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EMBEDDINGS OF WEIGHTED HILBERT SPACES AND

APPLICATIONS TO MULTIVARIATE AND

INFINITE-DIMENSIONAL INTEGRATION

MICHAEL GNEWUCH, MARIO HEFTER, AICKE HINRICHS, AND KLAUS RITTER

Abstract. We study embeddings and norm estimates for tensor products of
weighted reproducing kernel Hilbert spaces. These results lead to a trans-
fer principle that is directly applicable to tractability studies of multivariate
problems as integration and approximation, and to their infinite-dimensional
counterparts. In an application we consider weighted tensor product Sobolev
spaces of mixed smoothness of any integer order, equipped with the classical,
the anchored, or the ANOVA norm. Here we derive new results for multivariate
and infinite-dimensional integration.

1. Introduction

The application of suitable embedding theorems in complexity studies of high-
dimensional or infinite-dimensional numerical problems has recently found an in-
creased interest [19–21, 24–26]. The basic idea is simple: If two norms on a vector
space are equivalent up to a constant c ≥ 1, estimates for errors of algorithms mea-
sured with respect to one norm can increase only by this factor c if measured with
respect to the other norm.

To use this approach in tractability studies for high-dimensional problems, a
rather general setting is a scale (Hs)s∈N of vector spaces of real-valued functions
on the domain Ds, where D is a given non-empty set. On each of the spaces Hs

we have two equivalent norms, so we get two scales of normed spaces. To transfer
tractability results from one scale to the other, the following question becomes
central: When are the two sequences of norms uniformly equivalent, i.e., when do
we have

sup
s∈N

max
{

‖ıs‖, ‖ı−1
s ‖
}

<∞,

where ıs and ı−1
s denote the corresponding embeddings?

Infinite-dimensional integration deals with the limiting case s = ∞. For each of
the scales of normed spaces we obtain a normed space of real-valued functions with
infinitely many variables, and the following question becomes central: When do the

two spaces coincide and have equivalent norms?

In the case of tensor products of weighted reproducing kernel Hilbert spaces,
this problem (with s ∈ N and s = ∞) was first studied in [19, 20]. In the present
paper we use a substantial extension of this abstract approach. It allows us to
deal, as particular instances, with Hilbert spaces of functions of higher smoothness
r ≥ 1, while only smoothness r = 1 can be treated within the framework provided
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in [19, 20]. The new framework presented in this paper is not only more general,
but also more lucid than the one presented in [19, 20]. The whole approach is
mainly motivated by the flexibility it provides in proving error bounds in the most
convenient norm, while getting the result also for other interesting norms.

The main goal of this article is to solve open problems of tractability analysis and
infinite-dimensional integration. In addition, it should serve to unify and simplify
proofs of existing results.

Our prime example is the multivariate integration problem by means of determin-
istic or of randomized algorithms in weighted Sobolev spaces of mixed smoothness
r. Here it is natural and convenient to treat three different norms: the standard
norm, the ANOVA norm, and the anchored norm, see, e.g., [34, Sec. A.2]. Roughly
speaking, the anchored norm is known to be very well suited for the analysis of de-
terministic algorithms, while the ANOVA norm is much preferable for the analysis
of randomized algorithms. For instance, concerning the anchored and the standard
norm, Hickernell and Yue [45, p. 2568] state that the corresponding spaces “have
slightly different norms . . . although the smoothness assumptions are the same”. In
fact, all three norms are different, and in general we do not have uniform equiv-
alence of any two of theses norms, see [20, Exmp. 4, Thm. 1]. We will consider,
however, a relaxed notion of equivalence in (1) that still allows to transfer tractabil-
ity results. These findings will then be extended to the case s = ∞, which allows
to transfer results for infinite-dimensional integration. The transference principle
is formulated for s ∈ N ∪ {∞} in Theorem 3.1.

With the help of the transference principle we obtain new results for multi-
variate and infinite-dimensional integration, see Sections 4 and 5. In particular,
we summarize the known and new results for infinite-dimensional integration by
means of deterministic and randomized algorithms in Tables 1 and 2 in Section 5.
These tables give a rather complete answer to the fundamental question whether
randomization helps for infinite-dimensional integration in spaces that have been
studied recently by many authors, see Remark 5.3. A further new result deals
with the multivariate decomposition method (MDM), a general type of algorithm
for infinite-dimensional integration, which was originally designed and analyzed for
anchored reproducing kernel Hilbert spaces, see [29, 40]. For this type of spaces, it
was known that the MDM achieves the optimal convergence rate, and the latter is
determined explicitly by the decay of the weights and by the corresponding con-
vergence rate for the one-dimensional problem (s = 1). According to Theorem 5.1
the MDM can be used for general reproducing kernel Hilbert spaces: Under mild
assumptions we obtain the same result as for the particular case of anchored spaces.
This general result would be hard to prove without our new embedding approach,
cf., e.g., [10].

Although we apply our embedding results in this paper only to the multivariate
and the infinite-dimensional integration problem, it is clear that these results can
also be used in tractability studies of other multivariate or infinite-dimensional
problems as, e.g., approximation of functions.

Let us sketch our approach and outline the structure of the paper. In general, we
consider reproducing kernel Hilbert spaces with kernels of weighted tensor product
form. The weights are given by a sequence γ = (γj)j∈N of positive real numbers
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that satisfy
∞
∑

j=1

γj <∞,

which is a common assumption in tractability analysis.
The univariate starting point are two pairs (‖ ·‖1,I, ‖ ·‖2,I) and (‖ ·‖1,II, ‖ ·‖2,II) of

seminorms on a vector space H of real-valued functions on D, both satisfying the
same set of assumptions, see Section 2.1. These assumptions ensure that for every
j ∈ N and ∗ ∈ {I, II} there exists a reproducing kernel kγj ,∗ on D×D such that the
norm ‖ ·‖1+kγj,∗

on the Hilbert space H(1+kγj,∗) with reproducing kernel 1+kγj,∗

satisfies

‖f‖21+kγj,∗
= ‖f‖21,∗ +

1

γj
‖f‖22,∗.

Furthermore, H = H(1 + kγj ,∗) as vector spaces, so that we have equivalence of
all the norms ‖ · ‖1+kγj,∗

. To provide some intuition on the role of the weights,

observe that limj→∞ ‖f‖21+kγj,∗
= ∞ unless ‖f‖2,∗ = 0. The latter turns out to be

equivalent to f being constant. The basic embedding result and norm estimate for
functions of a single variable is derived in Section 2.2.

In Section 2.3 we then consider spaces of functions of finitely many variables.
The reproducing kernels Kγ,∗

s on Ds × Ds are the tensor products of the one-
dimensional kernels 1 + kγj ,∗ for j = 1, . . . , s. It follows that H(Kγ,∗

s ), as a vector
space, does neither depend on ∗ nor on γ1, . . . , γs. This yields the equivalence of
all the norms ‖ · ‖Kγ,∗

s
with ∗ ∈ {I, II} and γ as previously on Hs = H(Kγ,∗

s ), which
is a space of real-valued functions on Ds.

In general, summability of the weights does not imply uniform equivalence of the
norms on H(Kγ,I

s ) and H(Kγ,II
s ), see [20]. As a remedy, we consider cγ = (cγj)j∈N

with c > 0, and we observe that the corresponding norms are monotonically decreas-
ing functions of c. Using ıη,γs to denote the embedding of H(Kη,II

s ) into H(Kγ,I
s ),

we prove that there exists a constant 0 < c0 < 1, which only depends on the two
pairs of seminorms, such that

(1) sup
s∈N

max
{

‖ıc0γ,γs ‖, ‖(ıc
−1
0 γ,γ

s )−1‖, ‖ıγ,c
−1
0 γ

s ‖, ‖(ıγ,c0γs )−1‖
}

<∞

for all sequences of summable weights, see Corollary 2.1.
In Section 2.4 we proceed to spaces of functions of infinitely many variables. The

limit Kγ,∗
∞ = lims→∞Kγ,∗

s defines a reproducing kernel for a space of functions of
infinitely many variables. The domain is the sequence space DN, or, for technical
reasons, a proper subset thereof, and it does not depend on ∗.

In general, we do not have H(Kγ,I
∞ ) = H(Kγ,II

∞ ), see [20], but a similar approach
as for s ∈ N is possible. In fact, let ıη,γ∞ denote the embedding of H(Kη,II

∞ ) into
H(Kγ,I

∞ ), provided that the corresponding domains do coincide and H(Kη,II
∞ ) ⊆

H(Kγ,I
∞ ). These domains turn out to be invariant with respect to multiplication of

the weights by any constant, and with 0 < c0 < 1 as previously we obtain

max
{

‖ıc0γ,γ∞ ‖, ‖(ıc
−1
0 γ,γ

∞ )−1‖, ‖ıγ,c
−1
0 γ

∞ ‖, ‖(ıγ,c0γ∞ )−1‖
}

<∞

for all sequences of summable weights, see Corollary 2.2.
Fortunately, most of the known results on tractability and on infinite-dimensional

integration are invariant with respect to a multiplication of the weights with a



4 GNEWUCH, HEFTER, HINRICHS, AND RITTER

constant, and given this invariance the transfer of results between the two scales of
spaces does not require any further effort.

The basic difference between the approach in the present paper together with [19,
20] and the approach in [21,24–26] to the analysis of embeddings and equivalences
of norms is as follows. The former papers consider an abstract setting, which deals
with reproducing kernel Hilbert spaces in tensor product form and, accordingly,
with product weights. The latter approach deals with specific spaces, namely,
weighted Sobolev spaces of mixed smoothness of order r = 1, and with specific
norms. However, the latter approach is not restricted to product weights, and it
allows to measure derivatives in any Lp-norm with 1 ≤ p ≤ ∞. The extremal cases
p ∈ {1,∞} are analyzed first, and then the results are extended to arbitrary p by
means of interpolation theory, see [24].

In Section 3 we start to apply the embedding results and the norm estimates
from Section 2. We formally introduce the integration problem for s ∈ N and for
s = ∞ and we discuss the notions of randomized and deterministic algorithms and
the corresponding minimal errors. In Theorem 3.1 the general error estimates for
our transfer principle are stated. Finally, in Sections 4 and 5, specific known and
new results for finite- and infinite-dimensional integration in both the deterministic
and the randomized setting are presented together with a discussion.

2. Embedding Results and Norm Estimates

We present some abstract assumptions for Hilbert spaces of functions of a single
variable, and embedding results and norm estimates are first of all derived in this
setting. The tensor product structure of the function spaces allows to extend the
results to the multivariate case and to spaces of function with infinitely many
variables.

2.1. Assumptions. We frequently use basic results from [1] about reproducing
kernels K and the corresponding Hilbert spaces H(K) without giving further ref-
erence. We denote the space of constant functions (on a given domain) by H(1);
here 1 denotes the constant kernel that only takes the function value one. Through-
out the paper we do not distinguish between a function in H(1) and its constant
function value. Henceforth we assume that

(A1) H is a vector space of real-valued functions on a set D 6= ∅ with H(1) ( H

and

(A2) ‖ · ‖1 and ‖ · ‖2 are seminorms on H , induced by symmetric bilinear forms
〈·, ·〉1 and 〈·, ·〉2, such that ‖1‖1 = 1 and ‖1‖2 = 0.

