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Abstract

It is known that for a p-weighted Lg-approximation of single variable functions f with
the rth derivatives in a 1)-weighted L, space, the minimal error of approximations that
use n samples of f is proportional to ||w1/°‘|]%1Hf(r)¢||Lpn_r+(1/p_1/q)+, where w = o/¢
and o = r — 1/p+ 1/q. Moreover, the optimal sample points are determined by quantiles
of w!/®. In this paper, we show how the error of best approximations changes when the
sample points are determined by a quantizer xk other than w. Our results can be applied
in situations when an alternative quantizer has to be used because w is not known exactly
or is too complicated to handle computationally. The results for ¢ = 1 are also applicable
to p-weighted integration over unbounded domains.

Keywords: quantization, weighted approximation, weighted integration,
unbounded domains, piecewise Taylor approximation
MSC 2010: 41A25, 41A55, 41A60

1 Introduction

In various applications, continuous objects (signals, images, etc.) are represented (or approx-
imated) by their discrete counterparts. That is, we deal with quantization. From a pure
mathematics point of view, quantization often leads to approximating functions from a given
space by step functions or, more generally, by (quasi-)interpolating piecewise polynomials of
certain degree. Then it is important to know which quantizer should be used, or how to select
n break points (knots) to make the error of approximation as small as possible.

It is well known that for L, approximation on a compact interval D = [a,b] in the space
FJ(D) of real-valued functions f such that f (" € L,(D), the choice of an optimal quantizer is
not a big issue, since equidistant knots lead to approximations with optimal L, error
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where ¢ depends only on r, p, and ¢, and where x, := max(x,0). The problem becomes more
complicated if we switch to weighted approximation on unbounded domains. A generalization
of (1) to this case was given in [5], and it reads as follows. Assume for simplicity that the domain
D =R, :=[0,400). Let ¢, 0 : D — (0,+00) be two positive and integrable weight functions.
For a positive integer 7 and 1 < p, ¢ < +00, consider the p-weighted L, approximation in the
linear space F7 (D) of functions f : D — R with absolutely (locally) continuous (r — 1)st
derivative and such that the i-weighted L, norm of f) is finite, i.e., || f"¢||;, < 4o00. Note
that the spaces I} (D) have been introduced in [7], and the role of ¢ is to moderate their size.
Denote
(2)

and suppose that w and ¢ are nonincreasing on D, and that
||z, == / w'%(z) dz < +oo. (3)
D

It was shown in [5, Theorem 1] that then one can construct approximations using n knots with
o-weighted L, error at most
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This means that if (3) holds true, then the upper bound on the worst-case error is proportional
to [lw/®||¢, n=rt(/P=1/D+  The convergence rate n~"+(1/P=1/9+ is optimal and a corresponding
lower bound implies that if (3) is not satisfied then the rate n~"*(1/P~1/@+ cannot be reached
(see [5, Theorem 3]).
The optimal knots
O=zy<z]<...<x, 4 <T, =400

are determined by quantiles of w!/®, to be more precise,

*
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In order to use the optimal quantizer (4) one has to know w; otherwise he has to rely on
some approximations of w. Moreover, even if w is known, it may be a complicated and/or
non-monotonic function and therefore difficult to handle computationally. Driven by this mo-
tivation, the purpose of the present paper is to generalize the results of [5] even further to see
how the quality of best approximations will change if the optimal quantizer w is replaced in (4)
by another quantizer k.

A general answer to the aforementioned question is given in Theorems 1 and 3 of Section 2.
They show, respectively, tight (up to a constant) upper and lower bounds for the error when
a quantizer x with ||k'/%||z, < +oo instead of w is used to determine the knots. To be more
specific, define

W
gg(wuﬁ) = HEHLOO fOI‘p S q, (5>

1 1 1/q—1/p
Elw, k) = / *(x ( (x)) e dz for p > ¢ (6)
Hfil/"‘HLl () N

and




(Note that (5) and (6) are consistent for p = ¢.) If £!(w,x) < 400 then the best achievable
error is proportional to
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This means, in particular, that for the error to behave as n~"*(/P=1/9+ it is sufficient (but
not necessary) that x(x) decreases no faster than w(z) as |z| — +oo. For instance, if the
optimal quantizer is Gaussian, w(x) = exp(—2?/2), then the optimal rate is still preserved if
its exponential substitute x(z) = exp(—alz|) with arbitrary a > 0 is used. It also shows that,
in case w is not exactly known, it is much safer to overestimate than underestimate it, see also
Example 5.

