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A HIGHER ORDER FABER SPLINE BASIS FOR SAMPLING
DISCRETIZATION OF FUNCTIONS

NADITA DEREVIANKO®*" AND TINO ULLRICH?*

ABSTRACT. This paper is devoted to the question of constructing a higher order Faber spline
basis for the sampling discretization of functions with higher regularity than Lipschitz. The
basis constructed in this paper has similar properties as the piecewise linear classical Faber-
Schauder basis [I9] except for the compactness of the support. Although the new basis
functions are supported on the real line they are very well localized (exponentially decaying)
and the main parts are concentrated on a segment. This construction gives a complete answer
to Problem 3.13 in Triebel’s monograph [47] by extending the classical Faber basis to higher
orders. Roughly, the crucial idea to obtain a higher order Faber spline basis is to apply
Taylor’s remainder formula to the dual Chui-Wang wavelets. As a first step we explicitly
determine these dual wavelets which may be of independent interest. Using this new basis
we provide sampling characterizations for Besov and Triebel-Lizorkin spaces and overcome
the smoothness restriction coming from the classical piecewise linear Faber-Schauder system.
This basis is unconditional and coefficient functionals are computed from discrete function
values similar as for the Faber-Schauder situation.

1. INTRODUCTION

In this paper a higher order Faber spline basis for the sampling discretization of functions
with higher regularity than Lipschitz is constructed. Similar as for the classical piecewise
linear Faber-Schauder basis [19], the coefficients in the basis expansion are computed from
discrete point evaluations. The classical piecewise linear Faber-Schauder basis is nowadays
a well-understood object and used in several mathematical disciplines, such as probability
[¥], (nonlinear) approximation and sampling recovery of multivariate functions [2, 12} [3],
numerical integration and discrepancy [46} [47), 25]. However, from the limited regularity of
the classical basis functions we may not expect approximation rates beyond n~2 if n denotes
the number of degrees of freedom (e.g. function values). Therefore, it is a natural question to
ask for a more regular variant of this basis. The basis constructed in this paper has similar
properties as the classical Faber-Schauder basis except for the compactness of the support.
Although the new basis functions are supported on the real line they are very well localized
(exponential decay) and the main parts are concentrated on a segment, which makes them
also relevant for computational issues. This construction gives a complete answer to Problem
3.13 in Triebel’s monograph [47].

Having this new basis we consider the problem of characterizing smoothness spaces in
terms of coefficients with respect to this particular basis. This question is part of a more
general problem — the characterization of function spaces with respect to a spline (wavelet)
basis system or a frame. This problem has been studied from the 1960/70ies starting with
the work of Ciesielski [6l, [7], Ropela [35] and Triebel [43][44]. It has been further continued by
Ciesielski and Kamont in [8], [9], [26] and also by Bourdaud [I]. In particular, the Haar system
[23] recently attracted renewed interest, see for instance Seeger, T. Ullrich [41], 42], Garrigds,
Seeger, T. Ullrich [20, 2I] or V. Romanyuk [32], [33] and [34]. The series of papers of Ding
1], [12], [13], [14], [15] and [16] introduces a multivariate “frame-type” spline system (see
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Remark for more extended explanation) for this purpose. Let us also mention Schmeisser,
Sickel [37] where a univariate Shannon sampling theory for smoothness spaces on the real line
is developed. When it comes to the multivariate (tensor product) Faber system [19] we refer
to the recent monographs Triebel [46, 47], Byrenheid [3] and also to Bungartz, Griebel [2].
Discretizations in terms of such non-smooth functions are also called “non-smooth atomic
decompositions” of Besov and Sobolev spaces. We refer to the papers [48], [36] and [39] for
more details in this direction.

In his 2010 monograph [46] Triebel offered a new approach based on the classical Faber
basis to get sampling characterizations of smoothness spaces. The result is an equivalent
characterization for the norm of Besov spaces for the range of smoothness 1/p < r < min{1+
1/p,2}. Note that in [46] a similar question was also considered for Triebel-Lizorkin spaces
with further additional restrictions on the smoothness parameter r and in a more general
framework for multivariate functions given on R? in [3]. Independently of [3], in 2011 the
tensorized Faber-Schauder basis was investigated in detail for the sampling representation
of Besov spaces in [I2] Section 4]. The corresponding characterization uses only the values
of the function at dyadic points. The lower restriction r > 1/p is natural and due to the
availability of the point evaluation, but the upper restriction » < min{1+1/p, 2} comes from
the smoothness of Faber hat-functions. Therefore, it is a natural question to overcome this
restriction and to obtain the corresponding characterization in general for all » > 1/p.

This question was formulated as a problem in Triebel’s monograph [46, §3.5]. In his books
[46, §3.5.2] and [47, §3.4] he also offers some ideas how to extend results for Faber hat-
functions to higher order Faber splines. The idea was to integrate so-called higher order
Battle-Lemarie spline wavelets (see [46, Remarks 2.44 and 2.45] for detailed information).
Since these wavelets are not compactly supported (although exponentially decaying) and
constitute an orthogonal basis in La(R) the coefficients in a series expansion with respect to
this “integrated” system (see [46]) can of course be represented as a linear combination of
function values at dyadic points. However, the number of values depends on the scaling level
j. Another issue is the starting term of the expansion since the scaling function of a wavelet
system can not be integrated properly (there are no vanishing moments). This is formulated
as Problem 3.13 in [47).

In this paper we present the solution of this problem in the univariate setting. We construct
a higher order B-spline basis that allows to get sampling discretizations of Besov-Triebel-
Lizorkin function spaces with higher smoothness r. We follow the idea of constructing the
Faber-Schauder basis by integrating (lifting) the Haar functions. As a replacement for Haar
we use the biorthogonal wavelet system constructed by Chui and Wang [5, 4], see also Lorentz,
Oswald [28]. Our basis mother function is then given by the lifted dual wavelet (rather then
the lifted compactly supported wavelet itself as done in [51], 52], see also Remark below).
It is essential that the (primal) Chui-Wang wavelet represents a compactly supported
Riesz basis in the wavelet space W; which is orthogonal with respect to different scales (see
Theorem . As a first step we therefore explicitly determine the dual Chui-Wang wavelet
using tools from complex analysis. To be more precise, we explicitly determine the coefficients
a%m) in the following representation (see Theorem 2.2 for linear wavelets and Section 6 for
higher order wavelets)

Yi(@) =Y al (@ —n).

nel

In [5] it was shown that coefficients of this representation decay exponentially, but as far as
we know the exact formula for a%m) was not known before. Note, that there is also another
construction of biorthogonal spline wavelets by Cohen, Daubechies, Feauveau [10] based on

two different multiresolution analyses. This construction has the advantage that both, primal
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and dual wavelet, are compactly supported. However, the semi-orthogonality property, which
is crucial for our approach, is not present.

Applying Taylor’s remainder formula to the dual Chui-Wang wavelets 7 (-) leads to the
new basis mother functions sg,,,(+). These ideas are described in Lemma As the start-
ing term we use the fundamental spline interpolant L?™(-), which, due to its fundamental
interpolant property at integer points, represents the correct starting term of the expansion.
Since primal Chui-Wang wavelets are compactly supported we get that the coefficients in a
series expansion with respect to the higher order Faber spline basis sop.; k(-) constructed in
this paper can be represented as finite linear combination of samples (the number of points
depends only on the order m of basis functions). In case m = 2 we obtain (see the expansion

and the formula for the coefficients m for arbitrary m > 3, m € N)

f= Zf k)L (z — k) +ZZ)\];€ )Sik(

keZ 7=0 keZ

where the coefficients A; ;(f) are given as a linear combination of 4-th order differences, i.e.,

1 2k+1 2k +2
)‘j,k‘(f) 6< 2—J— 1f<2]+1> - 2 j— 1f< 2]+1 > 2 i— 1f< 2]+1 >> .

Note the similarity to A, x(f) = —%Ag,j,lf(Q*jk) for the classical Faber-Schauder system.

The main discretization result of this paper is formulated in Theorem With the use of
this basis we obtain sampling discretizations of functions from Besov spaces Bj 4(R) for the
smoothness parameter 7 that satisfies 1/p < r < min{2m—1+1/p,2m} and max{1/p,1/0} <
r < 2m — 1 for Triebel-Lizorkin spaces F (R). Note that for the simplicity we consider the
case of piecewise cubic splines and in Section 6 we give the main ideas for the extension of
the obtained results for Faber splines of higher order.

The Chui-Wang biorthogonal wavelet basis is of independent interest for the discretization
of function spaces. It has for instance application for new characterizations in terms of “Haar
frames”, see [22]. Therefore, we also give equivalent representations for the (quasi-)norm of
Besov-Triebel-Lizorkin spaces in terms of Chui-Wang wavelet coefficients. Note also that for
the periodic case very well time-localized basis functions were constructed in [30] and [18] for
one- and two-dimensional cases. The corresponding characterization of Besov spaces (for the
univariate case so far) was obtained in [17].

Outline. This paper has the following structure. In Section 2 we give the definition of
Chui-Wang wavelets and prove a formula for the explicit representation of dual linear Chui-
Wang wavelets. In Section 3 we describe the construction of a piecewise cubic B-spline basis
and prove uniform convergence of the expansion (i.e. in || - ||s) for compactly supported
continuous functions. Section 4 is dedicated to sampling characterization of Besov-Triebel-
Lizorkin spaces. In Section 5 we give description of these spaces via Chui-Wang biorthogonal
basis. In Section 6 we show how to extend results of Sections 2-5 to Chui-Wang wavelets and
B-splines of higher order. Finally, definitions of functions spaces and some auxiliary results
we put to the Appendix.