Let

(2) ‖f‖H =
(

‖f‖21 + ‖f‖22
)1/2

for f ∈ H . Henceforth we also assume that

(A3) ‖·‖H is a norm on H that turns this space into a reproducing kernel Hilbert
space, and there exists a constant c ≥ 1 such that

(3) ‖f‖H ≤ c (|〈f, 1〉1|+ ‖f‖2)
for all f ∈ H .
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Condition (3) is equivalent to the fact that ‖·‖H and |〈·, 1〉1|+‖·‖2 are equivalent
norms on H . Note also that ‖1‖2 = 0 is equivalent to ‖f + c‖2 = ‖f‖2 for all c ∈ R

and f ∈ H . Actually, (3) implies that ‖f‖2 = 0 if and only if f is constant.

Remark 2.1. A setting that is frequently studied in the literature on tractability
and infinite-dimensional integration is that of a reproducing kernel Hilbert space
H(1 + k), where

(B1) k 6= 0 is a reproducing kernel on D × D for some set D 6= ∅ such that
H(1) ∩H(k) = {0}.

A canonical pair of seminorms on the vector space H = H(1 + k) is derived by

‖f‖1 = |P (f)|
and

‖f‖2 = ‖f − P (f)‖k,
where P denotes the orthogonal projection of H(1 + k) onto H(1). Observe that
‖ · ‖H = ‖ · ‖1+k. Obviously, we have (A1), (A2), and (A3).

2.2. Functions of a Single Variable. We use the seminorms ‖ · ‖1 and ‖ · ‖2 to
construct a family of reproducing kernels on D ×D.

Lemma 2.1. For every γ > 0 there exists a uniquely determined reproducing kernel

kγ on D ×D such that

H(1 + kγ) = H

and

‖f‖21+kγ
= ‖f‖21 +

1

γ
‖f‖22(4)

for all f ∈ H. Moreover, the norms ‖ · ‖H and ‖ · ‖1+kγ
are equivalent, and

H(1) ∩H(kγ) = {0}.
Proof. Fix γ > 0, and put

‖f‖ =
(

‖f‖21 +
1

γ
‖f‖22

)1/2

for f ∈ H . Observe that ‖ · ‖ is a norm on H , which is induced by a symmetric
bilinear form and is equivalent to ‖ · ‖H .

Let H be equipped with the norm ‖ · ‖. Since the norms ‖ · ‖H and ‖ · ‖ are
equivalent this is again a reproducing kernel Hilbert space. For the orthogonal
complement of H(1) in this space we have

H(1)⊥ = {f ∈ H | 〈f, 1〉1 = 0},
and 〈f, 1〉1 is the orthogonal projection of f ∈ H onto H(1). Furthermore, if kγ
denotes the reproducing kernel ofH(1)⊥, considered as a subspace ofH , then 1+kγ
is the reproducing kernel of H . �

In the following, kγ always denotes the reproducing kernel from Lemma 2.1.
Typically, we do not refer to the explicit form of kγ .

In Remark 2.2, see also Remark 2.4, we present an important case, where there
exists a reproducing kernel k on D ×D such that

(5) kγ = γ · k
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for all γ > 0. See, however, Remark 2.3 for another important case, where we do
not have this property – not even for only two different values of γ.

Remark 2.2. Suppose that the seminorm ‖ · ‖1 is given in terms of a bounded
linear functional ξ on H , i.e.,

‖f‖1 = |ξ(f)|
for all f ∈ H . Let k be the reproducing kernel on D ×D such that

H(k) = {f ∈ H | ξ(f) = 0}
and

‖f‖k = ‖f‖1+k1 = ‖f‖H
for all f ∈ H(k). Clearly H(1 + k) = H and H(1) ∩ H(k) = {0}. Furthermore,
‖f‖2 = ‖f − ξ(f)‖k for all f ∈ H . Consequently,

‖f‖21+γ·k = |ξ(f)|2 + 1

γ
‖f − ξ(f)‖21+k1

= ‖f‖21 +
1

γ
‖f‖22

for all f ∈ H and γ > 0, which implies (5). Moreover, by definition of k,

ξ(k(·, x)) = 0

for every x ∈ D.
We add that the kernel k satisfies (B1) and the projection P in Remark 2.1 is

equal to the linear functional ξ.

Remark 2.3. We show that the case considered in Remark 2.2 is the only case
where kγ = γ · k for at least two different values γ. Suppose that ‖ · ‖1 is a
seminorm induced by a symmetric bilinear form that is not induced by a functional
as in Remark 2.2. Since the Cauchy-Schwarz inequality holds for such seminorms it
follows that the null space N = {f ∈ H | ‖f‖1 = 0} is a linear space of codimension
at least 2. Therefore there exists f ∈ H with 〈f, 1〉1 = 0 and ‖f‖1 6= 0. Let
0 < γ1 < γ2. We show that there exists no reproducing kernel k on D × D such
that kγi

= γi · k for i = 1, 2. Assuming the contrary we obtain for i ∈ {1, 2} that

‖f‖21 +
1

γi
‖f‖22 = ‖f‖21+kγi

= 〈f, 1〉21 + ‖f − 〈f, 1〉1‖2kγi
=

1

γi
‖f‖2k.

Since ‖f‖1 6= 0, this is a contradiction.

Let ‖·‖1,I and ‖·‖2,I as well as ‖·‖1,II and ‖·‖2,II be two pairs of seminorms on H ,
both satisfying (A2) and (A3). In the following we will compare the resulting norms
according to (4), and we denote the corresponding reproducing kernels according
to Lemma 2.1 by kγ,I and kγ,II, respectively.

Theorem 2.1. There exists a constant 0 < c0 < 1 with the following property for

every γ > 0. For all f ∈ H,

‖f‖1+kγ,I ≤ (1 + γ)1/2 · ‖f‖1+kc0γ,II .

Proof. Let ‖ · ‖H,I and ‖ · ‖H,II denote the norms on H that are derived from the
corresponding pairs of seminorms via (2). The two norms are equivalent, which
follows from the closed graph theorem and the assumption that both of the norms
turn H into a reproducing kernel Hilbert space. Without loss of generality we
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assume the estimate (3) to hold for both pairs of seminorms with a common constant
c ≥ 1, and also

‖f‖H,I ≤ c‖f‖H,II

to hold for all f ∈ H .
Let f ∈ H . Then

‖f‖1,I ≤ ‖f − 〈f, 1〉1,II‖1,I + ‖〈f, 1〉1,II‖1,I
≤ c‖f − 〈f, 1〉1,II‖H,II + |〈f, 1〉1,II| ≤ ‖f‖1,II + c2‖f‖2,II

and

‖f‖2,I = ‖f − 〈f, 1〉1,II‖2,I ≤ c‖f − 〈f, 1〉1,II‖H,II

≤ c2 (|〈f − 〈f, 1〉1,II, 1〉1,II|+ ‖f − 〈f, 1〉1,II‖2,II) ≤ c2‖f‖2,II.

It follows that

‖f‖21,I +
1

γ
‖f‖22,I ≤

(

‖f‖1,II + c2‖f‖2,II
)2

+
c4

γ
‖f‖22,II

≤ (1 + γ)‖f‖21,II +
(

1 +
1

γ

)

c4‖f‖22,II +
c4

γ
‖f‖22,II

= (1 + γ)

(

‖f‖21,II +

(

1 + 1
γ

)

c4 + c4

γ

1 + γ
‖f‖22,II

)

≤ (1 + γ)
(

‖f‖21,II +
2c4

γ
‖f‖22,II

)

.

The constant c0 = 1/(2c4) therefore has the property as claimed. �

As we impose the same set of assumptions on both pairs of seminorms, results
like Theorem 2.1 are also valid in reverse order.

Example 2.1. Fix r ∈ N and consider the Sobolev space

W r,2[0, 1] = {f ∈ L2[0, 1] | f (ν) ∈ L2[0, 1], 1 ≤ ν ≤ r},

where f (ν) denotes the νth distributional derivative of f . Moreover, consider three
pairs of seminorms on this space, given by

‖f‖21,S =

∫ 1

0

|f(y)|2 dy,

‖f‖22,S =

r
∑

ν=1

∫ 1

0

|f (ν)(y)|2 dy

and

‖f‖1,⋔ = |f(a)|,

‖f‖22,⋔ =
r−1
∑

ν=1

|f (ν)(a)|2 +
∫ 1

0

|f (r)(y)|2 dy
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with a ∈ [0, 1], as well as

‖f‖1,A =

∣

∣

∣

∣

∫ 1

0

f(y) dy

∣

∣

∣

∣

,

‖f‖22,A =
r−1
∑

ν=1

∣

∣

∣

∣

∫ 1

0

f (ν)(y) dy

∣

∣

∣

∣

2

+

∫ 1

0

|f (r)(y)|2 dy

for f ∈ W r,2[0, 1]. See, e.g., [34, Sec. A.2]. The assumptions (A1) and (A2) are
obviously satisfied for H =W r,2[0, 1] and each of these pairs of seminorms.

Let

‖f‖H,∗ =
(

‖f‖21,∗ + ‖f‖22,∗
)1/2

for ∗ ∈ {S,⋔,A}. It is well known that we get three equivalent norms in this way,
each of which turns H into a reproducing kernel Hilbert space. To establish (A3)
it remains to verify (3). The latter trivially holds with c = 1 for ∗ ∈ {⋔,A}, since
we have |〈f, 1〉1,∗| = ‖f‖1,∗ in these two cases. Finally, we get (3) in the case ∗ = S
from the trivial estimates ‖f‖1,S ≤ ‖f‖H,S and ‖f‖2,A ≤ ‖f‖2,S together with the
equivalence of ‖ · ‖H,A and ‖ · ‖H,S. In all three cases we denote the reproducing
kernels according to Lemma 2.1 by kγ,∗.

For ∗ ∈ {⋔,A} we are in the situation of Remark 2.2, so that kγ,∗ = γ ·k1,∗. The
norm on H(1 + kγ,⋔) is given by

‖f‖21+kγ,⋔
= |f(a)|2 + 1

γ

(

r−1
∑

ν=1

|f (ν)(a)|2 +
∫ 1

0

|f (r)(y)|2 dy
)

,

which corresponds to the anchored (⋔) decomposition of f , see, e.g., [30]. The norm
on H(1 + kγ,A) is given by

‖f‖21+kγ,A
=

∣

∣

∣

∣

∫ 1

0

f(y) dy

∣

∣

∣

∣

2

+
1

γ

(

r−1
∑

ν=1

∣

∣

∣

∣

∫ 1

0

f (ν)(y) dy

∣

∣

∣

∣

2

+

∫ 1

0

|f (r)(y)|2 dy
)

,

which corresponds to the ANOVA (A) decomposition of f , see, e.g., [10, 30].
For ∗ = S the norm on H(1 + kγ,S) is given by

‖f‖21+kγ,S
=

∫ 1

0

|f(y)|2 dy +
1

γ

(

r
∑

ν=1

∫ 1

0

|f (ν)(y)|2 dy
)

.

In particular, for γ = 1 we obtain a standard (S) norm on the Sobolev space. The
seminorm ‖ · ‖1,S is not induced by a bounded linear functional. Hence we are
not in the situation of Remark 2.2, and according to Remark 2.3 there exists no
reproducing kernel k such that kγ,S = γ · k even for only two different values of γ.

Example 2.2. We discuss two natural modifications of the setting in Example 2.1
with H = W r,2[0, 1] in the case r ≥ 2. At first, let ‖ · ‖1,∗ be given as previously,
but

‖f‖22,S′ = ‖f‖22,⋔′ = ‖f‖22,A′ =

∫ 1

0

|f (r)(x)|2 dx.

