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Abstract

In a larger size Riemann-Hilbert problem matching the local parametrices with the global

parametrix is often a major issue. In this article we present a result that should tackle this problem

in natural situations. We prove that, in a general setting, it is possible to obtain a double matching,

that is, a matching condition on two circles instead of one circle. We discuss how this matching

approach can be used to obtain local scaling limits of correlation kernels and apply our result to

several examples from the existing literature.
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1 Introduction and statement of results

1.1 Introduction

A Riemann-Hilbert problem (RHP) asks for a complex function, possibly matrix valued, that is analytic
outside an oriented contour, has certain jump properties on this contour and has a specified asymptotic
behavior at infinity and at other predescribed points.

Nowadays n-dependent RHPs are used as an effective tool to find the large n behavior of functions
of interest. This is mainly a consequence of the influential papers [14, 9]. In these papers a formalism,
commonly refered to as a Riemann-Hilbert analysis, is developed in which one can keep transforming a
RHP to a new one, eventually reaching a RHP that is trivial enough to draw conclusions about the large
n behavior (e.g., see [16] or [4]). This method is known as the Deift-Zhou steepest descent analysis. A
particularly nice insight is the correspondence between RHPs and orthogonal polynomials [7].

Though RHPs have been very effective in the 2×2 case, larger size RHPs often have one problematic
step. This step is the so-called matching. After transforming a RHP several times, one usually finds
oneself in a situation where the RHP at hand has to be approximated by a so-called global parametrix,
which is defined away from certain points, and local parametrices, which are defined in a small neigh-
borhood of these points. We shall refer to these points as the special points henceforth. To obtain the
matching condition one should modify the local parametrices in such a way that their values on the
boundary of their domain are very close to the values of the global parametrix there. As it turns out, it
is generally hard to find this modification when we have an m×m matrix valued RHP with m > 2 (see
Section 1.3).

In the literature one finds several methods to obtain this matching for specific larger size RHPs
[1, 13, 12, 19], but no general result was known. In particular, the somewhat ad hoc and technical
nature of these methods seems to become a problem when m is large. What is also important, is that we
sometimes want to consider RHPs of arbitrary size rather than a fixed size. In [17] an analysis for a RHP
of arbitrary size was carried out, but there the matching effectively boiled down to a decomposition in
2× 2 matching problems. In a recent article [20] by Kuijlaars-Molag an iterative method was developed
for a specific 3 × 3 RHP to obtain the matching, which they expected to be applicable to other larger
size RHPs as well. Indeed this is the case. Very recently, the method was succesfully adopted in [22].
However, in this paper we develop the method further considerably. We prove in Section 2 that, assuming
a natural situation, one can modify the global and local parametrix in a local way such that one has
a double matching, that is, a matching on two circles instead of one. This main result is formulated in
Theorem 1.2

In many applications a RHP aims to elucidate the large n behavior of functions of interest, e.g., or-
thogonal polynomials, oscillatory integrals and correlation kernels. Such behavior is frequently expressed
in the form of a scaling limit. We clarify in Section 3 how the double matching can be used to obtain
scaling limits when the RHP aims to find the large n behavior of an associated correlation kernel. This
is contained in Theorem 3.1. It is to be noted that Lemma 3.3 is not limited to the case of correlation
kernels, and it may be useful for other type of scaling limits as well.

We conclude with applications of our result to several examples from the existing literature, which is
the topic of Section 4. All these examples concern scaling limits of correlation kernels. The first example
is worked out in detail, and should provide the reader with some general intuition of how to apply the
main result. None of these examples lead to new results, but the fact that the main result can be applied
to all of them gives credit to its applicability, and strengthens my belief that it will be a useful tool for
future RH analyses.

I would like to point out that, with the addition of some convergence properties, the conclusion of
the main result seems to hold even when m = ∞. Such infinite size RHPs, and even more general
operator valued ones, have been considered (e.g., see [15]), but for the moment matching global with
local parametrices does not appear to be an issue.

As a final remark, let me say that there are also examples where a construction of the local parametrix
with special functions did not seem to be possible and instead a small norms argument had to be used
(e.g., see [21]). It is possible then, that one is not in a sufficiently generic situation, and perhaps
Theorem 1.2 cannot be applied without doing some extra work. On the other hand, if one would have to
shrink the boundary circle in order to apply a small norms argument, then Theorem 1.2 might actually
be useful under the right circumstances even for non-standard 2× 2 RHPs.

2



1.2 Set up

Here and in the rest of the paper we use the notation D(0, r) for the disc |z| < r and we orient its
boundary positively. We also use the notation A(0; r1, r2) for the annulus r1 < |z| < r2. Throughout the
article m is a fixed positive integer. By a contour Σ we shall mean a finite union of smooth curves, that
intersect in at most a finite number of points. Σ0 will denote Σ minus the intersection points.

Given an oriented contour Σ in C and a possibly n-dependent function v : Σ → Cm×m (the jump
matrix), the associated RHP asks for a function Y : C \ Σ → Cm×m such that

RH-Y1 Y is analytic.

RH-Y2 Y has boundary values Y±(z) for z ∈ Σ0 that satisfy the jump relation

Y+(z) = Y−(z)v(z).

Here the + or − determines from which side we approach the contour.

RH-Y3 Y has a specified asymptotic behavior near ∞ and near other predescribed points.

As is common practise, we do not indicate the n-dependence of Y , or any of the transformations thereof.
We are being intentionally vague in the formulation of RH-Y3, as it shall not be of any relevance in this
paper, though we mention that the asymptotic behavior in RH-Y3 may also depend on n. The usual
approach is to transform Y according to

Y 7→ X 7→ T 7→ S,

where we have consecutive transformations that we call the first transformation, the normalization and
opening of lenses. Sometimes one deviates slightly from the particular transformations used, but one
basically always ends up with a RHP for some function S that has to be approximated by appropriately
chosen functions. Namely, for each special point it should be approximated by a function P on some
disc around the special point. In the remaining part, i.e., the complex plane minus the discs around
all the special points, S should be approximated by a function N . The first approximating function
is called the local parametrix (at the particular special point), it is usually constructed using specific
special functions. The second is called the global parametrix, it generally has the interpretation of a
limiting behavior of S as n → ∞ away from the special points and as such it should be an n-independent
function, although n-dependent global parametrices can arise in multi-cut cases (e.g., see [8]). In general,
we have an expression for N for the full complex plane minus the special points (although a choice has
to be made for the values on the jump contour). It is generally clear from the RH analysis what points
are special and what points are not.

In the remainder of this paper we assume that there is a special point at the origin. There may be
other special points as well, but we will focus solely on z = 0. Notice that there is no loss in generality
in doing so, since we can always translate z without non-trivially changing the RHP for S. It is also
reasonable to assume that the set of special points is discrete. We thus include the following assumption.

Assumption 1.1. The local parametrix P will be defined on a closed disc D(0, r) for some r > 0 and
there are no other special points in the disc. N will be a function on C minus the special points.

In general P and N are analytic, except on the jump contour (together with the end points). In a
natural situation, P has the same jumps as N has, but also some additional jumps that correspond to
jumps of S on the lips of lenses. The matching condition demands that there exists a δ > 0 such that

P (z)N(z)−1 = I+O(n−δ), uniformly for |z| = r, as n → ∞. (1.1)

It is also allowed to obtain the matching on a shrinking circle (e.g., see [3]), that is, r does not have to be
fixed but it may depend on n such that r → 0 as n → ∞. It often happens that our initial construction
for P , let’s call it P̊ , almost works, but that we need a non-singular analytic function En, called the
analytic prefactor, such that

En(z)P̊ (z)N(z)−1 = I+O(n−δ), uniformly for |z| = r, as n → ∞.
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We would then thus identify P = EnP̊ in order to obtain the matching (1.1).
When the matching is successful, one applies what is known as the final transformation. For conve-

nience, since we focus on the special point 0, we absorb any possible local parametrices around other
special points into the definition of N . One then transforms S 7→ R, according to

R(z) =

{
S(z)N(z)−1, |z| > r,
S(z)P (z)−1, |z| < r.

(1.2)

As one can check, R then has a jump matrix on ∂D(0, r) that behaves uniformly as I + O(n−δ) as
n → ∞. If any possible other jumps are also close to I then, under some additional conditions, one may
draw strong conclusions about the large n behavior of R via a general theorem (e.g., see [7] or [4]). One
may then invert all the transformations of the RHP to obtain the large n behavior of Y . The fact that
the jump matrices of R need to be close to I in order to apply this general theorem, is the reason why
one desires to obtain the matching condition in the first place.

1.3 The issue with the matching for larger size RHPs

To understand why the matching is hard for larger size RHPs, we have to be precise about the structure
of the local parametrix. We are assuming here, that all the necessary ingredients are explicit, as opposed
to the situation where we have to use a small norms argument, for example. We point out that a detailed
example can be found in Section 4. It may be beneficial to a reader that is unexperienced in solving
larger size RHPs, or a reader that would like to have some explicit handhold, to have a look at that
example before proceding with this subsection.

Let us sketch the general picture when attempting to match the global with the local parametrix.
Usually, our initial construction for a solution to the local parametrix problem is of the form

P̊ (z) = E̊n(z)Ψ
(
nbf(z)

)
D(z)enDϕ(z), (1.3)

where the expressions are as follows. Dϕ(z) is a diagonal matrix whose components are a linear combina-
tion of the so-called ϕ-functions that originated from the normalization and opening of lenses. Sometimes
one uses so-called λ-functions instead of the ϕ-functions (e.g., see [19]). D(z) consists of Sze̋go functions
that are used to make the jumps constant, it is often some constant diagonal matrix power of z depend-
ing on how trivial the z dependence of the jumps is. The combination D(z)enDϕ(z) has the effect of
reducing the initial local parametrix problem to one that has constant jumps. To solve such a problem
one considers the same problem but with the curves of the jump contour extended to infinity, dividing C

into different sectors, which is often called the model Riemann-Hilbert problem. Since this terminology is
also frequently used to describe the global parametrix problem, I prefer to use bare parametrix problem
instead, as in [1] (although a trivial dependence on z was allowed there). This bare parametrix problem
is then solved by Ψ, which is constructed using specific special functions. Well-known examples of such
functions are Airy functions [11], Bessel functions [18] or parabolic cylinder functions [9], but more exotic
ones such as for example functions corresponding to Painlevé equations [5], and Meijer G-functions [1],
have also been used. In general, Ψ has an asymptotic series behavior

Ψ(ζ) ∼
(
I+

C1

ζ
+

C2

ζ2
+ . . .

)
B(ζ)eθ(ζ), (1.4)

as ζ → ∞. The coefficients C1, C2, . . . in the asymptotic series are m × m constant matrices. θ(ζ) is

some diagonal matrix whose entries (in most cases) are multiples of ζ
1
b . These multiples may be different

in different sectors, in the sense that they may be permuted. B(ζ) is some matrix-valued function with
power law behavior. Frequently, B is a constant diagonal matrix power of ζ. Then, viewing one particular
sector, the expression (1.4) is known as a formal Birkhoff invariant [2]. It is well-known that such an
invariant is a formal fundamental solution of a formal meromorphic differential equation, which should
correspond to the particular special functions in the construction. Ψ is evaluated in nbf(z), where f is
a conformal map around 0 that maps 0 to itself, and, in standard situations, maps positive numbers to
positive numbers. b is a positive number that plays a role in scaling limits concerning the solution of our
RHP. Lastly, E̊n might be our first guess for an analytic prefactor, which we may also set to I if there
does not appear to be an obvious candidate. We repeat that explicit examples can be found in Section 4.
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On some circle around the origin of fixed radius we then have as n → ∞

P̊ (z)N(z)−1 =

(
I+

C1

nbf(z)
+

C2

(nbf(z))2
+ . . .+

Ck

(nbf(z))k
+O(n−c)

)
E(z)−1, (1.5)

for some c > 0, a non-negative integer k and some n-dependent analytic function E(z)−1 (the inverse is
included for reasons that will become clear shortly). In fact, (1.5) is valid on shrinking circles as well,
provided that their radii shrink sufficiently slower than order n−b as n → ∞. If one has done the work
to write Ψ in the asymptotic form (1.4) then, setting E̊ = I, we may take

E(z) = N(z)D(z)−1e−nDϕ(z)−θ(nbf(z))B(nbf(z))−1. (1.6)

One would have to check on a case-by-case basis that E is indeed non-singular and analytic around z = 0.
In some cases though, it might be easier to arrive at a situation similar to (1.5) (with possibly different
coefficients C1, C2, . . .) by choosing a convenient prefactor E̊. We will see such cases in Section 4.