Notation. As usual N denotes the natural numbers, Ny := NU {0}, N_; := NU {0, —1},
Z and R denote the integer and real numbers respectively and let Z, :={k € Z : k > 0}
and Ry := {x € R: 2 > 0}. For a € R we denote by a the number a; := max{a,0}. For
two nonnegative quantities a and b we write a < b if there exists a positive constant ¢ that
does not depend on one of the parameters known from the context such that a < cb. We
write a < b if @ < b and b < a. We define also difference of mth order with a step h € R by

the formula A" f(-) = > (=1)™7'("}) f(- + hl). Let further C(R) be the space of continuous

functions on R with the usual supremum norm, Cp(R) be the space of compactly supported
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continuous functions on R and C"(R) be the space of functions on R with continuous r-th
derivative. By L,(R), 0 < p < oo as usual we denote the space of Lebesgue measurable
functions with the finite norm

(f\f \pdac> /p, 0<p< oo,

esssup | f ()], p = oo,
zeR

1fllp =

Let S(R) be the Schwartz space of infinitely times differentiable fast decreasing functions.
By S’(R) we denote the topological dual of S(R) that is the space of tempered distributions.

2. NON-COMPACTLY SUPPORTED DUAL WAVELETS

In this section we give definition of wavelets and B-splines (see [4], [5]) and prove an explicit
representation for dual wavelets of order 2. General result for m-th order dual wavelets is
formulated in Section 6.

2.1. Construction of the Chui-Wang wavelets. Let N,,, m € N, be the m-th order
B-spline with knots at Z defined by

1
Np(z) = (Np—1 % N1)( /leaz—t )dt,
0
where Ny = X ;). It is clear that supp N, = [0,m]. By Ny we denote Ny,jp =

N (27 - —k) and let
Vi =span{Np,.j 1 : k € Z}.
It is well known that spaces V; constitute a multiresolution analysis of Lo (R) (see, for example,
[0]), i.e. the following properties hold
(i) Vj C Vjy for j € Z;

(i) closi, (Ujez Vi) = La:

(i) MNjez Vi = {0}

(iv) for each j the system {Ny, ;i : k € Z} is a Riesz basis in V.

Then as usually the wavelet space W; is defined as orthogonal complement of the space V;
to the space V1, ie.

W;=V;10V;, jel.
Wavelet spaces W; are generated by some basic wavelet. Detailed information about it may
be found in [5] and here we only state the following result.

Theorem 2.1. [5] The mth order spline
2m—2

(2.1) Ym(@) = Sy Z 1)! Nogn (1 + 1)N{™ (22 — 1),

with support [0,2m—1], is a basic wavelet that generates Wy, and consequently, all the wavelet
spaces W;, j € Z, that is W; = span{¢n, (27 - —k), k € Z}.

Note that ¢y is the Haar function.
By Y. j . we denote ¢,k := ¥m (27 - —k). Due to semiorthogonality of the wavelets ¥y, i
the space Ly(R) can be decomposed
LRy =VoeWoa W & ...,

where V} is generated by Ny, (-) and each W by 1,,,(27+). By 1}, we denote the dual wavelet
of ¥, and by N;;, dual of N,,. Below in Theorem 2.2 we present a formula for computation
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FIGURE 1. Wavelets ¢ (left), 12 (middle) and 3 (right).

of ¥, for m = 2 (see Section 6 for arbitrary m). Then we have that each f € La(R) can be
represented (see [5] for details)

(22) f = Z<fa Nm;O,k>N:1;0,k + Z Z(fa ijm;j,k>w;kn;j,k'

kez jeNg keZ
2.2. Representation of the dual wavelet. The following theorem holds

Theorem 2.2. The dual wavelet 15 can be represented as
=S antha(e — ),
nez
where coefficients a,, are defined as follows
23)  an = (=6 —4V3)(=2 = V3)" 1 + (6 + TV3/2)(T+4V3)"! if n<1,
‘ T (6 — 4B (=24 VB)T 4 (=6 + TV3/2)(T— 43" if > 1.

Proof. According to the definition of the dual wavelet we have (¢35(- — n),¥2(- — 1)) = 0p
what is the same as (¢3(-), ¢¥2(- — 1)) = dp;. Then

Soq = (W3(:), 2 —=1)) =D an(tha(-—n), 2(-—1)) = > an(@a(-+1—n),¢2()) = Y _ ancin,

nez neL neL

where ¢;_,, = (Ya(- + 1 —n),¥2(")).
Let us further find a,, from the condition ZnGZ anC—p = 0p;. Computing the coefficients

c; for | € Z we get ¢y = %, Ccy1 = 1%8, Cyo = —ﬁ and ¢; = 0 for |I| > 3. Then we consider
the product of the following two polynomials

ty = g ane™ and t.= g et
nez lEZ
We have

(ta - te)( Z Za etz Z <Z ancln> o'l

n€Z €T I€Z \nez
Since the sum in the brackets ) ancj—, = 00 we get

nez
x) — § :6l,OeilI —

IEZ

E ane™
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Multiplying both parts of the last equality by e~"** and integrating over [0, 27], we obtain

2 .

1 eflnx

n :277/ _ L2z 4 5 g—iz L 5 iz 1 2 dz
) 216 108 47 108 216
27 . .
216 jelre—in—1
= , . A — dx

2mi J —1+4 10e™® + 54e?ir 4 10e3ir — ediz

0

Making changes of variables e = z we have

216 zmn L
2.4 =—— dz.
24) fin 2mi 1— 10z — 5422 — 1023 + 24
|z|=1
3_
2_
1 -
oA~
-4 -2 2 4 6 8 10
1}
2L
FIGURE 2. The dual wavelet 3
Let us further consider the following function ¢(z) = 1_1OZ_§;;L_110Z3 7. The numbers

20="17— 4\/§, 21 = —2— \/g, 29 = —2+ /3 and z3 = 7+ 41/3 are roots of the denominator.
Further we consider two cases.

1)n>1:
1 1 :’SAZ+ By Bi , By B
211 — 10z — 5422 — 1023 + 24 22—z z2—21 z2—20 2z—23

=1

where A; and By are some constants. Multiplying both parts of the last equality by z — zg,
s=0,1,2,3, and then putting z = z; we find that

(2.5) Bo= Hl -

1=0,1,2,3,i#s

It is easy to see that Ay = —By — By — Bs — B3, A;=0,1=2,3,...,n— 1. Then using
(2.4) and Cauchy’s integral formula we get that

z

3
1 Ay 1 By
=216 5— [ —d o dz | = —216(A1+Bo+By) = 216(B1+Bs).
fin 2mi / z Z+§2m’ / . z (A1+Bo+B>3) (B1+Bs)
|z|=1 o |z|=1
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Using formula for By (2.5)) we have
an = (6 —4V3)(=2 + V3)" 1 4 (=6 + 7V/3/2)(7 — 4V/3)" !
2) n < 1: here we use notation

1

(zs — Zz)
1=0,1,2,3,i#s

From (2.4) and Cauchy’s integral formula we obtain

Bs =

3 _
— _9216 Z L M dz | = —216 (B026n+1 + B225n+1) .
= 2me Z— Zs
- |z|=1

Substituting Bs in the last formula we get that
an = (=6 —4V3)(=2 = V3)" " + (6 + TV3/2)(7 + 4v/3)" !
[

By using similar technique as in the proof of Theorem [2.2]it is easy to show that for N3,

Nj(z) = baNo(z + 1 —n),
ne”

where b, = (—1)"v/3(2 — v/3)!".
Note that the coefficients a,, from Theorem and b, from representation for Ny decay
exponentially with respect to |n|, what is crucial for the construction of cubic Faber splines.

3. CONSTRUCTION OF PIECEWISE CUBIC FABER SPLINES IN THE SPACE OF COMPACTLY
SUPPORTED CONTINUOUS FUNCTIONS

In this section we present a construction of piecewise cubic Faber spline basis and prove
the uniform convergence in the space Cy(R).

First we give some necessary definitions. We define the cardinal spline function as (see [4]
for details)

(3.1) L™(z) =Y ™ Np(z +m/2—n),
neZ
with the property L™(j) = d;0, j € Z. By J™ f(x) we define the following interpolation
polynomial
(3.2) (J" ) (x Zf )L™ (z —n).
nez

It is clear that J™ f(j) = f(j) for j € Z.

Further we are interested in the case m =4 (see [4, P. 112])

LYz) = > (-1)"V3(2 = V3)"Ny(z +2 - n).
neZ

For N € N we define the scaling version of the operator J* as

(3.3) (InHx)=> fe~ Nz —n),

neL
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and then (Jx f)(n/2V) = f(n/2N) for n € Z. By Vx we denote the space

Vi = {f s fi= chN4(2N -—n), {¢n}nez € 51} .

nel
Due to the compactness of the support of Ny we have V]% C L1(R).

3.1. Construction of piecewise cubic Faber splines. In this subsection we show the
main ideas of the construction of piecewise cubic Faber splines.