The use of a quantizer k as above results in approximations that are worse than the optimal
approximations by the factor of

1/

%7211,
ﬁgg(w,li) Z 1.
ot I,

FCTR(p, q,w, k) =

In Section 3, we calculate the exact values of this factor for various combinations of weights o,

1, and &, including: Gaussian, exponential, log-normal, logistic, and ¢-Student. It turns out

that in many cases FCTR(p, ¢, w, k) is quite small, so that the loss in accuracy of approximation
is well compensated by simplification of the weights.

The results for ¢ = 1 are also applicable for problems of approximating p-weighted integrals

/Df(x)g(x)dx for f e F},(D).

More precisely, the worst case errors of quadratures that are integrals of the corresponding
piecewise interpolation polynomials approximating functions f € FJ d}(D) are the same as
the errors for the p-weighted L;(D) approximations. Hence their errors, proportional to n™",
are (modulo a constant) the best possible among all quadratures. These results are especially
important for unbounded domains, e.g., D = R, or D = R. For such domains, the integrals are
often approximated by Gauss-Laguerre rules and Gauss-Hermite rules, respectively, see, e.g.,
[1, 3, 6]; however, their efficiency requires smooth integrands and the results are asymptotic.
Moreover, it is not clear which Gaussian rules should be used when ® is not a constant function.
But, even for 1) = 1, it is likely that the worst case errors (with respect to F) ) of Gaussian
rules are much larger than O(n~"), since the Weierstrass theorem holds only for compact D. A
very interesting extension of Gaussian rules to functions with singularities has been proposed
in [2]. However, the results of [2] are also asymptotic and it is not clear how the proposed
rules behave for functions from spaces F; . In the present paper, we deal with functions of
bounded smoothness (r < +o00) and provide worst-case error bounds that are minimal. We
stress here that the regularity degree r is a fixed but arbitrary positive integer. The paper [4]
proposes a different approach to the weighted integration over unbounded domains; however,
it is restricted to regularity r = 1 only.

The paper is organized as follows. In the following section, we present ideas and results
about alternative quantizers. The main results are Theorems 1 and 3. In Section 3, we apply
our results to some specific cases for which numerical values of FCTR(p, ¢, w, k) are calculated.



2 Optimal versus alternative quantizers

We consider g-weighted L, approximation in the space F} w(D) as defined in the introduction;
however, in contrast to [5], we do not assume that the weights ¢ and w are nonincreasing.
Although the results of this paper pertain to domains D being an arbitrary interval, to begin
with we assume that

D =R,.
We will explain later what happens in the general case including D = R.
Let the knots 0 = 2y < ... < z, = +00 be determined by a nonincreasing function
(quantizer) s : D — (0, +00) satisfying |||z, < +oo, i.e.,
/“ﬁ%wmziwﬂwh with a = r—— 42 (7)
0 n p q

Let 7. f be a piecewise Taylor approximation of f € F} (D) with break-points (7),

n r—1
_2 : 2 :f 331— k
- 1[%‘-;,1 Z‘-L - xi—l) .
=1 k=0

We remind the reader of the definition of the quantity £!(w, ) in (5) and (6), which will
be of importance in the following theorem.

Theorem 1 Suppose that
Elw, k) < +oo.

Then for every f € Fz?,w(D) we have
10 = Tahellz, < v 6V, E3w, 7) | FO1], nr+ W1/ ®)

where
1

r— 1 ((r — L)pr + D)7

Proof. We proceed as in the proof of [5, Theorem 1] to get that for z € [z;_1,x;)

C1 =

o(@)|f (@) - Tof(z)] = &= dt’

- !
< a % (/M LFO @ )|pdt> 1/pfi(:'f)(fﬂ — i)

Since (cf. [5, p.36])
Hnl/m)““’

n

k(z)(x — xi)rfl/p < (Rl/a<x))1/q(

the error is upper bounded as follows:

I(f = Tof)ol, = (Z / —7;f<x>\qdw)l/q

ey <z</ o (Z2)) ([ msors)”)



Now we maximize the right hand side of (9) subject to

1A, = Z/ (Pt = 1
i=1 Y Ti-1

After the substitution

this is equivalent to

maximizing Y.", A;B; subject to Y7 B9 =1.

