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Abstract

It is known that for a %-weighted Lq-approximation of single variable functions f with
the rth derivatives in a ψ-weighted Lp space, the minimal error of approximations that
use n samples of f is proportional to ‖ω1/α‖αL1

‖f (r)ψ‖Lpn−r+(1/p−1/q)+ , where ω = %/ψ
and α = r− 1/p+ 1/q. Moreover, the optimal sample points are determined by quantiles
of ω1/α. In this paper, we show how the error of best approximations changes when the
sample points are determined by a quantizer κ other than ω. Our results can be applied
in situations when an alternative quantizer has to be used because ω is not known exactly
or is too complicated to handle computationally. The results for q = 1 are also applicable
to %-weighted integration over unbounded domains.

Keywords: quantization, weighted approximation, weighted integration,
unbounded domains, piecewise Taylor approximation
MSC 2010: 41A25, 41A55, 41A60

1 Introduction

In various applications, continuous objects (signals, images, etc.) are represented (or approx-
imated) by their discrete counterparts. That is, we deal with quantization. From a pure
mathematics point of view, quantization often leads to approximating functions from a given
space by step functions or, more generally, by (quasi-)interpolating piecewise polynomials of
certain degree. Then it is important to know which quantizer should be used, or how to select
n break points (knots) to make the error of approximation as small as possible.

It is well known that for Lq approximation on a compact interval D = [a, b] in the space
F r
p (D) of real-valued functions f such that f (r) ∈ Lp(D), the choice of an optimal quantizer is

not a big issue, since equidistant knots lead to approximations with optimal Lq error

c (b− a)α‖f (r)‖Lqn−r+(1/p−1/q)+ with α := r − 1

p
+

1

q
, (1)
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where c depends only on r, p, and q, and where x+ := max(x, 0). The problem becomes more
complicated if we switch to weighted approximation on unbounded domains. A generalization
of (1) to this case was given in [5], and it reads as follows. Assume for simplicity that the domain
D = R+ := [0,+∞). Let ψ, % : D → (0,+∞) be two positive and integrable weight functions.
For a positive integer r and 1 ≤ p, q ≤ +∞, consider the %-weighted Lq approximation in the
linear space F r

p,ψ(D) of functions f : D → R with absolutely (locally) continuous (r − 1)st

derivative and such that the ψ-weighted Lp norm of f (r) is finite, i.e., ‖f (r)ψ‖Lp < +∞. Note
that the spaces F r

p,ψ(D) have been introduced in [7], and the role of ψ is to moderate their size.
Denote

ω :=
%

ψ
, (2)

and suppose that ω and ψ are nonincreasing on D, and that

‖ω1/α‖L1 :=

∫
D

ω1/α(x) dx < +∞. (3)

It was shown in [5, Theorem 1] that then one can construct approximations using n knots with
%-weighted Lq error at most

c1 ‖ω1/α‖αL1
‖f (r)ψ‖Lpn−r+(1/p−1/q)+ .

This means that if (3) holds true, then the upper bound on the worst-case error is proportional
to ‖ω1/α‖αL1

n−r+(1/p−1/q)+ . The convergence rate n−r+(1/p−1/q)+ is optimal and a corresponding
lower bound implies that if (3) is not satisfied then the rate n−r+(1/p−1/q)+ cannot be reached
(see [5, Theorem 3]).

The optimal knots
0 = x∗0 < x∗1 < . . . < x∗n−1 < x∗n = +∞

are determined by quantiles of ω1/α, to be more precise,∫ x∗i

0

ω1/α(t) dt =
i

n
‖ω1/α‖L1 . (4)

In order to use the optimal quantizer (4) one has to know ω; otherwise he has to rely on
some approximations of ω. Moreover, even if ω is known, it may be a complicated and/or
non-monotonic function and therefore difficult to handle computationally. Driven by this mo-
tivation, the purpose of the present paper is to generalize the results of [5] even further to see
how the quality of best approximations will change if the optimal quantizer ω is replaced in (4)
by another quantizer κ.

A general answer to the aforementioned question is given in Theorems 1 and 3 of Section 2.
They show, respectively, tight (up to a constant) upper and lower bounds for the error when
a quantizer κ with ‖κ1/α‖L1 < +∞ instead of ω is used to determine the knots. To be more
specific, define

Eqp (ω, κ) =
∥∥∥ω
κ

∥∥∥
L∞

for p ≤ q, (5)

and

Eqp (ω, κ) =

(∫
D

κ1/α(x)

‖κ1/α‖L1

(
ω(x)

κ(x)

) 1
1/q−1/p

dx

)1/q−1/p

for p ≥ q. (6)
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(Note that (5) and (6) are consistent for p = q.) If Eqp (ω, κ) < +∞ then the best achievable
error is proportional to

‖κ1/α‖αL1
Eqp (ω, κ) ‖f (r)ψ‖Lpn−r+(1/p−1/q)+ .

This means, in particular, that for the error to behave as n−r+(1/p−1/q)+ it is sufficient (but
not necessary) that κ(x) decreases no faster than ω(x) as |x| → +∞. For instance, if the
optimal quantizer is Gaussian, ω(x) = exp(−x2/2), then the optimal rate is still preserved if
its exponential substitute κ(x) = exp(−a|x|) with arbitrary a > 0 is used. It also shows that,
in case ω is not exactly known, it is much safer to overestimate than underestimate it, see also
Example 5.

The use of a quantizer κ as above results in approximations that are worse than the optimal
approximations by the factor of

FCTR(p, q, ω, κ) =
‖κ1/α‖αL1

‖ω1/α‖αL1

Eqp (ω, κ) ≥ 1.

In Section 3, we calculate the exact values of this factor for various combinations of weights %,
ψ, and κ, including: Gaussian, exponential, log-normal, logistic, and t-Student. It turns out
that in many cases FCTR(p, q, ω, κ) is quite small, so that the loss in accuracy of approximation
is well compensated by simplification of the weights.

The results for q = 1 are also applicable for problems of approximating %-weighted integrals∫
D

f(x) %(x) dx for f ∈ F r
p,ψ(D).