Heuristically, one is in the situation (1.5) because away from the origin the effects of the additional
jumps of P̊ , usually corresponding to the lenses, become so weak for large n that P̊N−1 is approximately
an analytic function. The effect of the extra jumps is essentially contained in the O(n−c) term.

One may take as many terms of the asymptotic series in (1.4) as one wants, and this leads to arbitrarily
large values for c. This means that the effects of the additional jumps are smaller than polynomial in
n, which is basically a consequence of the fact that the jumps on the lens decrease exponentially as a
function of n away from the origin.

For a 2 × 2 RHP we have Dϕ = diag[ϕ,−ϕ], where ϕ is a function related to the normalization and
opening of lenses. Usually, one can show that ϕb defines a conformal map that maps 0 to itself. Then we
can construct a conformal map f , such that nDϕ(z)+θ(nbf(z)) = 0 exactly. Thus in the 2×2 case (1.6)
turns into E(z) = N(z)D(z)−1B(nbf(z))−1. Under the assumption that B has power law behavior, we

infer that there exists a d > 0 such that E(z) = O(n
d
2 ) as n → ∞, on any circle around the origin of

fixed radius r > 0. In such a case we have, taking k = 0 in (1.5), that on ∂D(0, r) as n → ∞
E(z)P̊ (z)N(z)−1 = E(z)

(
I+O(n−c)

)
E(z)−1 = I+O(nd−c). (1.7)

It turns out that we generally have c = b > d, and we thus obtain the matching on ∂D(0, r). In
conclusion, for 2× 2 RHPs, E really is a sufficient prefactor to obtain the matching. In fact, this is why
we added the inverse in (1.5).

The case of an m × m RHP with m > 2 is fundamentally different. It is generally not possible to
arrange that nDϕ(z)+θ(nbf(z)) = 0 exactly. Frequently, the best we can get is that nDϕ(z)+θ(nbf(z)) =

O(nz
1
a ) for some a > 0, which originates from an expansion for the ϕ-functions in fractional powers of z.

This means that, on a circle of fixed radius, E varies wildly with n, exponentially in fact. In larger size
RHPs we therefore really have to use a shrinking circle to match nDϕ(z) and θ(nbf(z)) appropriately,
where n−a seems to be an optimal choice for the shrinking radius. Using a shrinking circle essentially
has the effect of lowering c in the right-hand side of (1.7), and then the inequality c > d might not hold
anymore, and the matching is not achieved.

1.4 Main result

The main result of this paper is that, rather than obtaining the matching on a circle ∂D(0, r), we
can actually obtain a matching on two circles instead of one. This double matching is sufficient if one
is interested in the large n behavior of the solution of the RHP, although an additional, but natural,
assumption is necessary for a scaling limit at the special point itself (see Lemma 3.3).

Theorem 1.2 (main result). Let P̊ and N be defined in a neighborhood of D(0, r) for some r > 0.
These are matrix-valued functions of size m×m that may vary with n. Let a, b, c, d, e ≥ 0 satisfy

a ≤ e < b and d < min(b, c). (1.8)

Suppose that uniformly for z ∈ ∂D(0, n−a) as n → ∞

P̊ (z)N(z)−1E(z) = I+
C(z)

nbz
+O

(
n−c

)
, (1.9)

where C and E are m×m functions in a neighborhood of D(0, r) that may vary with n, and
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(i) C is meromorphic with only a possible pole at z = 0, whose order is bounded by some non-negative
integer p for all n, and C is uniformly bounded for z ∈ ∂D(0, n−a) as n → ∞,

(ii) E is non-singular, analytic, and uniformly for z, w ∈ ∂D(0, n−a) we have as n → ∞

E(z) = O(n
d
2 ), E(z)−1 = O(n

d
2 ), and E(z)−1E(w) = I+O(ne(z − w)). (1.10)

Then there are non-singular analytic functions E0
n : D(0, n−a) → Cm×m, E∞

n : A(0;n−a,∞) → Cm×m

such that as n → ∞
E0

n(z)P̊ (z) =
(
I+O(nd−c)

)
E∞

n (z)N(z), uniformly for z ∈ ∂D(0, n−a), (1.11)

E∞
n (z) = I+O(nd−b), uniformly for z ∈ ∂D(0, r). (1.12)

In Theorem 1.2 and in the rest of the paper it is tacitly assumed that r > 1 when a = 0, to assure
that ∂D(0, n−a) is contained in D(0, r). Notice that no (direct) smoothness condition is imposed on the
functions P̊ and N . In particular, they are allowed to have jumps on certain curves and N may blow up
around possible special points of the RHP for S. It is also not part of the conditions that P̊ is of the
form (1.3). The theorem allows for the possibility that the global parametrix N depends on n. Notice
also that the exponents d− c and b − c in the statement are negative due to the assumptions. There is
a workaround when the inequality b > d is violated, see Remark 2.16.

We mention that the prefactorsE0
n and E∞

n in Theorem 1.2 are not unique. Indeed, any multiplication
of E0

n and E∞
n by analytic functions with behaviors I + O(nd−c) and I + O(nd−b) respectively on the

corresponding circles will again yield appropriate prefactors to obtain the matchings (1.11) and (1.12).
In the situation of (1.5) we may put

C(z) =
z

f(z)

(
C1 +

C2

(nbz)

z

f(z)
+ . . .

Ck

(nbz)k−1

zk−1

f(z)k−1

)
, (1.13)

and this function is indeed uniformly bounded for z ∈ ∂D(0, n−a) when a < b. As mentioned before, we
can take as many terms of (1.4) as we want, and in doing so make c, which in general equals (b−a)(k+1),
as big as we want. Essentially, the assumption a ≤ e < b is really the only important one in (1.8).

When the assumptions of Theorem 1.2 are met, one can define the final transformation R as follows.

R(z) =





S(z)N(z)−1, z ∈ A(0; r,∞),
S(z)N(z)−1E∞

n (z)−1, z ∈ A(0;n−a, r),

S(z)P̊ (z)−1E0
n(z)

−1, z ∈ D(0, n−a).

(1.14)

Here again, for convenience we absorbed any local parametrices around non-zero special points into the
definition of N . As one can check, R will have jump matrices on the inner and outer circle of the form
I+O(nd−c) and I+O(nd−b) respectively. In particular, we have a matching condition on two circles.

In a way, we are in the situation of (1.2) if we identify the local parametrix P with

P (z) =

{
E∞

n (z)N(z), z ∈ A(0;n−a, r),

E0
n(z)P̊ (z), z ∈ D(0, n−a).

In this approach, I suspect that it will generally not be hard to find out what one should pick for E in
Theorem 1.2, for example by explicitly writing the asymptotic behavior of Ψ in the form (1.4) and then
imposing (1.6). The main technical part to apply the theorem will be to prove that the estimates in
(1.10) are satisfied. In Section 4 we will show for several examples in the literature that one obtains the
situation (1.5), and we will show how to identify E and prove that the estimates in (1.10) hold.

2 Proof of the main result

In this section we always assume that the conditions of Theorem 1.2 are met. In particular, we will use
P̊ , N,E,C and r, a, b, c, d, e, p without reference, and they will satisfy the conditions of Theorem 1.2. To
avoid confusion, we mention that it is not assumed that C is necessarily of the form (1.13).

It is not hard to see that, when c ≤ b − a, prefactors that satisfy the properties of Theorem 1.2
are given by E0

n = E and E∞
n = I. In other words, a double matching is unnecessary in such a case.

Henceforth, we will exclude this trivial case.

Assumption 2.1. We have c > b− a.

6



2.1 Definition of the analytic prefactors

In this subsection we give a definition of the analytic prefactors E0
n and E∞

n . In the remaining subsections
we will prove that they indeed satisfy the desired properties from Theorem 1.2.

Suppose that F is a (matrix valued) function that has a Laurent series expansion around z = 0, i.e.,

F (z) =
∞∑

k=−∞
Fkz

k

for certain coefficients Fk in a punctured disc around z = 0. We denote by F− the principal part of F ,

F−(z) =
−1∑

k=−∞
Fkz

k.

By F+ we denote the regular part of F , that is, F+ = F − F−. The regular and principal part can
neatly be expressed using a Cauchy-operator. Namely, if F is analytic on some open neighborhood of
D(0, ρ) \ {0} that does not contain 0, for some ρ > 0, then we have

F+(z) =
1

2πi

∮

∂D(0,ρ)

F (s)

s− z
ds, |z| < ρ,

F−(z) = − 1

2πi

∮

∂D(0,ρ)

F (s)

s− z
ds, |z| > ρ, (2.1)

on this neighborhood. In fact, if F has a pole of order at most q in z = 0, then we deduce that

F−(z) =
1

2πi

q∑

j=1

(∮

∂D(0,ρ)

F (s)sj
ds

s

)
z−j (2.2)

for all z 6= 0. We will limit ourselves to the case of meromorphic m×m functions F on D(0, r) that have
at most a pole in z = 0 and no other singularities. For such functions we define an operator π through

πF = −F+F − FF− + F+F− + F+FF−. (2.3)

Notice that πF is again a meromorphic function on D(0, r) that has at most a pole in z = 0 and no
other singularities. We mention that πF has a pole of order at most 2q if F has a pole of order q.

The meromorphic function that will be of interest to us is defined as follows.

Definition 2.2. On D(0, r) we define the n-dependent function

F (z) =
E(z)C(z)E(z)−1

nbz
. (2.4)

We emphasize that F is a meromorphic function with only a possible pole at z = 0, whose order is
bounded by p+ 1. Notice that the n-dependence of F is not only due to the nb factor, but also due to
E and C. This function F originates from the following.

Proposition 2.3. We have uniformly for z ∈ ∂D(0, n−a) that as n → ∞

E(z)P̊ (z)N(z)−1 = I+ F (z) + E(z)O(n−c)E(z)−1, (2.5)

where F is as in Definition 2.2.

Proof. We can left-multiply the entire equation (1.9) with E(z) and right-multiply it with E(z)−1.
Comparing with Definition 2.2 then immediately yields the result.

Notice that the first two estimates in (1.10) of Theorem 1.2 imply that E(z)O(n−c)E(z)−1 = O(nd−c)
uniformly for z ∈ ∂D(0, n−a) as n → ∞. Since d < c by the assumptions of Theorem 1.2, such an
expression is thus small.
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The idea now is as follows. Starting with (2.5), we left-multiply by I− F+(z) and right-multiply by
I− F−(z), to give after some bookkeeping that

(
I− F+(z)

)
E(z)P̊ (z)N(z)−1

(
I− F−(z)

)
= I+ πF (z)

+
(
I− F+(z)

)
E(z)O(n−c)E(z)−1

(
I− F−(z)

)
, (2.6)

where the term in the last line turns out to be O(nd−c) on ∂D(0, n−a) as n → ∞. Repeating the
iteration, we get

(
I− (πF )+(z)

) (
I− F+(z)

)
E(z)P̊ (z)N(z)−1

(
I− F−(z)

) (
I− (πF )−(z)

)
= I+ π2F (z)

+
(
I− (πF )+(z)

) (
I− F+(z)

)
E(z)O(n−c)E(z)−1

(
I− F−(z)

) (
I− (πF )−(z)

)
, (2.7)

where again the term in the last line turns out to be O(nd−c). After k steps we will obtain I+ πkF and
a remainder. Our goal will be to prove that these remainders are indeed O(nd−c) on ∂D(0, n−a), and
that πkF will be small enough on ∂D(0, n−a) for sufficiently big (but fixed) k as n → ∞.

Asuming that this reasoning is correct, it justifies the following explicit definition for prefactors E0
n

and E∞
n that will satisfy the required properties for Theorem 1.2, although an argument for the matching

on the outer circle is still missing. As it turns out, the matching on the outer circle will follow without
much trouble.

Definition 2.4. Let π be as in (2.3) and let F be as in (2.4). Let K be the biggest integer such that

2K <
a+ c− e

b− e
.

We define

E0
n(z) =

K∏

j=0

(
I− (πK−jF )+(z)

)
E(z), z ∈ D(0, n−a), (2.8)

E∞
n (z) =




K∏

j=0

(
I− (πjF )−(z)

)



−1

, z ∈ A(0;n−a,∞). (2.9)

For clarity, the notation of the products in (2.8) and (2.9) means that a factor with j = 0 is at the
left and a factor with j = K is at the right. We remark that K is well-defined and non-negative due
to Assumption 2.1. Notice that E∞

n (z)−1 is in fact a polynomial evaluated in 1/z with constant term I.