For ∗ ∈ {S,⋔,A} the assumption (A3) is not satisfied for the seminorms ‖ ·‖1,∗ and
‖ · ‖2,∗′ . In fact, for ∗ = S we do not have (3), and ‖ · ‖1,∗ + ‖ · ‖2,∗′ does not even
define a norm on H for ∗ ∈ {⋔,A}.
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Now, we consider the seminorms ‖ · ‖1,∗′ and ‖ · ‖2,∗′ , where

‖f‖21,S′ =

r−1
∑

ν=0

∫ 1

0

|f (ν)(y)|2 dy,

‖f‖21,⋔′ =

r−1
∑

ν=0

|f (ν)(a)|2,

‖f‖21,A′ =

r−1
∑

ν=0

∣

∣

∣

∣

∫ 1

0

f (ν)(y) dy

∣

∣

∣

∣

2

.

Clearly,

‖f‖21,∗′ + ‖f‖22,∗′ = ‖f‖21,∗ + ‖f‖22,∗
for f ∈ H , but we do not have (3) for any ∗ ∈ {S,⋔,A}. Still, Lemma 2.1 is
valid. As we will see in Remark 2.7, Theorem 2.1 is not valid for the pairs of
seminorms (‖ · ‖∗′,1, ‖ · ‖∗′,2) and (‖ · ‖∗,1, ‖ · ‖∗,2) for any ∗ ∈ {S,⋔,A} and also not
for (‖ · ‖S,1, ‖ · ‖S′,2) and (‖ · ‖S,1, ‖ · ‖S,2).
Remark 2.4. In contrast to the setting studied so far, we now take a reproducing
kernel Hilbert space H with 1 ∈ H as the overall starting point. We use ‖ · ‖ to
denote the norm on H . Consider a bounded linear functional ξ on H such that
ξ(1) = 1. Define two seminorms on H by

‖f‖1 = |ξ(f)|
and

‖f‖2 = ‖f − ξ(f)‖
for f ∈ H . Obviously, the assumption (A1) and (A2) are satisfied, and we have
equivalence of the norms ‖ · ‖ and ‖ · ‖H , given by (2). It follows that H , equipped
with ‖ · ‖H , is a reproducing kernel Hilbert space, too. Furthermore,

‖f‖2H = 〈f, 1〉21 + ‖f‖22,
so that (3) is satisfied with c = 1. Altogether, this yields (A3), and we are in the
situation of Remark 2.2.

Remark 2.5. The analysis in [20] is based on the assumptions (B1) in Remark 2.1
and

(B2) ‖ · ‖ is a seminorm on H(1+ k), induced by a symmetric bilinear form 〈·, ·〉
that satisfies ‖1‖ = 1 as well as ‖f‖ ≤ c‖f‖k for every f ∈ H(k) with some
constant c > 0.

We denote the seminorms from Remark 2.1 by ‖ · ‖1,I and ‖ · ‖2,I. A second pair of
seminorms on H is defined by

‖f‖1,II = ‖f‖
and

‖f‖2,II = ‖f‖2,I.
The latter pair of seminorms also satisfies (A2), and ‖·‖H,II is shown to be equivalent
to ‖ · ‖H,I in [20, Lem. 1]. To establish (A3) for ‖ · ‖H,II it therefore remains to
verify (3). To this end we consider for the moment the seminorm |〈·, 1〉|, which
also satisfies (B2), instead of ‖ · ‖. The previously mentioned equivalence of the
corresponding norms then yields (3).
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We conclude that the setting from [20], namely (B1) and (B2) and the seminorms
‖·‖1,∗ and ‖·‖2,∗ for ∗ ∈ {I, II}, implies (A1)–(A3) for both pairs of these seminorms.
Actually the setting from [20] is stronger then the present setting, since ‖f‖2,II and
‖f‖2,I are assumed to coincide in [20]. Observe that the latter does not hold in the
situation of Example 2.1, if r ≥ 2.

Example 2.3. Spaces of smooth periodic functions are often defined in terms of
the decrease of the Fourier coefficients. Assume that D = [0, 1] and that a sequence
(ωh)h∈Z of positive numbers is given with ω0 = 1 and ωh → ∞ as |h| → ∞. Let H
be the Hilbert space of all f ∈ L2[0, 1] with finite norm

‖f‖2H =
∑

h∈Z

|f̂(h)|2 ωh,

where

f̂(h) =

∫ 1

0

f(t)e−2πiht dt.

We consider the pair of seminorms on H given by

‖f‖1 = |f̂(0)|
and

‖f‖22 =
∑

h 6=0

|f̂(h)|2 ωh.

See, e.g., [34, Sec. A.1]. To obtain Hilbert spaces of 1-periodic real-valued functions
and continuous function evaluations we need to assume that

∑

h∈Z

1

ωh
<∞.(6)

This follows from the fact that the Cauchy-Schwarz inequality implies that in this
case the Fourier series of f ∈ H converges absolutely and uniformly to f . In this
case the assumptions (A1), (A2), and (A3) are easily verified. Specific examples are
the periodic Sobolev spaces Hr[0, 1] for r ∈ (0,∞) that correspond to the choice
ωh = max{1, |h|2r}. Here condition (6) is equivalent to r > 1/2.

We are in the situation of Remark 2.2, so that kγ = γ ·k1. The norm on H(1+kγ)
is given by

‖f‖21+kγ
= |f̂(0)|2 +

∑

h 6=0

|f̂(h)|2 ωh

γ
,

which is again of similar type with modified weights for the Fourier coefficients.

2.3. Functions of Finitely Many Variables. First, we consider a single family
of reproducing kernels kγ that is derived from a pair of seminorms that satisfies (A2)
and (A3). Furthermore, we consider a sequence γ = (γj)j∈N

of positive weights.

For s ∈ N we define the reproducing kernel Kγ

s on Ds ×Ds by

Kγ

s (x,y) =

s
∏

j=1

(1 + kγj
(xj , yj)),(7)

where x,y ∈ Ds.
The reproducing kernel Hilbert space H(Kγ

s ) is the (Hilbert space) tensor prod-
uct of the spaces H(1 + kγj

). Thus Lemma 2.1 implies that H(Kγ

s ), as a vector
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space, does depend on the dimension s and the vector space H only. We henceforth
denote this vector space by Hs.

Now, we consider two families of reproducing kernels kγ,I and kγ,II that are
derived from two pairs of seminorms, both of which satisfy (A2) and (A3) with a
common space H . We denote the reproducing kernel according to (7) by Kγ,I

s and
Kγ,II

s , respectively.
From the consideration above we get that H(Kγ,∗

s ), as a vector space, does
neither depend on γ nor on ∗ ∈ {I, II}. For sequences γ and η of positive weights
that differ only by a multiplicative constant we compare the norms ‖ · ‖Kγ,I

s
and

‖ · ‖Kη,II
s

on this vector space. We use ıη,γs to denote the embedding of H(Kη,II
s )

into H(Kγ,I
s ).

For c > 0 we put cγ = (cγj)j∈N
.

Theorem 2.2. Let 0 < c0 < 1 denote the constant according to Theorem 2.1. For

all sequences γ of positive weights

‖ıc0γ,γs ‖ ≤
s
∏

j=1

(1 + γj)
1/2

holds for the norm of the embedding of H(Kc0γ,II
s ) into H(Kγ,I

s ).

Proof. Note that

‖ıc0γ,γs ‖ ≤
s
∏

j=1

∥

∥ı
c0γj,γj

1

∥

∥ ,

and employ Theorem 2.1. �

Observe that (ıη,γs )−1 is the embedding of H(Kγ,I
s ) into H(Kη,II

s ). Theorem 2.2
and the symmetry in our assumption yields the following result.

Corollary 2.1. If

(8)

∞
∑

j=1

γj <∞,

then

(9) sup
s∈N

max
{

‖ıc0γ,γs ‖, ‖(ıc
−1
0 γ,γ

s )−1‖, ‖ıγ,c
−1
0 γ

s ‖, ‖(ıγ,c0γs )−1‖
}

<∞.

Under stronger assumptions, which are discussed in Remark 2.5, a stronger con-
clusion is presented in [20, Thm. 1]. We stress that the situation of Example 2.1
with r ≥ 2 is not covered by [20, Thm. 1], while Theorem 2.2 and Corollary 2.1 are
of course applicable.

Remark 2.6. Consider the situation of Example 2.1 with r = 1 as well as I = A
and II = S. The following results follow from [20, Exmp. 4, Exmp. 5, and Thm. 1].
We already get (9) from limj→∞ γj = 0, so that (8) is not necessary for (9) to hold.
Actually (8) is equivalent to

(10) sup
s∈N

max
{

‖ıγ,γs ‖, ‖(ıγ,γs )−1‖
}

<∞

in this case. However, for I = ⋔ and II ∈ {A, S} we have equivalence of (10) and
∑∞

j=1 γ
1/2
j <∞ and of (8) and (9). In particular, (8) does not imply (10) in general.
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Remark 2.7. Let condition (8) be satisfied. Consider the situation of Examples 2.1
and 2.2 in the case r ≥ 2.

Firstly, let ∗ = S. We already know that the pair of seminorms ‖ · ‖1,S and
‖ · ‖2,S satisfies the assumptions (A2) and (A3), while this is not true for the pair
of seminorms ‖ · ‖1,S and ‖ · ‖2,S′ . We show that for these two pairs of seminorms
an embedding result as in Corollary 2.1 no longer holds true. More precisely, we
demonstrate that there exists no constant c0 > 0 such that (9) is satisfied. Let

f(x) =

s
∏

j=1

fj(xj)

with

fj(xj) =
√
3 · xj .

For all sequences γ of positive weights we get

s
∏

j=1

(

‖fj‖21,S +
1

γj
‖fj‖22,S′

)

= 1

and
s
∏

j=1

(

‖fj‖21,S +
1

γj
‖fj‖22,S

)

=

s
∏

j=1

(

1 +
3

γj

)

,

which diverges for s → ∞. Hence (9) does not hold, regardless of how we choose
c0 > 0.

Secondly, let ∗ ∈ {S,⋔,A}. It is easily verified that the inequalities

s
∏

j=1

(

‖fj‖21,∗′ +
1

γj
‖fj‖22,∗′

)

≤ 6s

and
s
∏

j=1

(

‖fj‖21,∗ +
1

γj
‖fj‖22,∗

)

≥
s
∏

j=1

1

γj

hold. This shows that for the pairs of seminorms ‖ · ‖1,∗′ , ‖ · ‖2,∗′ and ‖ · ‖1,∗, ‖ · ‖2,∗
there also exists no constant c0 > 0 such that (9) holds.

2.4. Functions of Infinitely Many Variables. Again, we first consider a single
family of reproducing kernels kγ that is derived from a pair of seminorms that
satisfies (A2) and (A3). Furthermore, we consider a sequence γ = (γj)j∈N

of

positive weights such that (8) is satisfied.

Remark 2.8. Define the seminorms ‖ · ‖1,I and ‖ · ‖2,I on H by

‖f‖1,I = |〈f, 1〉1|
and

‖f‖2,I = ‖f‖2
for all f ∈ H . The assumptions (A2) and (A3) hold for the pair of seminorms
‖ · ‖1,I and ‖ · ‖2,I, which fits into the situation of Remark 2.2. We will employ
this observation in several proofs, as it allows to reduce the general setting to the
particular setting of Remark 2.2.
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The natural domain for the counterpart of (7) for infinitely many variables is
given by

X
γ =

{

x ∈ DN

∣

∣

∣

∞
∏

j=1

(1 + kγj
(xj , xj)) <∞

}

.(11)

We present some basic properties of Xγ , see also [16].