More precisely, the worst case errors of quadratures that are integrals of the corresponding
piecewise interpolation polynomials approximating functions f ∈ F r

p,ψ(D) are the same as
the errors for the %-weighted L1(D) approximations. Hence their errors, proportional to n−r,
are (modulo a constant) the best possible among all quadratures. These results are especially
important for unbounded domains, e.g., D = R+ or D = R. For such domains, the integrals are
often approximated by Gauss-Laguerre rules and Gauss-Hermite rules, respectively, see, e.g.,
[1, 3, 6]; however, their efficiency requires smooth integrands and the results are asymptotic.
Moreover, it is not clear which Gaussian rules should be used when ψ is not a constant function.
But, even for ψ ≡ 1, it is likely that the worst case errors (with respect to F r

p,ψ) of Gaussian
rules are much larger than O(n−r), since the Weierstrass theorem holds only for compact D. A
very interesting extension of Gaussian rules to functions with singularities has been proposed
in [2]. However, the results of [2] are also asymptotic and it is not clear how the proposed
rules behave for functions from spaces F r

p,ψ. In the present paper, we deal with functions of
bounded smoothness (r < +∞) and provide worst-case error bounds that are minimal. We
stress here that the regularity degree r is a fixed but arbitrary positive integer. The paper [4]
proposes a different approach to the weighted integration over unbounded domains; however,
it is restricted to regularity r = 1 only.

The paper is organized as follows. In the following section, we present ideas and results
about alternative quantizers. The main results are Theorems 1 and 3. In Section 3, we apply
our results to some specific cases for which numerical values of FCTR(p, q, ω, κ) are calculated.
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2 Optimal versus alternative quantizers

We consider %-weighted Lq approximation in the space F r
p,ψ(D) as defined in the introduction;

however, in contrast to [5], we do not assume that the weights ψ and ω are nonincreasing.
Although the results of this paper pertain to domains D being an arbitrary interval, to begin
with we assume that

D = R+.

We will explain later what happens in the general case including D = R.
Let the knots 0 = x0 < . . . < xn = +∞ be determined by a nonincreasing function

(quantizer) κ : D → (0,+∞) satisfying ‖κ1/α‖L1 < +∞, i.e.,∫ xi

0

κ1/α(t) dt =
i

n
‖κ1/α‖L1 with α = r − 1

p
+

1

q
. (7)

Let Tnf be a piecewise Taylor approximation of f ∈ F r
p,ψ(D) with break-points (7),

Tnf(x) =
n∑
i=1

1[xi−1,xi)(x)
r−1∑
k=0

f (k)(xi−1)

k!
(x− xi−1)k.

We remind the reader of the definition of the quantity Eqp (ω, κ) in (5) and (6), which will
be of importance in the following theorem.

Theorem 1 Suppose that
Eqp (ω, κ) < +∞.

Then for every f ∈ F q
p,ψ(D) we have

‖(f − Tnf)%‖Lq ≤ c1 ‖κ1/α‖αL1
Eqp (ω, κ) ‖f (r)ψ‖Lp n−r+(1/p−1/q)+ , (8)

where

c1 =
1

(r − 1)! ((r − 1)p∗ + 1)1/p∗
.

Proof. We proceed as in the proof of [5, Theorem 1] to get that for x ∈ [xi−1, xi)

%(x)|f(x)− Tnf(x)| = %(x)

∣∣∣∣ ∫ xi

xi−1

f (r)(t)
(x− t)r−1+

(r − 1)!
dt

∣∣∣∣
≤ c1

ω(x)

κ(x)

(∫ xi

xi−1

|f (r)(t)ψ(t)|pdt
)1/p

κ(x)(x− xi−1)r−1/p.

Since (cf. [5, p.36])

κ(x)(x− xi)r−1/p ≤ (κ1/α(x))1/q
(
‖κ1/α‖L1

n

)r−1/p
,

the error is upper bounded as follows:

‖(f − Tnf)%‖Lq =

( n∑
i=1

∫ xi

xi−1

%q(x)|f(x)− Tnf(x)|qdx
)1/q

≤ c1

(
‖κ1/α‖L1

n

)r−1/p( n∑
i=1

(∫ xi

xi−1

κ1/α(x)

(
ω(x)

κ(x)

)q
dx

)(∫ xi

xi−1

|f (r)(t)ψ(t)|pdt
)q/p)1/q

. (9)
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Now we maximize the right hand side of (9) subject to

‖f (r)ψ‖pLp =
n∑
i=1

∫ xi

xi−1

|f (r)(t)ψ(t)|pdt = 1.

After the substitution

Ai :=

∫ xi

xi−1

κ1/α(x)

(
ω(x)

κ(x)

)q
dx, Bi :=

(∫ xi

xi−1

|f (r)(t)ψ(t)|pdt
)q/p

,

this is equivalent to

maximizing
∑n

i=1AiBi subject to
∑n

i=1B
p/q
i = 1.

We have two cases:
For p ≤ q, we set i∗ = arg max1≤i≤nAi, and use Jensen’s inequality to obtain

n∑
i=1

AiBi ≤ Ai∗
n∑
i=1

Bi ≤ Ai∗

(
n∑
i=1

B
p/q
i

)q/p

= Ai∗ .

Hence the maximum equals Ai∗ and it is attained at B∗i = 1 for i = i∗, and B∗i = 0 otherwise.
In this case, the maximum is upper bounded by ‖ω/κ‖qL∞‖κ

1/α‖L1/n, which means that

‖(f − Tnf)%‖Lq ≤ c1

(
‖κ1/α‖L1

n

)α ∥∥∥ω
κ

∥∥∥
L∞
‖f (r)ψ‖Lp .

For p > q we use the method of Lagrange multipliers and find this way that the maximum
equals (

n∑
i=1

A
1

1−q/p
i

)1−q/p

=

(
n∑
i=1

(∫ xi

xi−1

κ1/α(x)

(
ω(x)

κ(x)

)q
dx

) 1
1−q/p

)1−q/p

,

and is attained at

B∗i =

 A
1

1−q/p
i∑n

j=1A
1

1−q/p
j

q/p

, 1 ≤ i ≤ n.

Since 1/(1−q/p) > 1, by the probabilistic version of Jensen’s inequality with density nκ1/α/‖κ1/α‖L1 ,
we have(∫ xi

xi−1

κ1/α(x)

(
ω(x)

κ(x)

)q
dx

) 1
1−q/p

≤
(
‖κ1/α‖L1

n

) 1
p/q−1

∫ xi

xi−1

κ1/α(x)

(
ω(x)

κ(x)

) 1
1/q−1/p

dx.