Lemma 3.1. Every f € Vi can be reproduced by the operator Sy, i.e. (Snf)(z) = f(z),
Vz € R, where Sy is defined as follows

(3.4) Snf(x)=> f(k)L*(x — k) +Zz&k )85k

keZ j=0 kez

where coefficients \j . (f) are defined as

k K K
35)  Au(f) = 6<A§J1f(?+l> 4A;*J1f(2;11> A3J1f<2;12)>,

and piecewise cubic polynomials s; are defined as follows

(3.6) sjk(T Zan 2z —k—n),

ne”
here coefficients a,, are defined by and

t3, 0<t<1/2,
1 — 6t + 1262 — 713, 1/2<t<1,
. —22 + 63t — 572 + 16t3, 1<t <3/2,
(3.7) v(t) = 36 | 86— 153t + 872 — 163, 3/2 <t <2,
—98 + 123t — 512 4713, 2 <t <5/2,
27 — 27t 4 9t? — 13, 5/2 <t<3,
0, otherwise.

Proof. Since f € C?(R) (because f € Vi), we can consider f) = (J4f)@) 4 (f — J4f)?).
According to definition of the space Vi we get that f (2) € Ly(R) and then from the viewpoint
on ([2.2) we have the following expansion (in the sense of Ly convergence):

f@ = Z<f()N20k NQOk"‘ZZ ), 204 k5.

kEZ JEZ kEZ
—Z ((J*f) N20k 20,k T Z Z ((J*f) 72j¢2;j7k>w>2k;j,k
kEZ JEZ keZ
Y (=T D NowidNsg e+ Y D ((f = T N 200005
keZ JEZy kEZ

Since (J*f)® can be represented as

B NI 'f'z (2 )Nl + 25— = )

kEZ jEL
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FIGURE 3. The piecewise cubic basis functions L* (left) and sg¢ (right)

then (J*f)? € V; and consequently 3 ((J4f)(2),N2;0’k>N2*;07k = (J*£)?). Further we will

keZ
often use
(3.8) N () = 3 (=17 (" )6z — ),
> ()=

were § denotes the Dirac delta distribution.
Let us consider the following coefficients (g(?), No.g i) for some g € C%:

(9@, Noo i) = / D) No(t — k) dt = / gt)ND(t — k) dt
2 9 2 9
=S (—nm ()6(t — k —m) dt (—1)™ (k +m)
() [0 ()

According to this ((f — J*f)®), Nogp) = i (—1)"‘(;)(]‘ —J4f)(k+m) = 0 since J*f(j) =

m=0

f(j) for j € Z. Then

(3.9) FO = (JAH@ 4 Z Z<f(2), 2o kY5 1
JELy kEL

Further we find the coefficients (f 2) 21 V2.5 k). From Theorem and formula 1} we get

Y5 (@) = 2%+ Z YNy (1 + )N (2741 — 2k — 1)

4
223“2 ) Na(I+1) > (- ( > (2 e — 2k — 1 —m).
m=0
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Therefore we can write for (f2), 274y, 1)

(fP, 274y 1) _2]/f2) )12,k (1) dt_2j/f %’J’ (&) dé

4
—23J+1Z VNS 4+1)> (- <4> /f(t)5(2j+1t—2k—l—m)dt
m=0
2 - 2%k +1+m
__ 93j+1
— 937 Z(— VNG (1+1) Z <>2j+1/f < S >dt
=0 m=0
- 2%k +1+m
_ 02
212 VNS +1)) (- () <2j+1 >
m=0
2k +1

Let us further denote )\jjk(f) as in (3.5). From (3.2), (3.5), (3.9) and (3.10) we have the

following expansion for the second derivative

FO =N+ 370 2NN

JEZ 1 kEZ

Since f € Vx we have that (f®, 294p9.; ) = 0 for j > N. Therefore,

N-1
(3.11) FO =N+ 37N 2N k(s 4

j=0 k€Z

By using Taylor expansion we get

7 @t

(@) = f(xo) + f'(x0)(z — z0) + / ) (o — 1) dt.

When xy — —oo we get (because of lim f(z) =0and lim f'(x)=0)

r @
(3.12) 1'( )

x —t)dt.
Note, that

(3.13) /wék;j’k( t)dt = Zan/wg (27t —k—n)(z—t)dt = 5% Zanv 2x—k—n),

nez —c0 neZ

where v is defined by (3.7)).
Applying Taylor expansion to (3.11]) and taking (3.12)) and (3.13]) into account, we get the
result. |

3.2. Uniform convergence in the space Cy(R). Before formulating the main result of this
subsection we prove some auxiliaries statements. The following lemma is probably known,
but since we were unable to find a reference we give a proof.
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Lemma 3.2. Every f € Vﬁ, can be reproduced by the fundamental spline interpolation oper-
ator Jj‘(,, 1.€.

(3.14) (Jnf)(x) = f(z), Yz € R.
Proof. We prove that J*(Ny) = Ny. According to definition of J* we have

(JAN)(2) = " Na(k) LAz — k) = S Na(k) Y e VNu(w +2 — 1 — k)

kEZ keZ leZ
_ZZN4n+2—lcl( Ny(z —n) = ZN4a:—n ch)N4n+2—l)
neZ leZ nez [/
_ZN43:—nL4 ZN4SU—TL)5n0—N4( )-
nez nez
Now ((3.14)) is a trivial consequence of the last equality. |

In the next lemma we consider functions f € Cy(R), since then all sums in (3.4) is finite
and Sy f is well defined.

Lemma 3.3. For every function f € Cy(R) we have Sy f = Jf{,f, where Sy and Jj‘{, are
defined by and respectively.

Proof. Let f € Cyp(R) and = € supp f. Since Jy f € Vi according to Lemma we have
that Sy (Jaf)(z) = Jx f(z). On the other hand, since Jy f(k/2N) = f(k/2V), k € ZNsupp f,
according to definition of Sy we get that Sy (Jaf)(z) = Sy f(x). [ |

Remark 3.4. As a consequence from the last lemma we have that the operator Sy interpolates
a function f € Co(R) at points k/2V, k € Z, i.e.

Snf(k/2Y) = f(k/2Y), ke
Theorem 3.5. For a function f € Cy(R), we have that
(3.15) lim ||f — Snflleoc =0,
N—o00

where Sy is defined by .

Proof. By Q7 we denote a quasi-interpolation operator

Q@) = > oM (fINu(2Vz — k),

kev(N)

where the set v(IV) is finite and the functional a,gN)( f) is defined by using finite number of

function values (see [14] for details). Since according to Lemma [3.3| we have that Sy = Jy,
we can write

1f = Snflloo = If = Inflloo <N = Qi Flloo + QNS = T flloo
=If = QN Sl + 1 T5 (f = QN F) lloo < (L + 1T llooso0) I1f = QN flloo-

We used that Q% f € VN and according to Lemman JN QW) = QNI

Further we use the facts that ||f — Q% fllc — 0 if N — oo (see [14]) and the norm
| T [l so—soo is bounded (see [31]). It implies (3.15). [ |
Remark 3.6. We would like to point out that the paper [51] is rather close to us. However,
a significant difference is the fact, that our basis is the integrated (lifted) dual Chui-Wang
wavelet. This dual wavelet had to be determined explicitly in a first step. It is not compactly

supported however very well localized (exponentially decaying). Similar as in [51, 52] the
basis coefficients of the Faber spline basis are computed from a linear combination of discrete
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function values. In contrast to [51] these coefficients are explicitly determined and use only
local discrete information of the function f. This is in analogy to the classical Faber-Schauder
basis which is the reason why we call it Faber spline.

Further for the convenience we use the following notation. We define sequence of coefficients
Ajk(f) and functions s, for j € N_y, k € Z, in the following way: if j > 0 we use definition

(3.5) and (3.6) consequently, and if j = —1 we put A_ x(f) := f(k) and
(3.16) s_1p(x) == LYz — k).
Then from Theorem for each function f € Cy(R) we have the following expansion
(3.17) F@)= 3 > NklHsjula),
JEN_1 k€EZ

where convergence is understood in the sense of the space C.
Further we prove the uniqueness of this expansion. We show that all coefficients ¢; j in the
following expansion

(3.18) 0= Z C,LkL4($ — k) + i Z CngSj’k(x),

kEZ j=0 kez

equal to 0. Note that from definition of piecewise cubic functions s;j we have that s;(n) =0
forn € Z. If we put x =n, n € Z, in (3.18)) we get c_; , = 0 for all £ € Z. Then we apply
the functional \;,,(f) with { € Ny and n € Z to the series (3.18]). Since

) . . .
At (8jk) = <8§-7/2, 2" m) = 2227 (5 1o n) = 2785 o

we have that ¢;,, = 0 for all | € Ng and n € Z.

4. SAMPLING CHARACTERIZATION OF BESOV-TRIEBEL-LIZORKIN SPACES VIA PIECEWISE
CUBIC FABER SPLINES

In this Section we prove Theorem about sampling characterization of Besov-Triebel-Lizorkin
spaces. We recall that definition of these spaces is given in Appendix A.
The following theorem holds.

Theorem 4.1. (i) Let 0 < p,0 < oo, p>1/4 and 1/p < r < min{3 + 1/p,4}. Then
every compactly supported f € B;ﬁ can be represented by the series , which
is convergent unconditionally in the space B;’gg for every e > 0. If max{p,0} < oo
we have unconditional convergence in the space B} . Moreover, the following norms
are equivalent

(4.1) 11z, = 1A e,
(ii) Let 1/4 < p,0 < o0, p # oo, and max{1/p,1/0} < r < 3. Then every compactly
supported f € FJy can be represented by the series , which is convergent un-

conditionally in the space Fgf for every € > 0. If 8 < co we have unconditional
convergence in the space F;;e. Moreover, the following norms are equivalent

(4.2) IfllEz, =< A gz,

First we prove some auxiliary statements. We apply some known technique that was also
used in [3], [25] and [40]. Let A = (\jx)jen_, kez be some sequence of real numbers that
satisfy certain conditions (later we specify that \ € bgor A€ fzf,@)‘ We denote

(43) fIZ Z Z)‘j,ksj,k‘

JjEN_1 keZ
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This formal series converges in S’(R) due to assumptions on A. The estimates below shows

that (4.3) exists in S’(R).

