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ON THE OPTIMAL CONSTANTS IN THE TWO-SIDED

STECHKIN INEQUALITIES

THOMAS JAHN AND TINO ULLRICH

Abstract. We address the optimal constants in the strong and the weak
Stechkin inequalities, both in their discrete and continuous variants. These
inequalities appear in the characterization of approximation spaces which arise
from sparse approximation or have applications to interpolation theory. An
elementary proof of a constant in the strong discrete Stechkin inequality given
by Bennett is provided, and we improve the constants given by Levin and

Stechkin and by Copson. Finally, the minimal constants in the weak discrete
Stechkin inequalities and both continuous Stechkin inequalities are presented.

1. Introduction

In the present paper, we address the minimal constants c1(q), C1(q), c1,∞(q),
C1,∞(q), c̄1(q), C̄1(q), c̄1,∞(q), and C̄1,∞(q) > 0 in the inequalities

(1.1)
1

c1(q)

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

≤
∞
∑

n=1

an ≤ C1(q)

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

,

(1.2)
1

c1,∞(q)
sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

≤ sup
n∈N

nan ≤ C1,∞(q) sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

,

(1.3)

1

c̄1(q)

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt ≤
∫ ∞

0

f(t)dt ≤ C̄1(q)

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt,

and
(1.4)

1

c̄1,∞(q)
sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

≤ sup
t>0

tf(t) ≤ C̄1,∞(q) sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

,

for sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0, monotonically decreasing functions
f : (0,∞) → [0,∞), and 1 < q ≤ ∞. These inequalities are henceforth referred
to as the strong discrete, the weak discrete, the strong continuous, and the weak
continuous Stechkin inequality, respectively.
The right-hand side inequalities of (1.1), (1.2), and (1.4) also allow for q = 1.

Note that in case q = ∞, the expressions
(

1
n

∑∞
k=n a

q
k

)
1

q and
(

1
t

∫∞
x f(s)qds

)
1

q are
replaced by sup {ak | k ≥ n} = an and sup {f(s) | s ≥ t} = f(t).
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Copson [3, Theorem 2.3] proves that C1(q) ≤ q
1

q , cf. also Hardy, Littlewood,
and Pólya [12, Theorem 345]. Levin and Stechkin [13, Д.61] improve Copson’s

result [3, Theorem 2.3] when 1 < q < ∞, showing that C1(q) = (q − 1)
1

q when
3 ≤ q < ∞ and giving upper bounds in the remaining cases. Stechkin revisits
(1.1) for q = 2 in [17, Лемма 3] and [18, Лемма 1] where it is proved that C1(2) ≤
2√
3
. Gao [9, Theorem 1] provides further improvement by showing that C1(q) =

(q − 1)
1

q even for q0 ≤ q < ∞, where q0 ≈ 2.8855 is a solution of the equation

2
1

q−1

(

(q − 1)
q

q−1 − (q − 1)
)

−
(

1 + 3−q
2

)

q
q−1 = 0. De Bruijn [4, p. 174] reports that

C1(2) = 1.1064957714 “with an error of at most 9 units at the last decimal place.”
Stechkin [18, Лемма 1] is first to address the constant c1(2); he asserts c1(2) ≤ 2
and conjectures an improvement to c1(2) ≤ π

2 but proves neither claim; see also [6,
Section 7.4] for a historical discussion. The existence of constants validating the
inequalities (1.1) and (1.2) is due to Pietsch [15, Example 1 on p. 123], see also [5,
Theorem 4]. Bennett [1, Theorem 3] shows that

c1(q) =
π

q sin(πq )

in (1.1), thus confirming Stechkin’s conjecture for q = 2, see Figure 1 for an illus-
tration. Hardy, Littlewood, and Pólya [12, Theorem 337] prove

C̄1(q) = (q − 1)
1

q

in (1.3), depicted in Figure 7.
The contribution of the present paper is as follows. First, we give an alternative
proof for the optimality of c1(2) =

π

2 in (1.1) which uses an elementary insight from
convex optimization.

Second, we extend the upper bound for C1(q) ≤ 2
(

2 q
q−1 − 1

)− q−1

q

proved by Levin

and Stechkin for 5
3 ≤ q < 3 to 1 < q < ∞ via Proposition 2.3. A more detailed

analysis of the same argument leads to C1(2) ≤ 1.1086983 in Corollary 2.6.
Third, we improve the upper bounds for C1(q) from the literature when 1 ≤ q ≤
2+ln(2)
2−ln(2) and q 6= 2. Summarizing, the currently best known bounds for the constant

C1(q) are

C1(q)