Lemma 2.2. Let a, a1, . . . , an ∈ D. Then we have (a1, . . . , an, a, a, . . . ) ∈ Xγ , and

in particular Xγ 6= ∅. Furthermore, we have Xγ = Xcγ for all c > 0.

Proof. First assume that we are in the situation of Remark 2.2. Then there exists
a reproducing kernel k on D ×D such that 1 + kγ = 1 + γ · k for all γ > 0. This
implies Xγ = Xcγ and furthermore (a1, a2, . . . , an, a, a, . . .) ∈ Xγ 6= ∅ due to the
summability condition (8).

Now consider the general case. For γ > 0 denote by kγ,I the reproducing kernel
onD×D that corresponds to the pair of seminorms ‖·‖1,I and ‖·‖2,I, see Remark 2.8,
and denote by X

γ,I the corresponding subset of DN. From Theorem 2.1 we get

1

1 + γ
(1 + kc0γ,I(x, x)) ≤ 1 + kγ(x, x) ≤ (1 + c−1

0 γ)
(

1 + kc−1
0 γ,I(x, x)

)

for all γ > 0 and x ∈ D. Therefore

X
c−1
0 γ,I ⊆ X

γ ⊆ X
c0γ,I.

Since we already know that (a1, a2, . . . , an, a, a, . . .) ∈ Xγ,I = Xcγ,I for all c > 0,
the statement follows. �

We define the reproducing kernel Kγ

∞ on Xγ × Xγ by

Kγ

∞(x,y) =
∞
∏

j=1

(1 + kγj
(xj , yj))(12)

for x,y ∈ X
γ . For a function f : Ds → R and a set ∅ 6= X ⊆ DN we define

ψX
s f : X → R by

ψX

s f(x) = f(x1, . . . , xs)(13)

for x ∈ X.
The following lemma is a generalization of [20, Lem. 9], and it follows directly

from Lemma 6.1 from the Appendix.

Lemma 2.3. The mapping ψX
γ

s is a linear isometry from H(Kγ

s ) into H(Kγ

∞),
and

⋃

s∈N
ψX

γ

s H(Kγ

s ) is a dense subspace of H(Kγ

∞).

Now we consider two families of reproducing kernels kγ,I and kγ,II that are derived
from two pairs of seminorms, both of which satisfy (A2) and (A3) with a common
space H .

In the sequel, we let ∗ ∈ {I, II}. We denote the set according to (11) by X
γ,∗ and

the reproducing kernel according to (12) by Kγ,∗
∞ .

If H(Kη,II
∞ ) ⊆ H(Kγ,I

∞ ), then we use ıη,γ∞ to denote the respective embedding.

Theorem 2.3. For every c > 0 we have

X
cγ,II = X

γ,I.
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Furthermore, with 0 < c0 < 1 denoting the constant according to Theorem 2.1,

H(Kc0γ,II
∞ ) ⊆ H(Kγ,I

∞ ),

and

‖ıc0γ,γ∞ ‖ ≤
∞
∏

j=1

(1 + γj)
1/2

holds for the norm of the respective embedding.

Proof. As in the proof of Lemma 2.2 we use Theorem 2.1 to derive

1 + kc0γ,II(x, x) ≤ (1 + γ) (1 + kγ,I(x, x))

for all γ > 0 and x ∈ D. We conclude that Xγ,I ⊆ Xc0γ,II. By the symmetry in our
assumption and by Lemma 2.2 we get Xcγ,II = Xγ,I.

Put X = Xγ,I, Hs = H(Kγ,I
s ), and H0 =

⋃

s∈N
ψX
s (Hs). Since Hs = H(Kcγ,II

s ),

Lemma 2.3 implies that H0 is dense in H(Kcγ,II
∞ ) and H(Kγ,I

∞ ). Furthermore,
Theorem 2.2 and Lemma 2.3 imply

‖f‖Kγ,I
∞

≤
∞
∏

j=1

(1 + γj)
1/2 · ‖f‖

K
c0γ,II
∞

for f ∈ H0. We conclude that H(Kc0γ,II
∞ ) ⊆ H(Kγ,I

∞ ) with the norm of the embed-
ding bounded as claimed. �

Theorem 2.3 and the symmetry in our assumption yield the following result.

Corollary 2.2. We have

max
{

‖ıc0γ,γ∞ ‖, ‖(ıc
−1
0 γ,γ

∞ )−1‖, ‖ıγ,c
−1
0 γ

∞ ‖, ‖(ıγ,c0γ∞ )−1‖
}

<∞.

The comments and remarks that follow Corollary 2.1 carry over to the present
case of functions with infinitely many variables. See, in particular, [20, Thm. 2].

3. The Integration Problem

To begin with we derive some analytical properties of the integration problem
for functions with finitely many and with infinitely many variables, see also [16].
Then we present the framework for the analysis of the corresponding numerical
integration problems and the basic application of the embedding results and norm
estimates.

Again, we first consider a single family of reproducing kernels kγ that is derived
from a pair of seminorms satisfying (A2) and (A3). Furthermore, we consider a
sequence γ = (γj)j∈N

of positive weights such that (8) is satisfied.

Additionally we assume that ρ is a probability measure (on a given σ-algebra)
on D such that

H ⊆ L1(D, ρ).

We let ρs and ρN denote the corresponding product measures on (the product σ-
algebras in) Ds and DN, respectively. For s ∈ N we put 1 : s = {1, . . . , s}.
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3.1. Analytic Properties.

Lemma 3.1. We have

H(Kγ

s ) ⊆ L1(Ds, ρs)

for all s ∈ N. The respective embeddings Js are continuous, and

sup
s∈N

‖Js‖ <∞.

Proof. We use the same strategy as in the proof of Lemma 2.2. Using Theorem 2.2
and Remark 2.8 we may, without loss of generality, assume that we are in the
situation of Remark 2.2, i.e., there exists a reproducing kernel k on D × D such
that 1 + kγ = 1 + γ · k for all γ > 0.

For u ⊆ 1 : s we define the reproducing kernel ku on Ds by

(14) ku(x,y) =
∏

j∈u

k(xj , yj)

for x,y ∈ Ds as well as

γu =
∏

j∈u

γj .

Note that

Kγ

s =
∑

u⊆1:s

γuku.

From Lemma 2.1 we get H(1) ∩ H(k) = {0}. As a well known consequence,
H(Kγ

s ) is the direct sum of the spaces H(γuku), i.e., for every f ∈ H(Kγ

s ) there
exist uniquely determined fu ∈ H(ku) such that

f =
∑

u⊆1:s

fu,(15)

and in this case we get

(16) ‖f‖2Kγ

s
=
∑

u⊆1:s

‖fu‖2γuku
=
∑

u⊆1:s

1

γu
‖fu‖2ku

.

See, e.g., [16, Prop. 1 and Lem. 11].
The closed graph theorem implies that H(k) is continuously embedded into

L1(D, ρ). Let d denote the norm of this embedding, multiplied by
√

π/2. Use
Lemma 6.2 from the Appendix to conclude that H(ku) ⊆ L1(Ds, ρs) and

∫

Ds

|fu| dρs ≤ d|u|‖fu‖ku

for all fu ∈ H(ku) and all u ⊆ 1 : s. For f ∈ H(Kγ

s ) of the form (15) with
fu ∈ H(ku) this yields

∫

Ds

|f | dρs ≤
∑

u⊆1:s

∫

Ds

|fu| dρs ≤
∑

u⊆1:s

d|u|‖fu‖ku

≤
(

∑

u⊆1:s

d2|u|γu

)1/2

· ‖f‖Kγ

s
.

Due to (8), this shows the claim. �
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Define the linear functional Is : H(Kγ

s ) → R by

Is(f) =

∫

Ds

f dρs

for all f ∈ H(Kγ

s ).

Remark 3.1. Note that ‖Is‖ ≥ 1, since Is(1) = 1 and ‖1‖Kγ

s
= 1. Furthermore,

‖Is‖ ≤ ‖Js‖, and hence Lemma 3.1 leads to

1 ≤ sup
s∈N

‖Is‖ <∞.(17)

Recall that Hs denotes the vector space H(Kγ

s ).

Lemma 3.2. There exists a uniquely determined bounded linear functional

I∞ : H(Kγ

∞) → R

such that

I∞(ψX
γ

s (f)) = Is(f)

for all f ∈ Hs and s ∈ N.

Proof. This follows directly from Lemma 2.3 and (17). �

If Xγ is measurable, ρN(Xγ) = 1, and H(Kγ

∞) ⊆ L1(Xγ , ρN) then Lemma 3.2
yields

I∞(f) =

∫

Xγ

f dρN

for all f ∈ H(Kγ

∞). For sufficient conditions under which these assumptions are
fulfilled we refer to [16].

Note that every function f : Xγ → R with f ∈ H(Kγ

∞) is measurable (with
respect to the trace of the product σ-algebra in DN). This follows directly from
Lemma 2.3, Lemma 3.1, and the fact that the pointwise limit of measurable func-
tions is measurable again.

3.2. Algorithms and Minimal Errors. Let

s ∈ N ∪ {∞}.
The integration problem on H(Kγ

s ) consists in the approximation of Is by deter-
ministic or randomized algorithms. The corresponding domain of the integrands is
given by

Xs =

{

Ds, if s ∈ N,

Xγ , if s = ∞.

We confine ourselves to deterministic and randomized linear algorithms of the form

(18) Q(f) =

n
∑

i=1

wif(t
(i)).

For a deterministic linear algorithm Q, the number n ∈ N of knots, and the knots
t(i) ∈ Xs as well as the coefficients wi ∈ R are fixed, regardless of f , i.e., Q is a
quadrature formula. The corresponding class of algorithms is denoted by Adet

s . For
a randomized linear algorithm Q, the number of knots n ∈ N is fixed as previously,
but now the knots t(i) and coefficients wi are random variables with values in Xs

and R, respectively. Any such algorithm is a mapping Q : H(Kγ

s )×Ω → R such that
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Q(·, ω) ∈ Adet
s for every ω ∈ Ω, where (Ω,Σ, P ) denotes the underlying probability

space. The corresponding class of algorithms is denoted by Aran
s . We stress that we

only consider non-adaptive algorithms, i.e., the random (or deterministic) choice of
the coefficients and the knots is independent of the specific integrand f . Actually,
we will only need algorithms of this type to establish our upper error bounds. The
lower bounds for the error that we will present usually hold for much more general
classes of algorithms, see our comments below.

The error e(Q, f) of approximating the integral Is(f) for f ∈ H(Kγ

s ) by a
randomized or deterministic linear algorithm Q is defined as

e(Q, f) =
(

E
(

(Is(f)−Q(f))
2)
)1/2

.

Clearly Adet
s ( Aran

s , and for deterministic algorithms Q the error simplifies to

e(Q, f) = |Is(f)−Q(f)| .
The worst case error e(Q,Kγ

s ) of approximating the integration functional Is on
the unit ball in H(Kγ

s ) by Q is defined as

e(Q,Kγ

s ) = sup
{

e(Q, f) | f ∈ H(Kγ

s ), ‖f‖Kγ

s
≤ 1
}

.

