]
m )ℓ − (φ[k−j]

m )ℓ
)
+
(
(φ[k−j]

m )ℓ − (φ[k−j]
m )i

)
+ (φ[k−j]

m )i. (4.19)

In view of (4.18), since the masks a[k] and a have the same finite support, we need to consider ℓ only around
i, say |i − ℓ| ≤ 2M for some M > 0. Now, to estimate the first term in the right hand side of (4.19), since

a[k](r−1
k ) = 2r−pk with rk = eλ2

−k−1

, we consider the sequence of functions {Fk
m,p, k ≥ 0} defined by

Fk
m,p :=

∑

i∈Z

(δ[k]
m )iHm+k,p(2

k · −i), (4.20)

where Hm+k,p is the basic limit function of the non-stationary scheme with s-level symbol h
[s]
p (z), s ≥ m+k

in (4.2). By Proposition 17-(b) we get, for a suitable constant C,

∣∣(δ[k−j]
m )ℓ −Fk−j

m,p (ℓ2
−(k−j))

∣∣ =
∣∣(1− e−pλ2

−m−(k−j)

)(δ[k−j]
m )ℓ

∣∣ ≤ C2−m−(k−j)‖δ[k−j]m ‖.

This estimate and Theorem 19 yield the bound

∣∣(δ[k−j]
m )ℓ − φm(ℓ2−(k−j))

∣∣ ≤ C(2−(k−j) + µk−j), µ ∈ (0, 1), (4.21)
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for some other constant C > 0. Moreover, to estimate (φ[k−j]
m )ℓ − (φ[k−j]

m )i with |i − ℓ| ≤ 2M for some
M > 0, we exploit the Hölder continuity of φm which follows by [5, Theorem 3] in view of the fact that
approximate sum rules of order one are satisfied. Hence we get the bound

∣∣φm(ℓ2−(k−j))− φm(i2−(k−j))
∣∣ ≤ 2M2−α(k−j), α ∈ (0, 1). (4.22)

Setting θj :=
(
µj−1 + 2−αj

)
we thus clearly have that {θj, j ∈ N} is an absolutely summable sequence.

Then, combining (4.19), (4.21) and (4.22) with (4.18) and applying the fact that ‖φ[k−j]
m ‖ ≤ ‖φm‖, we have

∣∣∣((Sa[m+k−j] − Sa)δ
[k−j]
m )i

∣∣∣ ≤ Cθk−j
∑

ℓ∈Z

∣∣∣(a[m+k−j]
i−2ℓ − ai−2ℓ)

∣∣∣+
∣∣∣(φ[k−j]

m )i
∑

ℓ∈Z

(a
[m+k−j]
i−2ℓ − ai−2ℓ)

∣∣∣

≤ C‖a[m+k−j] − a‖θk−j + ‖φm‖
∣∣∣
∑

ℓ∈Z

(
a
[m+k−j]
i−2ℓ − ai−2ℓ

)∣∣∣
(4.23)

for some constant C > 0. Now, to bound the term
∣∣∑

ℓ∈Z

(
a
[m+k−j]
i−2ℓ −ai−2ℓ

)∣∣ we proceed as follows. Recalling

the assumption that {Sa[k] , k ≥ 0} reproduces eλx with λ ∈ C, we can apply Theorem 10 in the case N = 1,
to write that ∣∣∣a[k](1)− 2

∣∣∣ =
∣∣∣
∑

ℓ∈Z

a
[k]
2ℓ +

∑

ℓ∈Z

a
[k]
2ℓ+1 − 2

∣∣∣ = O(2−k), k → ∞. (4.24)

Then, using the fact that {Sa} is a convergent stationary scheme, we also have that
∑
ℓ∈Z

a2ℓ+
∑
ℓ∈Z

a2ℓ+1 =
2. As a consequence, from (4.24) we easily obtain that

∣∣∣
∑

ℓ∈Z

(
a
[k]
2ℓ − a2ℓ

)
+
∑

ℓ∈Z

(
a
[k]
2ℓ+1 − a2ℓ+1

)∣∣∣ = O(2−k), k → ∞.