Proposition 4.2. Let 0 < p,0 < oo, max{1l/p — 1,0} < r < 3+ 1/p and a sequence
A€ b;ﬁ. Then the series converges unconditionally in the space B o for everye > 0. If
max{p, 0} < oo we have unconditional convergence in the space BTG Moreover the following
inequality holds

(4.4) 11z, S WA,

Proof. First we prove the inequality (4.4) for the case § < oco. For 6 = oo the proof is

similar. We denote f; := > Ajxs;x for j € N_i. Then
kEZ

(4.5) F=Y"fis

leZ

By using characterization of Besov spaces via local means (Theorem |A.3|) and wu-triangle

inequality with v := min{p, 6,1} we have
1/6
< D>  Njtiksi, k) H )

Iflls;, = ( > 20w« £ ) ( Z o0ir||\p

J€No l€Z keZ
(% ( 5 2 st san[) )

leZ ]GNQ
By using inequality (A.3|) we can proceed for v = min{p, 1}

u/f\ 1/u
g, % (3 ( SERDRED ST IHNEl i B

l€Z \ jeNy keZ nez

60 u/0\ 1/u
(4.6) (Z ( 3 2firg- a"“’( (- ) ) ) .
j€No

GHLEXA g (0)
lEZ

Further we consider the following norm H > N+ kX Ay pan () H . For z € Rsince Aj ;41 C
kez ’ p
U Ijti, i4n We can write

ji—k| 2+
p p
‘ Z )\j+l7kXAj+l,k:+n (.’1:)‘ S ’ Z ‘)\j+l7k‘XAj+L,k+n ‘ ‘ Z |)\ +l k| Z X +l+ i+n ) Y
kez kez kez i€Gy (k)

where Gy(k) := {i : |i — k| < 24} with |G;(k)| < 2'*. By changing order of summation and
on the viewpoint that segments I;,;, ;, do not intersect for different i we have

P P P
‘ Z)\j+lkaAj+l,k+n (x)‘ < ‘ lej+l+,i+n (z) Z |>\j+l1k" = lej+l+,i+n (x)( Z |)‘j+l7k|) :
keZ 1€Z keG (i) i€Z keG (i)
From the Holder inequality for p > 1 we obtain
P oli(p—1
’ Z /\j+l,kXAj+l,k+n (.%')’ S2 +e=1) Z XIjtiy itn (2) Z |/\j+l,k’p'
keZ i€Z keG (i)
For p < 1 we use the embedding [, < I1 to get

p
‘ Z AJHLEX At et (37)‘ < ZX[j+l+,i+n (z) Z Ajenl-

keZ i€ keG,(4)
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By using last inequality we can write for the norm

p p
“ZAj+l,kXAj+l,k+n p:/‘z)\j+l,kXAj+z,k+n(ﬂf)‘ dx
keZ

< bt p-1) Z/Xfmm e 3y

i€l i keGy (i)

2797 (i4n+1)

_ 21+(p*1)+2 / 1dz Z INjkP

Ly keG (i)
— ol+(P—1)+9—i—l+ Z Z |)\j+l,k|p
i€Z keCy(i)
~ 9l+(P—1)+9—J Z Nkl
k€EZ

By using this inequality we can continue estimation of (4.6|)

u/O\ 1/u
”fHBp g ~ (Z ( Z 29j7"2*a|l\9<2 ’an|v2vl+(lfl/p)+27jv/p<Z ‘)\j+l’k|p>v/p> 0/v> )

1€Z \ jeNy nez kez

u/O\ 1/u
= <Z |an|v)1/’0. (Z ( Z 29jr2—a|l|092[+(1—1/p)+6'2—j0/p(Z |)\j 7 p)e/p> ) ‘
kez

nez l€Z \ jeNg

From definition of coefficients a,, we conclude that »_ |a,|” < 0o, so we can proceed as follows
nez

u/0\ 1/u
I1£lls;, < (Z?a'”“%“ e (ZW (S seral)’ ) )

€7 j€ENg keZ

1/u
_ (Z g—alllols(1-1/p)+ o ~I(r—1/p) ( S 9fl0-1/p) ( S )\j+l,k|p) 9/”) v/ 9)

€7 jENo kEZ
< (Z g—alllugl (1=1/p) s ug—l(r—1/p)u ) 1ALl ,-
YA
Due to the choice of the parameter max{1/p — 1,0} < r < 3 + 1/p the series
Z g—alllugly (1-1/p)yug—I(r—1/p)u
IEZ

is convergent. Therefore, inequality (4.4)) holds.
Let us further prove the unconditional convergence of the series 1) in the space B;ﬂ
when max{p, 8} < co. By V we define a set of indices for the basis s, i.e

V={(G.k):jeN_1,keZ}

We consider the set of sequences

0= {'A = (AH)TLEN : An C v7 ‘»An’ = TL,.An C An+17 U An - v}

n=1
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Each A € O defines some order of summation of the series (4.3)). By S,, we denote the
following partial sum

Sn = Z >\j,k:3j7k-
(4,k)EAR
According to first part of the proof we have that
1f = Sullsy , S Akl Gmyevanllo -
Since all finite sequences are dense in the space b;,e» max{p, 0} < oo we have that if n is large
enough
1Akl Gopyewa, llor , <€

what together with arbitrary choice of A finishes the proof.
Let now 0 < p,0 < oo and A\ € b; ¢- Then by using Holder’s inequality with respect to

index j in the definition of the norm of b} ,° it is easy to show that

Jm 1Azl kevyan lly—e = 0.
By using inequality (4.4) that is already proven we write
Hf - SnHB;’*eE Sz ”)‘j,k (j,k)eV\An”b;jaE —0

which finishes the proof. |

Now we prove the analogue of this proposition for F-spaces.

Proposition 4.3. Let 0 < p,0 < oo, p # oo, max{1/6 — 1,1/p — 1,0} < r < 3 and a
sequence \ € f;ﬂ. Then the series converges unconditionally in the space FIZ;E for
every € > 0. If 8 < oo we have unconditional convergence in the space F . Moreover, the
following inequality holds

(4.7) 1fller, S 1Nz,
Proof. We use u-triangle inequality with « = min{1, p, ¢}, representation (4.5) and Theorem
A3

. 1/6
17z, = [[( 20 2wy« 117) |
j€Ng P
. o\ 1/0
= H( > 277w« (ZZAj-i-l,ksj—i-l,k;)‘ ) H
j€No 1€Z kel p

<(zl(z

1/u
u)
I€Z jeNo p

o\ 1/6 L/
S (ZH( Z 2'9T]<Z|>\j+l,k’|\11j*Sj—l-l,k‘) ) p) .
IEZ j€Ng kEZ

By using inequality (A.4]) we obtain

1/u

_ . o NN 1/0u

1£ller, < <Z2 alllu (Z 29rj<2‘)\j+l’k‘(1+2m1n{];]+l}‘x_mj+l’k’) R) ) > .
=7 j€Ng keZ P

From the following property (|27, Lem. 7.1])

Pkl (14 2700 g — g )R S 207 [M’ D AN L
kEZ kEeZ

O\ 1/0
W (Z Aj+z,k8j+z,k)‘ )
keZ

()

T} 1/7
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for0<7<1land R>1/7, we get

I£ller, S (Z o—alljuguly /v
’ leZ

It is obvious that | ('3 [M|fl|7}9/7)1/9H -
i p

T} 9/T>1/9

1/u
p)

We assume that

( > 2% M‘ > N X Lk
- kez

j€No

(5 [a14r1"7)

min{f/7,p/7} > 1. By using the Hardy-Littlewood maximal inequality we have

_ ) 0\ 1/6
I£ller, S (Zz allluguly /7 (Z 20| $° AjH’kaH’k‘ ) ’

u)
l€Z. j€No keZ

/0 1)7
|,

1/u

) 0\ 1/0 | 1u

Z 2_a‘l|u2ul+/7'2—7‘lu ( Z 297“(,]"!‘[)‘ Z )\]-‘rl ka+l k‘ ) )
(leZ 7€No hez ’

< < Z 2—a\l|u2ul+/7’2—rlu) 1/u||>‘Hf; ;
leZ

for 7 < min{l,p,0}. If max{1/60 — 1,1/p — 1,0} < 1/7 —1 < r < 3 then the series

S 2-alluguls/To=rlu converges.
leZ
Now we prove unconditional convergence. We start with the case when 6 < co. We use

notations from Proposition We know that
1f = Snllrr, S Nkl Grmevanllsr,-
From density of finite sequences in the space ly we have that
. 1/6
Z 29r7\)\j,k|9xjyk) — 0, if n — oo.
(4,k)EV\An
Since for all n € N

. 1/6 4
> 29”|/\j,k!9><j,k> S( > 27Nk

(4,k)EV\A, (J:k)eV

1/0
HXj,k') S Lp7

then according to Lebesgue dominated convergence theorem we may write that

12kl Gryevan ll 7, = 05 if n = oo,

When 0 = co we use similar consideration as in Proposition [4.2 |
Proposition 4.4. (i) Let 0 < p,0 < oo, p>1/4,1/p<r <4 and f € B} y. Then the
inequality
(4.8) IO, S 11,
holds.
(i) Let 1/4 < p,# < oo, p # oo, max{l/p,1/0} < r < 4 and f € F],. Then the
inequality
(4.9) ANl S 11,
holds.
Proof. We use representation (A.2)) in the following form
(4.10) F=>6ulfl, j€No.

leZ
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We give a proof for the case § < co. For § = co one can obtain the results by using similar
technique with trivial modification.