Let

cost : Aran
s → [1,∞](19)

be a given function that assigns to every randomized (or deterministic) linear al-
gorithm its cost. The key quantity in the analysis is the nth minimal error given
by

esetcost(n,K
γ

s ) = inf{e(Q,Kγ

s ) |Q ∈ Aset
s with cost(Q) ≤ n},

where set ∈ {ran, det}.
3.3. Application of the Norm Estimates. Let ‖ · ‖1,I and ‖ · ‖2,I as well as
‖ · ‖1,II and ‖ · ‖2,II be two pairs of seminorms on H , both satisfying (A2) and (A3).
The norm estimates from Sections 2.3 and 2.4 are applied in the analysis of the
integration problem as follows. The linearity of Q or Q(·, ω) from (18), respectively,
ensures that e(Q, cf) = |c| · e(Q, f) for every c ∈ R. From Corollaries 2.1 and 2.2
we get the following result.

Theorem 3.1. Let set ∈ {ran, det} and let 0 < c0 < 1 denote the constant accord-

ing to Theorem 2.1. For every sequence γ of weights that satisfies (8) there exists

a constant c ≥ 1 with the following property. For every s ∈ N ∪ {∞} and every

Q ∈ Aset
s we get

c−1 · e
(

Q,Kc0γ,II
s

)

≤ e
(

Q,Kγ,I
s

)

≤ c · e
(

Q,K
c−1
0 γ,II

s

)

.

In particular, for every cost function (19), every s ∈ N∪ {∞}, and every n ∈ N we

get

c−1 · esetcost

(

n,Kc0γ,II
s

)

≤ esetcost

(

n,Kγ,I
s

)

≤ c · esetcost

(

n,K
c−1
0 γ,II

s

)

.

Analogous estimates are valid, of course, for other linear problems like approxi-
mation (recovery) of functions.

Ultimately, we wish to transfer results from the spaces H(Kγ,I
s ), say, to the

spaces H(Kγ,II
s ). According to Theorem 3.1, switching from one pair of seminorms

to the other one involves a compensation by a suitable multiplication of the weights.
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However, for a single pair of seminorms ‖ · ‖1 and ‖ · ‖2 we observe the following
strong impact of this multiplication, as far as embeddings are concerned. Let c > 1.
For s ∈ N we have equivalence of the norms on H(Kcγ

s ) and H(Kγ

s ), but the norm
of the embedding of H(Kcγ

s ) into H(Kγ

s ) grows exponentially with s. For s = ∞
we do not even have H(Kcγ

s ) ⊆ H(Kγ

s ).
The transfer of results is still possible for integration problems that share the

following feature: Results and constructions depend on the underlying sequence γ

of weights only via their decay,

decay(γ) = sup
({

p > 0
∣

∣

∣

∞
∑

j=1

γ
1/p
j <∞

}

∪ {0}
)

.

Given this feature, it remains to observe that decay(cγ) = decay(γ) for every c > 0.
Details and important examples will be presented in the following two sections.

4. Results on Multivariate Integration

Consider the setting from Section 3 for

s ∈ N.

We employ the standard cost function

std : Aran
s → [1,∞)

for finite-dimensional integration that simply counts the number of function evalu-
ations, i.e., std(Q) = n for any algorithm of the form (18).

In tractability analysis one studies the behavior of the nth minimal error simul-
taneously in n and s. A key concept is strong polynomial tractability, i.e., the
existence of c, α > 0 such that

∀n, s ∈ N : esetstd(n,K
γ

s ) ≤ c · n−α.

Obviously one is interested in the largest such α, which leads to the definition

λsetstd = λsetstd((K
γ

s )s∈N) = sup
({

α > 0

∣

∣

∣

∣

sup
s,n∈N

esetstd(n,K
γ

s ) · nα <∞
}

∪ {0}
)

.

We add that the normalized error is studied in many papers, i.e., esetstd(n,K
γ

s ) is
replaced by esetstd(n,K

γ

s )/‖Is‖. In our situation both concepts coincide, as far as
the strong polynomial tractability is concerned, see Remark 3.1. Moreover, we
add that 1/λsetstd is called the exponent of strong tractability. For more information
about tractability we refer to the monograph series [34–36].

The generic application of our embedding results to multivariate integration is
the following, straightforward consequence of Theorem 3.1.

Corollary 4.1. Let set ∈ {det, ran} and suppose that λsetstd((K
γ,I
s )s∈N) depends on γ

only via decay(γ), i.e., for all summable sequences γ,η of weights with decay(γ) =
decay(η) we have

λsetstd((K
γ,I
s )s∈N) = λsetstd((K

η,I
s )s∈N).

Then we have

λsetstd((K
γ,I
s )s∈N) = λsetstd((K

γ,II
s )s∈N).
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A similar conclusion can obviously be drawn for upper and lower bounds on λsetstd

that only depend on the decay of the weights.
In this section we apply the transfer principle from Corollary 4.1 to s-fold

weighted tensor products of the Sobolev space W r,2[0, 1] of smoothness r as spaces
of integrands, see Example 2.1, and to the uniform distribution ρ on [0, 1].

For this kind of spaces quasi-Monte Carlo (QMC) theory was known, so far, to
provide very good deterministic algorithms in the anchored case H(Kγ,⋔

s ) and very
good randomized algorithms in the ANOVA case H(Kγ,A

s ), as we will explain in
more detail below. For more background on quasi-Monte Carlo integration we refer
to the recent survey article [12].

4.1. Deterministic Setting. For the anchored Sobolev spaces H(Kγ,⋔
s ) of any

smoothness r ∈ N there are very good QMC algorithms known. In fact, for r = 1
there are efficient lattice rules or (t,m, s)-nets available, see, e.g., [11,28,37,43] and
the literature mentioned therein. For r ≥ 2 one may use polynomial lattice rules
of higher order, see, e.g., [4, 5, 9, 13] and the literature mentioned therein, or the
recently analyzed interlaced polynomial lattice rules, see [17].

We state the main result of this section, which was partially known already. More
precisely, the upper bound for λdetstd follows directly from the well-known lower bound
for the minimal error for univariate integration on W r,2[0, 1] in the deterministic
setting, see [33, Prop. 1, Sec. 1.3.12]. In fact, this result holds for all deterministic
algorithms. Furthermore, for r = 1 the lower bound was known before for all cases
∗ ∈ {S,A,⋔}, see [28, Cor. 6] and [41, Thm. 3], while for r ≥ 2 it was known before
only for ∗ = ⋔, see [9, Sec. 5.4].

Theorem 4.1. Let H =W r,2[0, 1] and ∗ ∈ {S,A,⋔}. Then we have

min

{

decay(γ)

2
, r

}

≤ λdetstd((K
γ,∗
s )s∈N) ≤ r.

Proof. Since the upper bound for λdetstd is already known, we only provide the proof
of the lower bound. We first consider the anchored setting ∗ = ⋔. To this end,
let r ≥ 1 be an integer, let b be a prime and let 1/2 ≤ τ < r. Then there exists
a constant Cr,τ,b > 0 such that for all m, s ∈ N there exists a deterministic linear
algorithm Qm ∈ Adet

s with cost std(Qm) = bm and

(20) e(Qm,K
γ,⋔
s ) ≤ (bm − 1)−τ

s
∏

j=1

(

1 + Cr,τ,b · γ1/(2τ)j

)τ

,

see [11, Thm. 5.3] for r = 1 and [9, Sec. 5.4] for r ≥ 2. Clearly
∞
∏

j=1

(

1 + Cr,τ,b · γ1/(2τ)j

)τ

<∞ if and only if
∞
∑

j=1

γ
1/(2τ)
j <∞,

and the latter holds if τ < decay(γ)/2 or τ = 1/2. Hence the lower bound for λdetstd

holds in the case ∗ = ⋔.
Next we consider ∗ ∈ {S,A}. From Example 2.1 we know that Theorem 3.1 is

applicable for I = ⋔ and II ∈ {S,A}. Since decay(c0γ) = decay(γ), we obtain the
lower bound for λdetstd also in the case ∗ ∈ {S,A}. �

Remark 4.1. If decay(γ) < 2r the upper and lower bound for λdetstd in Theorem 4.1
do not coincide. For the case r = 1 it is conjectured that actually the lower bound
is sharp, see [35, Open Problem 72].
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Remark 4.2. The algorithms used to derive the error bound (20) in [9,11] belong to
the class of (shifted) polynomial lattice rules. Polynomial lattice rules are actually
not lattice rules, but QMC-cubature rules whose integration points belong to a
special family of (t,m, s)-nets. They were introduced by Niederreiter in [31]. To
ensure favorable error bounds, sometimes a shift σ ∈ [0, 1)s has to be added to
the integration points of a polynomial lattice rule Q, where the addition is meant
component-wise modulo 1. The resulting QMC-cubature Q(σ) is then called a
shifted polynomial lattice rule.

For a given prime base b an s-dimensional polynomial lattice rule is constructed
with the help of a generating vector q whose entries q1, . . . , qs are polynomials over
the finite field of order b.

For smoothness r = 1 or for slowly decaying weights it is sufficient to consider
classical polynomial lattice rules with a shift. In [11] rules of this type that satisfy
(20) in the corresponding regime 1/2 ≤ τ < 1 were constructed by means of a
component-by-component (cbc) algorithm. To exploit higher smoothness r ≥ 2,
higher-order polynomial lattice rules were introduced by Dick and Pillichshammer
in [13]. In [9, Sec. 5.4] the error bound (20) was derived for 1 ≤ τ < r and higher-
order polynomial lattice rules, without a shift, by utilizing [4, Thm. 3.1].

The polynomial lattice rules used to derive (20) can be constructed by cbc al-
gorithms, based on the fast cbc algorithm from [37, 38], requiring O(rsnr ln(n))
operations and O(nr) memory, see [5]. However, it is not known how to determine
a proper shift, if needed, in a efficient way. Explicit formulas for the constant Cr,τ,b

in (20) for 1 ≤ τ < r as well as for 1/2 ≤ τ < 1 can be found in [9, Sec. 5.4].
We close this remark by mentioning that in the recent paper [17] interlaced

polynomial lattice rules have been analyzed that serve the same purpose as higher-
order polynomial lattice rules, but can be constructed with a cbc algorithm that
only requires O(rsn ln(n)) operations and O(n) memory.

Remark 4.3. The lower bound for λsetstd in Theorem 4.1 in the anchored setting
∗ = ⋔ is a direct consequence of the upper error bound (20). The key point in
the proof of (20) in [9, Sec. 5.3 and 5.4] is to bound certain s-dimensional Walsh
norms by s-dimensional anchored norms to make use of [4, Thm. 3.1] and the results
from [11]. These norm bounds can be established with the help of a multivariate
Taylor expansion of the integrand in (a, . . . , a) ∈ [0, 1]s, where a ∈ [0, 1] is the
anchor that defines the norm according to Example 2.1. It is crucial that the
anchored norm is perfectly suited to work with Taylor expansions. This is, e.g.,
not the case for ANOVA norms, and therefore it would be elaborate to try to prove
the lower bound from Theorem 4.1 directly for ∗ = A without making use of our
Theorem 3.1.

Remark 4.4. Let τ < min{decay(γ)/2, r}. According to the proof of Theorem 4.1
and Remark 4.2 there exists a constant c > 0 with the following property for every
s ∈ N. For every m ∈ N a (shifted) polynomial lattice rule Qm with bm points in
[0, 1]s is available such that e(Qm,K

γ,⋔
s ) ≤ c (bm − 1)−τ . If we consider ∗ ∈ {S,A}

instead of ∗ = ⋔, then the same algorithms Qm satisfy the same error bound, up to
a possibly different constant c that again does not depend on s, see Theorem 3.1.