Similarly, due to the fact that a[k](−1) = O(2−k) as k → ∞ (see Theorem 19), we get

∣∣∣
∑

ℓ∈Z

(
a
[k]
2ℓ − a2ℓ

)
−
∑

ℓ∈Z

(
a
[k]
2ℓ+1 − a2ℓ+1

)∣∣∣ = O(2−k), k → ∞,

implying that, for all i ∈ Z, ∣∣∣
∑

ℓ∈Z

(
a
[k]
i−2ℓ − ai−2ℓ

)∣∣∣ = O(2−k), k → ∞.

Hence, from the latter equation the bound
∣∣∣
∑

ℓ∈Z
(a

[m+k−j]
i−2ℓ − ai−2ℓ)

∣∣∣ ≤ C2−(m+k−j) is obtained straight-

forwardly. Moreover, since we also have the bound ‖Sja‖ < C for all j, for the summation in (4.17) we are
finally able to write from (4.23) that

k−1∑

j=0

∣∣(Sj
a
(Sa[m+k−j] − Sa)δ

[k−j]
m )i

∣∣ ≤ C

k−1∑

j=0

(
‖a[m+j+1] − a‖θj + 2−(m+j+1)

)
(4.25)

with a suitable constant C > 0. Now we let m→ ∞. From the asymptotical similarity of {a[k], k ≥ 0} and
{a}, we know that for all ǫ > 0 there exists m̄ such that for m+ j > m̄ we have ‖a[m+j] − a‖ ≤ ǫ. Therefore
we can conclude that limm→∞ ‖Sa[m+k] · · ·Sa[m]δ − Sk+1

a δ‖ = 0.

5. Approximation order

In this section we estimate the approximation order of a ΦN -reproducing non-stationary subdivision
scheme {Sa[k] , k ≥ 0} in case the initial data are sampled from a function in the Sobolev space Wn

∞(R),
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n ∈ N. The latter is defined to be the set of all functions f in L∞(R) that have derivative dℓf
duℓ ∈ L∞(R) for

all 0 ≤ ℓ ≤ n. We recall that, for any f ∈ Wn
∞(R), the associated norm is defined by

‖f‖n,∞ :=

n∑

ℓ=0

∥∥∥∥
dℓf

duℓ

∥∥∥∥
L∞(R)

. (5.1)

Let f ∈ Wn
∞(R) and let the initial data be of the form f [m] := {f

[m]
i = f(2−mi), i ∈ Z} for some m ≥ 0. In

the following theorem we estimate the convergence order of the error ‖f−gf [m]‖L∞(R) asm→ ∞, where gf [m]

is the limit of the subdivision scheme obtained from the initial data f [m]. We emphasize that Theorem 21
extends the result in [25, Theorem 2.4], where the more restrictive assumption of asymptotical equivalence
rather than asymptotical similarity is assumed.

Theorem 21. Assume that the non-stationary scheme {Sa[k] , k ≥ 0} is ΦN -reproducing and is asymptoti-
cally similar to a convergent stationary scheme {Sa}. Assume further that the initial data are of the form

f [m] := {f
[m]
i = f(2−mi), i ∈ Z} for some fixed m ≥ 0 and for some function f ∈ W γ

∞(R) where γ ∈ N,
γ ≤ N . If the Wronskian matrix WΦγ (0) of Φγ ⊆ ΦN is invertible, then

‖gf [m] − f‖L∞(R) ≤ Cf2
−γm m ≥ 0

with a constant Cf > 0 depending only on f .

Proof. For the Sobolev exponent γ, let Φγ := {ϕ0, . . . , ϕγ−1}, γ ≤ N and let x be a fixed point in R. Our
proof employs an auxiliary function ψx, which depends on x and is defined by

ψ(u) := ψx(u) :=

γ−1∑

n=0

dnϕn(u− x), u ∈ R

where the entries of the coefficient vector d := (dn, n = 0, · · · , γ − 1) are obtained by solving the linear
system

drψ(x)

dur
=
drf(x)

dur
, r = 0, . . . , γ − 1. (5.2)

In this way, ψ equals f at x, but not on R. Equations in (5.2) can be equivalently written in the matrix
form