First we prove one additional inequality. We denote Fj;(x) := > Ajx (d;41[f]) xjk(2),
kezZ
x € R. For x € I we have that

[Ej1(2)] < [Ajik (05D [-
Let first j > 0. Then

1 2k 2k +1
|Fja(z)| < 6 (’Aé_j_16j+z[f] <2j+1>’ 4 ’A%—j—ldjﬂ[f] <2J+1> ’ +

2k + 2
o (222)])

By using Lemma we get for some bandlimited function g with Fg C [—-A2/F! B27+]
1A g(wjp)] S min{1, 24} max{1, 2"} Py 49(; 1)

From this inequality for I < 0 and |z — x| < 277 we get

g\y
A5 1 9(mje)| S 2% Pty q9(zjs) < 2% sup 9(v)]

I+ ,
ek (1+ 2|y — :L"|)a(1 + 27 |z = ])*

41 |g(y)\ _ o4l )
(#-11) 2 Sy —a)e Poes a9(2).

For [ > 0 and |z — z;| < 277 by using definition of the 4th order difference we write
l9(xjk + vl
A5 1g(zin)| S sup |glajpn+y)l S sup Rt
Y e 2= (L+27]y))e

~ up 19l (1+ 2y —z))°

vek (L+ 2]y —a|)® (1+ 27|y — zjx|)®
coup 9@ AVl —p) (4 Pl - ayp])°

~yer (1+ 27y —a|)? (1+ 27y —jp )

Since for { > 0 we have

S P2J,a(:l"]7k)

5 PQJ,a(J:)'

sl 2y —ae
4.12 Py = - - < 2Py
(12 Poal®) =B sty —al (5 By —ae =02 ed)
then
(4.13 AL 0(es0] £ 2P g9(a)

If z € I then not only |z — x| <277, but also |x — 2 k1| <277 and |z — zj11 2k41] <
27J. Therefore inequalities (]4.11[) and (]4.13[) hold also for differences A%,j,lg (j41,26+1) and

A‘éﬂ;lg (Tjk+1)-
Let now j = —1. In this case z € [k —1/2,k + 1/2] and

[Fja (@) < [Aje 05[] | < 16541[F1(R)]-

Let again g be some bandlimited function. We consider only the case | > 0 because g = 0
for [ < 0 and there is nothing to prove. So, for [ > 0

lg(k)| < sup |g(z + y)| = sup l9(z +y)|

jyl<1 i<t (1+2y|)
Using (4.12) we get
(4.14) l9(k)| S 2'Pyres 9().

(L +2|y)* < Pos o).
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Since segments /; ;, do not intersect for fixed j and different & from (4.11)), (4.13)) and (4.14))
we conclude that for z € R

(4.15) ()] S min{2%, 1} max{2%, 1} Pyy1 o 8j44(f](2)-

Let us now prove part (i). From definition of the space of sequences b;a by using the
u-triangle inequality with « = min{p, 0, 1} we can write

N\ /0
Z)\j,k(f)Xj,ka>
keZ

N\ /0
Z Ajk ( Z 0j+1 [f]) Xj,k Hp)

Iy, = ( S ot

JEN_3

(xw

JEN_4 keZ =7
1/u
(4.16) < (Z( > 2N Ak (5j+l[f])Xj,kH6) 9)
leZ  jeN_; keZ p

By using Lemma and inequality (4.15) we have that for a > 1/p
1Fjallp S min{2", 1} max{2%, 1} || Py [ fllp S min{2", 1} max {2, 1} [|8;14[f]]]-

We denote g =a if [ > 0 and =4 if | < 0. Now we can proceed estimation (4.16))

1/u
Il , _(Z(ZWHF, o) )
leZ jeN_;

1/u

< ( > 2ot 5, 11| ) )

leZ jeN_,

/6 1/u

_ (Z231u2—rlu Z 20r(j+l)||5j+l[f]||z) )

leZ jeEN_4

< (225 s,
I€Z

Now if 7 satisfies 1/p < a < r < 4 with p > 1/4 we have that the series > 2(#=" converges

leZ
and inequality (4.8 holds.
Now we prove part (ii). We use representation (4.10) and the u-triangle inequality

Ol = (X 27 o)

JEN_1 keZ

=103 2 S (S ) s

9) I/GH
JEN_; keZ = P

10 1/u
< (ZH( > 2 ZAj,k(5j+l[f])Xj,k 9) " p) :
1 kEZ

l€eZ jEN_
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By using inequality (4.15)) and Lemma we write for a > max{1/p,1/6}

1/6

1/u
XDy, S (Zzﬁl“ (S 2Py abinls)) )
= JEN_1

p

1/u

. /0|u

< (szu (S i)’ p)
= JEN_1

1/6

1/u
_ ( Z 2ﬂlu27l7"u < Z 29r(j+l) (5j+l [f])0> u)
lez JeEN !

_ 1/u
< (ZQﬁluQ lru) HfHF;,97

leZ
Due to the choice of the parameter max{1/p,1/0} < a < r < 4 with p,0 > 1/4 the series
> 2Blug=lru i5 convergent and inequality 1’ holds. |
LeZ

Proof of Theorem We give a short proof of part (i). Proof of part (ii) may be
obtained in similar way by simple replacement of Proposition by Proposition and part
(i) of Proposition [4.4] by part (ii).

Relation follows from Propositions and (i). We prove convergence for the case
max{p, 0} < oco. Since f € B} 5, according to Proposition (i) we have that A(f) € b -

Then Proposition implies that the series > > Ajr(f)s;jr converges unconditionally
JEN_1 keZ

in B}, to some function g. But since B}, C Cyp(R) because of the choice of the param-
eter r > 1/p then according to Theorem [3.5| we have uniform convergence of the series

> > Ajk(f)sjk to f. That implies that f=g. B
JjEN_1 k€Z

5. CHARACTERIZATION OF BESOV-TRIEBEL-LIZORKIN SPACES VIA CHUI-WANG WAVELETS

Further we use the following notations. We denote 1;; := 1o, for j € Ny and 1, :=
NQ('A‘i‘ 1 — k). Analogically, ¢7 := 43 ., for j € No and o*, ; := N3 (- — k). Let p;x(f) :=
(f, 279 ). Then for each f € Ly(R) the following expansion holds
(5.1) F=> > ke

JjEN_1 kEZ

where convergence is understood in term of the Ls norm.

The main goal of this section is to prove the following theorem.
Theorem 5.1. (i) Let 0 < p,§ <oo,p>1/4 and 1/p—2 <r <min{l+1/p,2}. Then

fe ng can be represented by the series , which convergent unconditionally in

the space B;;E. If max{p, 0} < oo we have unconditional convergence in the space
B} . Moreover, the following norms are equivalent

(5.2) 115, = a(Hll; .

(i) Let 1/4 < p,0 < oo, p # o0, and max{1/p —2,1/60 —2} <r < 1. Then f € F,
can be represented by the series , which convergent unconditionally in the space
F;;a. If 8 < 0o we have unconditional convergence in the space Fge. Moreover, the
following norms are equivalent

(5.3) 111, = (Pl ,-
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Remark 5.2. Let p := max{p, 1}. Then for the scalar product
(fia) := > (Wyx f,Aj % o)
J€No
we have
(i)l < D 15 FllpllAy * el
J€No
< sup 9i(r=(1/p=1)+ ”\I, *f||~z 9d(=r+(1/p—1) +)||A % ol
j€Np jeNg

< AN r-arm-ny lIell /1y

P oo p
By using Theorem it 1s easy to show that Yy € By if < 1/p+ 1. Therefore, due to
the choice of pammeter rin Theorem we have that o € B~,r+(1/p D+, If f e F by We
use the embedding F , C Bma)(i{/lsz}io to conclude that ||f|| r—(/p-1), < 00. Note, that we
P
can choose V; and A such that W; is compactly supported on the Fourier side and Aj is
compactly supported on time domain (see [49]).

First we prove some auxiliaries statements. Let 1 = (u;1)jen_, kez be some sequence of
real numbers that satisfy certain conditions (u € b;ﬁ or i € f;ﬁ)‘ We denote

(5.4) fi= D0 D matin
JEN_1 kEZ
Due to assumptions on p we have convergence of the series (5.4) at least at S'(R).

Proposition 5.3. Let 0 < p,0 < oo, max{1l,1/p} —3 <r <1+1/p and a sequence j € by -
Then a series converges unconditionally in the space B;,;E. If max{p, 0} < co we have
unconditional convergence in the space B; g- Moreover, the following inequality holds

(5.5) 11z, < lals .