These findings carry over to the randomized algorithms discussed in Remark 4.5,
if we take ∗ = A as the starting point and then consider ∗ ∈ {S,⋔}.
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4.2. Randomized Setting. In the randomized setting several very good QMC
algorithms are known for the integration problem on the ANOVA spaces H(Kγ,A

s ).
For r = 1 one may take the scrambled Niederreiter nets analyzed in [44] or the
scrambled polynomial lattice rules analyzed in [3], and for r ≥ 2 one may use the
interlaced scrambled polynomial lattice rules considered in [10, 18].

So far, however, there were no good randomized algorithms known for the an-
chored spaces H(Kγ,⋔

s ), and this holds true even for r = 1.
For instance, Hickernell et al. [22] have studied infinite-dimensional integration

in the anchored setting for r = 1, using single- and multilevel algorithms with clas-
sical Monte Carlo methods as finite-dimensional building blocks. To achieve better
results for infinite-dimensional integration, they have asked for finite-dimensional
integration algorithms on H(Kγ,⋔

s ) superior to Monte Carlo, see the last sentences
in [22, Sec. 4.3 and 5.3].

With the help of the results from Section 2 we can deduce that all linear algo-
rithms that perform well on the ANOVA space also perform well on the anchored
Sobolev space. In particular, we are able to present randomized QMC algorithms,
namely interlaced scrambled polynomial lattice rules, which outperform classical
Monte Carlo algorithms substantially.

We state the main result of this section, which was partially known already. More
precisely, the upper bound for λranstd follows directly from the well-known lower bound
for the minimal error for univariate integration on W r,2[0, 1] in the randomized
setting, see [33, Prop. 1(ii), Sec. 2.2.9]. In fact, this result holds for all randomized
algorithms. The lower bound was known before only in the case ∗ = A; for r = 1 we
refer to [3] and for r ≥ 2 we refer to [10, Thm. 5.1], which makes use of [18, Thm. 1].

Theorem 4.2. Let H =W r,2[0, 1] and ∗ ∈ {S,A,⋔}. Then we have

min

{

decay(γ)

2
, r +

1

2

}

≤ λranstd ((K
γ,∗
s )s∈N) ≤ r +

1

2
.

Proof. Since the upper bound for λranstd is already known, we only provide the proof
of the lower bound. We first consider the ANOVA setting ∗ = A. To this end, let
r ≥ 1 be an integer, let b be a prime, and let 1/2 ≤ τ < r+1/2. Then there exists a
constant Cr,τ,b > 0 such that for all m, s ∈ N there exists an unbiased randomized
linear algorithm Qm ∈ Aran

s with cost std(Qm) = bm and

(21) e(Qm, f)
2 ≤ (bm − 1)−2τ

[

Cr,τ,b

s
∏

j=1

(

1 + Cr,τ,b · γ1/(2τ)j

)

]2τ

‖f‖2
Kγ,A

s

for all f ∈ H(Kγ,A
s ), see [10, Thm. 5.1]. We proceed as in the proof of Theorem

4.1 to derive the lower bound for λranstd in the case ∗ = A and to extend this result
to the case ∗ ∈ {S,⋔}. �

Remark 4.5. The algorithms used to derive the error bound (21) belong to the
class of interlaced scrambled polynomial lattice rules. For a given prime base b an
interlaced scrambled polynomial lattice rule Q of order r consisting of bm points
in dimension s is constructed in the following way: First an ordinary polynomial
lattice rule with bm points in dimension rs is generated and afterwards the points
are randomized via Owen’s b-ary digit scrambling [39]. Then each of the resulting
rs-dimensional points x = (x1, x2, . . . , xrs) is mapped to an s-dimensional point

(

Dr(x1, . . . , xr),Dr(xr+1, . . . , x2r), . . . ,Dr(xr(s−1)+1, . . . , xrs)
)
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by applying the digit interlacing function

Dr : [0, 1)r → [0, 1) , (y1, . . . , yr) 7→
∞
∑

i=1

r
∑

j=1

yj,ib
−j−(i−1)r,

where yj = yj,1b
−1+ yj,2b

−2+ . . . for 1 ≤ j ≤ r. Interlacing is important to achieve
the higher order convergence rate r + 1/2 for r ≥ 2; notice that for r = 1 we have
that Dr is the identity mapping on [0, 1) and consequently “interlaced scrambled
polynomial lattice rules of order 1” are nothing but ordinary scrambled polynomial
lattice rules. For more details see, e.g., [10, 18].

Notice that Owen’s scrambling procedure implies that each point of the resulting
interlaced scrambled polynomial lattice rule Q is uniformly distributed on [0, 1)s.
Hence Q is unbiased, implying

e(Q, f)2 = Var(Q(f))

for every integrand f .
Interlaced polynomial lattice rules were introduced by Dick in [8]. In [18] it

was shown that for product weights the construction cost of the component-by-
component (cbc) algorithm that generates the interlaced polynomial lattices rules,
based on the fast cbc algorithm from [37,38], is of order O(rsmbm) operations using
O(bm) memory.

These cubature rules settle the question in [22, p. 245] for good randomized
algorithms for finite-dimensional integration in the anchored Sobolev space. In
particular, they can be employed to establish error bounds for infinite-dimensional
integration in the fixed subspace sampling model that improve the corresponding
results in [22] substantially, see Section 5.3.3.

Remark 4.6. The lower bound for λranstd in the ANOVA setting is a direct conse-
quence of the upper error bound (21), which actually is a bound on the variance
of Qm(f), since Qm is unbiased for every f : Ds → R. To analyze the variance,
it is convenient to use the ANOVA1 decomposition of Qm(f). Due to our specific
randomization it turns out that

[Qm(f)]u = Qm(fu)

for all u ∈ 1 : s; here [Qm(f)]u denotes the uth ANOVA component of Qm(f) with
respect to the randomness induced by the scrambling procedure and fu ∈ H(ku)
denotes the uth ANOVA component of f with respect to ρs, cf. (14) and (16).
A rigorous formulation of this “ANOVA invariance principle” can be found in [6,
Lem. 2.1]. Hence

Var (Qm(f)) =
∑

u⊆1:s

Var (Qm(fu)) .

This fact and the identity

‖f‖2
Kγ,A

s
=
∑

u⊆1:s

γ−1
u ‖fu‖2ku

,

cf. (16), are essential in the analysis of the cbc algorithm that generates the inte-
gration rules Qm.

It is not clear to the authors how to prove the lower bound for λranstd in the
anchored setting directly without using Theorem 3.1.

1ANOVA is an acronym for “analysis of variance”.
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Remark 4.7. A basic issue is to decide whether randomized algorithms are superior
to deterministic algorithms, i.e., whether λranstd > λdetstd . For a positive answer a lower
bound on λranstd and an upper bound on λdetstd is needed, and the converse is needed
for a negative answer. Due to Theorems 4.1 and 4.2 the superiority holds true if

decay(γ) > 2r.

5. Results for Infinite-Dimensional Integration

Consider the setting from Section 3 for

s = ∞.

As in the previous section, anchored spaces are much more suited for a direct
analysis of deterministic algorithms, while ANOVA spaces are much more suited
for a direct analysis of randomized algorithms, see the discussion of the literature
below. Embeddings and norm estimates allow to transfer the respective results.

5.1. Cost Models for Infinite-Dimensional Integration. In contrast to finite-
dimensional integration, the choice of an appropriate cost model is an issue in the
present setting. Here we do not have a canonical cost model anymore, but the
models that are studied in the literature share the following feature. The cost of a
single function evaluation at a point t is no longer independent of t ∈ DN, and not
even uniformly bounded in t.

We present three such cost models. All of them only account for the cost of func-
tion evaluations, as in the finite-dimensional case, and they employ a nondecreasing
function $: N0 → [1,∞) and a “default value” a ∈ D.

Let

Tu = {t ∈ DN | tj = a for all j ∈ N \ u}
for any finite subset u ⊆ N, where tj denotes the jth component of t, and let
Q ∈ Aran

∞ denote any randomized linear algorithm of the form (18). In the sequel,
we use the convention min ∅ = ∞.

Fixed subspace sampling basically means that all function evaluations of an
algorithm have to take place in a set T1:s with a fixed value of s, and the same cost
$(s) is assigned to any such evaluation. In the fixed subspace sampling model the
cost of Q is therefore given by

fix(Q) = n ·min{$(s) | s ∈ N0 such that t(1)(ω), . . . , t(n)(ω) ∈ T1:s for all ω ∈ Ω}.
This model directly corresponds to the classical approach to infinite-dimensional
integration, namely the approximation by an s-dimensional integration problem by
setting all variables with indices j > s to the default value a.

In the two other models all function evaluations of an algorithm take place in
the set

⋃

s∈N
T1:s. The cost for an evaluation at a point t from this set is either

determined by the maximal value of j such that tj 6= a or by the number of
components of t that are different from a.

In the nested subspace sampling model the cost of Q is given by

nest(Q) =

n
∑

i=1

min{$(s) | s ∈ N0 such that t(i)(ω) ∈ T1:s for all ω ∈ Ω}.

This model was introduced in [7] in a more general setting, and it was actually
called “variable subspace sampling model”. We prefer the name “nested subspace
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sampling model” to clearly distinguish this model from the cost model we present
next. In the unrestricted subspace sampling model the cost of Q is given by

unr(Q) =

n
∑

i=1

min{$(|u|) | u ⊆ N finite such that t(i)(ω) ∈ Tu for all ω ∈ Ω}.

The unrestricted subspace sampling model was introduced in [29] (where it did not
get a specific name). In the definition of the three cost functions a certain property
is required to hold for all ω ∈ Ω. Often this worst case point of view is replaced by
an average case. We stress that such a replacement would not affect the cost of the
algorithms that we use to establish our upper bounds for the nth minimal errors.
However, to streamline the presentation we consider the worst case.

Obviously unr(Q) ≤ nest(Q) ≤ fix(Q), so that the corresponding minimal errors
satisfy

esetunr(n,K
γ

∞) ≤ esetnest(n,K
γ

∞) ≤ esetfix (n,K
γ

∞)(22)

for set ∈ {ran, det}. Furthermore,

erancost(n,K
γ

∞) ≤ edetcost(n,K
γ

∞),(23)

where cost ∈ {fix, nest, unr}. In order to simplify the presentation we put

λsetcost = λsetcost(K
γ

∞) = sup
{

α ≥ 0 | sup
n∈N

esetcost(n,K
γ

∞) · nα <∞
}

.(24)

The inequalities (22) and (23) directly yield

λsetfix ≤ λsetnest ≤ λsetunr and λdetcost ≤ λrancost.

5.2. General Results. Let ‖ · ‖1,I and ‖ · ‖2,I as well as ‖ · ‖1,II and ‖ · ‖2,II be two
pairs of seminorms on H , both satisfying (A2) and (A3). For infinite-dimensional
integration we have a similar transfer principle as for multivariate integration.

Corollary 5.1. Let cost ∈ {fix, nest, unr} and set ∈ {ran, det}. Suppose that

λsetcost(K
γ,I
∞ ) depends on γ only via decay(γ). Then we get

λsetcost(K
γ,I
∞ ) = λsetcost(K

γ,II
∞ ).

Since multiplication of the weights γ by a positive constant does not affect
decay(γ), Corollary 5.1 follows directly from Theorem 3.1. Obviously, a similar
conclusion can be drawn for upper and lower bounds on λsetcost that only depend on
the decay of the weights.