This polynomial has degree at most 2
K(K+1)

2 (p + 1). We shall prove later that E0
n and E∞

n are indeed
non-singular analytic functions, provided that n is big enough (see Proposition 2.15). In particular, we
show that E∞

n is well-defined, i.e., that we may take the inverse of the product in (2.9) when n is big
enough.

2.2 The structure of iterations of π

It is instructive to write down explicitly what the effect of π on F is. We write q = p + 1. First, we
notice that we can eliminate F+ in (2.3). Namely, using F+ = F − F−, we can rewrite

πF = −F 2 + F−F − (F−)2 + F 2F− − F−FF−.

8



We may use (2.2) with any 0 < ρ ≤ r to write this as

(πF )(z) =− F (z)2

+

q∑

j1=1

1

2πi

∮

∂D(0,ρ)

F (s1)F (z)
(s1
z

)j1 ds1
s1

−
q∑

j1=1

q∑

j2=2

1

(2πi)2

∮

∂D(0,ρ)2
F (s1)F (s2)

(s1
z

)j1 (s2
z

)j2 ds1
s1

ds2
s2

+

q∑

j1=1

1

2πi

∮

∂D(0,ρ)

F (z)2F (s1)
(s1
z

)j1 ds1
s1

+

q∑

j1=1

q∑

j2=2

1

(2πi)2

∮

∂D(0,ρ)2
F (s1)F (z)F (s2)

(s1
z

)j1 (s2
z

)j2 ds1
s1

ds2
s2

.

So we have five different expressions, four of which are accompanied by integrals and sums. If we would
write down the next iteration (which is a cumbersome task) the number of integrals and summations
accompanying such expressions may be bigger, and the summations may also go from 1 to 2q or even 3q,
rather than q, since π may increase the order of the poles. A general structure for πkF (that follows from
repeated application of Proposition 2.9(c) in the next subsection) emerges. Namely, using the notation
s0 = z, any πkF is a linear combination of expressions of the form

1

(2πi)t

∫

∂D(0,ρ)t
F (si1) · · ·F (sil)

(s1
z

)j1
· · ·
(st
z

)jt ds1
s1

· · · dst
st

, (2.10)

for some positive integer 2k ≤ l ≤ 3k, some integer 0 ≤ t ≤ l, integers i1, . . . , il ∈ {0, 1, . . . , t}, and
integers j1, . . . , jt that are not necessarily positive for further iterations. The number of expressions of
the form (2.10) in πkF grows double exponentially as a function of k, and is bounded by an n-independent
constant for fixed k in particular. We may in fact take t = l by artificially adding integrations. It is thus
equivalent to replace (2.10) by the somewhat more appealing expression

1

(2πi)l

∮
· · ·
∮

F (si1) · · ·F (sil)
(s1
z

)j1
· · ·
(sl
z

)jl ds1
s1

· · · dsl
sl

, (2.11)

where the integrations are over any circle in D(0, r) around z = 0, and now i1, . . . , il ∈ {0, 1, . . . , l}. We
choose to leave out the factors (2πi)−l from now on, as they will only be extra baggage in what follows.
Since these expressions will play a key role, we introduce a notation for them.

Definition 2.5. Let F be as in Definition 2.2 and let l be a positive integer. Write s0 = z.
For i = (i1, . . . , il) ∈ {0, 1, . . . , l}l and j = (j1, . . . , jl) ∈ Zl, we define the function

I
[l]
i,j(n, z) =

∮
· · ·
∮

F (si1) · · ·F (sil)
(s1
z

)j1
· · ·
(sl
z

)jl ds1
s1

· · · dsl
sl

, (2.12)

where n = 1, 2, . . . and z ∈ D(0, r). The integrations are over any circle in D(0, r) around the origin,
with positive orientation.

We emphasize that the n-dependence in (2.12) comes from F , as is clear from Definition 2.2. So far,
we have not used any information about F , except for the order of its pole. To understand the behavior

of the I
[l]
i,j(n, z) on ∂D(0, n−a) as n → ∞, we need to understand the behavior of products of the form

F (si1) · · ·F (sil) on ∂D(0, n−a)l. It will turn out that in any linear combination of expressions of the
form (2.11), the terms with the smallest number of F factors are dominant.

Lemma 2.6. Let l = 1, 2, . . . and let F be as in Definition 2.2. We have

F (z1) · · ·F (zl) = O(na+d−e−(b−e)l), (2.13)

uniformly for z1, . . . , zl ∈ ∂D(0, n−a) as n → ∞.
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Proof. (a) By the assumptions of Theorem 1.2 we have uniformly for z ∈ ∂D(0, n−a) that as n → ∞

E(z) = O(n
d
2 ), E(z)−1 = O(n

d
2 ), C(z) = O(1). (2.14)

Now using (2.4), we have uniformly for z ∈ ∂D(0, n−a) as n → ∞

F (z) = O(na−b+ d
2+

d
2 ) = O(na+d−e−(b−e)).

This proves the statement for l = 1. By the assumptions of Theorem 1.2 we also have uniformly for
z, w ∈ ∂D(0, n−a) as n → ∞

E(z)−1E(w) = O(ne−a). (2.15)

Combining (2.15) with the boundedness of C we have uniformly for z1, . . . , zl ∈ ∂D(0, n−a) as n → ∞

F (z1) · · ·F (zl) = (nbz)−lE(z1)C(z1)(
E(z1)

−1E(z2)
)
C(z2) · · ·C(zl−1)

(
E(zl−1)

−1E(zl)
)
C(zl)E(zl)

−1 (2.16)

= O(n(a−b)l+ d
2+(e−a)(l−1)+ d

2 ) = O(na+d−e−(b−e)l).

Corollary 2.7. Let l be a positive integer, let i ∈ {0, 1, . . . , l}l and let j ∈ Zl. Then we have

I
[l]
i,j(n, z) = O

(
na+d−e−(b−e)l

)
, (2.17)

uniformly for z ∈ ∂D(0, n−a) as n → ∞, where I
[l]
i,j is as in Definition 2.5.

Proof. We may take the integrations in (2.12) over ∂D(0, n−a). Indeed, for s1, . . . , sl ∈ ∂D(0, n−a),

(s1
z

)j1
, . . . ,

(sl
z

)jl
= O(1) and

ds1
s1

, . . . ,
dsl
sl

= O(1). (2.18)

Combining these with Lemma 2.6 yields the result.

Since b > e it follows from Corollary 2.7 that the dominant behavior of any iteration πkF is given by
the expressions of the form (2.12) that have the smallest number of F factors.

2.3 Definition of auxiliary spaces

As stated in Subsection 2.1, there are two things that we should prove in order to obtain the matching
on the inner circle. Namely, we want to prove that πKF (with K as in Definition 2.4) is small on
∂D(0, n−a), and we want to prove that the remainder is small on ∂D(0, n−a). To be more accurate, we
want the following.

(i) Uniformly on ∂D(0, n−a) as n → ∞, we have

πKF (z) = O(nd−c). (2.19)

(ii) Uniformly on ∂D(0, n−a) as n → ∞, we have

(
I− (πKF )+(z)

)
· · ·
(
I− F+(z)

)
E(z)O(n−c)E(z)−1

(
I− F−(z)

)
· · ·
(
I− (πKF )−(z)

)

= O(nd−c). (2.20)

Here we understand that the function implied by the O(n−c) term is the same as the function
implied by the O(n−c) term in (1.9), although its specifics turn out to be irrelevant.
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For any positive integer k, πkF is a linear combination of the I
[l]
i,j as in Definition 2.5 (again, this

will follow from repeated application of Proposition 2.9(c), that we prove in a moment), where l ranges
between 2k and 3k. The coefficients in the linear combinations are ±(2πi)−l. In principle, we can try to
be as precise as possible about the structure of πkF when proving (2.19), but there is a good reason not
to. Namely, to prove (2.20), we need to understand expressions such as

(
I− (πKF )+(z)

)
· · ·
(
I− F+(z)

)
and

(
I− F−(z)

)
· · ·
(
I− (πKF )−(z)

)
.

Hence, besides πkF, (πkF )+ and (πkF )− with k = 0, 1, . . . ,K, we should also understand sums and
products of these. There is a natural framework to accomplish just that, which is to imbed the functions
of interest in a conveniently chosen ring. This ring will be O0

F , as defined below.

Definition 2.8. We define O0
F = {λI | λ ∈ C}. For any positive integer l, we define Ol

F as the linear

span of {I [l]i,j | i ∈ {0, 1, . . . , l}l, j ∈ Zl}, where I
[l]
i,j is as in Definition 2.5.

For any non-negative integer l we define Ol
F as the linear span of Ol

F ∪Ol+1
F ∪Ol+2

F ∪ . . .

We remind the reader that the linear span consists of all finite linear combinations. It is clear from
the definition that . . . ⊂ O2

F ⊂ O1
F ⊂ O0

F . Notice that Ok
F is a vector space by construction. We deduce

from the next proposition that Ok
F is in fact a graded ring, which is unital when k = 0.

Proposition 2.9. Let k, l = 0, 1, . . . and let G ∈ Ok
F and H ∈ Ol

F . We have

(a) GH ∈ Ok+l
F .

(b) G+, G− ∈ Ok
F .

(c) πG ∈ O2k
F .

(d) G(n, z) = O
(
na+d−e−(b−e)k

)
when k ≥ 1, uniformly for z ∈ ∂D(0, n−a) as n → ∞.

(e) G(n, z) = O(nd−c) when k ≥ a+c−e
b−e , uniformly for z ∈ ∂D(0, n−a) as n → ∞.

Proof. We omit the cases k = 0 or l = 0, as these are similar to the cases k, l ≥ 1, but easier.
(a) A product of two expressions of the form (2.12) is again such an expression (with the indices relabeled),
but the number of F factors is now the sum of the number of F factors of each of the two factors.
(b) It suffices to prove that G− ∈ Ok

F . Without loss of generality we may assume that G = I
[l]
i,j for some

choice of i and j, that is,

G(n, z) =

∮
· · ·
∮

F (si1) · · ·F (sil)
(s1
z

)j1
· · ·
(sl
z

)jl ds1
s1

· · · dsl
sl

,

with all expressions as in Definition 2.5, and with l ≥ k. For each n, G has a pole of order at most
q = j1 + . . .+ jl + (p + 1)ni, where ni is the number of 0 components of i. If q ≤ 0, then G is analytic
and we have G− = 0. In that case we are done. So let us assume that q ≥ 1 henceforth.

If (i1, . . . , il) is a permutation of (1, 2, . . . , l), then G is simply a multiple of z−q. This would imply
that G− = G, and we are done in that case. Let us thus assume that at least one of the integrations
is artificial, i.e., let us assume that we can eliminate the integration with respect to, say, dsl. Since we
have assumed that G has a pole, G is in particular not identically 0 and we then necessarily have jl = 0.
The corresponding integral thus yields a factor 2πi. Now using (2.2), where we redefine sl = s, we have

G−(n, z) =
q∑

j=1

∮
· · ·
∮

F
(
si′1
)
· · ·F

(
si′

l

)(s1
sl

)j1

· · ·
(
sl−1

sl

)jl−1 (sl
z

)j ds1
s1

· · · dsl−1

sl−1

dsl
sl

,

where i′t = l when it = 0 and i′t = it otherwise. Trivially, we have

(
s1
sl

)j1

· · ·
(
sl−1

sl

)jl−1 (sl
z

)j
=
(s1
z

)j1
· · ·
(sl
z

)jl (sl
z

)j−(j1+...+jl−1)

.

We conclude that

G− =

q∑

j=1

I
[l]
i′,(j1,...,jl−1,j−(j1+...+jl−1))

∈ Ok
F .
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(c) Starting from the definition (2.3), this is a direct consequence of (a) and (b).
(d) This is a direct consequence of Corollary 2.7.
(e) This follows from (d) and the assumption b > e.

To also treat the remainder terms that we discussed in Subsection 2.1, we have to define yet another
space. The intuition behind this space, is that we want it to be invariant under multiplication with
I − (πkF )± for any k. This property should be satisfied by the remainders (when multiplied from the
correct side). In the definition that follows, we will denote by O the function on D(0, r) implied by the
O(n−c) term in (1.9), i.e.,

O(z) = P̊ (z)N(z)−1E(z)− I− C(z)

nbz
, z ∈ D(0, r).

We will not need the explicit description for O(z) though.

Definition 2.10. Let O be as above. We define OE as the linear span of {GEOE−1H | G,H ∈ O0
F },

with O0
F as in Definition 2.8.

Before proving some properties of OE , we will need the following intermediate result.