Proof. For the proof we use the same technique as in Proposition [£.2] with Lemma [AT12]
instead of Lemma Different values of o for positive and negative [ lead to different
range of smoothness parameter 7. |

Proposition 5.4. Let 0 < p,0 < 0o, p # 0o, max{1,1/p,1/6} —3 < r < 1 and a sequence
uwe f;ﬂ. Then a series converges unconditionally in the space F;gg. If 0 < 0o we have
unconditional convergence in the space FJy. Moreover, the following inequality holds

(5.6) I llEr, < llullgr,-

Proof. For the proof we use the same technique as in Proposition with Lemma,
instead of Lemma Different values of « for positive and negative [ lead to different

range of smoothness parameter r. |

Proposition 5.5. (i) Let 0 < p,0 < oo, p>1/4, 1/p—2<r<2and f € BJy. Then
the inequality

(5.7) 14F. 285 ler , < 111z,

holds.
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(i) Let 1/4 <p,0 < oo, p # oo, max{1l/p—2,1/0 —2} <r <2 and f € F},. Then the
inequality
(5.8) 120l S 1l
holds.

Proof. First we estimate one coefficient |(f,2/ Y;k)|. By properly chosen Littlewood-Paley
building blocks we may write

. 250] < 3 |2 (W00 £ A )

lEZ

(59) =~ | [ 2 D) Qg v )]
l€Z -

We estimate the inner integral. For [ > 0 we have that

-1
(A i) W] S 27 XA, 40 (Y)-
The set A;4;x here is the union of at most 7 intervals centered at nodes of 1);; with lengths
27971 and factor 27! is due to the smoothness of ;5 (¥, 1 € Béom). By using this we have

[e.9]

[ 2@ D) B a0y S22 [ D), 0)dy

—00

= 279 / (W40 % f)(y)|dy

Ajtik

< 29271977 sup (W4 % f)(y)]
YEA {1k

gy (W DI+ 2y

YEA 11k (1 + 2j+l|x - y|)a

For x € I, and y € Aj4; we have that |z — y| < 277. Therefore

(5.10) ’ / 29 (W () - (N * ) () dy| S 257 Py o (W * f)(2).

For I <0
|(Aj+l * Q;Z)],k)(y” 5 23[XAj+z,k (y)a

where A;1; 1 is a segment centered at x;;, with length ~ 277!, Factor 23 is due to vanishing
moments of 9; ;. Therefore, as above

[ 2@ 00 (a0 )| S22 [ 100 D)y
Ajiik
<$22%2777 sup  [(Wyp0x f)(y)]
YEA; 11k
_ o2 (W () + 27z — y)*

sup .
YEA 11k (1 + 2J+l’$ - yDa

(5.11) S 2% Py (W4 % f)(2).
From (5.9), (5.10) and (5.11]) we conclude
(£ 27050 S Y 27 Posr o (U0 + ) (@),

leZ
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where x € I;, and f =a—2if [ >0 and 8 =2if [ < 0. Then for x € R we have

(5.12) S UE 29X (@) 020 Posia o (W40 % £) ().

k€EZ leZ

Further we prove part (i). By using u-triangle inequality with v = min{1, p,#} we may write

| A A /
1(F, 2795 ler , = ( > 2N, 2J¢j,k>|x]~,kHi)1 '
kEZ

0\ 1/6
> 2 Pyt (W4 f)H )
=/ b

JEN_1

5( Z 26'rj

JeEN_1

1/u
< (ZZ““( > 20Tj||sz+l,a(‘I’j+l*f)”ze)) /0)

€L jeN_1

Using Lemma we have for a > 1/p

1/u
) wuo—lru (7 u/6
I{f, 21%,6)“1);’9 < (sz 9l < Z ¢ (g+l>quj+l*f|yf,) )

lEZ jeN_1
1/u
leZ

The series 3 28=" is convergent when 1/p—2 <a—2 <r < 2.
leZ
Now we prove (ii). We use inequality (5.12)), u-triangle inequality and Lemma Then

I1(f, 2j¢j,k>“f;ﬂ = H( Z ofrj Z<f’ ijj’k>xj,k’0>1/0Hp

JEN_1 keZ

1/u
S <226lu2—l7"u ( Z 297" (J+0) |\If l*f| ) )
lEZ JEN_1

lue—1
< (272 | ey,

I€Z
holds with @ > max{1/p,1/6}. On viewpoint of choice of the parameter r the series
S 2Bl =lru s convergent. [
leZ

Proof of Theorem To get (5.2) we use (5.5) and (5.7). The equivalence of norms
(5.3) follows from ([5.6) and ([5.8]). The rest of the proof can be obtained by using the same
technique as in Theorem 4.1 (Step 4) [40] and Remark [ |

6. EXTENSION TO HIGHER ORDER FABER SPLINES

In this section we describe the main ideas of extension of results of Sections 2-5 for higher
order splines. We start from explicit representation of a dual Chui-Wang wavelets 1)y, for
m € N and m > 3. In this case we have similar formula

(6.1) Ui(@) = 3 b — m).

neL
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(m)

Further we give a definition of coefficients a; . We consider the following polynomial

(6.2) ) (= Z d(m

were d = (Ym(-+n—2(m—1)),1y,). Since the Chui-Wang wavelet is compactly supported
the coefficients d( ™) create finite sequence in increasing symmetric” form, i.e.

_ _ (m)| _
|d2(m 1) | > |d2(m 1) 4l = |d2(m 1+1| > |d2(m 1) Ll = ‘d2(m 1+2| > > dy | = |d4(m 1|

The polynomial . ) defined in this way is called self-reciprocal or palindromic. The roots

of this polynomial form reciprocal pairs (), 1) (see, for example, [24]).
4r A
i o
1NN A 4 ‘_'2’\-/\}/ Ao

4+ =2 \/ ~ 8 10 -2f

- ol

i
)

FIGURE 4. Dual wavelets ¢35 (left) and ¢} (right).

Let 20,21, ..+, Z4(m-1)-1 € R be the roots of polynomial (6.2)). Let us first show that we
never have the case |z;| = 1. The system (¢, (- — k))kez is a Riesz sequence. According to
Proposition 2.8 [53] it means that

(6.3) A2 <Y | F (€ + 2nl)* < B?
leZ

for some A, B > 0. From the Poisson summation formula we get

> [ Fm(Et2nl)? rZF Fibm: Fibm) (n)e'™* = WZI (P * hm(—-))) (n)e™.

leZ neZ ne”L

By using definitions of the Fourier transform and the inverse Fourier transform it is easy
to show that F (F(g)) (t) = v2mg(—t). Therefore,

S NFYm (€ + 27D =D, i (- — n))e™ =t ().
lez nez

From the last equality and we have that the polynomial is bounded away from
zero on the unite circle |z| = 1, therefore it does not have roots that satisfy |z;| = 1.

We rearrange roots in the following way: let 2o, ..., 23(;—1)—1 be the roots that are located
inside of the unite circle, i.e |2;| < 1fori=0,...,2(m—1) =1, and 2(_1), -+ Z4(m—1)—1 be the
roots that are located outside of the unit c1rcle, ie|z|>1fori=2(m—1),..,4(m—1)—1.
Then for n <2(m —1) —1

(6.4) alm) — ﬂ Z 1
. " m n—(2(m—1)—1
|d(() )| i=0,...,2(m—1)—1 % . =Y 11 (zi — %)
§=0,...,.2(m—1)—1,j#i
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and forn >2(m—1) —1

6.5) al™ = (=)™ > !

o g(m n—(2(m—1)—1
|d(() )| i=2(m—1),...,4(m—1)—1 Z; (& )= H (Zz — zj)
G=2(m—1),A(m—1)—1,ji

Since we have the multiplier W we get again exponential decay of coefficients a%m)
%

with respect to n. Note that since coefficients a%m) are defined by

21

1 e—in:c
(m) — =
In " = 27r/t(m)(ei33)e—i(2m—1)x dz,
0

i.e they are Fourier coefficients of the function -—1— (see Section 2 for details) which is even

t(m) ()
due to properties of coefficients d%m), we have that a%m) are real. At Figure 3 we present plot

of dual wavelets for cases m = 3 and m = 4. The coeflicients aS”) and a7(14) are computed
numerically.
Below we present the algorithm for computation of these coefficients for each m € N and

m > 2 (see Algorithm 1).

Algorithm 1 Computation of coefficients a%m)
Input: meN

1) Compute coefficients d%m) forn=0,...,4(m — 1) by

dm = /wm(x +n—2(m — 1))t (z) dr;
R

2) Find the roots
4(m—1)
(6.6) Z dm 2 = 0;
n=0

3) Divide roots zo, ..., Z4(m—1)—1 for two sets
o |zi] <1lfori=0,..,2(m—1)—1,
o |zi| >1fori=2(m—1),..,4m—1) -1,

4) Compute coefficients al™ by and .

Output: Coefficients aq(lm).

Analogical, we write for N that is dual to Ny,

(6.7) Ny (z) =Y b N (a4 m/2 — n).
nez

Further we define coefficients bl(m). Let 20, 21, .+, 22(m—1)-1 € R be the roots of the palin-

dromic polynomial of the order 2(m — 1)

2(m—1)
> g,
n=0

were gi") = (N (- +m/24+n—(m —1)),Ym(- +m/2)). Let again by 2o, ..., 2m—2 we denote

the roots that are located inside of the unite circle and by 2y,—1, ..., 22(m—1)—1 roots that are
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located outside of the unit circle. Then

1 1
b = Z n<m-—2
n m n—(m—2 ) >~
|g(() )’ i=0,...,m—2 % ( ) II (zi — zj)
J:017m_27]7£7‘
and
1 1
b(m) ), Z n>m — 2.
" m m—2 ) st
|9(() )‘ i=m—1,....2(m—1)—1 % po(m=2) I (zi — zj)

j=m—1,...,2(m—1)—1,j#i

Remark 6.1. Note that a method of computation of coefficients cn from the definition
of the cardinal spline function (3.1 (W is presented in [4, §4]. By using similar technique one
can probably also compute coefficients a%m) for a dual representation of Chui-Wang wavelets

1)). On the other hand, coefficients cﬁl’”) coincide with bﬁl’”) from the representation for dual

B-spline N, , more precisely 2m) — plm).