We have two cases:
For p < g, we set ¢* = arg max;<;<,, 4;, and use Jensen’s inequality to obtain

n n n q/p
> AB < Ay B < Ap (Z Bf“) = Ay
=1 =1

i=1
Hence the maximum equals A;« and it is attained at B} =1 for ¢ = ¢*, and B} = 0 otherwise.
In this case, the maximum is upper bounded by |lw/k||% |||, /n, which means that

KL

107 =T, < e (BN s,

For p > q we use the method of Lagrange multipliers and find this way that the maximum

equals . o -
(£) - (B o)

i=1 i=1

and is attained at
q/p

1
1-q/p
Ai

S B
Z?:1 A]}—q/p
Since 1/(1—q/p) > 1, by the probabilistic version of Jensen’s inequality with density n £/ /||x

we have
e A N O N
< —= / gV(x) [ =22 dz.
n Ti—1 K:(x)

</ R (a) (%)q dx) -
(i Afé“’>lq/p < (%)w (/+°° KkHo(2) (%)de) 1—q/p’

This implies that
and finally

B =

2

1< <n.

1/aHL17

1/g-1/p

1/a r 400 T
||<f B Ef)@HLq < CI(HK ||L1) (/ Hl/a(l‘) <W(l')) /a—1/ dx) ||f(r)¢||Lp7
0

n

as claimed since 1/g — 1/p=a —r. 0



Remark 2 If derivatives of f are difficult to compute or to sample, a piecewise Lagrange
interpolation £, can be used, as in [5]. Then the result is slightly weaker than that of the
present Theorem 1; namely (cf. [5, Theorem 2|), there exists ¢, > 0 depending only on p, ¢,
and 7, such that

1; ”(f L f)QHLq
msup sup B) n"
n—oo  feFy (D) ||f 1/)||Lp

+(1/p—1/9)+ < C H"GI/QHLl Eq(w,m).

We now show that the error estimate of Theorem 1 cannot be improved.

Theorem 3 There exists co > 0 depending only on p, q, and r with the following property. For
any approximation A, that uses only information about function values and/or its derivatives
(up to order r — 1) at the knots xo, ..., x, given by (7), we have

A,
liminf sup I/ = Anf)elle, n'—1/p=1/9)
noo repr oy ILfOYL,

© 2 ek, Elw, k). (10)

Proof. We fix n and consider first the weighted L, approximation on [0, z,_1) assuming that
in this interval the weights are step functions with break points x; given by (7). Let ¢, 0;,
w; = 0;/¥i, and K; be correspondingly the values of ¥, o, w, and Kk on successive intervals

[;—1, ;). Then we clearly have that (z; — z;_1)k; Ve =Y\ 220,001y / (n — 1).
For simplicity, we write I; := (x;_1,x;). Let fz, 1 <i <n—1, be functions supported on I,
such that fi(J)(xi_l) =0= fi(])(xi) for 0 <j<r—1, and
1 Fillzatry = ealws = i) A 1y (1)
We also normalize f; so that || fi(r)|| L,(1;) = 1/1;. We stress that a positive ¢y in (11) exists and

depends only on r, p, and q.
Since all f; U) nullify at the knots z, the ‘sup’ (worst case error) in (10) is bounded from

below by
n—1 n—1
Sup(n) = sup {HngLq L= B > 1B = 1},
i=1 i=1
where we used the fact that |||z, = (Z?;ll |3:]7) Y7 For such f we have
n—1 1/q n—1 1/q
I, = (S otsielte) = (3 (80l
i=1 i=1
n—1 ") q 1/q
> o X (1Bloto - a1 1)’ )

i=1

(Y (E )

Thus we arrive at a maximization problem that we already had in the proof of Theorem 1.
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For p < ¢ we have

1/a o . 1/ o
Sup(n) = ¢ <—”K HLl) max 2 = ¢ (—HI{ HLl) ess sup w(z)
while for p > ¢ we have

n—1 1<i<n—1 K;
n—1 1 oa—rTr
1Y
S = !
up(n) Co ( — 2
n—1 1 a-—r
N A S Y TRV A
2 n—1 - n—1 i

1/04 T Tn—1 ai,« ar
_ C2<||m ||L1) ( / Rl/a(x)(m)) dx) |
n—1 0 K(x
as claimed.

For arbitrary weights, we replace v, o, and k with the corresponding step functions with

~.

Hl/a «a
Vi = esssup Y(z), ;= essinf o(x), kK= ( I~z ) ,  1<i<n—1,
2€(Ti—1,%5) T€(Ti—1,%:) n(xl - :UZ',]_)
and go with n to 4o0. O

We now comment on what happens when the domain is different from R, . It is clear that
Theorems 1 and 3 remain valid for D being a compact interval, say D = [0, ¢] with ¢ < 4o0.
Consider

D =R.

In this case, we assume that s is nonincreasing on [0, +00) and nondecreasing on (—oo, 0]. We
have 2n + 1 knots z;, which are determined by the condition

1’2 7: ]
| R = e e, < (12)
0 n

(where fofa = — fao) Note that (12) automatically implies g = 0. The piecewise Taylor ap-
proximation is also correspondingly defined for negative arguments. With these modifications,
the corresponding Theorems 1 and 3 have literally the same formulation for D = R and for
.D - R+.