Proposition 2.11. Let F be as in Definition 2.2. We have

F (z1)E(z2) = E(z1)O(ne−b) and E(z1)
−1F (z2) = O(ne−b)E(z2)

−1,

uniformly for z1, z2 ∈ ∂D(0, n−a) as n → ∞.

Proof. This follows essentially from the same arguments that we used to prove Lemma 2.6.

Proposition 2.12. Let G ∈ OE and let H ∈ O0
F . We have

(a) G(n, z) = O(nd−c) uniformly for z ∈ ∂D(0, n−a) as n → ∞.

(b) HG ∈ OE and GH ∈ OE.

Proof. (a) We may assume without loss of generality that

G(n, z) =

∮
· · ·
∮

F (si1) · · ·F
(
sik)
) (s1

z

)j1
· · ·
(sk
z

)jk ds1
s1

· · · dsk
sk

E(z)O(z)E(z)−1

∮
· · ·
∮

F
(
sik+1

)
· · ·F

(
sik+l

) (sk+1

z

)jk+1

· · ·
(sk+l

z

)jk+l dsk+1

sk+1
· · · dsk+l

sk+l

for some positive integers k, l ≥ 1, where F is as in Definition 2.2, i1, . . . , ik ∈ {0, 1, . . . , k} and
ik+1, . . . , ik+l ∈ {0, k + 1, k + 2, . . . , k + l}. As usual, we put s0 = z and the integrations may be
over any circle in D(0, r) around 0. Repeated application of Proposition 2.11 yields that uniformly for
z, z1, . . . , zl ∈ ∂D(0, n−a) as n → ∞

F (z1) · · ·F (zk)E(z) = F (z1) · · ·F (zk−1)E(zk)O
(
ne−b

)

= F (z1) · · ·F (zk−2)E(zk−1)O
(
n2(e−b)

)
= . . . = E(z1)O

(
nk(e−b)

)
.

Analogously, we have uniformly for z, zk+1, . . . , zk+1+l ∈ ∂D(0, n−a) as n → ∞

E(z)−1F (zk+1) · · ·F (zk+l) = O
(
nl(e−b)

)
E(zk+l)

−1.

Hence, taking all integrations over ∂D(0, n−a), we have uniformly for z ∈ ∂D(0, n−a) as n → ∞

G(n, z) =

∮
· · ·
∮

E (si1)O
(
n(k+l)(e−b)−c

)
E
(
sik+l

) (s1
z

)j1
· · ·
(sk+l

z

)jk+1+l ds1
s1

· · · dsk+l

sk+l
. (2.21)
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Here we have used that O(z) = O(n−c) uniformly on ∂D(0, n−a). From the assumptions of Theorem 1.2
we have that

E (si1) = O(n
d
2 ) and E

(
sik+l

)−1
= O(n

d
2 ) (2.22)

as n → ∞, uniformly for si1 , sik+l
∈ ∂D(0, n−a). We also make the observation that

(s1
z

)j1
, . . . ,

(sk+l

z

)jk+l

= O(1) and
ds1
s1

, . . . ,
dsk+l

sk+l
= O(1)

uniformly on ∂D(0, n−a). Combining this with (2.22) and (2.21) yields G(n, z) = O
(
nd−c+(k+l)(e−b)

)

uniformly for z ∈ ∂D(0, n−a) as n → ∞. Since e < b by the assumptions of Theorem 1.2, it follows
that G(n, z) = O(nd−c) uniformly for z ∈ ∂D(0, n−a) as n → ∞. The cases where E(z)O(z)E(z)−1 is
multiplied on the left or the right with I rather than a term of the form (2.12) are analogous, but easier.
(b) This is a direct consequence of Proposition 2.9(a) and the fact that Ol

F ⊂ O0
F for all l ≥ 0.

We note that Proposition 2.12(b) implies that OE is an O0
F -bimodule. Therefore, OE will have the

interpretation of a “garbage can”, if you will, in what remains of the proof of Theorem 1.2.

Proposition 2.13. Let k be a positive integer and let G ∈ Ok
F . Then πG ∈ O2k

F and

(I−G+) (I+G+OE) (I−G−) = I+ πG+OE .

Proof. Some straightforward bookkeeping yields

(I−G+) (I+G+OE) (I−G−) =I−G+ −G− +G+G− +G−G+G−GG− +G+GG−

+ (I−G+)OE(I−G−).

By Proposition 2.12(b) the term in the last line is OE . Using G = G− +G+ and the definition (2.3) of
π, the proposition follows.

Corollary 2.14. Let k be a positive integer and let G ∈ O1
F . Then πkG ∈ O2k

F and




k−1∏

j=0

(
I− (πk−jG)+

)

 (I+G+OE)




k−1∏

j=0

(
I− (πjG)−

)

 = I+ πkG+OE .

2.4 Proof of Theorem 1.2

First we prove that the prefactors from Definition 2.4 are well-defined.

Proposition 2.15. For n big enough, the prefactors E∞
n and E0

n, as defined in (2.8) and (2.9), are
well-defined, non-singular and analytic.

Proof. E0
n is obviously well-defined and analytic for any positive integer n. To see that it is non-singular,

notice that any H ∈ O1
F satisfies H(n, z)L = O(nd−c) for any fixed L big enough by Proposition 2.9(a)

and (e). In particular, we then have

(I−H(n, z))
(
I+H(n, z) +H(n, z)2 + . . .+H(n, z)L−1

)
= I−H(n, z)L = I+O(nd−c), (2.23)

uniformly for z ∈ ∂D(0, n−a) as n → ∞. The assumptions of Theorem 1.2 imply that c > d, and thus
that the right-hand side of (2.23) is invertible for n big enough. Hence both factors on the left-hand side
must also be invertible for n big enough. In particular, I−H(n, z) is invertible for n big enough. When in
addition H is analytic on D(0, n−a), the maximum modulus principle implies that H(n, z)L = O(nd−c)
on D(0, n−a). Then we can conclude that I − H(n, z) is invertible on D(0, n−a) for n big enough.
Applying this reasoning to each of the factors I− (πjF )+ in the definition (2.8) of E0

n yields that E0
n is

non-singular on D(0, n−a) for n big enough. Here we also used the assumption that E is non-singular.
To prove that E∞

n is well-defined we will use a slight abuse of notation, namely we let (E∞
n )−1 be

defined as the right-hand side of (2.9), but without the inverse. To prove that E∞
n is well-defined, it

then suffices to show that (E∞
n )−1 is non-singular. This would then also immediately imply that E∞

n is
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non-singular. We know that each factor I − (πjF )−(z) in the definition (2.9) of E∞
n (z) is a polynomial

evaluated in 1/z with constant term I. Then E∞
n (z)−1, too, is a polynomial evaluated in 1/z with

constant term I. An application of the maximum modulus principle, to the region 1/z ∈ D(0, n−a), then
yields that E∞

n (z)−1, as a function on A(0;n−a,∞), attains its maximum on the circle ∂D(0, n−a). The
same reasoning that we used for E0

n will now prove that (E∞
n )−1 is non-singular on A(0;n−a,∞) when

n is big enough. In fact, since (E∞
n )−1 is non-singular for n big enough, and a polynomial evaluated in

1/z, the prefactor E∞
n must be analytic for n big enough.

Proof of Theorem 1.2. We know due to Proposition 2.3 that

E(z)P̊ (z)N(z)−1 = I+ F (z) +OE , (2.24)

where F is as in Definition 2.2. Trivially, F ∈ O1
F . Hence Corollary 2.14 tells us that

K∏

j=0

(
I− (πK−jF )+

)
EPN−1

K∏

j=0

(
I− (πjF )−

)
= I+ πK+1F +OE ,

with K as in Definition 2.4. Additionally, it tells us that πK+1F ∈ O2K+1

F . Then Proposition 2.9(e)
combined with 2K+1 ≥ a+c−e

b−e , tells us that πK+1F (z) = O(nd−c) uniformly for z ∈ ∂D(0, n−a) as
n → ∞. Combining this with Proposition 2.12(a), we infer that

K∏

j=0

(
I− (πK−jF )+(z)

)
E(z)P (z)N(z)−1

K∏

j=0

(
I− (πjF )−(z)

)
= I+O(nd−c)

uniformly for z ∈ ∂D(0, n−a) as n → ∞. Hence, we obtain the matching (1.11) on ∂D(0, n−a).
It remains to prove that the matching (1.12) on ∂D(0, r) is satisfied. By construction, E∞

n (z)−1

equals some polynomial evaluated in 1/z with constant term I. In particular, E∞
n (z)−1 − I is its own

principal part. Then, using (2.1) with ρ = n−a, we have for z ∈ ∂D(0, r) that

E∞
n (z)−1 = I− 1

2πi

∮

∂D(0,n−a)

E∞
n (s)−1 − I

s− z
ds (2.25)

Proposition (2.9)(a) implies that E∞
n (z)−1 − I ∈ O1

F . By Proposition 2.9(d) any element of O1
F is

O
(
na−b+d

)
uniformly for z ∈ ∂D(0, n−a) as n → ∞. Applying this to (2.25) yields

E∞
n (z)−1 = I+O

(
na−b+dn−a

)
= I+O

(
nd−b

)

uniformly for z ∈ ∂D(0, r) as n → ∞. Since b > d we may take the inverse for n big enough, and we
obtain (1.12).

Remark 2.16. I would like to point out that, while obtaining the matching in a local way seems more
favorable, it is also possible to perform the matching globally. Indeed, due to the polynomial nature of
E∞

n (z)−1 for the constructed E∞
n (z) in (2.9) we have E∞

n (z) = I + O(1/z) as z → ∞. We may now
define the final transformation instead of (1.14) as

R(z) =

{
S(z)N(z)−1E∞

n (z)−1, z ∈ A(0;n−a,∞),

S(z)P̊ (z)−1E0
n(z)

−1, z ∈ D(0, n−a).

In this case we only have a matching on ∂D(0, n−a). This approach seems to work also when there are
other special points where a local parametrix has to be constructed (in case the number of special points
is not infinite). An advantage is that one may even have b ≤ d (the assumption that b > d is only used
at the very end of the proof of Theorem 1.2). A downside may be that the expression that we could now
view as the global parametrix, i.e., E∞

n (z)N(z), would not be independent of n. Obtaining the matching
by modifying the global parametrix has been done in [13, 12, 19].
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3 Scaling limits of correlation kernels at a special point

3.1 A result on scaling limits of correlations kernels

RH analyses are often used to find scaling limits of functions of interest, e.g., functions related to
orthogonal polynomials and correlation kernels. In this section we focus on scaling limits for correlation
kernels. One can often (e.g. see [6]) express a correlation kernel Kn as

Kn(x, y) =
1

2πi(x− y)
u(y)Y (y)−1Y (x)v(x), (3.1)

where u(y) is a row vector and v(x) is a column vector, and Y is the (n-dependent) solution to a
corresponding RHP. Frequently, there exists a scaling limit at some point (x0, y0) ∈ R2 of the form

lim
n→∞

1

cnb
Kn

(
x0 +

x

cnb
, y0 +

y

cnb

)
= K(x, y),

where c and b are positive constants, and K is a limiting kernel that may be different for different choices
of (x0, y0). Well-known examples of limiting kernels are the sine, Airy and Bessel kernel. Frequently,
one desires the scaling limit to be uniform for x, y in (real) compact sets. In this section we will focus on
the arguably most interesting case, namely, the case of a scaling limit at a special point. As before we
assume that 0 is a special point of our RHP, and we will investigate the scaling limit of the correlation
kernel at (x0, y0) = (0, 0). In this situation, it helps to have a good understanding of

Y
( z

cnb

)

as n becomes large. Then, as we shall see, one inevitably has to take the structure of the local parametrix
around 0 into account, which is what makes this case interesting. A succesful application of the steepest
descent analysis, through transformations Y 7→ X 7→ T 7→ S 7→ R (as in Section 1.2), or equivalent,
will create a RHP for R, that is trivial enough to conclude that R converges to I as n → ∞, uniformly
outside the jump contour as n → ∞ (e.g., see [16]). One can then invert all the transformations of the
RH analysis, and say something about the large n behavior of Y , and in particular, about potential
scaling limits of Y .