We denote ¥y, 15 = Nm(- +m/2 — k) and ¢y, , = Np, (- — k) and we can write for
f € La(R)

(6.8) F= 20> bk

JEN_1 k€Z

where ik (f) == (f,2/¢m;jx). Now we formulate the analog of Theorem for higher
order Chui-Wang wavelets.

Theorem 6.2. (i) Let 0 < p,@ <00, m € N, m > 2, p>1/2m) and 1/p —m <
r < min{m — 1+ 1/p,m}. Then f € B}, can be represented by the series ,
which convergent unconditionally in the space B;;f. If max{p,0} < oo we have
unconditional convergence in the space B;’(,. Moreover, the following norms are
equivalent

Il = 11,

(ii)) Let m € N, 1/(2m) < p,0 < 00, p # o0, and max{l/p — m,1/0 —m} < r <
m—1. Then f € FJ g can be represented by the series , which convergent
unconditionally in the space FT €. If 0 < oo we have unconditional convergence in
the space FT Moreover, the followmg norms are equivalent

lu(Hllgz, = £y,

Remark 6.3. In Theorem [6.3 we consider the situation when m > 2. For the Haar basis,
i.e. for m =1 the corresponding results was obtained in [46]. See also [32]-[34] where the
author describes the “non-tensor” approach to the multivariate Haar basis.

By using m-th order biortogonal Chui-Wang wavelets and similar technique as in Section
3 we can construct the following 2m-th order Faber spline basis for j € Ny:

X
k() _
Somsj k() 1= 2™ / ﬁ (@ ="Mt =27 alMvam
nez

—00

where Vo, 1k = f %’;J ’“1() ) (z—t)™"1dt and sgm,—1 x(z) ;== L*"(x — k). Note that from these

formulas for basis functlons Som;j,k We obtain also that they are not compactly supported but

(m) »

due to exponential decay of coefficients a, ’ ”very well localized”.
Further we present examples of the construction of Faber splines of 6th order.
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mp---

Chui-Wang wavelets

i
i
1
i
1

r=—-m

-m

FI1GURE 5. The range of values of parameter r in Theorem for B-case.

Example 6.4. For m = 3 the equation takes the form
1 — 5182 — 1107222 + 4173423 + 1701102* + 417342° — 110722% — 51827 + 28 = 0.

It has the following roots

1
zp = 136 + 13v'105 — 4\/2265 + 221v105, n=g <—13 — V105 + \/2(135 + 13V 105)) )

1
=3 (—13 + v'105 + \/2(135 —13v 105)) ) z3 = 136 — 13v'105 — 4\/2265 — 221v105,

1
z4 = 136 + 13v'105 + 4\/2265 + 221v105, %= (—13 — V105 — \/2(135 + 13v 105)> )

1
=3 (—13 + v105 — \/2(135 —13v 105)) , z7 =136 — 13v105 + 4\/2265 — 221v105.

Then the coefficients a,(f’) are computed numerically by the formulas and

a¥ =12.251, o) = —3.765, al®) = 1.921, al®) = —0.772, al®) = 0.343,
a® =—0145, af)=63-102  «®=-27102% a¥=11.102 o) =-502-10"3,

al)y =2.1-1072, a,ffl ——93-107%, o), =401-107%, a{¥y=-17-107%, o), =7.04-1077,

and basis functions se. ;i are defined as follows

6.5k ( Z aPuvg(Px — k —n),

neL
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where
(15, 0<t<1/2,
1 — 10t + 40t% — 80t3 + 80t* — 31¢2, 1/2<t<1,
—236 + 1175t — 2330¢2 4 22903 — 1105t* + 2061, 1<t<3/2,
6082 — 19885t + 2575012 — 16430t> + 5135t* — 626¢°, 3/2<t<2,
. 3(—15914 + 38225t — 362702 + 16950t> + 3895t* + 352t%), 2 <t <5/2,
vg(t) = =500 | 3(52836 — 99275¢ + 73730t% — 27050t 4 4905¢1 — 352¢5), 5/2 <t <3,

—250218 4 383385t — 2329502 + 702303 — 10515t + 626t°, 3 <t < 7/2,
186764 — 240875t + 1237702 — 31690t3 + 4045t* — 206t°, 7/2 <t <4,

—55924 + 62485t — 279102 + 62303 — 695t* + 31, 4<t<9/2,
3125 — 3125t 4 1250t2 — 2503 + 25t — 5, 9/2 <t <5,
0, otherwise.

Each function f € Cp(R) can be expanded in the series

(6.9) F= >0 domyklF)somiibs

JjEN_1 k€EZ

in the sense of the uniform norm. The coefficients Aoy,.; 1 (f) are defined as follows Aoy —1 () :
f(k) and for j € Ny

2m—2 ok + I
(6.10) Namsi(f) = 3 (1) No (1 + 1A f ().
=0
Now we are ready to formulate the theorem about sampling discretization of Besov-Triebel-
Lizorkin spaces via higher order Faber splines.

Theorem 6.5. (i) Let 0 < p,@ < oo, m € N, m > 2, p>1/(2m) and 1/p < r <
min{2m —1+1/p,2m}. Then every compactly supported f € B;,e can be represented
by the series , which convergent unconditionally in the space B;f for every
e > 0. If max{p,0} < oo we have unconditional convergence in the space B;ﬁ.
Moreover, the following norms are equivalent

Az, = [1f 1z ,-

(i1) Let 1/(2m) < p,0 < oo, p # o0, and max{1/p,1/6} < r < 2m — 1 for m € N.
Then every compactly supported f € Fl g can be represented by the series ,
which convergent unconditionally in the space F;ga for every e > 0. If 0 < oo we
have unconditional convergence in the space F;ﬂ. Moreover, the following norms are
equivalent

IMH gy, = 1 ler,

Remark 6.6. In Theorem[6.5 we consider cases m > 2. The case m = 1 corresponds to the
Faber Schauder basis and respective characterizations were obtained in [46]. Note, that for
the multivariate situation these results were extended in [3].

Remark 6.7. The operator Sy defined in Lemma interpolates a function f € Cy(R) at
points k/2N, k € Z, i.e. Snf(k/2N) = f(k/2) (see Remark . In the papers [11]-[16]
the author offers other approach to sampling characterization of Besov spaces based on rather
the quasi-interpolation. This essential difference leads to the fact that the system Som.k
constructed in this paper is the “basis-type” system in the sense that this system is linearly



28 NADITIA DEREVIANKO AND TINO ULLRICH
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FIGURE 6. The range of values of parameter 7 in Theorem for B-case.

independent and further we also prove that sop,.;r is unconditional basis in Besov-Triebel-
Lizorkin spaces while in [I1]-[16] the author consider “frame-type” system. This frame-type
system for linear case was also considered in [29)].

APPENDIX A. DEFINITIONS AND AUXILIARY STATEMENTS

A.1. Definition of Besov and Triebel-Lizorkin spaces. First we introduce the concept
decomposition the Fourier image called resolution of unity.

Definition A.1. By ®(R) we define a class of systems ¢ = (p;)72o C C3°(R) that satisfies
the following conditions

(i) there exists A > 0 such that supp po C [—A, A]; ' 4
(ii) there are constants 0 < B < C such that supp ¢; C {£ € R: B2) < [£| < C27};
(iii) for all o € Ny there are constants Co, > 0 such that

sup 2% D%;(§)| < Cq < 0.
éER’]eNO

(iv) for all £ € R
D @) =1
5=0

We define

(A.1) 3;[f)(x) == FH(@;Ff)(x), j € No.
Then every f € S'(R) can be decomposed
(A.2) = 6lf)
J€No
with convergence in S’(R).
We define Besov B} 4(R) and Triebel-Lizorkin Fy,(R) function spaces via the Fourier-
analytic building blocks d;[f].
Definition A.2. Let ¢ = {p;}32, € ®(R), r € R. Then
(i) for 0 < p,8 < oo we define

1o(R) = {f € S'R) | fllpy ) < o}
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where

. 1/6
(> 2951A15) ", 0<8 <o,

1l @y = { iR
B sup 276 1 6 = o.
j€No

(ii) for 0 < p,0 < oo, p # oo we define
vo(R) = {f € S'®R): |fllry @ < oo},

where Ny
H (JGNO 29Tj\5j[f]|9> / Hp, 0 <6< oo,

171 T
|| sup 277185 (][],
Jj€No

0 = oc.

Let us give equivalent characterization of Besov-Triebel-Lizorkin spaces via local mean
kernels. Let Vo, ¥; € S(R) such that for some ¢ > 0: 1) |FUy(&)| > 0 for |£] < €; 2)
|FUi(&)| >0 for e/2 < [€] < 2¢; 3) D*FY1(0) =0 for 0 < o < L. Then for j > 2

U;(6) =271 (27 1).
From definition it follows that the L-th order moment condition hold, i.e. for all 0 < o < L

/xa‘llj(x)dx = 0.