This implies that(
n∑
i=1

A
1

1−q/p
i

)1−q/p

≤
(
‖κ1/α‖L1

n

)q/p(∫ +∞

0

κ1/α(x)

(
ω(x)

κ(x)

) 1
1/q−1/p

dx

)1−q/p

,

and finally

‖(f − Tnf)%‖Lq ≤ c1

(
‖κ1/α‖L1

n

)r(∫ +∞

0

κ1/α(x)

(
ω(x)

κ(x)

) 1
1/q−1/p

dx

)1/q−1/p

‖f (r)ψ‖Lp ,

as claimed since 1/q − 1/p = α− r. 2

5



Remark 2 If derivatives of f are difficult to compute or to sample, a piecewise Lagrange
interpolation Ln can be used, as in [5]. Then the result is slightly weaker than that of the
present Theorem 1; namely (cf. [5, Theorem 2]), there exists c′1 > 0 depending only on p, q,
and r, such that

lim sup
n→∞

sup
f∈F rp,ψ(D)

‖(f − Lnf)%‖Lq
‖f (r)ψ‖Lp

nr+(1/p−1/q)+ ≤ c′1 ‖κ1/α‖αL1
Eqp (ω, κ).

We now show that the error estimate of Theorem 1 cannot be improved.

Theorem 3 There exists c2 > 0 depending only on p, q, and r with the following property. For
any approximation An that uses only information about function values and/or its derivatives
(up to order r − 1) at the knots x0, . . . , xn given by (7), we have

lim inf
n→∞

sup
f∈F rp,ψ(D)

‖(f −Anf)%‖Lq
‖f (r)ψ‖Lp

nr−(1/p−1/q)+ ≥ c2 ‖κ1/α‖αL1
Eqp (ω, κ). (10)

Proof. We fix n and consider first the weighted Lq approximation on [0, xn−1) assuming that
in this interval the weights are step functions with break points xi given by (7). Let ψi, %i,
ωi = %i/ψi, and κi be correspondingly the values of ψ, %, ω, and κ on successive intervals

[xi−1, xi). Then we clearly have that (xi − xi−1)κ1/αi = ‖κ1/α‖L1(0,xn−1)/(n− 1).
For simplicity, we write Ii := (xi−1, xi). Let fi, 1 ≤ i ≤ n− 1, be functions supported on Ii,

such that f
(j)
i (xi−1) = 0 = f

(j)
i (xi) for 0 ≤ j ≤ r − 1, and

‖fi‖Lq(Ii) ≥ c2(xi − xi−1)α‖f (r)
i ‖Lp(Ii). (11)

We also normalize fi so that ‖f (r)
i ‖Lp(Ii) = 1/ψi. We stress that a positive c2 in (11) exists and

depends only on r, p, and q.
Since all f

(j)
i nullify at the knots xk, the ‘sup’ (worst case error) in (10) is bounded from

below by

Sup(n) := sup

{
‖f%‖Lq : f =

n−1∑
i=1

βifi,
n−1∑
i=1

|βi|p = 1

}
,

where we used the fact that ‖f (r)ψ‖Lp =
(∑n−1

i=1 |βi|p
)1/p

. For such f we have

‖f%‖Lq =

( n−1∑
i=1

βqi ‖fi%‖
q
Lq(Ii)

)1/q

=

( n−1∑
i=1

(
|βi|%i‖fi‖Lq(Ii)

)q )1/q

≥ c2

( n−1∑
i=1

(
|βi|%i(xi − xi−1)α‖f (r)

i ‖Lp(Ii)
)q )1/q

= c2

( n−1∑
i=1

(
|βi|

ωi
κi

κi(xi − xi−1)α
)q )1/q

= c2

(
‖κ1/α‖L1

n− 1

)α( n−1∑
i=1

|βi|q
(
ωi
κi

)q )1/q

.

Thus we arrive at a maximization problem that we already had in the proof of Theorem 1.
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For p ≤ q we have

Sup(n) = c2

(
‖κ1/α‖L1

n− 1

)α
max

1≤i≤n−1

ωi
κi

= c2

(
‖κ1/α‖L1

n− 1

)α
ess sup
0≤x<xn−1

ω(x)

κ(x)
,

while for p > q we have

Sup(n) = c2

(
‖κ1/α‖L1

n− 1

)α(n−1∑
i=1

(
ωi
κi

) 1
α−r
)α−r

= c2

(
‖κ1/α‖L1

n− 1

)r(n−1∑
i=1

(
‖κ1/α‖L1

n− 1

)(
ωi
κi

) 1
α−r
)α−r

= c2

(
‖κ1/α‖L1

n− 1

)r(∫ xn−1

0

κ1/α(x)

(
ω(x)

κ(x)

) 1
α−r

dx

)α−r

,

as claimed.
For arbitrary weights, we replace ψ, %, and κ with the corresponding step functions with

ψi = ess sup
x∈(xi−1,xi)

ψ(x), %i = ess inf
x∈(xi−1,xi)

%(x), κi =

(
‖κ1/α‖L1

n(xi − xi−1)

)α
, 1 ≤ i ≤ n− 1,

and go with n to +∞. 2

We now comment on what happens when the domain is different from R+. It is clear that
Theorems 1 and 3 remain valid for D being a compact interval, say D = [0, c] with c < +∞.
Consider

D = R.

In this case, we assume that κ is nonincreasing on [0,+∞) and nondecreasing on (−∞, 0]. We
have 2n+ 1 knots xi, which are determined by the condition∫ xi

0

κ1/α(t) dt =
i

2n
‖κ1/α‖L1(R), |i| ≤ n (12)

(where
∫ −a
0

= −
∫ 0

a
). Note that (12) automatically implies x0 = 0. The piecewise Taylor ap-

proximation is also correspondingly defined for negative arguments. With these modifications,
the corresponding Theorems 1 and 3 have literally the same formulation for D = R and for
D = R+.