As mentioned in the beginning of this section, the dependence of u(x) and v(x) in (3.1) on n is
generally not significant in the scaling regime, where x and y are of order n−b. When calculating scaling
limits of correlation kernels at a special point, the origin in our case, it is thus enough to understand the
behavior of Y (yn)

−1Y (xn), with

xn =
x

cnb
, yn =

y

cnb
. (3.2)

Using the same notations as in Subsection 1.2, it turns out, after a considerable amount of bookkeeping,
that we usually have

1

cnb
Kn(xn, yn) =

hn(x, y)

2πi(x− y)
u0Ψ+

(
nbf(yn)

)−1
E0

n(yn)
−1R(yn)

−1R(xn)E
0
n(xn)Ψ+

(
nbf(xn)

)
v0,

for a constant row vector u0 and a constant column vector v0, and some scalar factor hn that converges
rapidly to 1 as n → ∞. Now we would like to argue, setting c = f ′(0) in (3.2), that

lim
n→∞

1

cnb
Kn (xn, yn) =

1

2πi(x− y)
u0Ψ+ (y)

−1
Ψ+ (x) v0, (3.3)

uniformly for x, y in compact sets. Indeed, we have hn(x, y) → 1, nbf(xn) → x and nbf(yn) → y as
n → ∞. Hence, to arrive at the limit (3.3), one needs that the expression

E0
n(yn)

−1R(yn)
−1R(xn)E

0
n(xn)

is close to the unit matrix for large n. Indeed, the main goal of this section is to prove that such a
behavior holds under reasonable assumptions.
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Let us suppose that we have indeed carried out our RH analysis, performed a double matching, and
have just defined our final transformation to obtain R, as in (1.14). We are then generally in the following
situation. R is analytic except on some oriented contour Σ, that can be partitioned as

Σ = ∂D(0, n−a) ∪ Σr ∪ ∂D(0, r) ∪ Σ∞. (3.4)

Σr consists of the jump curves in A(0;n−a, r). These curves generally correspond to the lips of lenses,
the corresponding jump matrices usually behave as I + O(exp(−αn|z|β)) for some constants α, β > 0
(in fact, I am confident that one has β = 1/b in natural situations). Σ∞ consists of the jump curves in
A(0; r,∞). Theorem 1.2 tells us that the jump matrix behaves on ∂D(0, n−a) and ∂D(0, r) as I+O(nd−c)
and I+O(nb−c) uniformly as n → ∞ respectively. Jumps in A(0; r,∞) might correspond to other local
parametrices, but far away the jump matrix converges radiply to I or there are no jumps at all. If we
denote the jump matrix by I+∆, then we can summarize our situation in D(0, r) as

∆(z) =





O(nd−c), z ∈ ∂D(0, n−a),
O(nb−c), z ∈ ∂D(0, r),
O(exp(−αn|z|β)), z ∈ Σr,

(3.5)

where the estimates are uniform on the indicated curves as n → ∞. We then have ||∆||L2(Σ) → 0 and
||∆||L∞(Σ) → 0 as n → ∞. If, additionally, R(z) = I+O(1/z) as z → ∞, then a general theorem (e.g.,
see [7]) implies that R can be represented in the integral form

R(z) = I+ CΣ(F∆) = I+

∫

Σ

F (s)∆(s)

s− z
ds, (3.6)

where CΣ denotes the Cauchy operator with respect to the oriented contour Σ, and F = I+X , where X
is some function in L2(Σ) that satisfies ||X ||L2(Σ) → 0 as n → ∞. There is frequently an estimate like

R(z) = I+O
(

1

nδ(1 + |z|)

)
(3.7)

uniformly for z ∈ C \ Σ as n → ∞, for some fixed δ > 0 (e.g., see Lemma B.0.2. in [16] or the proof of
Proposition 2.5.1 in [4]). A naive application of (3.7), using a standard argument with Cauchy’s integral
formula, combined with results on the behavior of E0

n (see Lemma 3.3), then yields that

E0
n(yn)

−1R(yn)
−1R(xn)E

0
n(xn) = I+O(ne−b(x− y)) +O(na−b+d−δ(x− y)) (3.8)

uniformly for x, y in compact sets as n → ∞. It would be nice if δ > a− b+ d, but there generally is no
a priori reason that this is the case. Therefore we include Theorem 3.1 below.

Actually, our situation is trickier than in [7], [16] and [4], because our contour Σ varies with n.
However, under some extra conditions we may derive similar properties for R by arguments along the
lines of Appendix A from [3]. We shall not worry about such subtleties and just take (3.7), or rather the
weaker statement that R → I uniformly as n → ∞, and (3.6) as a starting point.

Theorem 3.1. Suppose that the conditions of Theorem 1.2 are met and let E0
n be as in Definition 2.4.

Assume, additionally, that C is uniformly bounded on ∂D(0, n−e) and that

c ≥ min

(
3

2
a+ d,

3

2
a+ 2d− e

)
. (3.9)

Suppose that R : C \ Σ → Cm×m converges uniformly to I as n → ∞, and that it can be written in the
integral form (3.6), where

(i) Σ is an oriented contour as in (3.4), where Σr and Σ∞ consist of a finite union of smooth curves,
and the inversion s 7→ s−1 is bounded in L2(Σ∞) sense by some (n-independent) constant.

(ii) ∆ ∈ L2(Σ) ∩ L∞(Σ) satisfies the estimates (3.5) for some α > 0 and some 0 < β < 1/a, and both
||∆||L2(Σ) → 0 and ||∆||L∞(Σ) → 0 as n → ∞.

(iii) F = I+X, with X ∈ L2(Σ) and ||X ||L2(Σ) → 0 as n → ∞.
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Then we have, with xn and yn as in (3.2), that

E0
n(yn)

−1R(yn)
−1R(xn)E

0
n(xn) = I+O

(
nd−b(x− y)

)
+O

(
ne−b(x − y)

)
(3.10)

uniformly for x, y in compact sets as n → ∞.

In the natural situation (1.13), that is,

C(z) =
z

f(z)

(
C1 +

C2

(nbz)

z

f(z)
+ . . .

Ck

(nbz)k−1

zk−1

f(z)k−1

)
,

we see that C is uniformly bounded on all of A(0;n−b, r) as n → ∞. Assuming that b > e, we then
certainly have that C is uniformly bounded on ∂D(0, n−e) as n → ∞.

Remark 3.2. I would like to emphasize an important insight, which is that the condition (3.9) can
always be arranged in the natural situation (1.13), namely, by taking enough terms in the asymptotic
expansion (1.4). Indeed, we have that c = (b− a)(k + 1) in general for any fixed k.
If necessary, e.g., in cases were C might have a more complicated description, one can omit the condition
on c altogether, but then (3.10) has to be replaced by

E0
n(yn)

−1R(yn)
−1R(xn)E

0
n(xn) = I+O(nd−b(x− y)) +O(ne−b(x − y)) +O(n

3
2a−b−c+2d(x − y)).

A meaningful application of Theorem 3.1 would then nevertheless require the condition c > 3
2a− b+ 2d.

3.2 Behavior of the prefactor close to the origin

In order to prove Theorem 3.1, one thing we need to understand is how the prefactor E0
n behaves close

to the origin. The following lemma yields estimates for the analytic prefactor near the origin.
I would like to point out that this result may also be useful for the calculation of scaling limits that

do not concern correlation kernels.

Lemma 3.3. Suppose that the assumptions of Theorem 1.2 are met and that, additionally, C is uniformly
bounded on ∂D(0, n−e). Then the prefactor E0

n, as in Definition 2.4, satisfies uniformly for z ∈ D(0, n−e)
that as n → ∞

E0
n(z) = E(0)

(
I+O(ne−b) +O (nez)

)
and E0

n(z)
−1 =

(
I+O(ne−b) +O (nez)

)
E(0)−1. (3.11)

Furthermore, for any fixed 0 < ρ < 1, we have uniformly for z, w ∈ D(0, n−eρ) that as n → ∞

E0
n(z)

−1E0
n(w) = I+O(ne(z − w)). (3.12)

Proof. By the assumption (1.10) of Theorem 1.2 we have uniformly for z, w ∈ ∂D(0, n−a) that

E(z)−1E(w) = I+O(ne(z − w)) (3.13)

as n → ∞. We claim that (3.13) is actually true uniformly for z, w ∈ D(0, n−a) as n → ∞. To prove
this, we write (3.13) more suggestively as

n−eE(z)−1E(z)− E(w)

z − w
= O(1) (3.14)

uniformly for z, w ∈ ∂D(0, n−a) as n → ∞. For fixed n, the function on the left-hand side is analytic
in both of its variables (the singularity in z = w is removable). All its m2 entries are, in absolute value,
bounded by some (n-independent) positive constant, implied by the O(1) term. We can now apply the
maximum modulus principle, with respect to both variables, to each of the entries, for fixed n. Since n
is arbitrary in this argument, we infer that (3.14) is actually true uniformly on D(0, n−a) as n → ∞.
Rewriting (3.14) then yields the claim, i.e.,

E(z)−1E(w) = I+O(ne(z − w)), uniformly for z, w ∈ D(0, n−a) as n → ∞. (3.15)
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It follows from the claim (3.15) and e ≥ a that uniformly for z, w ∈ D(0, n−e) as n → ∞

E(z)−1E(w) = I+O(ne(z − w)) = O(1). (3.16)

Let l be any positive integer. That C is uniformly bounded on ∂D(0, n−e), combined with (3.16) and
Definition 2.2, implies that uniformly for z1, . . . , zl ∈ ∂D(0, n−e) as n → ∞

F (z1) · · ·F (zl) = (nbz)−lE(z1)C(z1)(
E(z1)

−1E(z2)
)
C(z2) · · ·C(zl−1)

(
E(zl−1)

−1E(zl)
)
C(zl)E(zl)

−1

= E(0)
(
E(0)−1E(z1)

)
O
(
n−(b−e)l

) (
E(zl)

−1E(0)
)
E(0)−1

= E(0)O
(
n−(b−e)

)
E(0)−1. (3.17)

We used the assumption b > e in the last step. We conclude that any term of the form (2.12) as
in Definition 2.5 equals E(0)O

(
n−(b−e)

)
E(0)−1 uniformly on ∂D(0, n−e), which follows by taking the

integrations over ∂D(0, n−e). We also have that E0
nE

−1−I ∈ O1
F , which follows from (2.8), Definition 2.8

and Proposition 2.9(a) and (b). Combining these two facts yields that

E0
n(z) =

(
E0

n(z)E(z)−1 − I
)
E(z) + E(z)

= E(0)O
(
n−(b−e)

)
E(0)−1E(z) + E(z)

= E(0)
(
O
(
n−(b−e)

)
+ I

)
E(0)−1E(z) (3.18)

uniformly for z ∈ ∂D(0, n−e) as n → ∞. The maximum modulus principle, applied to
E(0)−1E0

n(z)E(z)−1E(0) − I then yields that (3.18) is actually true uniformly for z ∈ D(0, n−e) as
n → ∞. Combining this with (3.16) (for w = 0) then gives that

E0
n(z) = E(0)

(
I+O

(
ne−b

)
+O(nez)

)
(3.19)

uniformly for z ∈ D(0, n−e) as n → ∞. To prove the second estimate in (3.11), we use (3.18), to see that

E0
n(z)

−1 = E(z)−1E(0)
(
I+O(ne−b)

)−1
E(0)−1

= (I+O(nez))
(
I+O(ne−b)

)
E(0)−1

=
(
I+O(ne−b) +O(nez)

)
E(0)−1 (3.20)

uniformly for z ∈ D(0, n−e) as n → ∞. Here we have used the claim (3.16) in the second line (for w = 0).
Let us now prove the second part of the theorem. Let 0 < ρ < 1 and suppose that z, w ∈ D(0, n−eρ).

By Cauchy’s integral formula and (3.19) we have that

E0
n(w) − E0

n(z) =
z − w

2πi

∮

∂D(0,n−e)

E0
n(s)− E0

n(0)

(s− z)(s− w)
ds

= E(0)
z − w

2πi

∮

∂D(0,n−e)

O(ne−b) +O(nes)

(s− z)(s− w)
ds

= E(0)
|z − w|
(1− ρ)2

O(ne) = E(0)O(ne(z − w)) (3.21)

uniformly for z, w ∈ D(0, n−eρ) as n → ∞. Here we have used that e < b. Combining (3.21) with (3.20),
we have uniformly for z, w ∈ D(0, n−eρ) that as n → ∞

E0
n(z)

−1E0
n(w) = I+ E0

n(z)
−1(E0

n(w) − E0
n(z))

= I+
(
I+O(ne−b) +O(nez)

)
E(0)−1E(0)O(ne(w − z))

= I+O(ne(z − w)).

We used here that I+O(ne−b) +O(nez) = O(1) uniformly for z, w ∈ D(0, n−eρ) as n → ∞.
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The condition that (3.12) is true provided that 0 < ρ < 1, is more or less irrelevant in the natural
situation (1.13), where we have the freedom to move our estimates to slightly bigger circles. We may in
such cases essentially set ρ equal to 1, or any other positive number for that matter.