Observe that the error estimates of Theorems 1 and 3 for arbitrary « differ from the error
for optimal k = w by the factor

1/a

AR

FCTR(p, q,w, k) = PR

From this definition it is clear that for any s,¢ > 0 we have
FCTR(p, q, sw,t k) = FCTR(p, ¢, w, k).

This quantity satisfies the following estimates.



Proposition 4 We have

1/a||a
1 = FCTR(p,q,w,w) < FCTR(p,q,w,k) < =1z, ‘

= o

1%, ‘%HLOO (13)

The rightmost inequality is actually an equality whenever p < q.

Proof. Assume without loss of generality that ||x'/%||;, = ||w'/%||z, = 1, so that FCTR(p, ¢,w, ) =
&l(w, k). Then for any p and ¢

e
wl/oc

L= Jlweg, < Is2E,

Krl/o

w
= || )
Loo RllLeo

which equals £!(w, x) for p < ¢. For p > ¢ we have (1/¢ —1/p)/a =1 —r/a < 1, so that we
can use Jensen’s inequality to get

E4(w, k) = (/D ,ﬁl/a(x)(:ijzg;)&dg e > (/D ﬁl/a(m)<ii532i;>dm)a = 1.

The remaining inequality &(w, k) < H%H ;. 1s obvious. O

Although the main idea of this paper is to replace w by another function x that is easier
to handle, our results allow a further interesting observation that is illustrated in the following
example.

Example 5 Let D = R,

and the weights

1 —x? ) 9
Ko(x) = Nz exp (202) with  0° >0

Since p > ¢, we have

1/2

i H%l/ ke (2) w(z) - { too if 02<1/2,
R

= 2
w2112, J= ||ke'?| 1, Holx)

FCTR‘(p7Q7w7I{O') \/07 lf 0'2 > 1/2
202—1 ’

The graph of FCTR(p, ¢, w, k) is drawn in Fig. 1. Tt follows that it is safer to overestimate the
actual variance o2 = 1 than to underestimate it.

3 Special cases

Below we apply our results to specific weights p, 1, and specific values of p and gq.

8



2.0 H

1.6

1.4

1.2

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 1: Plot of FCTR(p, ¢,w, k,) versus o from Example 5

3.1 Gaussian p and
Consider D = R,

—? 2
o(z) = . 127 exp (2—;2) and ¢(x) = exp (2—;)

for positive o and \. Since

ola) = —— e (S 021,

o\2T

1/a

for [|w!'/*||L, < co we have to have A > o, and then

lwV/ae 1 a2r \*?
w = :
oV \o 2= A2

K(x) = Ko(z) = exp(—|z|a) for a > 0.

We propose using
Then ||/<:(1l/a||Ll(D) = 2a/a and the points x_,, ..., z, satisfying (12),

/ gV dt = — [ kYo dt for il <n,
0 2n

—00

are given by

n

xi——x_i——gln<1—l> for 0 <i<n. (14)

In particular, we have
r_, = —00, x9 =0, and =z, = oo.

We now consider the two cases p < ¢ and p > ¢ separately:

9



3.1.1 Caseof p<gqg

Clearly
w

Eg(w, Kq) =

Rq

1 ( a? )
= exp | ———
Leo(D) OV2T P2 (072 = A72)
) ) 1 1
is attained at a, = {/« -~ 13 ]
Lo o A

26 /2
FCTR(p, ¢, w, ka,) = (—) )

and

w

. 1/
min |5, 1z, o) ||+

Hence, for p < q we have that

™

Note that FCTR(p, ¢, w, ka4, ) does not depend on ¢ and A (as long as A > o). For instance, we
have the following rounded values:

i |t | 2|3 | 4
FCTR(p, ¢, w, ka,) || 1.315 | 1.731 | 2.276 | 2.995

3.1.2 Caseof p>gq

We have now
a

Elw, ka) = (—)OH"

(67

where
1= e et o
- oo (i) [, o (e

a(e=2-A"2)
14-erf ar ,
* (Oz\/Z(a—r)(o2—)\2)>]

= exp (2@2 (a— ;L)Q Zz _ )\2)) 2 (7;<3:;>2)

where erf(z) := \/%7 I e~* dt. This gives

a’m(a—r) (a=r/2 a’r?
q p—

1+erf ar air.
- <oz\/2(oz—r)(cr—2—)\—2)>]

X

Since y
ka3, ) 2a(0~2 — A2)\*/”
[ota]s :‘“2”< - )
L1(D)

10



we obtain

2a(62 = A2)\"? [ — ) @2 a?r?
FCTR(p, ¢,w,Ka) = ( ( — >) ( - ) exp (QQQ(JQ_AQQ

1+ erf ar ) T.
* (a\/Q(a—r)(az—)\Q))]

We provide some numerical tests for ¢ = 1 and p = 2 or p = co. Then @ = r 4+ 1/2 or
a = r + 1, respectively. Recall that results for ¢ = 1 are also applicable to the g-integration
problem.