Observe that the error estimates of Theorems 1 and 3 for arbitrary κ differ from the error
for optimal κ = ω by the factor

FCTR(p, q, ω, κ) :=
‖κ1/α‖αL1

‖ω1/α‖αL1

Eqp (ω, κ).

From this definition it is clear that for any s, t > 0 we have

FCTR(p, q, s ω, t κ) = FCTR(p, q, ω, κ).

This quantity satisfies the following estimates.
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Proposition 4 We have

1 = FCTR(p, q, ω, ω) ≤ FCTR(p, q, ω, κ) ≤
‖κ1/α‖αL1

‖ω1/α‖αL1

∥∥∥ω
κ

∥∥∥
L∞

. (13)

The rightmost inequality is actually an equality whenever p ≤ q.

Proof. Assume without loss of generality that ‖κ1/α‖L1 = ‖ω1/α‖L1 = 1, so that FCTR(p, q, ω, κ) =
Eqp (ω, κ). Then for any p and q

1 = ‖ω1/α‖αL1
≤ ‖κ1/α‖αL1

∥∥∥∥ω1/α

κ1/α

∥∥∥∥α
L∞

=
∥∥∥ω
κ

∥∥∥
L∞

,

which equals Eqp (ω, κ) for p ≤ q. For p > q we have (1/q − 1/p)/α = 1 − r/α < 1, so that we
can use Jensen’s inequality to get

Eqp (ω, κ) =

(∫
D

κ1/α(x)

(
ω1/α(x)

κ1/α(x)

) α
α−r

dx

)(α−rα )α

≥
(∫

D

κ1/α(x)

(
ω1/α(x)

κ1/α(x)

)
dx

)α
= 1.

The remaining inequality Eqp (ω, κ) ≤
∥∥ω
κ

∥∥
L∞

is obvious. 2

Although the main idea of this paper is to replace ω by another function κ that is easier
to handle, our results allow a further interesting observation that is illustrated in the following
example.

Example 5 Let D = R,
r = 1, p = +∞, q = 1,

and the weights

%(x) =
1√
2π

exp

(
−x2

2

)
, ψ(x) = 1.

Then α = 2 and 1/q − 1/p = 1, and ω(x) = %(x). Suppose that instead of ω we use

κσ(x) =
1√

2πσ2
exp

(
−x2

2σ2

)
with σ2 > 0.

Since p > q, we have

FCTR(p, q, ω, κσ) =
‖κ1/2σ ‖2L1

‖ω1/2‖2L1

∫
R

κ
1/2
σ (x)

‖κ1/2σ ‖L1

ω(x)

κσ(x)
dx =

{
+∞ if σ2 ≤ 1/2,
σ2

√
2σ2−1 if σ2 > 1/2.

The graph of FCTR(p, q, ω, κσ) is drawn in Fig. 1. It follows that it is safer to overestimate the
actual variance σ2 = 1 than to underestimate it.

3 Special cases

Below we apply our results to specific weights %, ψ, and specific values of p and q.
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Figure 1: Plot of FCTR(p, q, ω, κσ) versus σ2 from Example 5

3.1 Gaussian % and ψ

Consider D = R,

%(x) =
1

σ
√

2 π
exp

(
−x2

2σ2

)
and ψ(x) = exp

(
−x2

2λ2

)
for positive σ and λ. Since

ω(x) =
1

σ
√

2 π
exp

(
−x2

2
(σ−2 − λ−2)

)
,

for ‖ω1/α‖L1 <∞ we have to have λ > σ, and then

‖ω1/α‖αL1
=

1

σ
√

2π

(
α 2π

σ−2 − λ−2

)α/2
.

We propose using
κ(x) = κa(x) = exp(−|x| a) for a > 0.

Then ‖κ1/αa ‖L1(D) = 2α/a and the points x−n, . . . , xn satisfying (12),∫ xi

0

κ1/αa (t) dt =
i

2n

∫ ∞
−∞

κ1/αa (t) dt for |i| ≤ n,

are given by

xi = −x−i = −α
a

ln

(
1− i

n

)
for 0 ≤ i ≤ n. (14)

In particular, we have
x−n = −∞, x0 = 0, and xn = ∞.

We now consider the two cases p ≤ q and p > q separately:

9



3.1.1 Case of p ≤ q

Clearly

Eqp (ω, κa) =

∥∥∥∥ ωκa
∥∥∥∥
L∞(D)

=
1

σ
√

2π
exp

(
a2

2 (σ−2 − λ−2)

)
and

min
a>0
‖κ1/αa ‖αL1(D)

∥∥∥∥ ωκa
∥∥∥∥
L∞

is attained at a∗ =

√
α

(
1

σ2
− 1

λ2

)
.

Hence, for p ≤ q we have that

FCTR(p, q, ω, κa∗) =

(
2 e

π

)α/2
.

Note that FCTR(p, q, ω, κa∗) does not depend on σ and λ (as long as λ > σ). For instance, we
have the following rounded values:

α 1 2 3 4
FCTR(p, q, ω, κa∗) 1.315 1.731 2.276 2.995

3.1.2 Case of p > q

We have now

Eqp (ω, κa) =
( a
α

)α−r 1

σ
√

2π
Aα−r,

where

A =

∫ ∞
0

exp

(
−x

2 (σ−2 − λ−2)
2 (α− r)

+
a x r

α (α− r)

)
dx

=

∫ ∞
0

exp

(
−σ

−2 − λ−2

2 (α− r)

(
x− a r

α (σ−2 − λ−2)

)2

+
a2 r2

2α2 (α− r) (σ−2 − λ−2)

)
dx

= exp

(
a2 r2

2α2 (α− r) (σ−2 − λ−2)

) ∫ ∞
− a r
α (σ−2−λ−2)

exp

(
−(σ−2 − λ−2) t2

2 (α− r)

)
dt

= exp

(
a2 r2

2α2 (α− r) (σ−2 − λ−2)

) √
π (α− r)

2 (σ−2 − λ−2)

[
1+erf

(
a r

α
√

2 (α− r) (σ−2 − λ−2)

)]
,

where erf(z) := 2√
π

∫ z
0

e−t
2

dt. This gives

Eqp (ω, κa) =

(
a2 π (α− r)

α2 2 (σ−2 − λ−2)

)(α−r)/2
1

σ
√

2π
exp

(
a2 r2

α2 2 (σ−2 − λ−2)

)
×

[
1+erf

(
a r

α
√

2 (α− r) (σ−2 − λ−2)

)]α−r
.