One way to interpret Lemma 3.3 is that E0
n takes over the estimates (1.10) of E in Theorem 1.2 on

D(0, n−e). The theorem should be convenient when one is interested in the behavior of E0
n(z) in the

scaling regime, i.e., for z with modulus of order n−b.
Lemma 3.3 does not provide any information on the behavior of E(0). We mention that E(0) is,

in general, a function of n. I suspect that there is no general result possible concerning the behavior
of E(0), its properties will depend strongly on the specifics of the particular RHP. In situations where
one really needs the behavior of E(0), for scaling limits of orthogonal polynomials perhaps, one should
therefore do some extra work. The value of E(0) will not be an issue when we are studying correlation
kernels however, as we shall see.

3.3 Proof of Theorem 3.1

To prove Theorem 3.1 we also need to be precise about the behavior of R near the origin. There is
generally an estimate like (3.7) for some fixed δ > 0 as n → ∞ uniformly, but this might not be sharp
enough for our purposes. For this reason we include the following lemma.

Lemma 3.4. Under the asumptions of Theorem 3.1 we have that

R(yn)
−1R(xn) = I+O(n−b(x− y)) +O(n

3
2a−b−c+d(x− y)), (3.22)

uniformly for x, y in compact sets that as n → ∞.

Proof. So let us consider x, y in a compact set. As before, we denote by Cσ the Cauchy-operator with
respect to a contour σ. We notice, using the first estimate in (3.5) and Cauchy-Schwarz, that as n → ∞

C∂D(0,n−a)(F∆)(xn)− C∂D(0,n−a)(F∆)(yn) =
xn − yn
2πi

∮

|s|=n−a

F (s)∆(s)

(s− xn)(s− yn)
ds

= O
(
n−b(x− y) n2a ||F ||L2(∂D(0,n−a)) ||∆||L2(∂D(0,n−a))

)

= O
(
n2a−b(x− y) (2πn−am+ ||X ||L2(Σ)) ||∆||L∞(∂D(0,n−a)n

−a/2
)

= O(n
3
2a−b−c+d(x− y)). (3.23)

Here we have used that 2πn−am + ||X ||L2(Σ) is uniformly bounded as n → ∞, which is a consequence
of the fact that ||X ||L2(Σ) → 0 as n → ∞. Analogously, using the second estimate in (3.5) and Cauchy-
Schwarz, we have

C∂D(0,r)(F∆)(xn)− C∂D(0,r)(F∆)(yn) =
xn − yn
2πi

∮

|s|=r

F (s)∆(s)

(s− xn)(s− yn)
ds

= O(n−b(x− y) nd−b) = O(n−b(x− y)), (3.24)

and, using the third estimate in (3.5) and Cauchy-Schwarz,

CΣr (F∆)(xn)− CΣr (F∆)(yn) =
xn − yn
2πi

∫

Σr

F (s)∆(s)

(s− xn)(s− yn)
ds

= O
(
n−b(x− y) n2a exp(−αn1−aβ)

)
= O(n−b(x − y)), (3.25)

as n → ∞. Here we also used the assumptions α > 0 and β < 1/a. Lastly, we have

CΣ∞(F∆)(xn)− CΣ∞(F∆)(yn) =
xn − yn
2πi

∫

Σ∞

F (s)∆(s)

(s− xn)(s− yn)
ds

=
xn − yn
2πi

∫

Σ∞

∆(s)

(s− xn)(s− yn)
ds+

xn − yn
2πi

∫

Σ∞

X(s)∆(s)

(s− xn)(s− yn)
ds (3.26)
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By the assumption that the inversion s 7→ s−1 is uniformly bounded in L2(Σ∞) sense for all n, and that
||∆||L∞(Σ) → 0 as n → ∞, we have that

xn − yn
2πi

∫

Σ∞

∆(s)

(s− xn)(s− yn)
ds = O(n−b(x − y)) (3.27)

uniformly as n → ∞. The boundedness of s 7→ (s− xn)
−1(s− yn)

−1 outside D(0, r), combined with the
assumptions ||X ||L2(Σ) → 0 and ||∆||L2(Σ) → 0 as n → ∞ and Cauchy-Schwarz, yields that

xn − yn
2πi

∫

Σ∞

X(s)∆(s)

(s− xn)(s− yn)
ds = O(n−b(x − y)) (3.28)

uniformly as n → ∞. Then (3.27) and (3.28) imply that

CΣ∞(F∆)(xn)− CΣ∞(F∆)(yn) = O(n−b(x − y)) (3.29)

uniformly as n → ∞. Putting it all together, i.e., using (3.23), (3.24), (3.25) and (3.29), we must conclude
that

R(xn)−R(yn) = O(n
3
2a−b−c+d(x− y)) +O(n−b(x − y))

uniformly as n → ∞. Hence uniformly as n → ∞

R(yn)
−1R(xn) = I+R(yn)

−1(R(xn)−R(yn)) = I+O(n
3
2a−b−c+d(x− y)) +O(n−b(x− y)).

Here we have used the assumption that R → I uniformly as n → ∞, which implies that R−1 is uniformly
bounded as n → ∞.

We remark that the assumption on E0
n and the asumption (3.9) on c in Theorem 3.1 did not play a

role in the proof of Lemma 3.4. We are now ready to give the proof for Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.4 we have that

E0
n(yn)

−1R(yn)
−1R(xn)E

0
n(xn) = E0

n(yn)
−1E0

n(xn) + E0
n(yn)

−1O(n−b(x− y))E0
n(xn)

+ E0
n(yn)

−1O(n
3
2a−b−c+d(x− y))E0

n(xn). (3.30)

uniformly for x, y in compact sets as n → ∞. Due to the assumptions of Theorem 1.2 that E and E−1

are O(n
d
2 ) uniformly on ∂D(0, n−a) as n → ∞, and the maximum modulus principle, we have that E(0)

and E(0)−1 are O(n
d
2 ) as n → ∞. Combining this with the first estimates (3.11) of Lemma 3.3 yields

E0
n(yn)

−1 = O(n
d
2 ) and E0

n(xn) = O(n
d
2 )

uniformly for x, y in compact sets as n → ∞. Hence (3.30) turns into

E0
n(yn)

−1R(yn)
−1R(xn)E

0
n(xn) = E0

n(yn)
−1E0

n(xn) +O(nd−b(x− y)) +O(n
3
2a−b−c+2d(x− y))

uniformly for x, y in compact sets as n → ∞. Now invoking the second estimate (3.12) of Lemma 3.3,
we arrive at

E0
n(yn)

−1R(yn)
−1R(xn)E

0
n(xn) = I+O(ne−b(x− y)) +O(nd−b(x − y)) +O(n

3
2a−b−c+2d(x− y))

= I+O(nd−b(x− y)) +O(ne−b(x − y))

uniformly for x, y in compact sets as n → ∞. We used the assumption c ≥ min(32a+ d, 3
2a+ 2d− e) in

the last step.
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4 Examples

In this section we apply the main result, Theorem 1.2, to some examples from the literature. I hope that
these clarify why we expect the situation of (1.5), and why we expect that P̊ is of the form (1.3). We
repeat the last equation for convenience.

P̊ (z) = E̊(z)Ψ
(
nbf(z)

)
D(z)enDϕ(z).

The first example that we treat is worked out in detail. The example is taken from [20], the article that
was the main inspiration for the present one. It should serve as a guiding example to those who intend
to apply the main result. In the example, we use the notations of the current paper, rather than the
notations of [20].

In the remaining two examples we will be more brief. It is not our intention to be fully rigorous here,
but rather to show the strength of the main result. In these two examples, we shall identify E̊,Ψ, f,D,Dϕ,
as well as a, b, c, d, e, with their counterparts from the corresponding articles. The interested reader will
have to consult these articles in order to fully comprehend every detail.

4.1 Muttalib-Borodin ensemble with parameter θ = 1

2

The article [20] about the local universality at the hard edge of the Muttalib-Borodin ensemble with
θ = 1

2 has been the main inspiration for this work. The goal was to find a certain scaling limit of a
correlation kernel Kn(x, y) at the origin. The paper uses a 3 × 3 RHP that depends on a parameter
α > −1 and some external field V (x) that, among other requirements, is analytic around x = 0. It is
the first article where a double matching was used, although the iteration steps of the current paper are
more efficient than those used in [20], as we shall see. We will not be precise about the specifics of the
ensemble, or the relation between the correlation kernel and the initial RHP. Instead, we focus on the
corresponding matching problem.

In what follows we will take ω = e
2πi
3 and β = α+ 1

4 . After performing the standard transformations
in the steepest descent analysis, we have a RHP for a function S, which has jumps on a contour ΣS that
consists of five curves ∆1,∆2, (q,∞) and ∆±

1 , as in Figure 1. The curves ∆±
1 correspond to the lips of a

lens. For α > − 1
2 the RHP satisfied by S takes the following form.

RH-S1 S : C \ ΣS → C3×3 is analytic.

RH-S2 On ΣS we have the jumps

S+(x) = S−(x)




0 xβ 0
−x−β 0 0

0 0 1


 , x ∈ ∆1,

S+(z) = S−(z)




1 0 0

z−βe2nϕ1(z) 1 0
0 0 1


 , z ∈ ∆+

1 ∪∆−
1 ,

S+(x) = S−(x)



1 xβe−2nϕ1(x) 0
0 1 0
0 0 1


 , x ∈ (q,∞),

S+(x) = S−(x)



1 0 0
0 0 −1
0 1 0


 , x ∈ ∆2,

RH-S3 As z → ∞

S(z) =

(
I+O

(
1

z

))

1 0 0

0 z
1
4 0

0 0 z−
1
4






1 0 0
0 1√

2
i√
2

0 i√
2

1√
2


 .
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0 q

∆+

1

∆−

1

∆2 ∆1

Figure 1: Contour ΣS = R ∪∆±
1 for the RHP for S (taken from [20]).

RH-S4 As z → 0

S(z) = O



z−α− 1

2 z−
1
4 z−

1
4

z−α− 1
2 z−

1
4 z−

1
4

z−α− 1
2 z−

1
4 z−

1
4


 for z inside the lense,

S(z) = O



1 z−

1
4 z−

1
4

1 z−
1
4 z−

1
4

1 z−
1
4 z−

1
4


 for z outside the lense.

Here ϕ1 in RH-S2 is a ϕ-function having to do with the normalization and opening of the lens (see
(5.13) in [20]). For −1 < α ≤ − 1

2 , the asymptotic behavior in RH-S4 takes a different form. The
particular form of RH-S4, be it for α > − 1

2 or be it for −1 < α ≤ 1
2 , will be irrelevant however, in what

follows.
We have a global parametrix N (see Section 4.4 in [20]) that only has jumps on ∆1 and ∆2, the same

jumps as in RH-S2. Additionally, N satisfies the same asymptotics as in RH-S3. The specifics of N will
not be relevant however. The local parametrix problem around z = 0 takes the following form.

RH-P1 P is analytic on D(0, r) \ ΣS .

RH-P2 P has the same jumps as S has on ΣS ∩D(0, r).

RH-P3 P has the same behavior as S has as z → 0.

Usually, one adds the matching condition as RH-P4. Since we plan to get a double matching instead of
an ordinary matching, we leave it out. The initial construction for the local parametrix has the form

P̊ (z) = E̊n(z)Ψ
(
n3f(z)

)
D(z)enDϕ(z), (4.1)

where the expressions are defined as follows.

D(z) =



1 0 0
0 zβ 0
0 0 zβ


 ,

Dϕ(z) =
2

3



2ϕ1(z) + ϕ2(z) 0 0

0 ϕ2(z)− ϕ1(z) 0
0 0 ϕ1(z) + 2ϕ2(z)


 .
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Here ϕ2 is also a ϕ-function that originated from the normalization and opening the lens (see (5.14) in
[20]). In general, the number of relevant ϕ-functions equals the number of g-functions that were used in
the normalization. The conformal map f is constructed using the ϕ-functions, namely

f(z) =
8

729
×
{ (

ω2ϕ1(z)− ϕ2(z)
)3

, Im(z) > 0,

(ωϕ1(z)− ϕ2(z))
3
, Im(z) < 0.

It is proved in Proposition 5.6 in [20] that f is indeed a conformal map that maps 0 to itself, and that maps
positive numbers to positive numbers. Then f respects the jump contour of S, i.e., f(∆1 ∩ D(0, r)) ⊂
R+, f(∆+

1 ∩D(0, r)) ⊂ iR+, etcetera, and the orientations are preserved.
To understand Ψ we have to introduce a special function. Namely, we use the Meijer G-function

G0,3
3,0

(
−

0,−α,−α− 1
2

∣∣∣∣ z
)

=
1

2πi

∫

L

Γ(s)Γ(s− α)Γ(s− α− 1
2 )z

−sds,

where L encircles the interval (−∞,max(0, α+ 1
2 )]. It is a solution to the linear differential equation

ϑ(ϑ+ α)(ϑ+ α+
1

2
)φ + zφ = 0, ϑ = z

d

dz
.