≤
(

e ln(2)√
2

)1− 1

q

, 1 ≤ q ≤ 2+ln(2)
2−ln(2) ,

≈ 1.1064957714, q = 2,

≤ 2
(

2 q
q−1 − 1

)− q−1

q

, 2+ln(2)
2−ln(2) < q < q0,

= (q − 1)
1

q q0 ≤ q ≤ ∞

with q0 ≈ 2.8855, see Proposition 2.3 and Theorem 2.7 and Figure 4 for an illus-
tration.
Fourth, we determine the optimal constants in (1.2) as

c1,∞(q) = ζ(q)
1

q and C1,∞(q) =

(

1

q

)− 1

q
(

1− 1

q

)−(1− 1

q )
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where ζ(·) denotes the Riemann zeta-function, see Theorems 3.2 and 3.3 and Fig-
ures 5 and 6. Next, we show that

c̄1(q) = c1(q) =
π

q sin(πq )

in (1.3), see Theorem 4.1 and Figure 7, as well as

c̄1,∞(q) = (q − 1)−
1

q and C̄1,∞(q) = C1,∞(q) =

(

1

q

)− 1

q
(

1− 1

q

)−(1− 1

q )
,

see Theorems 4.3 and 4.4 and Figure 8.
The inequalities discussed in this paper have applications in interpolation theory
and nonlinear approximation. On the one hand, (1.3) can be used in the proof
of the Marcinkiewicz interpolation theorem, see [2, Theorem 1.3.1]. On the other
hand (1.1) and (1.2) play a role in the characterization of the approximation spaces
Aα

r (H), i.e., the set of elements f of the infinite-dimensional separable Hilbert space
H for which the quasi-norm

‖f‖Aα
r (H) :=

{

(
∑∞

n=1(n
αEn(f)H)r 1

n

)
1

r , 0 < r <∞,

supn∈N n
αEn(f)H, r = ∞

is finite. Here, α > 0 and En(f) denote the infimal distance of f to elements of
the form

∑

k∈Λ λkek, where Λ ⊂ N is a set of cardinality n − 1 and (ek)
∞
k=1 is

an orthonormal basis of H. The consequences for the optimal constants in the
inequalities stated by DeVore in [5, Theorem 4] on sparse approximation in infinite-
dimensional separable real Hilbert spaces are outlined in Section 5.
A recurring technique in this paper is that we prove the inequalities under con-
sideration for finite sequences first, which then yields the general claim through
a limiting process. These finite-dimensional versions will be used to gain some
geometric insight to (1.1).

2. The strong discrete Stechkin inequality

In this section, we are concerned with the minimal constants c1(q) and C1(q) > 0
in the inequality

(2.1)
1

c1(q)

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

≤
∞
∑

n=1

an ≤ C1(q)

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

for sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 and for 1 < q ≤ ∞ with the
appropriate modification for q = ∞, as indicated in Section 1. The monotonicity
assumption on (an)n∈N gives sup {ak | k ≥ n} = an, so c1(∞) = C1(∞) = 1. For
q = 1, we have C1(1) = 1 because

∞
∑

k=1

ak =

∞
∑

k=1

k
∑

n=1

ak
k

≤
∞
∑

k=1

k
∑

n=1

ak
n

=

∞
∑

n=1

1

n

∞
∑

k=n

ak

which holds as an equality when an = 0 for all n ≥ 2.
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2.1. On the optimal lower constant. We give a rather elementary proof of the
optimality of c1(2) =

π

2 in (2.1), which is due to Bennett [1, Theorem 3]. Our proof
uses an elementary insight from convex optimization.

Theorem 2.1. The minimal constant c1(2) > 0 for which

∞
∑

n=1

(

1

n

∞
∑

k=n

a2k

)
1

2

≤ c1(2)

∞
∑

n=1

an

holds for all sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 is c1(2) =
π

2 .

Proof. Step 1. We prove the claim for finite sequences. Consider

sup







∑∞
n=1

(

1
n

∑∞
k=n a

2
k

)
1

2

∑∞
n=1 an

∣

∣

∣

∣

∣

∣

a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0,

∞
∑

n=1

an <∞







= sup











∑N
n=1

(

1
n

∑N
k=n a

2
k

)
1

2

∑N
n=1 an

∣

∣

∣

∣

∣

∣

∣

a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0











= sup







N
∑

n=1

(

1

n

N
∑

k=n

a2k

)

1

2

∣

∣

∣

∣

∣

∣

(an)n∈N ∈ ∆N







.