Since
‖κ1/αa ‖αL1(D)

‖ω1/α‖αL1(D)

= σ
√

2π

(
2α(σ−2 − λ−2)

πa2

)α/2
10



we obtain

FCTR(p, q, ω, κa) =

(
2α(σ−2 − λ−2)

πa2

)r/2(
α− r
α

)(α−r)/2

exp

(
a2 r2

2α2(σ−2 − λ−2)

)
×

[
1 + erf

(
a r

α
√

2 (α− r) (σ−2 − λ−2)

)]α−r
.

We provide some numerical tests for q = 1 and p = 2 or p = ∞. Then α = r + 1/2 or
α = r + 1, respectively. Recall that results for q = 1 are also applicable to the %-integration
problem.

For r ∈ {1, 2}, p ∈ {2,∞}, λ = 2 and σ = 1, we vary a and obtain the following rounded
values:

a 1 2 3 4
FCTR(2, 1, ω, κa) 1.135 1.476 4.361 26.036 r = 1
FCTR(2, 1, ω, κa) 1.645 1.552 5.836 65.061 r = 2

p = 2

FCTR(∞, 1, ω, κa) 1.172 1.179 1.979 4.920 r = 1
FCTR(∞, 1, ω, κa) 1.733 1.269 2.617 11.826 r = 2

p =∞

3.2 Gaussian % and Exponential ψ

Consider D = R,

%(x) =
1

σ
√

2π
exp

(
−x2

2σ2

)
and ψ(x) = exp

(
−|x|
λ

)
for positive λ and σ. Now

ω(x) =
%(x)

ψ(x)
=

1

σ
√

2π
exp

(
− x2

2σ2
+
|x|
λ

)
, (15)

and

‖ω1/α‖αL1(D) =
1

σ
√

2π

(
2

∫ ∞
0

exp

(
−x2

2σ2 α
+

x

λα

)
dx

)α
=

1

σ
√

2π

(
2

∫ ∞
0

exp

(
−(x/σ − σ/λ)2

2α
+

σ2

2λ2 α

)
dx

)α
=

1

σ
√

2π
exp

(
σ2

2λ2

) (
σ
√

2 π α
2√
π

∫ ∞
−σ/(λ

√
2α)

exp(−y2) dy

)α
=

1

σ
√

2π
exp

(
σ2

2λ2

) (
σ
√

2π α

(
1 + erf

(
σ

λ
√

2α

)))α
.

As before, we propose using κa(x) = exp(−|x| a). Hence ‖κ1/αa ‖L1 = 2α/a and the points xi
are given by (14).

3.2.1 Case of p ≤ q

We have

Eqp (ω, κa) =

∥∥∥∥ ωκa
∥∥∥∥
L∞(D)

=
1

σ
√

2π
exp

(
σ2 (a+ λ−1)2

2

)
.

11



It is easy to verify that the minimum over a > 0 satisfies

min
a>0
‖κ1/αa ‖αL1(D)

∥∥∥∥ ωκa
∥∥∥∥
L∞(D)

=
1

σ
√

2π

(
2α

a∗

)α
exp

(
σ2 (a∗ + λ−1)2

2

)
for

a∗ =

√
1 + 4αλ2/σ2 − 1

2λ
.

Therefore

FCTR(p, q, ω, κa∗) =

√2α

π

1

a∗ σ
(

1 + erf(σ/
√

2αλ)
)
α

exp

(
σ2a∗(a∗ + 2/λ)

2

)
.

Note that the value of FCTR depends on p and q only via α. Rounded values of FCTR for
α ∈ {1, 2} and σ = 1 and various λ’s are1:

λ 1 5 10 20 30 100
FCTR 1.723 1.183 1.162 1.174 1.188 1.231 α = 1
FCTR 2.468 1.460 1.436 1.465 1.491 1.573 α = 2

3.2.2 Case of p > q

We have

Eqp (ω, κa) =
( a
α

)α−r 1

σ
√

2π
Aα−r,

where now

A =

∫ ∞
0

exp

(
− x2

2σ2 (α− r)
+ x

(
a

α− r
+

1

λ (α− r)
− a

α

))
dx

=

∫ ∞
0

exp

(
− 1

2σ2 (α− r)

(
x2 − 2x σ2

(
a r

α
+

1

λ

)))
dx

= exp

(
σ2 (a r

α
+ 1

λ
)2

2 (α− r)

) ∫ ∞
0

exp

(
−

(x− σ2(a r
α

+ 1
λ
))2

2σ2 (α− r)

)
dx

= exp

(
σ2 (a r

α
+ 1

λ
)2

2 (α− r)

) √
σ2 π (α− r)

2

[
1 + erf

(
σ (a r

α
+ 1

λ
)√

2 (α− r)

)]
.

Hence

Eqp (ω, κ) =
1

σ
√

2 π

(
a2 π σ2 (α− r)

2α2

)(α−r)/2

exp

(
σ2

2

(
a r

α
+

1

λ

)2
)

×

[
1 + erf

(
σ (a r

α
+ 1

λ
)√

2 (α− r)

)]α−r
.

Since

‖κ1/αa ‖αL1(D)

‖ω1/α‖αL1(D)

=

(
2α

a

)α
σ
√

2π exp

(
− σ2

2λ2

)(
σ
√

2πα

(
1 + erf

(
σ

λ
√

2α

)))−α
1Computed with Mathematica
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we obtain

FCTR(p, q, ω, κa) =

(
1

aσ

√
2α

π

)α(
a2 π σ2 (α− r)

2α2

)(α−r)/2

exp

(
σ2

2

((
a r

α
+

1

λ

)2

− 1

λ2

))

×

[
1 + erf

(
σ (a r

α
+ 1
λ
)√

2 (α−r)

)]α−r
[
1 + erf

(
σ

λ
√
2α

)]α .