For r € {1,2}, p € {2,00}, A =2 and ¢ = 1, we vary a and obtain the following rounded
values:

a 1 2 3 4
FCTR(2, 1L, w, /y) || 1.135 | 1.476 | 4.361 | 26.036 o,
FOTR(2,1,w, #q) || 1.645 | 1.552 | 5.836 | 65.061 | r =2 |7~
FCTR(00, Lw, k) || 1172 | 1.179 | 1.979 | 4.920 |[r=1| _
FCTR(00, 1,w, ka) || 1.733 | 1.269 | 2.617 | 11.826 9 | P T

3.2 Gaussian ¢ and Exponential ¢
Consider D = R,

o(z) = U\}ﬂexp (2:2> and (z) = exp (#)

for positive A and 0. Now

oy =2 L (-x—2+m), (15)

le/aHa 1 5 /‘Ooe —x2 N T A o
pr— X —_—
L1 (D) ovVoTm 0 P 202« Ao

- (2 /Omexp(‘“"/g;"/”ﬂzjj >dx>

and

1 0 ) ( > 2 )
= exp | —= oV2tmta— exp(—y dy)
27 (2)\2 \/_ —o/(AV2a) ( )
1 o? o “
= 5= exp (2—)@) (a\/27ra (1+erf(}\m>)) .

As before, we propose using k,(z) = exp(—|z|a). Hence ||f£,1/a||L1 = 2a/a and the points z;
are given by (14).

3.2.1 Case of p <gq
We have

w

Ra

Eg(w, Kva) =

| ep(az(a—i—)\_))
— X —_— .
Loo(D) U\/27T 2

11



It is easy to verify that the minimum over a > 0 satisfies

in ||kl w 1 (204)0‘ <U2(a*+)\_1)2)
min ||k — = exp | ——————
a>0 a L1(D) all Lo (D) o /_27'(' a, p 2

for
Vi+dad/o? -1
Ay =
2\
Therefore

«

2
FCTR(p, q,w, Kq,) = ,/2—0‘ 1 exp <a a,(a, +2/>\)) |
T a0 <1+erf(a/\/2a)\)> 2

Note that the value of FCTR depends on p and ¢ only via a. Rounded values of FCTR for

a € {1,2} and o = 1 and various \’s are!:

)\Hl 5 | 10 | 20 | 30 | 100 |
FCTR 723 1.183 [ 1.162 | 1.174 [ 1.188 | 1.231 | a = 1
FCTR || 2.468 | 1.460 | 1.436 | 1.465 | 1.491 | 1.573 || a = 2

3.2.2 Caseofp>gq

We have .
a a—rTr a—r
E9(w, ka) = (&) A
where now
o0 x? a 1 a
A = - ~ ) )4
/0 exp( 202 (a—7) (oz—r AMa—1) « ) o
o 1 9 o (far 1
pr— —_— —2 — —
/0 exp( 2o (a = 7) (x To (@ +)\) )d:E
= ex 7Lt /Ooex =5 +5))" dx
P (v —1) 0 P 202 (o —)
2 7ar | 12 2 — ar 4 1
~ e o’ (% +5) o’ (a—r) |+ exf o (% +5)
2(04—7”) 2 2(05—7“)
Hence
1 a’ro’(a—r) (a=r)/2 o (ar 1\°
q _ O el
ENw, k) . 27r( 5o ) exp 5 ( /\>
1+ erf —U(G‘l_rJr%) _
V2(a—r)
Since

|| l/a“Ll(D) 2 « —o
oty gy~ (2) 7o () (e (ot (7))
le/a“%l(p) <a> ovEmeEP Tane )\ A 2a

'Computed with MATHEMATICA
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we obtain
1 20" a?mwo? (a—r)\ "2 o? ar 1\> 1
FCTR D= =/ () — 2
(P 4,0, o) (aa 7'(')( 2 a2 ) P15 (a+)\> A2
Lo (2GR [
et (55|

ot ()]