In the deterministic setting we have another general result, which deals with
a single pair of seminorms on H that satisfies (A2) and (A3) and with the corre-
sponding kernels 1+k1 and Kγ

∞. A second pair of such seminorms is only employed
in the proof. We say that a kernel k : D ×D → R is anchored, if there exists an
a ∈ D with k(a, ·) = 0. In the setting of Remark 2.1 with an anchored kernel k,
the following theorem was already known before, see [40, Thm. 2]. More precisely,
for this particular case, the lower bound on λdetunr was established in [40] and the
upper bound can be derived from the analysis in [29, Sec. 3.3]. In analogy to (24)
we define

λdetstd(1 + k1) = sup
({

α ≥ 0
∣

∣

∣
sup
n∈N

edetstd(n, 1 + k1) · nα <∞
})

,

which deals with one-dimensional integration on the Hilbert space H = H(1 + k1),
equipped with the norm ‖ · ‖H = ‖ · ‖1+k1 .
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Theorem 5.1. If the cost function $ satisfies $(ν) = Ω(ν) and $(ν) = O(eσν) for

some σ ∈ (0,∞), then we have

λdetunr(K
γ

∞) = min

{

λdetstd(1 + k1),
decay(γ)− 1

2

}

.

Proof. We choose an arbitrary a ∈ D and consider the bounded linear functional
ξ on H that is given by ξ(f) = f(a) for each f ∈ H . We define a new pair of
seminorms on this space by

‖f‖1,II = |ξ(f)|
and

‖f‖2,II = ‖f − ξ(f)‖H ,
see Remark 2.4. We have λdet(1 + k1) = λdet(1 + k1,II), since ‖ · ‖H and ‖ · ‖1+k1,II

are equivalent norms. Moreover k1,II(a, ·) = 0 according to Remark 2.2. Notice
that the assumptions of [40, Thm. 2] are fulfilled for the space H(Kγ,II

∞ ). Indeed,
the algorithms that satisfy [40, Eqn. (10)] can be obtained from univariate linear
quadrature rules with convergence rates arbitrarily close to λdet(1 + k1) with the
help of Smolyak’s construction, see [40, Sec. 3.3]. Now [40, Thm. 2] ensures that
the statement of Theorem 5.1 holds for H(Kγ,II

∞ ). Due to Corollary 5.1 it thus also
holds for H(Kγ

∞). �

Remark 5.1. The algorithm used to establish the lower bound on λdetunr in Theorem
5.1 is a multivariate decomposition method, formerly known as changing dimension
algorithm. This type of algorithm was introduced and analyzed in [29] and the anal-
ysis was refined in [40]. This analysis crucially relies on the anchored decomposition
in the space of integrands. According to Theorem 5.1 the multivariate decompo-
sition methods is applicable far beyond the anchored setting. This also applies to
the algorithms used to establish the lower bounds on λsetunr in Theorem 5.2.

5.3. Tensor Products of Weighted Sobolev Spaces. Now we turn to the par-
ticular case of ∞-fold weighted tensor products H(Kγ,∗

∞ ) of the Sobolev spaces
W r,2[0, 1] of smoothness r ∈ N, where ∗ ∈ {S,A,⋔}, see Example 2.1.

5.3.1. Unrestricted Subspace Sampling. In the anchored case ∗ = ⋔ the statement of
the next theorem was known in the deterministic setting, see [40, Thm. 2, Sec. 3.3]
and [29, Sec. 3.3]. The upper bound on λranunr(K

γ,⋔
∞ ) was known before, see [15,

Sec. 3.2.1], and the lower bound for λranunr(K
γ,⋔
∞ ) was known for r = 1, see [40,

Exmp. 2]. In the ANOVA case ∗ = A the statement of the Theorem was known in
the randomized setting for arbitrary r ∈ N, see [10, Cor. 5.3], where the algorithms
from [40] were modified for the ANOVA setting. We add that the same result
was proved in [10] for the class of finite-intersection weights. Furthermore, the
upper bound on λranunr(K

γ,A
∞ ) verified in [10] holds for much more general randomized

algorithms than for the linear algorithms of the form (18). See also Table 1 for an
overview of known and new results.

Theorem 5.2. Let $ satisfy $(ν) = Ω(ν) and $(ν) = O(eσν) for some σ ∈ (0,∞).
Moreover, let H =W r,2[0, 1] and ∗ ∈ {S,A,⋔}. Then we have

λdetunr(K
γ,∗
∞ ) = min

{

r,
decay(γ)− 1

2

}
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and

λranunr(K
γ,∗
∞ ) = min

{

r +
1

2
,
decay(γ)− 1

2

}

.

Proof. Since the result is true in the deterministic setting for ∗ = ⋔ and in the
randomized setting for ∗ = A, and since λdetunr(K

γ,⋔
∞ ) and λranunr(K

γ,A
∞ ) depend on the

weights γ only via decay(γ), it remains to apply Corollary 5.1. �

Table 1. Matching upper and lower bounds for λsetunr

cost = unr
r = 1 r > 1

det ran det ran

∗ = ⋔
lower bound [40] [40] new
upper bound [29] [15] [29] [15]

∗ = A
lower bound

new [10] new [10]
upper bound

∗ = S
lower bound

new
[10]

new
[10]

upper bound new new

Remark 5.2. In the situation of Theorem 5.2 we may choose one sequence of algo-
rithms that achieves the optimal convergence rate for all three cases ∗ ∈ {S,A,⋔}
simultaneously. More precisely, there exists a sequence (Qn)n∈N of deterministic or
randomized algorithms, respectively, with unr(Qn) ≤ n with the following property
for every 0 < λ < λsetunr. There exists a constant c > 0 such that

e (Qn,K
γ,∗
∞ ) ≤ c · n−λ

for all ∗ ∈ {S,A,⋔} and n ∈ N. Such a sequence can be obtained by the following
procedure. Choose any of the three norms, say, the anchored norm, and let c0 > 0 be
the minimum of the value of the constant according to Theorem 2.1 for the two pairs
(⋔,A) and (⋔, S). Now, take a sequence of algorithms according to Theorem 5.2 for
the sequence c−1

0 γ of weights and ∗ = ⋔. This sequence has the desired property,
since H(Kγ,∗

∞ ) ⊆ H(Kc·γ,∗
∞ ) for all c ≥ 1 and ∗ ∈ {S,A,⋔}.

A similar remark also applies to Theorems 5.3–5.5.

Remark 5.3. Due to Theorem 5.2 randomized algorithms are superior to deter-
ministic algorithms for unrestricted subspace sampling, i.e., λranunr > λdetunr, if and
only if

decay(γ) > 2r + 1.

Observe that the known results have only covered the case r = 1 and ∗ = ⋔ and,
partially, the case r ≥ 2 and ∗ = ⋔.

5.3.2. Nested Subspace Sampling. Here we start with the analysis of deterministic
algorithms. In the anchored case ∗ = ⋔ the statement of the next Theorem was
already known. More precisely, the lower bound on λdetnest(K

γ,⋔
∞ ) was established

in [9, Sec. 5] by using multilevel algorithms based on the higher-order polynomial
lattice rules described in Remark 4.2. This lower bound improves on earlier results
in [14,32]. The upper bound on λdetnest(K

γ,⋔
∞ ) can be derived easily from [32, Thm. 4]

and is explicitly stated in [9, Cor. 4]. For the other cases ∗ ∈ {S,A} the statement
of the theorem is new. We add that the result for the case ∗ = ⋔ does not only
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hold for the class of product weights but also for the larger class of product and
order dependent (POD) weights and for the class of finite intersection weights,
see [9, Cor. 4 and 6].

Theorem 5.3. Let σ ≥ (2r−1)/2r and let the cost function $ satisfy $(ν) = Θ(νσ).
Moreover, let H =W r,2[0, 1] and ∗ ∈ {S,A,⋔}. Then we have

λdetnest(K
γ,∗
∞ ) = min

{

r,
decay(γ)− 1

2σ

}

.

Proof. Since the result is true for ∗ = ⋔ and since λdetnest depends on the weights γ
only via decay(γ), the theorem follows from Corollary 5.1. �

Now we consider randomized algorithms. In the ANOVA case ∗ = A the upper
bound on λrannest(K

γ,A
∞ ) was known and the lower bound on λrannest(K

γ,A
∞ ) was known

for r = 1, see [6, Cor. 3.5 and 5.5]. In the anchored case only the upper bound
on λrannest(K

γ,⋔
∞ ) was known, see [15, Sec. 3.2.1]. See also Table 2 for an overview

of known and new results with matching upper and lower bounds, covering both,
deterministic and randomized algorithms.

Theorem 5.4. Let σ ≥ 2r/(2r+1) and let the cost function $ satisfy $(ν) = Θ(νσ).
Moreover, let H =W r,2[0, 1] and ∗ ∈ {S,A,⋔}. Then we have

min

{

max

{

r,
3

2

}

,
decay(γ)− 1

2σ

}

≤ λrannest(K
γ,∗
∞ ) ≤ min

{

r +
1

2
,
decay(γ)− 1

2σ

}

with equality for r = 1 or decay(γ) ≤ 2σr + 1.

Proof. The upper bound is true for ∗ ∈ {⋔,A}, and it remains to apply Theorem
3.1 to also establish this bound for ∗ = S. Starting with ∗ = A, we establish the
lower bound for r = 1 in the same way.

It remains to prove the lower bound for r ≥ 2. Here we start with ∗ = S, and

we use H
(r)
s to denote the Hilbert space H(Kγ,S

s ) with its dependence on r. For

s ∈ N the norm of the embedding of H
(r)
s into H

(1)
s obviously is one. To address the

case s = ∞ we first observe that Xγ,⋔ = Xγ,A = DN, which follows from Remark
2.2 and the boundedness of the corresponding kernels k. Theorem 2.3 implies that

Xγ,S = DN. Use [16, Prop. 2] to conclude that H
(r)
∞ is embedded into H

(1)
∞ with

norm one as well. Hence the lower bound for r = 1 is also valid for r ≥ 2. This
result is transferred to the case ∗ ∈ {⋔,A} in the standard way. Of course, the lower
bound from Theorem 5.3, which deals with deterministic algorithms, is applicable,
too. �

Table 2. Matching upper and lower bounds for λsetnest

cost = nest
r = 1 r > 1

det ran det ran

∗ = ⋔
lower bound [9] new [9]

open
upper bound [32] [15] [32]

∗ = A
lower bound

new [6] new open
upper bound

∗ = S
lower bound

new
[6]

new open
upper bound new
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Remark 5.4. Relying on a modification of the component-by-component (cbc)
algorithm presented in [3], scrambled polynomial lattice rules were constructed in [6,
Section 5] that were used as building blocks of multilevel algorithms to establish the
lower bound on λrannest for r = 1 in the ANOVA setting. These scrambled polynomial
lattice rules cannot exploit higher order smoothness. For r ≥ 2 the authors believe
that a matching lower bound for λrannest(K

γ,A
∞ ) can be established with multilevel

algorithms as in [6] that use as building blocks the interlaced polynomial lattice
rules from Remark 4.5; a proof of this claim is nevertheless beyond the scope of the
present paper.

Notice that the lower bound on λrannest in the anchored case is new and shows in
particular that the corresponding upper bound established in [15, Sec. 3.2.1] was
already optimal.

Remark 5.5. To compare the power of deterministic and randomized algorithms
for nested subspace sampling we consider the condition

(25) decay(γ) > 2σr + 1,

and we apply Theorems 5.3 and 5.4. For r = 1 randomized algorithms are superior
to deterministic algorithms, i.e., λrannest > λdetnest, if and only if (25) holds true. For
r ≥ 2 we only know that (25) is a necessary condition for superiority.