We again provide numerical results, first for the case p = 2 and q = 1, i.e., α = r + 1/2.
For r ∈ {1, 2} and varying a, we obtain the following rounded values:

a 1 2 3 4
FCTR(2, 1, ω, κa) 1.273 2.426 9.570 66.233 λ = 1, σ = 1
FCTR(2, 1, ω, κa) 1.181 1.642 4.652 23.070 λ = 2, σ = 1

r = 1

FCTR(2, 1, ω, κa) 1.747 2.546 12.473 146.677 λ = 1, σ = 1
FCTR(2, 1, ω, κa) 1.747 1.729 5.683 44.797 λ = 2, σ = 1

r = 2

We now change p to p =∞, and choose again q = 1, which implies α = r+1. For r ∈ {1, 2}
and varying a we obtain the following rounded values:

a 1 2 3 4
FCTR(∞, 1, ω, κa) 1.203 1.512 3.156 9.409 λ = 1, σ = 1
FCTR(∞, 1, ω, κa) 1.199 1.242 2.081 4.888 λ = 2, σ = 1

r = 1

FCTR(∞, 1, ω, κa) 1.724 1.700 4.509 23.434 λ = 1, σ = 1
FCTR(∞, 1, ω, κa) 1.827 1.366 2.647 9.897 λ = 2, σ = 1

r = 2

3.3 Log-Normal % and constant ψ

Consider D = R+, ψ(x) = 1 and

%(x) = ω(x) =
1

x σ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
(16)

for given µ ∈ R and σ > 0.
For κ we take

κc(x) =

{
1 if x ∈ [0, eµ],
exp(c (µ− lnx)) if x > eµ,

for positive c. For κ
1/α
c to be integrable we have to restrict c so that

c > α.

It can be checked that

‖κ1/αc ‖αL1(D) =

(
c

c− α

)α
eαµ.

Then the points xi for i = 0, 1, . . . , n that satisfy (7) are given by

xi =

{
c

c−α eµ i
n

for i ≤ n c−α
c

,

eµ
(
α
c

n
n−i

)α/(c−α)
otherwise.

13



3.3.1 Case of p ≤ q

We determine ‖ω/κc‖L∞(D). For x ≤ eµ we have

ω(x)

κc(x)
= ω(x) =

1

σ
√

2 π
exp

(
−(t− µ)2

2σ2
− t
)

with t = ln x ≤ µ.

Its maximum is attained at t = µ− σ2 and

max
x≤eµ

ω(x)

κc(x)
=

1

σ
√

2π
exp

(
σ2

2
− µ

)
.

For x > eµ,

ω(x)

κc(x)
=

1

exp(c µ)σ
√

2 π
exp

(
−(t− µ)2

2σ2
+ t (c− 1)

)
with t = ln x > µ.

The maximum of the expression above is attained at t = µ+ σ2 (c− 1) and

sup
x>eµ

ω(x)

κc(x)
=

1

exp(c µ)σ
√

2π
exp

(
(c− 1)µ+

(c− 1)2 σ2

2

)
=

1

σ
√

2π
exp

(
−µ+

(c− 1)2 σ2

2

)
.

This yields that ∥∥∥∥ ωκc
∥∥∥∥
L∞(D)

=
1

σ
√

2 π
exp

(
−µ+

σ2

2
max(1, (c− 1)2)

)
.

To find the optimal value of c, note that∥∥∥∥ ωκc
∥∥∥∥
L∞(D)

‖κ1/αc ‖αL1(D) =
e(α−1)µ

σ
√

2 π
(f(c))α ,

where f(c) is given by

f(c) = exp

(
σ2 max(1, (c− 1)2)

2α

) (
1 +

α

c− α

)
.

Consider first α ≥ 2 and recall the restriction c > α. For such values of c we have

f(c) = exp

(
σ2 (c− 1)2

2α

) (
1 +

α

c− α

)
and hence

f ′(c) =
σ2

α (c− α)2
exp

(
σ2

2α
(c− 1)2

) (
c (c− 1) (c− α)− α2

σ2

)
.

Therefore,

min
c>α

f(c) = f(c∗) = exp

(
σ2 (c∗ − 1)2

2α

)
c∗

c∗ − α

14



for c∗ such that

c∗ > α and c∗ (c∗ − 1) (c∗ − α) =
α2

σ2
. (17)

Consider next α ∈ (0, 2). Then for c ≤ 2, the minimum of f(c) is attained in c = 2, and it
is a global minimum if 2(2− α) ≥ α2/σ2. Otherwise, the minimum is at c∗ given by (17).

In summary, for α > 0, we have

min
c>α

∥∥∥∥ ωκc
∥∥∥∥
L∞(D)

‖κ1/αc ‖αL1(D) =
e(α−1)µ

σ
√

2π
×


exp

(
σ2 (c∗−1)2

2

) (
c∗

c∗−α

)α
if α ≥ 2

or 2 (2− α) ≤ α2

σ2 ,

exp
(
σ2

2

) (
2

2−α

)α
otherwise.

To derive the value of the L1 norm of ω1/α, we will use the following well-known facts: If
Xσ,µ is a log-normally distributed random variable with parameters σ and µ, then the mean
value and the variance of Xσ,µ are, respectively, equal to

E(Xσ,µ) = exp
(
σ2/2 + µ

)
and E (Xσ,µ − E(Xσ,µ))2 =

(
exp

(
σ2
)
− 1
)

exp
(
σ2 + 2µ

)
.

Hence
E
(
X2
σ,µ

)
= exp

(
2σ2 + 2µ

)
. (18)

If α = 1, then ‖ω1/α‖αL1(D) = 1, and then

FCTR(p, q, ω, κc∗) =
1

σ
√

2π


c∗
c∗−1 exp

(
σ2 (c∗−1)2

2

)
if 2 ≤ 1

σ2 ,

2 exp
(
σ2

2

)
otherwise.

For α ∈ (1, 2), to simplify the notation, we will use, in the following, parameters s and γ
given by

s =
2α

α− 1
and γ =

σ
√
α

s
.

The change of the variable x = ts gives

(σ
√

2π)1/α ‖ω1/α‖L1(D) =

∫ ∞
0

1

x1/α
exp

(
−(lnx− µ)2

2ασ2

)
dx

= s

∫ ∞
0

ts−s/α−1 exp

(
−(ln ts − µ)2

2ασ2

)
dt

= s

∫ ∞
0

t exp

(
−(ln t− µ/s)2

2 (σ
√
α/s)2

)
dt

= s γ
√

2π

∫ ∞
0

t2

t γ
√

2 π
exp

(
−(ln t− µ/s)2

2 γ2

)
dt.