We again provide numerical results, first for the case p =2 and ¢ =1, i.e., a =7+ 1/2.
For r € {1,2} and varying a, we obtain the following rounded values:

X

1 2 3 4
FCTR(2 1w, ke) || 1.273 | 2.426 | 9.570 | 66.233 || A=1, o =1 S
FCTR(2,1,w,K,) || 1.181 | 1.642 | 4.652 | 23.070 [ A =2, 0 =1
FCTR(2,1,w,k,) || 1.747 | 2.546 | 12.473 | 146.677 | A =1, 0 =1 r—9
FCTR(2,1,w, kq) || 1.747 | 1.729 | 5.683 | 44.797 [ A =2, 0 =1

We now change p to p = oo, and choose again ¢ = 1, which implies & = r+ 1. For r € {1, 2}
and varying a we obtain the following rounded values:

a 1 2 3 4
FCTR(o00, 1,w, Kky) || 1.203 | 1.512 | 3.156 | 9.409 [ A =1, 0 =1 r =1
FCTR(00, 1,w, ko) || 1.199 | 1.242 | 2.081 | 4.888 ||\ =2, o =1
FCTR(o00, 1,w, Kky) || 1.724 | 1.700 | 4.509 [ 23434 | A =1, 0 =1 r—9
FOTR(00, 1,w, ka) || 1.827 | 1.366 | 2.647 | 9.807 [ A =2 o=1|" "
3.3 Log-Normal ¢ and constant
Consider D =R, ¢(z) = 1 and
1 (Inx — M)2)
r) = w(x) = exp | — 16
ola) = wlo) = —— e (-1 (16
for given p € R and o > 0.
For k we take
1 if z € [0, e"],

relr) = { exp(c(p—Inz)) if z > ek
for positive c¢. For ke to be integrable we have to restrict ¢ so that

cC> Q.

(6% C “ (0%
|k 1%, o) = (C_a> M

Then the points x; for i = 0,1, ..., n that satisfy (7) are given by

It can be checked that

NV}
€Ty = o " a/(c—a) B
et (g L) otherwise.



3.3.1 Caseof p<g
We determine ||w/k||..(p). For z < e* we have

w(a) I T <_(t—u)2

Ke() B oV2T 202

—t) with ¢ = Inx < p.

Its maximum is attained at t = u — 02 and

w(x) 1 o2
max = exp|——p).
vt mo(r)  ov2m T2 !

For x > e*,

wiz) _ 1 (t — p)?

exp | — +t(c—1 witht = Inxz > u.
Ke(z)  exp(cp)oV2m p( 202 ( )> H

The maximum of the expression above is attained at ¢t = p+ 0% (¢ — 1) and

1 -1 2 2
up @) _ oxp ((C IR u)
e>en Ke(T) exp(cp)ov2m 2
1 < N (c—1)2 02>
s ex —_ — .
o227 P 2
This yields that
w 1 o?
— = exp | — +—max1,c—12).
o = v e (e G w1

To find the optimal value of ¢, note that

(a=1)p
w 1/a||a e o
— K = c)),
kellp o) 5. ”Ll(D) oo (f(c))

where f(c) is given by

4O — (02 max(1, (¢ — 1)2)) (1+ a )

2o c— o

Consider first o > 2 and recall the restriction ¢ > «. For such values of ¢ we have

o = oo (Y (14 )

r0 = e (g e 12) (cle-nEe-a)- %)

alc—a)?

and hence

Therefore,

min f(c) = f(c.) = exp (UQ - 1)2) c*c*

c>a 2

14



for ¢, such that
2

¢ > a and ¢ (e —1)(ce —a) = &—2. (17)
o
Consider next a € (0,2). Then for ¢ < 2, the minimum of f(c) is attained in ¢ = 2, and it
is a global minimum if 2(2 — ) > a?/0?. Otherwise, the minimum is at ¢, given by (17).
In summary, for « > 0, we have

) exp <a2 (c;—l)2> (C*Cia> if o > 2
|51/ ela— b 2
K

|1 = ——— X or2(2—a) < 9%,
TV ( -
exp

%) (ﬁ) “ otherwise.

w

Re

min
c>o

To derive the value of the L; norm of w'/®, we will use the following well-known facts: If
X 1s @ log-normally distributed random variable with parameters o and p, then the mean
value and the variance of X, , are, respectively, equal to

E(X,,.) = exp (02/2 + u) and E(X,, — IE(XWL))2 = (exp (02) — 1) exp (02 + 2,u) :

Hence
E(X2,) = exp(20° +24). (18)

If « =1, then ||w1/°‘||%1(D) =1, and then

e o2 (em1)?) 1
e oxp (5 2 < L,

1

FCTR(p, ¢, w, Ke,) = —=—= ) :
oV2m 2 exp (%) otherwise.