Then, as in (2.22)-(2.25) in [20], we construct the functions

φ1(z) = ie2πiαG0,3
3,0

(
−

0,−α,−α− 1
2

∣∣∣∣ ze2πi
)
,

φ2(z) = −ie−2πiαG0,3
3,0

(
−

0,−α,−α− 1
2

∣∣∣∣ ze−2πi

)
,

φ3(z) = G0,3
3,0

(
−

0,−α,−α− 1
2

∣∣∣∣ z
)
,

φ4(z) = φ1(z) + φ2(z).

Here the notation ze2πi means that we have analytically continued φ3 along a counterclockwise loop
around the origin, and similarly for ze−2πi. Then Ψ is defined as

Ψ(ζ) =








φ1(ζ) φ2(ζ) φ3(ζ)

ϑφ1(ζ) ϑφ2(ζ) ϑφ3(ζ)

ϑ2φ1(ζ) ϑ2φ2(ζ) ϑ2φ3(ζ)


 , 0 < arg(ζ) < π

2 ,




φ4(ζ) φ2(ζ) φ3(ζ)

ϑφ4(ζ) ϑφ2(ζ) ϑφ3(ζ)

ϑ2φ4(ζ) ϑ2φ2(ζ) ϑ2φ3(ζ)


 , π

2 < arg(ζ) < π,




φ2(ζ) −φ1(ζ) φ3(ζ)

ϑφ2(ζ) −ϑφ1(ζ) ϑφ3(ζ)

ϑ2φ2(ζ) −ϑ2φ1(ζ) ϑ2φ3(ζ)


 , −π

2 < arg(ζ) < 0,




φ4(ζ) −φ1(ζ) φ3(ζ)

ϑφ4(ζ) −ϑφ1(ζ) ϑφ3(ζ)

ϑ2φ4(ζ) −ϑ2φ1(ζ) ϑ2φ3(ζ)


 , −π < arg(ζ) < −π

2 .

(4.2)

The counterpart of Ψ is Φα as in (2.27) in [20]. In Lemma 3.4 in [20] it was shown that, as ζ → ∞

Ψ(ζ) =

(
I+

C1

ζ
+O

(
1

ζ2

))
B(ζ)enθ(ζ), (4.3)
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where C1 is a 3× 3 matrix that depends only on α,

θ(ζ) = −3ζ
1
3 ×







ω 0 0

0 ω2 0

0 0 1


 , Im(ζ) > 0,



ω2 0 0

0 ω 0

0 0 1


 , Im(ζ) < 0,

B(ζ) =
2π√
3
T−1
α ζ−

2β
3



ζ−

1
3 0 0

0 1 0

0 0 ζ
1
3


×







ω2 ω 1

1 1 1

ω ω2 1






e

2πiβ
3 0 0

0 e−
2πiβ

3 0

0 0 1


 , Im(z) > 0,




ω −ω2 1

1 −1 1

ω2 −ω 1






e−

2πiβ
3 0 0

0 e
2πiβ

3 0

0 0 1


 , Im(z) < 0,

where Tα is a constant lower-triangular matrix that depends only on α (see (3.9) in [20]). The first factor
on the right-hand side of (4.3) can be extended to a full asymptotic series in negative powers of ζ, in
principle. Ψ solves the following bare parametrix problem with constant jumps (see p. 17 in [20]).

RH-Ψ1 Ψ : C \ (R ∪ iR) → C3×3 is analytic.

RH-Ψ2 On R ∪ iR we have the following jumps (all curves oriented outwards).

Ψ+(ζ) = Ψ−(ζ)




0 1 0
−1 0 0
0 0 1


 , ζ ∈ R

+,

Ψ+(ζ) = Ψ−(ζ)



1 0 0
1 1 0
0 0 1


 , ζ ∈ iR±,

Ψ+(ζ) = Ψ−(ζ)



1 0 0
0 0 ie2πiα

0 −ie2πiα 0


 , ζ ∈ R

−.

RH-Ψ3 As ζ → ∞

Ψ(ζ) =

(
I+

C1

ζ
+O

(
1

ζ2

))
B(ζ)enθ(ζ).

RH-Ψ4 ΨD has the same behavior as S has as z → 0.

As it turns out, a convenient choice for E̊n is given by

E̊n(z) = n−2β

(
f(z)

z

)− 2β
3

T−1
α .

We could have avoided having to define E̊n, with the n−2β factor in particular, if we included a factor

ζ
2β
3 in the definition of Ψ(ζ) and a factor z−

2β
3 in the definition of D(z). We did not make this choice

because we do not want to deviate too much from the expressions in [20]. Some straightforward algebra
shows that

P̊ (z)N(z)−1 =

(
I+

T−1
α C1Tα

n3f(z)
+O

(
1

n6z2

))
E(z)−1

uniformly on any circle that shrinks slower than order n−3 as n → ∞, where

E(z) = n2β

(
f(z)

z

) 2β
3

N(z)D(z)−1e−nDϕ(z)−θ(n3f(z))B(n3f(z))−1Tα.
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It so happens (see (5.36) in [20]), that the ϕ-functions have an expansion in terms of powers of z
1
3 close

to z = 0. In particular, one can show (see Proposition 5.8 in [20]) that

nDϕ(z) + θ(n3f(z)) = O
(
nz

2
3

)

as z → 0. This hints that we should try to obtain the matching on a shrinking circle of radius n− 3
2 . A

circle of fixed radius would lead to an exponential error. For z ∈ ∂D(0, n− 3
2 ) we have uniformly that

P̊ (z)N(z)−1 =

(
I+

C(z)

n3z
+O

(
n−3

))
E(z)−1

as n → ∞, where

C(z) =
z

f(z)
T−1
α C1Tα.

Indeed, C is uniformly bounded on ∂D(0, n− 3
2 ) as n → ∞ (in fact on D(0, r) entirely) and it is analytic.

The function E coincides with En in (5.44) of [20]. Then there are some properties for En that are
proved in [20] (see Lemma 5.10(c) and Lemma 5.13 for the details), that we may immediately apply.

Namely, E is non-singular and analytic. But also, we have uniformly for z ∈ ∂D(0, n− 3
2 ) as n → ∞ that

E(z) = O(n) and E(z)−1 = O(n),

and uniformly for z, w ∈ ∂D(0, n− 3
2 ) as n → ∞ that

E(z)−1E(w) = I+O
(
n

5
2 (z − w)

)
.

I suspect that the proof of Lemma 5.13 in [20] provides a general strategy to obtain the relevant estimates
for E. Now we have all the ingredients to apply Theorem 1.2, setting a = 3

2 , b = 3, c = 3, d = 2, e = 5
2 ,

provided that the inequalities a ≤ e < b and d < min(b, c) are valid, which is indeed the case. Hence we
obtain a double matching where the jumps on both the inner and the outer circle behave as I+O

(
1
n

)
. One

is now able to construct the final transformation to R, as in (1.14) (with an additional local parametrix
around q). In this particular case we have

a+ c− e

b− e
= 4,

thus we have K = 1 in Definition 2.4. This means that K + 1 = 2 iteration steps are needed in the
construction of E0

n. This is an improvement with respect to [20], where (effectively) three iteration
steps were needed to get the same degree of approximation. This discrepancy is caused by the fact that
iteration steps in [20] got rid of only the term with the lowest order pole in each step. Then the amount
of iteration steps needed grows linearly rather than logarithmically.

We may apply Lemma 3.3 to conclude that for z of order n−3 we have as n → ∞

E0
n(z) = E(0)

(
I+O(n− 1

2 )
)

and E0
n(z)

−1 =
(
I+O(n− 1

2 )
)
E(0)−1,

and for z, w of order n−3 we have as n → ∞
E0

n(z)
−1E0

n(w) = I+O(n
5
2 (z − w)).

In [20] these estimates were used to obtain a scaling limit for an associated correlation kernel. Following
the derivation in [20] (see Lemma 6.4), and using the notation

xn =
x

f ′(0)n3
and yn =

y

f ′(0)n3
,

we have for n big enough that

1

n3
Kn(xn, yn) = e

2
3n(V (xn)−V (yn))

1

2πi(x− y)

(
−1 1 0

)
Ψ+(n

3f(yn))
−1E0

n(yn)
−1R−1(y)R(x)E0

n(xn)Ψ+(n
3f(xn))



1
1
0


 .
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One can show with the help of Appendix A in [3] that we have the estimate (3.7) with δ = 1. Remarkably,
δ actually is bigger than a− b+ d = 1

2 , hence we may directly apply (3.8) to conclude that

1

n3
Kn(xn, yn) =

1

2πi(x− y)

(
−1 1 0

)
Ψ+(y)

−1Ψ+(x)



1
1
0


+O

(
n− 1

2

)
.

uniformly for x, y in compact sets as n → ∞.
Notice that, if we nevertheless wanted to apply Theorem 3.1, then we would need to take an extra

term C2ζ
−2 in the expansion (4.3), i.e., we would then have c = 9

2 ≥ 15
4 = 3

2a+ 2d− e and

C(z) =
z

f(z)

(
T−1
α C1Tα +

T−1
α C2Tα

n3z

z

f(z)

)
.

In an article that is under construction, we will show that the case θ = 1
r with r a positive integer,

concerning an (r + 1) × (r + 1) RHP, corresponds to a = r+1
2 , b = r + 1, d = r and e = r + 1

2 . In the
case r > 2, we are not so lucky that we can directly apply (3.8) and we really have to use Theorem 3.1
instead. We omit the details as these will appear in the upcoming article.

4.2 Cauchy-Laguerre three-chain

In the 4 × 4 RH analysis for the Cauchy-Laguerre three-chain in [1] Bertola and Bothner arrive at
the following situation. In [1] one has a global parametrix M (see Proposition 4.8 in [1]) and a local
parametrix Q (see (4.35) in [1]), which is of the form

Q(z) = B0(z)G
(3)(ζ(z))

(
2n

3
3
4

e1(z)

)−A
{

e4Ωζ
1
4 (z)+n

2 3−
3
4 e2(z)Ω, Im(z) > 0,

e4Ωζ
1
4 (z)+n

2 3−
3
4 e2(z)Ω, Im(z) > 0.

(4.4)

The factor on the far right, with Ω being a constant diagonal matrix, e1, e2 being some analytic functions
and ζ(z) ≈ 16

27n
4z being a conformal map around 0 (see p. 1110 in [1] for these four expressions) , should

be identified with the enDϕ factor in (1.3). The factor in the middle, with A some constant diagonal
matrix (see (4.25) in [1]), should be identified with the D factor in (1.3). The function G(3) (see (4.33) in
[1]), called the bare Meijer-G parametrix, solves a corresponding bare parametrix problem and it should
be identified with Ψ in (1.3). It is constructed with the help of Meijer G-functions that solve a fourth
order linear differential equation. Notice that ζ(z) has the interpretation of nbf(z) in (1.3) with b = 4
(indeed n−4ζ is independent of n). The function B0 (see (4.36) in [1]) is the first attempt for the analytic
prefactor.

In [1] it is shown that Q and M satisfy a relation (see (4.38) in [1]) of the following asymptotic form.
As z → ∞ we have

Q(z)M(z)−1 ∼ M̂(z)z−
1
8λ4


I+

∞∑

j=1

Kjζ
− j

4


H(z)z

1
8λ4M̂(z)−1, (4.5)

for z ∈ D(0, r) for a fixed r > 0 sufficiently small. Here M̂ (see (4.27) in [1]) is n-independent and
analytic in some neighborhood of z = 0, λ4 = diag[3, 1,−1,−3] (see (4.28) in [1]), Kj are constant
n-independent matrices and H (see (4.39) in [1]) is some function with properties that we turn to in a
second.

In [1] the matching was obtained with an iterative technique, in which one kept modifying B0, which
seems to be applicable to more general situations and larger sizes in principle. However, I suspect that
the technical nature of the approach would make this a cumbersome procedure when the size of the RHP
is large. For our purposes we can make the following identifications.

P̊ (z) =

(
z

ζ

) 1
8λ4

M̂(z)−1Q(z),

N(z) = M(z),

E(z) = M̂(z)z−
1
8λ4H(z)−1ζ

1
8λ4 .
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Comparing with (4.4) and (1.3) this then corresponds to the first guess of the prefactor in (1.3) being

E̊n(z) =

(
z

ζ

) 1
8λ4

M̂(z)−1B0(z).