WΦγ (0) · d
T = fT , (5.3)

with f := (d
rf(x)
dur , r = 0, · · · , γ−1). Due to the invertibility of the Wronskian matrixWΦγ (0), the uniqueness

of the solution of this linear system is guaranteed. Moreover, since the function ψ belongs to ΦN and the
non-stationary scheme {Sa[k] , k ≥ 0} is ΦN -reproducing, we can write

ψ(u) =
∑

i∈Z

ψ(2−mi)φm(2mu− i), u ∈ R,

with {φm, m ≥ 0} denoting the basic limit functions of {Sa[k] , k ≥ 0} defined in (4.1). By assumption,

f
[m]
i = f(2−mi), i ∈ Z and, in view of the linearity of the subdivision operators, we can write

gf [m](u) =
∑

i∈Z

f
[m]
i φm(2mu− i), u ∈ R. (5.4)

Thus, using the expression of gf [m] in (5.4) and observing that f(x) = ψ(x) due to the construction of ψ in
(5.2), we can rewrite f(x)− gf [m](x) in the following way:

f(x)− gf [m](x) = ψ(x)−
∑

i∈Z

f(2−mi)φm(2mx− i) =
∑

i∈Z

(
ψ(2−mi)− f(2−mi)

)
φm(2mx− i)
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Now, let T γg (u) :=
∑γ−1

ℓ=0 (u−x)
ℓ d

ℓg(x)
duℓ /ℓ! be the degree-(γ−1) Taylor polynomial of a function g ∈ Cγ−1(R)

around x. Then, consider the Taylor expansions T γψ and T γf of the functions ψ and f , respectively. Due to

the condition in (5.2), it is obvious that T γψ (2
−mi) = T γf (2

−mi). Hence, applying the remainder form of the
Taylor expansion, we get

|f(x)− gf [m](x)| ≤
2−mγ

γ!

∑

i∈Z

∣∣∣∣(i− 2mx)γ
dγ (f − ψ)(ξi)

duγ
φm(2mx− i)

∣∣∣∣ ,

for some ξi between x and i2−m. By (5.2) and (5.3), we are able to write |d
γψ(ξi)
duγ | ≤ Cγ‖f‖γ,∞ for some

positive constant Cγ independent of x and i2−m, with ‖ · ‖γ,∞ in (5.1). Thus, it is immediate that

|f(x)− gf [m](x)| ≤ Cγ
2−mγ

γ!
‖f‖

γ,∞

∑

i∈Z

|φm(2mx− i)(i − 2mx)γ |. (5.5)

Finally, by Theorem 20, φm is uniformly bounded independent of m. Moreover, since φm is compactly
supported, #{i ∈ Z : φm(2mx − i) 6= 0} ≤ C for any fixed x and m. Therefore the claim follows from
(5.5).

6. Conclusions

In this paper we have shown that for primal or dual non-stationary subdivision schemes (essentially the
ones of interest in applications) the reproduction of N exponential polynomials implies approximate sum
rules of orderN . This mimics the stationary case where the reproduction of N polynomials implies sum rules
of order N . Furthermore, also in analogy to the stationary case where generation of N polynomials implies
sum rules of order N , we have shown that generation of N exponential polynomials implies approximate
sum rules of order N if asymptotical similarity to a convergent stationary scheme is assumed together with
reproduction of a single exponential polynomial.
We additionally considered the non-stationary counterpart of the well-known result asserting that the repro-
duction of an N -dimensional space of polynomials is sufficient for the subdivision scheme to have approxima-
tion order N . In particular, for a non-stationary subdivision scheme, the reproduction of an N -dimensional
space of exponential polynomials, jointly with asymptotical similarity, has been shown to imply approxima-
tion order N . The proof of the latter required us to show also the uniform convergence of the sequence of
basic limit functions of a non-stationary scheme, reproducing one exponential polynomial, to the basic limit
function of the asymptotically similar stationary scheme.
We finally remark that, since asymptotical similarity is needed to get several of our results, we cannot claim
that approximate sum rules are the complete satisfactory notion to replace sum rules when moving from
the stationary to the non-stationary setting. However, this notion is definitely very helpful in almost all
practical cases.
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