For a € (1,2), to simplify the notation, we will use, in the following, parameters s and =y
given by

The change of the variable x = t* gives

*© 1 —(Inz — p)?
(a \/27T)1/0< ||W1/a||L1(D) = / —7a ©XP <M) dx
0

xl/

0o _ s _ 2
0 2a0?
> —(Int —pu/s)
= t dt
o e ( 2(0 Vas)?
> 2 —(Int — p/s)?
e [ '
sYV2T Vi exp 72

The last integral is the expected value of the square of a log-normal random variable X, ,/;
with the parameter o replaced by v and p replaced by p/s. Hence

1%, () = % exp <272a+ QMTQ) _ (0v2ma) exp (M +p(a— 1)) .

||w1/a

oV2m

15



This gives us

FCTR(p, ¢, w, ke.) = ((C* — a;; \/m)a exp (02 - 1)22_ o 1)2)>

if either « > 2 or @ < 2 and 2(2 — a) < a?/0?, and

FCTR(p, ¢, w, ka) = ((2 — a)Q (a — 1)2))

)a <02(1—
ex
oV2Ta P 2

if « <2and 22— a)>a?/c%
Rounded values for FCTR for various ¢ and o are?:

o 1 2 3
FCTR || 1.315 12948 | 23.941 || a =1
FCTR || 2.988 | 4.615| 7573 ||a=2

3.3.2 Caseofp>gq

Now o
ENw, ke) = . 127T (Cc—eyoz> ([ + 1),
where 9 . (e — p)?
I :/0 exp(—a_r [ 552 —i—lnx})dx
and

Igz/eooexp(— ! {(ln;;”)gﬁnx]—L)(u—lnx))dx.

" a—r ala—r

In what follows, for both integrals, we will use first the change of variables y = Inx — u. We
have

0 1 y2
L = / eXp(y+u)eXp(— {—2+y+uDdx
o — 20

—0 r

= exp(p%) /_ioexp(—air {Qy—;—l—(l—%r—a)y})dx
o) [ (£,
(g () (e,
~ exp l+r—a (o*(1+r—a) o2(a—r)m
(= I

a—r 2 2

2Computed with MATHEMATICA.
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Similarly for I, we get

a—r—1 0 1 y? re
L = exp(p—t exp ( — Sty—y (a-r+Z5)| ) ay
a—r 0 a—1r |20 «Q
exp (02 (1+r—a—rc/a)?

2 (a—r) ) /Ooexp (_[y+02(1+r—a—rc/a)]2) ay

exp (4552 1) (a=r)2ct
exp (02 (1+2r(—aa_;;c/a)2> o2 (a —r)m c(l+r—a—-rc/a)
exp (T2 1) : ll_erf< 2(@=1) >]
Hence
(L + L)

exp(c?(1+7r—a)?/2) [o?(a—71)7 (a=r)/2 oc(l4+r—a)
e ] ”erf< 2<a—r>>

o g (- () [ ()

Since computing FCTR(p, q,w, k.) for arbitrary parameters ¢ < p is very challenging, we
will do this for p = co and ¢ = 1, which—as already mentioned—corresponds to the integration
problem. In this specific case, we have &« = r 4+ 1 and

e = 2 [ (CODY [ (2=De))

This yields

c a—1)?

(c—a)ox/27ra>aexp <_02( 2 _M(a_l)>
o(la—1)c)? —oc(la—1)c
X {1+exp (%) {1—erf (%)”

As anumerical example we consider the case u = 0 and o = 1. For fixed o € {1.5,2,2.5,3,3.5}
we numerically minimize? FCTR(oo, 1,w, k) as a function in c. The results together with the
optimal ¢, are presented in the following table:

FCTR(o0, 1, w, k.) = <

o | 15 | 2 | 25| 3 | 35
FCTR(o0,1,w, ke, ) || 1.058 | 1.224 | 1.594 | 2.314 | 3.648
Co 2.555 | 2.973 | 3.422 | 3.899 | 4.392

3.4 Logistic p and Exponential ¢
Consider D = R,

= eXp(IE/V) an r) = expl—0|x
o) = ey () = exp(—blr)

3Using the MATHEMATICA command FindMinimum

17



with parameters v > 0 and b > 0. Then

wlz) = exp(z/v + b|x|)
v (1+ exp(z/v))?

/e “and is not monotonic. Consider

which is quite complicated, in particular if one considers w
therefore

Ko(z) = exp(—alz|) for some a > 0.