R

Theorem A.3. [45, Theorem 1.7] Let 0 < p,8 < oo (p < oo for F' case), {V;}jen, as defined
above with L +1 > r. Then

( . 1/6

(5 29w, 1) 7, 0<8 <00,
J€Ng

sup 27’3||\Il * flp, 0 = oo,

J€Ng

1fll5r =) =

and | 1o
‘( S 207, *f|9> Hp 0<8< oo,

1f 1l ) = g€l
' ‘sup2”|\Ilj>kf\H ) 0 = o,
j€Np p

Further we define discrete function spaces b; g and f; g- For j € N_j and k € Z we define
the intervals

I
’ [k_1/27k+1/2]a J=-1

and the corresponding characteristic functions

( ) 1, xe€ Ij,k;
k() =
Xk 0, otherwise.

{Pfh2j%+1m j>0,
7k .:

Definition A.4. Letr € R and 0 < p,0 < co. By b’ .0 and f;e (p < oo for f-case) we define
the spaces of sequences of coefficients A = (/\g,k>geN_1,keZ with the finite norms

o 05 1/6
( Z 2973 ZAJ,]CX]}ICH) s 0<9<OO,
I\l , = q 9
’ sup 2’7‘ > Agngk‘ , 0 = co.
JjeN_1 kEZ
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and
H( 20r3 Z )\j’ka’k’9> 1/6H , 0<6 <o,
”)\Hfr = JEN_3 keZ p
Law 2| B hwaell,, 0=
J 1
respectively.

A.2. Maximal inequalities.

Definition A.5. Let b > 0 and a > 0. Then for f € Li(R) with Ff compactly supported we
define the Peetre mazimal operator

3 )
Praf (@) :=sup gy e

Definition A.6. For a locally integrable function f: R — C we define the Hardy-Littlewood

mazximal operator defined by

(Mf)(z —itepo/!f Ndy, = eR,

where the supremum is taken over all segments that contain x.

Lemma A.7. For 1 <p < oo and 1< q < oo there exists a constant ¢ > 0 such that

()™, < (S )™,
lel lel

holds for all sequences { fi}1cr of locally Lebesgue integrable functions on R.

Lemma A.8. [50, Lemma 3.3.1] Let a,b >0, m € N, h € R and f € Li(R) with supp Ff C
[—b,b]. Then there ezists a constant C' > 0 independent of f,b and h such that

|AL f(2)] < Cmin{l, [bh|™} max{1, [bh|*} Py o f ()
holds.

Lemma A.9. 38, 1.6.4] Let 0 < p < 00, b > 0 and a > 1/p. For a bandlimited function
f € Li(R) with supp Ff C [=b,b] the following inequality holds

||Pb,af”p < CHfHPa

where C' is some constant independent on f and b.

Lemma A.10. 38 1.6.4] Let 0 < p,0 < oo, p # oo, bt > 0 forl € I and a > max{1/p,1/6}.
There exists a constant such that for all systems of functions { fi}1er with supp F f; C [—bl, b]
the following inequality holds

[(S i)™ < c(Za)”).
lel lel

A.3. Convolution inequalities.

Lemma A.11. Let j € No, k,l € Z and j +1 > —1. Then for the local means ¥; with
supp ¥o C [—1/2,1/2] and supp ¥; C [—-277,277] with finitely many vanishing moments of
order L the following estimates hold

(A.3) ;5 s 06(2)] < C27Y " anlxa, o, (@)
neL
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and
(A.4) 0 s (x)| < Cr27MN(1 4 2000 g — gy )R,

where . = 1 if 1 > 0, o = 3 if Il < 0. Coefficients an, n € Z, are defined by for
j4+1>0 and as a, = (—1)"V3(2 — V3)"l for j +1 = —1. For the set Aj i nir we have
Aj+l,n+l<: C U\u_k\5gl+ Ij+l+,u+n-

Proof. Let us first consider the convolution W; x v for vjy = v(2j+l - +k) where v is
defined in Lemmal[3.1]for j+1 > 0. If j +1 = —1 we take v = Ny (or if to be strict Na(-+2)).

Since supp ¥; C [-277,277] and suppvjyir C [2777k, 2777} (k 4 4)] we can write the
following necessary conditions

o~y 277 and fajp -2 S2707°
for the non vanishing of the integral ¥; * v, x(x). From the triangle inequality we have
@ik — 2 < lwjpun — @]+ o —y| S max{277,27771},
Therefore, if we denote Ajyyp = {x : |zj415 — x| < max{277,2797'}} we can write
W5 % vk (@) = (W5 % vk (@) XA 400 (2)-

Let us consider the case j > 0 and [ < 0. In this case the support of vj;; is larger than
the support of W;. Since ¥; has vanishing moments of order 4 and since v, is piecewise
cubic then the integral W; x v;;x(x) is not vanishing in the union of not more then seven
intervals centered at nodes of function v with length ~ 27. For this set we also use notation
Ajiik © Up—k|<clju- Making change of variables we get

0 wopel)] = [270 [ 220 @ - )o@y~ By, (@)

R
— ‘2—1—1 / Ty (27712 — ) )(y — k)dy‘XAHz,k(f)
R
(A.5) = |0y * w0 (27 2) XA, (2).

Since v € Bgojoo by using characterization of Besov spaces via local means Theorem we
can proceed the estimate ((A.5)

0 vj ()] = 222730y % 0o (27 2) X,y (2)
(A.6) < 2%l kllms, XAy () S 2% x4, (@)

For [ > 0 we have
U, 5 04 ()| < 2971 / 03 (2 (1 — )] [0y (0) [dy X, 0 ()
R

2797 (k+4)
<O loele [ e,
2-i-lg
(A7) S 27 a0 (@)-

In this case the set A4, is written as A4 = [277 7 (k — ¢2!), 2797 (k + ¢2!)]. Therefore, it
is easy to see that the following inclusion A; 1 C U|u—k|<21 T4, takes place.
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If j = 0 we use arguments as in (A.7). We have

—H(k44)

(A.8) [Wo * v (@) < [[Wollol|vr klloo / Ldy xa,,, (%) £ 27" xa,, (2).
2-1k

We use the inequality (A.8) for [ > 0. If l = —1 we write it in the following way
(A.9) [Wo * v_1(2)] < Oxa () = C127%xa, (@),

where xa_, , () C Ujy—p<c Leru- So we get (A.6) for j =0 and [ =
From (A.6), (A.7), (A.8) and ( . we have that for the functlons vj41k the following
inequality holds

(A.10) |5 % vjp(e)| < C27Mxa, (@),

where v = 1if 1 >0, a =3 if | <0 and Ajyr C U, _p<ots Litte e

Now we prove the inequality - for functions sj4; ) defined by (3.6) and (3.16]).
j+1> 0 we consider a,, defined as in . For j+1=—1 we put a,, = (— )"V3(2 — \/§)|”|
By using we get

(W% sy p(x)] = ‘Zan/ y)v(2j+ly_k—n)dy’

nez
=[ > an- k/ )o@y —m)dy
meZ
< Jam k|95 % vy (@)]
meZ
< CZ‘“'” Z |am—]€|XAj+l,m (l‘)
meZ
— C2—O¢|l| Z ‘an‘XAj+l,n+k (x)
neZ

For the set Aj ik we have Aj 1 € U Ljjiy ugn:
lu—k| <24+
Now we prove the inequality (A.4). From (A.10) we have that for each R > 0 there is a
constant C'g such that

)—R

XAj i,k (:U) < CR<1 + gmintsj

Therefore,

W % vy (2)| < 027N CR(1 + 20T g — gy )7
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By using this inequality we can write

195 % 55106 @)] € D lam ][5 5 01 41m ()]

meZ

< CR2™ M ™ ag gl (1 + 2m 0¥ g — )

mez
— Cr2 NS Jan|(1 4 20T g — )R

nez

I l - l R
el amntid g T Z |an|(1 + 2min{ad+ }yx 2-G+Dg|)
1+ 2m1n{j7j+l}|x (7+l)(k' + n)|)R

< Cr2moMl(1 4 2min G|y — gy )R Z Jan] (1 + |n])".

nezZ
From the viewpoint on definition of coefficients a,, we get convergence of the series > |a,|(1+
neL
In|)® that implies (A.4). [

Lemma A.12. Let j € No, k.l € Z and j +1 > —1. Then for the local means ¥; with
supp V; C [—277,277] with finitely many vanishing moments of order L the following esti-
mates hold

(A'll) |\Ijj * w;—‘rl,k(gj)‘ < C2_a|” Z |an|XAj+l,k+n (:L’)
neL
and
(A.12) W 8y (@) < Cp27ll(1 + 2mn Uit g — g )R,

where a = 3 if 1 > 0, a« = 1 if Il < 0. Coefficients an, n € Z, are defined by for
j+1>0 and as ap = (=1)"V/3(2 = V3)I"l for j +1 = —1. For the set Ajy1,x we have

Ajfintk C U ity uin-
lu—k|S2!+

Proof. For the case I < 0 we use the same arguments as in Lemma and the fact that
Y € Béo’oo(]R). This yields |(¥; * ¢41%)(z)| < 2! for I < 0. For I > 0 we use the moment
condition of ). We subtract the Taylor polynomial of order two to get

|05 * Yje)(z)| = ’/ Yjr1k(y) dy

= ’ / —Ui(z — j41k)
(O5) (x = 2j0) (W — Tjgpr)) i1k (y) dy

o0
s/ [ 100l = gl deyant) dy
—00
b= 41,k SlY—=25 41,k

< 93j9=3(j+1) _ 9—3I
Inequality (A.12]) can be proven in a similar way as the inequality (A.4]). [ |
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