With these definitions we obtain by (4.5) the asymptotic expansion

P̊ (z)N(z)−1E(z) ∼ ζ−
1
8λ4


I+

∞∑

j=1

Kjζ
− j

4


 ζ

1
8λ4 (4.6)

as ζ → 0. In fact, a straightforward adaptation of the proof of Proposition 4.15 in [1] shows that the
right-hand side of (4.6) represents an asymptotic series in integer powers of ζ and this yields the situation
(1.5). In particular, taking the asymptotic series up to j = 11, we find (n-independent) constants K̃1

and K̃2 such that

P̊ (z)N(z)−1E(z) = I+
K̃1

ζ
+

K̃2

ζ2
+O(ζ−

9
4 ) = I+

K̃1

ζ
+O(ζ−2) (4.7)

as ζ → 0. The function E is indeed analytic, as follows from Proposition 4.13 in [1]. For z ∈ ∂D(0, n− 4
3 )

it turns out, using (4.39) in [1], that H and H−1 are uniformly bounded. Combining the boundedness

of H−1 and H with the specific form of λ4 yields that uniformly for z ∈ ∂D(0, n− 4
3 )

E(z) = O(n
3
2 ) and E(z)−1 = O(n

3
2 )

as n → ∞. Also, the boundedness of H and H−1, and the specific form of λ4 yield that uniformly for
z1, z2 ∈ ∂D(0, n− 4

3 ) as n → ∞

E(z1)
−1E(z2) = ζ(z1)

− 1
8λ4H(z1)z

1
8λ4

1 (I+O(z1 − z2))z
− 1

8λ4

2 H(z2)
−1ζ(z2)

1
8λ4

= ζ(z1)
− 1

8λ4H(z1)(I+O(n
4
3 (z1 − z2)) +O(n(z1 − z2)))H(z2)

−1ζ(z2)
1
8λ4

= ζ(z1)
− 1

8λ4(I+O(n
4
3 (z1 − z2)))ζ(z2)

1
8λ4

= I+O(n
4
3 (z1 − z2)) +O(n1+ 4

3+1(z1 − z2))

= I+O(n
10
3 (z1 − z2)).

In light of Theorem 1.2 we identify a = 4
3 , b = 4, d = 3 and e = 10

3 . We still need to find a convenient
value for c. If we take two terms of integer powers of ζ in the asymptotic expansion on the right-hand
side of (4.6) then this seems to be enough, i.e., we identify

C(z) =
n4z

ζ(z)
K̃1.

Notice that this will indeed make C uniformly bounded on ∂D(0, n− 4
3 ) as n → ∞ (and in fact on any

circle inside the domain of ζ). Indeed, using (4.7) we now have uniformly for z ∈ ∂D(0, n− 4
3 ) that

P̊ (z)N(z)−1E(z) = I+
C(z)

n4z
+O(ζ−2) = I+

C(z)

n4z
+O(n− 16

3 ) (4.8)

as n → ∞, and we identify c = 16
3 . Then Theorem 1.2 provides us with E0

n, E
∞
n such that as n → ∞

E0
n(z)P̊ (z) =

(
I+O(n− 7

3 )
)
E∞

n (z)N(z), uniformly for z ∈ ∂D(0, n−a),

E∞
n (z) = I+O(n−1), uniformly for z ∈ ∂D(0, r).

In order to use Theorem 3.1 we should have that c ≥ min(32a+ d, 3
2a+ 2d− e) = 14

3 . This is indeed the
case, so we do not need to consider more terms in the asymptotic expansion (4.6).

It should be relatively easy to extend the result in [1] to p-chains with p > 3, the construction of a
corresponding global parametrix for general p being the only missing ingredient.
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4.3 Non-intersecting squared Bessel paths: critical case

In [19] an issue with the matching was also encountered in a 3 × 3 RHP. There, Kuijlaars, Mart́ınez-
Finkelshtein and Wielonsky resolved the problem by modifying the global parametrix. This example is
a bit special in that the corresponding functions in (1.3) are not entirely what one would expect, as we
shall see. It is a nice insight that Theorem 1.2 can nevertheless be applied here. The global parametrix
Nα can be found in (4.9) in [19]. The local parametrix in [19] (see (5.13)) has the form

Q(z) = En(z)Φα

(
n

3
2 f(z);n

1
2 τ(z)

)
diag[1, zα, 1] diag

[
e−nλ1(z), e−nλ2(z), e−nλ3(z)

]
e

2nz
3t(1−t) .

The diagonal factor on the right (see (2.22) in [19] for the λ functions) should be identified with enDϕ

from (1.3) and the diagonal factor in the middle should be identified with D from (1.3). Perhaps it is

best to absorb e
2nz

3t(1−t) into the definition of enDϕ , we will make this choice. En (see (5.44) in [19]) could
be interpreted as the first guess for the analytic prefactor in (1.3), we will define E̊ differently though.
The function f is a conformal map and τ is some analytic function (see (5.40) and Lemma 5.5 in [19]).
In [19] one has a bare parametrix problem with a solution Φα(z; τ) (see Definition 5.1 in [19]) for some
parameter α, which we identify with Ψ in (1.3). It is constructed with the help of solutions to the linear
differential equation zφ′′′ + αφ′′ − τφ′ − φ = 0. One finds the corresponding asymptotic behavior using
a classical steepest descent analysis. In particular, in [19] (see Lemma 5.3) it is shown that as z → ∞

Φα(z; τ) =
i√
3
Lα(z)×





(
I+

M+
α (τ)

z
1
3

+O(z−
1
3 )
)


eθ1(z,τ) 0 0

0 eθ2(z,τ) 0

0 0 eθ3(z,τ)


 Im(z) > 0,

(
I+

M−

α (τ)

z
1
3

+O(z−
2
3 )
)


eθ2(z,τ) 0 0

0 eθ1(z,τ) 0
0 0 eθ3(z,τ)


 Im(z) < 0,

where θk(z, τ) =
3
2ω

2kz
2
3 + τωkz

1
3 (see (1.21) in [19]), ω = e

2πi
3 , M±

α (τ) (see (5.26) and (5.27) in [19])
depends polynomially on τ and (see (5.25) in [19])

Lα(z) = z−
α
3 z

1
3 diag[1,0,−1] ×








ω ω2 1
1 1 1
ω2 ω 1


 diag[eαπi/3, e−απi/3, 1], Im(z) > 0,



ω2 −ω 1
1 −1 1
ω −ω2 1


 diag[e−απi/3, eαπi/3, 1], Im(z) < 0.

In fact the expression I+M±
α (τ)z−

1
3 +O(z−

2
3 ) comes from an asymptotic series

I+
M±

α,1(τ)

z
1
3

+
M±

α,2(τ)

z
2
3

+ . . .

in z−
1
3 , for certain coefficients M±

α,1(τ),M
±
α,2(τ), . . . (these are not to be found in [19]). Of course we

should then identify M±
α,1(τ) = M±

α (τ). The authors note that Φα solves a specific first-order matrix-

valued ODE. From this ODE one can deduce that (M±
α,k(τ))k satisfies a three term recurrence relation

M±
α,k+2(τ) = A±M±

α,k+1(τ) + B±M±
α,k(τ), with coefficients A±,B± that are at most linear in τ . Then

we infer that there exists a constant c > 0 such that ||M±
α,k(τ)|| ≤ c

k(1+ τk) for all τ ∈ C. In particular,

the M±
α,k(τ) are bounded when τ is bounded.

The behavior of θ1, θ2, θ3 is a little extraordinary, in that they are not multiples of z
3
2 , and that they

are in fact functions of two variables z and τ . Nevertheless, Theorem 1.2 can be applied here. Let us
define the auxiliary fuction

Fα(z, τ) :=
i√
3
Lα(z)×







eθ1(z,τ) 0 0

0 eθ2(z,τ) 0

0 0 eθ3(z,τ)


 Im(z) > 0,



eθ2(z,τ) 0 0

0 eθ1(z,τ) 0

0 0 eθ3(z,τ)


 Im(z) < 0.
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As one can check (use for this the proof of Lemma 5.7 in [19]), Fα has the same jumps as Φα has on the
positive and negative ray (although not the jumps on the lenses). This means that Φα(z; τ)Fα(z, τ)

−1

does not have jumps for z on the real line. Plugging in the asymptotic expansion for Φα we get

Φα(z; τ)Fα(z, τ)
−1 ∼ Lα(z)

(
I+

M±
α,1(τ)

z
1
3

+
M±

α,2(τ)

z
2
3

+ . . .

)
Lα(z)

−1, (4.9)

as z → ∞. Since there is no jump on the real line, the expression on the right-hand side of (4.9) actually
equals an asymptotic series in powers of z−1. The coefficients of that asymptotic series are then also
bounded when τ is bounded. We identify, with En, Q,Nα, λk, f(z), τ(z) as in [19],

P̊ (z) = −
√
3in

α
2 En(z)

−1Q(z),

N(z) = Nα(z),

E(z) =
i√
3
n−α

2 Nα(z)e
− 3nz

3t(1−t)



enλ1(z) 0 0

0 z−αenλ2(z) 0
0 0 enλ3


Fα(n

3
2 f(z), n

1
2 τ(z))−1

= −
√
3in−α

2 Nα(z) diag[1, z
−α, 1]Lα(n

3
2 f(z))−1 = n−α

2 En(z).

Effectively, this amounts to putting E̊n equal to −
√
3in

α
2 in (1.3). We used the formula under (6.16) in

[19] to rewrite E, that is,

θk(n
3
2 f(z);n

1
2 τ(z)) = nλk(z)−

2nz

3t(1− t)
, k = 1, 2, 3.

In this special case the authors actually managed to match the enDϕ factor with the eθ factor, as in (1.4),
exactly. The cost is that they needed two functions f and τ to make it work. It follows from Lemma
5.5 in [19] that n

1
2 τ(z) is uniformly bounded on ∂D(0, n− 1

2 ). Then some straightforward algebra, using
(4.9), yields that

P̊ (z)N(z)−1E(z) ∼ Lα(n
3
2 f(z))

(
I+

M±
α,1(n

1
2 τ(z))

(n
3
2 f(z))

1
3

+
M±

α,2(n
1
2 τ(z))

(n
3
2 f(z))

2
3

+ . . .

)
Lα(n

3
2 f(z))−1,

(4.10)

uniformly for z ∈ ∂D(0, n
1
2 ) as n → ∞, where the coefficients M±

α,k(n
1
2 τ(z)) are uniformly bounded on

∂D(0, n− 1
2 ). As we pointed out earlier, this is actually an asymptotic series with integer powers evaluated

in (n
3
2 f(z))−1. We read off that we should take a = 1

2 and b = 3
2 . It is not hard to see that

Lα(n
3
2 f(z)) = n−α

2 diag[n
1
2 , 1, n− 1

2 ]Lα(f(z)). (4.11)

A simple adaptation of Lemma 5.7 in [19] yields that the function

−
√
3iNα(z) diag[1, z

−α, 1]Lα(f(z))
−1

defines an analytic function that does not depend on n. Combining this with (4.11) yields that

E(z) = O(n
1
2 ) and E(z)−1 = O(n

1
2 )

as n → ∞, uniformly for z ∈ ∂D(0, n− 1
2 ). Thus we take d = 1. Similarly, we have uniformly for

z, w ∈ ∂D(0, n− 1
2 ) that

E(z)−1E(w) = I+O(n(z − w))

as n → ∞. Hence we take e = 1. It remains to find out how many terms we should take in
the asymptotic expansion, i.e., what c should be. In order to apply Theorem 3.1 we need that
c ≥ min(32a+ d, 3

2a+ 2d− e) = 7
4 . Then we should take

C(z) =
z

f(z)
M̃1(n

1
2 τ(z)),
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where M̃1(n
1
2 τ(z))/(n

3
2 f(z)) is defined as the second term in the asymptotic expansion in integer powers

of (n
3
2 f(z))−1 in (4.10). The corresponding c then equals 2. As we mentioned before, n

1
2 τ(z) is uniformly

bounded on ∂D(0, n− 1
2 ) as n → ∞, thus the coefficientsM±

α,k(n
1
2 τ(z)), and consequently M̃1(n

1
2 τ(z)), are

also bounded. Hence C is indeed uniformly bounded on ∂D(0, n− 1
2 ). We conclude that the assumptions

of Theorem 1.2 are satisfied. Indeed, by the maximum modulus principle we also have that C is uniformly
bounded on ∂D(0, n− 2

3 ), as we should have in order to apply Theorem 3.1.
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