Hence the points z_,, ..., z, satisfying (12) are again given by (14).
To simplify the formulas to come, we use

1 _ Aexp(Az +blx|)
A==, e, w(x) = Tt epOn)? |

14

1/a

For [|w'(|7, py and [|w/kql|Lo.(p) to be finite, we need to have

A>b and M\ > a+0b.

Since the integral in Sg(w, k) becomes very complicated for this example we do not distin-
guish between p < ¢ and p > ¢. Instead we use the upper bound (13) here.

We first study ||w/kal|z.(p)- Since w and k, are symmetric, we can restrict the attention
to x > 0. By substituting z = exp(Az), we get that

w 1+(a+b)/A

Ka

A z
= Asup ———.
Loo(D) 2>1 (1+2)?

When a + b = A the supremum is attained at z = oo, otherwise it is attained at z = (A + a +
b)/(A — (a+b)). Therefore

w

Ka

A a—+ b\ et/ a4 b\ et/
-2 (1 1—
) )

Loo(D)

with the convention that 0° := 1, i.e., [|w/kallo(p) = A if a =X —b.
Indeed, the previous formula for ||w/kall;_py can be shown by noting that

Ata+b]E Aa+b\ "> Ata+d]"F A= (a+d))

P FA | QEERARBLIIL I A Azary
A—a—0b A—a—0> A—a—0> 2\

b

Ata+b] T _atby’

A—a—0b A

Aba+b]H . a+b\'"H . a+ b\
A—a—0b A A

1_a+61J# Atat+b A—a—b\HX
A A—a—0b A '

oo 200\ “
el = (2)

18
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We also have

el = A (2 [ AR IS )

(1+ exp(Ax))?/«

\ (2 /°° exp(Az/a) dx)a
o (I+exp(Az/a))®

due to the fact that 1/(1 + A)Y/* > 1/(1 + AY?) since a > 1. Therefore

alla Q @
g,y = A (5)

Y

This gives

9\ “ 1 @ b\ e/ 4B\ @A
FCT < |—] =11 11— .
ety < (21 (1020 (1)

As before the right-hand side above is

22 \* .
(m) lf(l—)\—b.

Letting = a/\, the minimum is at 0 < 2 < 1 — b/\ that is the root of

b b
T (1n<1+x+x>—ln<1—x—x>)—a:O.
4

Rounded values of the upper bound on FCTR for « = b =1 and various \’s are®:

Al 2 | 5 | 10 | 15
Bound on FCTR | 3.341 | 1.710 | 1.431 | 1.353

3.5 Student’s p and ¥
Consider Student’s ¢-distribution on D = R
2\ R (v +1)/2)
=T, |1+ — ith T, = ————= fi > 0.
o) ( i u> Wi Nz R
Here I' denotes Euler’s Gamma function I'(z) = [~ t* ‘e~ dt. Let

1’2

o) = (1+7)b/2 and y(x) = (14 Jal)

for a > 0 and b > 0. For [|w®||1,(p), 15| Ly(p)> and [|w/kall 1o (p) to be finite, we have to

assume that
v+1—56>a > a.

e 2a \“
Il = (o) -

It is easy to see that

4Computed with MATHEMATICA.
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Hence the points z_,, ..., z, satisfying (12) are given by

T, = —T_; = <1—£) aia—l for 0 <¢<n.

n
To compute the norm of w'/®, make the change of variables x/\/v = t/,/fi, where

v+1l—-b—a that 1 v+1—-0>
= ——  so tha = :
a « 2 2«

Then we get

2\ —(v+1-0)/(2) a
W80 = T (/ (1+%) dx)
R

Since i1t
w(x 2\ T
D1 (147 (14 fal)*,
Kaq() v
we have
“ =T, (1+v)"D2 foraq=v+1-0,
Ra |l Lo (D)
and
w w(Ty) ¢ Viv+1=0b24+4av(v+1—-b—a)—(r+1-10)
— = or T, =
Kallpooy K@) 2w+1—a—0)
fora<v+1-0.
This gives
(wri-by/2 (2L \° _ _
(1+v) <\/W> fora=v+1-b,
FCTR(p,q,w, k) < § ___(dwa)r (T, 2= \/E)" fora€ (a,v+1-1),

w+i=b)/2
()"
with equality whenever p < q.
In the following numerical experiments for fixed values of «, b and v, we choose a € (o, v +
1 — b of the form a = a + k/10 such that it gives the smallest value of the above bound on
FCTR. For example:

(v,b,a) || (3, 1\ ,2,2) | (5,3,2) | (6,3,3)
FCTR | 1427 | 1.626 | 1.710 | 1.861
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