The last integral is the expected value of the square of a log-normal random variable Xγ,µ/s

with the parameter σ replaced by γ and µ replaced by µ/s. Hence

‖ω1/α‖αL1(D) =
(s γ
√

2π)α

σ
√

2 π
exp

(
2 γ2 α +

2µα

s

)
=

(σ
√

2 π α)α

σ
√

2π
exp

(
σ2 (α− 1)2

2
+ µ (α− 1)

)
.
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This gives us

FCTR(p, q, ω, κc∗) =

(
c∗

(c∗ − α)σ
√

2π α

)α
exp

(
σ2 ((c∗ − 1)2 − (α− 1)2)

2

)
if either α ≥ 2 or α < 2 and 2(2− α) ≤ α2/σ2, and

FCTR(p, q, ω, κ2) =

(
2

(2− α)σ
√

2 π α

)α
exp

(
σ2 (1− (α− 1)2)

2

)
if α < 2 and 2(2− α) > α2/σ2.

Rounded values for FCTR for various σ and α are2:

σ 1 2 3
FCTR 1.315 2.948 23.941 α = 1
FCTR 2.988 4.615 7.573 α = 2

3.3.2 Case of p > q

Now

Eqp (ω, κc) =
1

σ
√

2 π

(
c− α
c eµ

)α−r
(I1 + I2)

α−r,

where

I1 =

∫ eµ

0

exp

(
− 1

α− r

[
(lnx− µ)2

2σ2
+ lnx

])
dx

and

I2 =

∫ ∞
eµ

exp

(
− 1

α− r

[
(lnx− µ)2

2σ2
+ lnx

]
− r c

α (α− r)
(µ− lnx)

)
dx.

In what follows, for both integrals, we will use first the change of variables y = lnx − µ. We
have

I1 =

∫ 0

−∞
exp(y + µ) exp

(
− 1

α− r

[
y2

2σ2
+ y + µ

])
dx

= exp

(
µ
α− r − 1

α− r

) ∫ 0

−∞
exp

(
− 1

α− r

[
y2

2σ2
+ (1 + r − α) y

])
dx

= exp

(
µ
α− r − 1

α− r

) ∫ 0

−∞
exp

(
−y

2 + 2 y σ2 (1 + r − α)

2σ2 (α− r)

)
dx

= exp

(
1 + r − α
α− r

(
σ2 (1 + r − α)

2
− µ

)) ∫ 0

−∞
exp

(
− [y + σ2 (1 + r − α)]2

(α− r) 2σ2

)
dy

= exp

(
1 + r − α
α− r

(
σ2 (1 + r − α)

2
− µ

))√
σ2 (α− r) π

2

[
1 + erf

(
σ (1 + r − α)√

2 (α− r)

)]
.

2Computed with Mathematica.
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Similarly for I2 we get

I2 = exp

(
µ
α− r − 1

α− r

) ∫ ∞
0

exp

(
− 1

α− r

[
y2

2σ2
+ y − y

(
α− r +

r c

α

)])
dy

=
exp

(
σ2 (1+r−α−r c/α)2

2 (α−r)

)
exp

(
1+r−α
α−r µ

) ∫ ∞
0

exp

(
− [y + σ2 (1 + r − α− r c/α)]2

(α− r) 2σ2

)
dy

=
exp

(
σ2 (1+r−α−r c/α)2

2 (α−r)

)
exp

(
1+r−α
α−r µ

) √
σ2 (α− r)π

2

[
1− erf

(
σ (1 + r − α− r c/α)√

2 (α− r)

)]
.

Hence

(I1 + I2)
α−r

=
exp(σ2 (1 + r − α)2/2)

exp(µ (1 + r − α))

[
σ2 (α− r) π

2

](α−r)/2 [
1 + erf

(
σ (1 + r − α)√

2 (α− r)

)

+ exp

(
σ2

2 (α− r)

(
−2 r c

α
(1 + r − α) +

(r c
α

)2)) [
1− erf

(
σ (1 + r − α− r c/α)√

2 (α− r)

)]]α−r
.

Since computing FCTR(p, q, ω, κc) for arbitrary parameters q ≤ p is very challenging, we
will do this for p =∞ and q = 1, which—as already mentioned—corresponds to the integration
problem. In this specific case, we have α = r + 1 and

(I1 + I2)
α−r =

√
σ2 π

2

[
1 + exp

(
(σ (α− 1) c)2

2α2

) [
1− erf

(
−σ (α− 1) c

α
√

2

)]]
.

This yields

FCTR(∞, 1, ω, κc) =
(c− α)σ

√
2 π

2 c

(
c

(c− α)σ
√

2 π α

)α
exp

(
−σ

2 (α− 1)2

2
− µ(α− 1)

)
×
[
1 + exp

(
(σ (α− 1) c)2

2α2

) [
1− erf

(
−σ (α− 1) c

α
√

2

)]]
.

As a numerical example we consider the case µ = 0 and σ = 1. For fixed α ∈ {1.5, 2, 2.5, 3, 3.5}
we numerically minimize3 FCTR(∞, 1, ω, κc) as a function in c. The results together with the
optimal c∗ are presented in the following table:

α 1.5 2 2.5 3 3.5
FCTR(∞, 1, ω, κc∗) 1.058 1.224 1.594 2.314 3.648

c∗ 2.555 2.973 3.422 3.899 4.392

3.4 Logistic % and Exponential ψ

Consider D = R,

%(x) =
exp(x/ν)

ν (1 + exp(x/ν))2
and ψ(x) = exp(−b|x|)

3Using the Mathematica command FindMinimum
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with parameters ν > 0 and b > 0. Then

ω(x) =
exp(x/ν + b |x|)
ν (1 + exp(x/ν))2

which is quite complicated, in particular if one considers ω1/α, and is not monotonic. Consider
therefore

κa(x) = exp(−a|x|) for some a > 0.

Hence the points x−n, . . . , xn satisfying (12) are again given by (14).
To simplify the formulas to come, we use

λ :=
1

ν
, i.e., ω(x) =

λ exp(λx+ b |x|)
(1 + exp(λx))2

.