5.3.3. Fixed Subspace Sampling in the Randomized Setting. Here we use the in-
terlaced scrambled polynomial lattice rules for multivariate integration described
in Remark 4.5 to improve and generalize the results on fixed subspace sampling
from [22, Sec. 4.3]. As in [22] we focus on the randomized setting and the cost
function $ given by $(k) = k for all k ∈ N0.

Theorem 5.5. Let H =W r,2[0, 1] and ∗ ∈ {S,A,⋔}. Moreover, let

β =
1

2
min{decay(γ), 2r + 1}.

Then
β(decay(γ)− 1)

2β − 1 + decay(γ)
≤ λranfix (Kγ,∗

∞ ) ≤ (r + 1
2 )(decay(γ)− 1)

2r + decay(γ)

with equality for decay(γ) ≥ 2r + 1.

Proof. Combine the well-known lower bound for the minimal error for univariate
integration on W r,2[0, 1] in the randomized setting, see [33, Prop. 1(ii), Sec. 2.2.9],
and [22, Thm. 2] to derive the upper bound for λranfix (Kγ,∗

∞ ). Combine the lower
bound from Theorem 4.2 and [22, Thm. 1] to derive the lower bound for λranfix (Kγ,∗

∞ )
in the case ∗ ∈ {⋔,A}, and thus also for ∗ = S. �

Remark 5.6. We compare the lower bound from Theorem 5.5 with the result
from [22, Sec 4.3]. Since in [22, Sec. 4.3] only the case r = 1 is treated, let us
confine ourselves to this case. For ∗ = A our lower bound recovers the lower bound
from [2, Cor. 3.1], which relies on scrambled polynomial lattice rules analyzed in [3]
and which improved on the bound from [22, Cor. 1]. The latter relies on scrambled
Niederreiter (t,m, s)-nets analyzed in [44]. In the case ∗ = ⋔ our lower bound
improves substantially on the lower bound

decay(γ)− 1

2 decay(γ)
≤ λranfix
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from [22, Cor. 2]. It also improves on the better lower bound

(26) λranfix ≥
{

decay(γ)(decay(γ)− 1)/(4 decay(γ)− 2), if 1 < decay(γ) < 2,

(decay(γ)− 1)/(decay(γ) + 1), if decay(γ) ≥ 2.

that is mentioned in [22, Rem. 4] and that was achieved in [29] with the help of
deterministic algorithms. More precisely, for 1 < decay(γ) ≤ 2 both lower bounds
coincide, but for decay(γ) > 2 our lower bound is strictly better than (26). This
settles the open problem at the end of [22, Rem. 4], where the authors asked whether
(26) can be improved if one uses randomized algorithms different to classical Monte
Carlo algorithms.

5.4. Tensor Products of Weighted Korobov Spaces. Finally, we turn to
spaces of periodic functions. The weighted Korobov spaces H(Kγ

s ) are tensor prod-
ucts of the periodic Sobolev spaces Hr[0, 1] of smoothness r > 1/2, see Example
2.3. Tractability results for integration on H(Kγ

s ) with s ∈ N have been estab-
lished, e.g., in [23, 27, 42]. Here we consider the case s = ∞ of ∞-fold weighted
tensor products and unrestricted subspace sampling.

For the periodic Sobolev spaces we have kγ = γ · k1 with k1 not being an an-
chored kernel, so that the results from [29, 40] on the multivariate decomposition
method are not directly applicable. Instead, one may study embeddings of the
weighted Korobov spaces H(Kγ

∞) into ∞-fold weighted tensor products of the non-
periodic Sobolev spacesW r,2[0, 1] (with fractional smoothness). More conveniently,
Theorem 5.1 immediately yields the following result.

Theorem 5.6. If the cost function $ satisfies $(ν) = Ω(ν) and $(ν) = O(eσν) for

some σ ∈ (0,∞), then we have

λdetunr(K
γ

∞) = min

{

r,
decay(γ)− 1

2

}

.

6. Appendix

6.1. A Dense Subspace of H(K). Consider a sequence (kj)j∈N of reproducing
kernels on D ×D for some set D 6= ∅ such that

H(1) ∩H(kj) = {0}
for every j ∈ N. For s ∈ N we define the reproducing kernel Ks on Ds ×Ds by

Ks(x,y) =
s
∏

j=1

(1 + kj(xj , yj)),

where x,y ∈ Ds. In the sequel we assume that

X = {x ∈ DN |
∞
∏

j=1

(1 + kj(xj , xj)) <∞} 6= ∅,

and we define the reproducing kernel K on X× X by

K(x,y) =

∞
∏

j=1

(1 + kj(xj , yj)),

where x,y ∈ X.
The following lemma and its proof are almost identical to [19, Prop. 2.18]. Recall

the definition of ψX
s in (13).
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Lemma 6.1. The mapping ψX
s is a linear isometry from H(Ks) into H(K), and

⋃

s∈N
ψX
s (H(Ks)) is a dense subspace of H(K).

Proof. First we show that

(27) 1 ∈ H(K)

with

(28) ‖1‖K = 1.

Note that

X = Ds ×Rs,

where

Rs = {x ∈ D{s+1,s+2,... } |
∞
∏

j=s+1

(1 + kj(xj , xj)) <∞}.

Consider the reproducing kernel Ks on Rs ×Rs, given by

Ks(x,y) =
∞
∏

j=s+1

(1 + kj(xj , yj))

for x,y ∈ Rs. Obviously,

K = Ks ⊗Ks,

and we have 1 ∈ H(Ks) with ‖1‖Ks
= 1. Fix y ∈ X, and define fs : X → R by

fs(x) = Ks((xs+1, xs+2, . . . ), (ys+1, ys+2, . . . ))

for x ∈ X. It follows that lims→∞ fs(x) = 1 for all x ∈ X. Furthermore, fs ∈ H(K)
with

‖fs‖2K =
∞
∏

j=s+1

(1 + kj(yj , yj)),

so that lims→∞ ‖fs‖K = 1. Similarly, we obtain

〈fs1 , fs2〉K =
∞
∏

j=s2+1

(1 + kj(yj , yj)) = ‖fs2‖2K

for 1 ≤ s1 ≤ s2, which yields

‖fs1 − fs2‖2K = ‖fs1‖2K + ‖fs2‖2K − 2〈fs1 , fs2〉K = ‖fs1‖2K − ‖fs2‖2K .
Therefore (fs)s∈N is a Cauchy sequence in H(K), and (27) as well as (28) follow.

We apply (27) and (28) with Ks instead of K to derive 1 ∈ H(Ks) as well as
‖1‖Ks = 1. This yields ψX

s f = f⊗1 ∈ H(K) and ‖ψX
s f‖K = ‖f‖Ks

for f ∈ H(Ks).
To establish the second part of the claim it suffices to show that K(·,y) belongs

to the closure of
⋃

s∈N
ψX
s (H(Ks)) for every y ∈ X. Let s ∈ N. Use the first part

of the claim to verify

‖K(·,y)− ψX

s Ks(·, (y1, . . . , ys))‖2K = K(y,y) −Ks((y1, . . . , ys), (y1, . . . , ys)).

Since lims→∞Ks((y1, . . . , ys), (y1, . . . , ys)) = K(y,y), the statement follows. �



EMBEDDINGS OF WEIGHTED HILBERT SPACES 31

6.2. Embeddings into L1-spaces. This section is based on [19, Lem. 2.6 and
Rem. 2.7]. A similar result, with a suboptimal constant, is presented in [16, Lem. 7].
The proof in the latter reference uses the Little Grothendieck Theorem. Here we
give an elementary proof. The technique used in our proof is well-known and for
instance used in the Malliavin calculus, and it is also a small part of a proof of the
Little Grothendieck Theorem itself.

In this section we fix s ∈ N. For j ∈ 1 : s let kj be a reproducing kernel on
Dj ×Dj for some set Dj 6= ∅. Furthermore assume that ρj is a probability measure
(on a given σ-algebra) on Dj such that

H(kj) ⊆ L1(Dj , ρj).

Denote by ij the corresponding embedding. The closed graph theorem implies that
ij is continuous.

Define the set

D(s) = D1 × · · · ×Ds

as well as the product ρ(s) of the probability measures ρ1, . . . , ρs. We define the
reproducing kernel Ks on D(s) ×D(s) by

Ks(x,y) =
s
∏

j=1

kj(xj , yj),

where x,y ∈ D(s).

Lemma 6.2. We have

H(Ks) ⊆ L1(D(s), ρ(s))(29)

as well as

‖i‖ ≤ (π/2)(s−1)/2
s
∏

j=1

‖ij‖,(30)

where i denotes the embedding corresponding to (29).

Proof. We proceed inductively, and here it suffices to consider the case s = 2.
Let f1, . . . , fm ∈ H(k1) be orthonormal, g1, . . . , gm ∈ H(k2) be arbitrary, and
X1, . . . , Xm be independent standard normally distributed random variables. Set

c =
√

π/2 · ‖i1‖‖i2‖
and h =

∑m
n=1 fi ⊗ gi. We get
∫

D1×D2

|h| dρ(2) ≤ ‖i1‖
∫

D2

∥

∥

∥

m
∑

n=1

fn gn(y)
∥

∥

∥

k1

ρ2(dy)

= ‖i1‖
∫

D2

(

m
∑

n=1

gn(y)
2
)1/2

ρ2(dy)

=
√

π/2 · ‖i1‖
∫

D2

E
∣

∣

∣

m
∑

n=1

Xngn(y)
∣

∣

∣
ρ2(dy)

=
√

π/2 · ‖i1‖ ·E
∥

∥

∥

m
∑

n=1

Xngn

∥

∥

∥

L1(ρ2)
,
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and hence
∫

D1×D2

|h| dρ(2) ≤ c ·E
∥

∥

∥

m
∑

n=1

Xngn

∥

∥

∥

k2

≤ c

(

E
∥

∥

∥

m
∑

n=1

Xngn

∥

∥

∥

2

k2

)1/2

= c
(

m
∑

n=1

‖gn‖2k2

)1/2

= c ‖h‖Ks
,

which shows the claim. �

Remark 6.1. In the following we show that the constant (π/2)(s−1)/2, appearing
in (30), is optimal. Let m ∈ N and j ∈ 1 : s. Let ρj denote the standard normal
distribution on Dj = Rm, and let the reproducing kernel kj be such that H(kj)
is the dual space of Rm equipped with the Euclidean norm. Furthermore, let X
denote a standard normally distributed random variable. Since E(|X |) =

√

2/π,
we get

∫

Dj

|f | dρj =
√

2/π · ‖f‖kj

for all f ∈ H(kj), and in particular,

‖ij‖ =
√

2/π.

Denote by Xi ∈ H(kj) the ith projection, i.e.,

Xi(x) = xi,

for x ∈ Dj and for i = 1, . . . ,m. Note that X1, . . . , Xm ∈ H(kj) are orthonormal.
Consider

h =

m
∑

n=1

X⊗s
n ,

where X⊗s
n denotes the s-fold tensor product of Xn with itself. Note that

∥

∥h/
√
m
∥

∥

Ks
= 1,

since X⊗s
1 , . . . , X⊗s

m ∈ H(Ks) are orthonormal. The central limit theorem and a
standard argument for convergence in distribution imply

lim inf
m→∞

∫

D(s)

∣

∣h/
√
m
∣

∣ dρ(s) ≥ E(|X |) =
√

2/π.

This shows the claim, even if there is no dependence on j.
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