For ‖ω1/α‖αL1(D) and ‖ω/κa‖L∞(D) to be finite, we need to have

λ > b and λ ≥ a+ b.

Since the integral in Eqp (ω, κa) becomes very complicated for this example we do not distin-
guish between p ≤ q and p > q. Instead we use the upper bound (13) here.

We first study ‖ω/κa‖L∞(D). Since ω and κa are symmetric, we can restrict the attention
to x ≥ 0. By substituting z = exp(λx), we get that∥∥∥∥ ωκa

∥∥∥∥
L∞(D)

= λ sup
z≥1

z1+(a+b)/λ

(1 + z)2
.

When a + b = λ the supremum is attained at z =∞, otherwise it is attained at z = (λ + a +
b)/(λ− (a+ b)). Therefore∥∥∥∥ ωκa

∥∥∥∥
L∞(D)

=
λ

4

(
1 +

a+ b

λ

)1+(a+b)/λ (
1− a+ b

λ

)1−(a+b)/λ

,

with the convention that 00 := 1, i.e., ‖ω/κa‖L∞(D) = λ if a = λ− b.
Indeed, the previous formula for ‖ω/κa‖L∞(D) can be shown by noting that

λ

[
λ+ a+ b

λ− a− b

]1+a+b
λ
(

1 +
λ+ a+ b

λ− a− b

)−2
= λ

[
λ+ a+ b

λ− a− b

]1+a+b
λ
(
λ− (a+ b)

2λ

)2

=
λ

4

[
λ+ a+ b

λ− a− b

]1+a+b
λ
(

1− a+ b

λ

)2

=
λ

4

[
λ+ a+ b

λ− a− b

]1+a+b
λ
(

1− a+ b

λ

)1−a+b
λ
(

1− a+ b

λ

)1+a+b
λ

=
λ

4

(
1− a+ b

λ

)1−a+b
λ
(
λ+ a+ b

λ− a− b
· λ− a− b

λ

)1+a+b
λ

.

As above,

‖κ1/αa ‖αL1(D) =

(
2α

a

)α
.
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We also have

‖ω1/α‖αL1(D) = λ

(
2

∫ ∞
0

exp((λ+ b)x/α)

(1 + exp(λx))2/α
dx

)α
≥ λ

(
2

∫ ∞
0

exp(λx/α)

(1 + exp(λx/α))2
dx

)α
due to the fact that 1/(1 + A)1/α ≥ 1/(1 + A1/α) since α ≥ 1. Therefore

‖ω1/α‖αL1(D) ≥ λ
(α
λ

)α
.

This gives

FCTR(p, q, ω, κa) ≤
(

2λ

a

)α
1

4

(
1 +

a+ b

λ

)1+(a+b)/λ (
1− a+ b

λ

)1−(a+b)/λ

.

As before the right-hand side above is(
2λ

λ− b

)α
if a = λ− b.

Letting x = a/λ, the minimum is at 0 < x < 1− b/λ that is the root of

x

(
ln

(
1 +

b

λ
+ x

)
− ln

(
1− b

λ
− x
))
− α = 0.

Rounded values of the upper bound on FCTR for α = b = 1 and various λ’s are4:

λ 2 5 10 15
Bound on FCTR 3.341 1.710 1.431 1.353

3.5 Student’s % and ψ

Consider Student’s t-distribution on D = R

%(x) = Tν

(
1 +

x2

ν

)−(ν+1)/2

with Tν =
Γ((ν + 1)/2)√
ν π Γ(ν/2)

for ν > 0.

Here Γ denotes Euler’s Gamma function Γ(z) =
∫∞
0
tz−1e−t dt. Let

ψ(x) =

(
1 +

x2

ν

)−b/2
and κa(x) = (1 + |x|)−a

for a > 0 and b ≥ 0. For ‖ω1/α‖L1(D), ‖κ1/αa ‖L1(D), and ‖ω/κa‖L∞(D) to be finite, we have to
assume that

ν + 1− b ≥ a > α.

It is easy to see that

‖κ1/αa ‖αL1(D) =

(
2α

a− α

)α
.

4Computed with Mathematica.
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Hence the points x−n, . . . , xn satisfying (12) are given by

xi = −x−i =

(
1− i

n

)− α
a−α

− 1 for 0 ≤ i ≤ n.

To compute the norm of ω1/α, make the change of variables x/
√
ν = t/

√
µ, where

µ =
ν + 1− b− α

α
so that

µ+ 1

2
=

ν + 1− b
2α

.

Then we get

‖ω1/α‖αL1(D) = Tν

(∫
R

(
1 +

x2

ν

)−(ν+1−b)/(2α)

dx

)α

= Tν

(
ν

µ

)α/2
T−αµ

(
Tµ

∫
R

(
1 +

t2

µ

)−(µ+1)/2

dt

)α

= Tν

( √
ν

Tµ
√
µ

)α
.

Since
ω(x)

κa(x)
= Tν

(
1 +

x2

ν

)−(ν+1−b)/2

(1 + |x|)a,

we have ∥∥∥∥ ωκa
∥∥∥∥
L∞(D)

= Tν (1 + ν)(ν+1−b)/2 for a = ν + 1− b,

and ∥∥∥∥ ωκa
∥∥∥∥
L∞(D)

=
ω(x∗)

κ(x∗)
for x∗ =

√
(ν + 1− b)2 + 4 a ν (ν + 1− b− a)− (ν + 1− b)

2 (ν + 1− a− b)

for a < ν + 1− b.
This gives

FCTR(p, q, ω, κa) ≤


(1 + ν)(ν+1−b)/2

(
2Tµ√
ν µ

)α
for a = ν + 1− b,

(1+x∗)a(
1+

x2∗
ν

)(ν+1−b)/2

(
Tµ

2α
a−α

√
µ
ν

)α
for a ∈ (α, ν + 1− b),

with equality whenever p ≤ q.
In the following numerical experiments for fixed values of α, b and ν, we choose a ∈ (α, ν +

1 − b] of the form a = α + k/10 such that it gives the smallest value of the above bound on
FCTR. For example:

(ν, b, α) (3, 2, 1) (4, 2, 2) (5, 3, 2) (6, 3, 3)
FCTR 1.427 1.626 1.710 1.861
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