The set ∆N :=
{

(an)n∈N

∣

∣

∣ a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0,
∑N

n=1 an = 1
}

is deter-

mined by a single linear equality and n linear inequalities in a1, . . . , an and thus is
a (n− 1)-dimensional simplex in its N -dimensional linear span VN . Therefore, the
restriction of the convex function

VN → R,

(an)n∈N 7→
N
∑

n=1

(

1

n

N
∑

k=n

a2k

)

1

2

to ∆N attains its supremum at one of the vertices of ∆N . Similarly to the discussion
in [8, Section 2.1], the vertices of ∆N are precisely those points for which all but
one of the defining inequalities are actually equalities. This means that for each
of the N vertices of ∆N , there is a number k0 ∈ {1, . . . , N} such that a1 = . . . =

ak0
> ak0+1 = . . . = aN = 0. Taking

∑N
n=1 an = 1 into account, we obtain

a1 = . . . = ak0
= 1

k0

and

N
∑

n=1

(

1

n

N
∑

k=n

a2k

)

1

2

=

k0
∑

n=1

(

1

n

k0
∑

k=n

1

k20

)

1

2

=

k0
∑

n=1

n− 1

2

(

k0 − n+ 1

k20

)
1

2

.

Therefore

sup







∑∞
n=1

(

1
n

∑∞
k=n a

2
k

)
1

2

∑∞
n=1 an

∣

∣

∣

∣

∣

∣

a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0,

∞
∑

n=1

an <∞







= sup







N
∑

n=1

(

1

n

N
∑

k=n

a2k

)

1

2

∣

∣

∣

∣

∣

∣

(an)n∈N ∈ ∆N






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= sup

{

k0
∑

n=1

n− 1

2

(

k0 − n+ 1

k20

)
1

2

∣

∣

∣

∣

∣

k0 ∈ {1, . . . , N}
}

.

Clearly, this quantity is monotonically increasing in N because not only the set
{(an)n∈N | a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0} is, but also ∆N and its vertex set are. We

will show that the sequence

(

∑k0

n=1 n
− 1

2

(

k0−n+1
k2

0

)
1

2

)

k0∈N

is bounded above and

the supremum is π

2 . Then we automatically know that

π

2
= sup

k0∈N

k0
∑

n=1

n− 1

2

(

k0 − n+ 1

k20

)
1

2

= sup
N∈N

sup

{

k0
∑

n=1

n− 1

2

(

k0 − n+ 1

k20

)
1

2

∣

∣

∣

∣

∣

k0 ∈ {1, . . . , N}
}

= sup
N∈N

sup







∑∞
n=1

(

1
n

∑∞
k=n a

2
k

)
1

2

∑∞
n=1 an

∣

∣

∣

∣

∣

∣

a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0







.

The function g : (0, k0 + 1) → [0,∞), g(t) := t−
1

2

(

k0−t+1
k2

0

)
1

2

is monotonically

decreasing, so

(2.2) fk0
:=

∫ k0+1

1

g(t)dt ≤
k0
∑

n=1

g(n) ≤ g(1) +

∫ k0

1

g(t)dt =: hk0
.

For the computation of the antiderivative
∫

t−
1

2 (k0 − t+ 1)
1

2dt, the change of vari-

ables u =
√

t
k0−t+1 or t = u2(k0+1)

u2+1 yields dt
du = 2u(k0+1)

(u2+1)2 and

∫

t−
1

2 (k0 − t+ 1)
1

2dt

= 2(k0 + 1)

∫

1

(u2 + 1)2
du

= 2(k0 + 1)

(

u

2(u2 + 1)
+

1

2
arctan(u)

)

= t
1

2 (k0 − t+ 1)
1

2 + (k0 + 1) arctan

(

(

t

k0 − t+ 1

)
1

2

)

.

Plugging in the integration bounds, we arrive at
∫ k0+1

1

t−
1

2 (k0 − t+ 1)
1

2 dt = (k0 + 1)
π

2
− k

1

2

0 − (k0 + 1) arctan
(

k
− 1

2

0

)

,

∫ k0

1

t−
1

2 (k0 − t+ 1)
1

2 dt =
(

arctan
(

k
1

2

0

)

− arctan
(

k
− 1

2

0

))

(k0 + 1).

It follows that limk0→∞ fk0
= limk0→∞ hk0

= π

2 . Now, if we can show that the
sequences (fk0

)k0∈N and (hk0
)k0∈N are monotonically increasing, then (2.2) implies

π

2
= lim

k0→∞
fk0

= sup
k0∈N

fk0
≤ sup

k0∈N

k0
∑

n=1

n− 1

2

(

k0 − n+ 1

k20

)
1

2
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≤ sup
k0∈N

hk0
= lim

k0→∞
hk0

=
π

2

and we are done. Indeed, one has

∂

∂x

∫ x+1

1

(

x− t+ 1

tx2

)
1

2

dt =
∂

∂x

(x+ 1)π2 − x
1

2 − (x+ 1) arctan
(

x−
1

2

)

x

=
x

1

2 − arctan
(

x
1

2

)

x2
> 0

and

∂

∂x

(

x−
1

2 +

∫ x

1

(

x− t+ 1

tx2

)
1

2

dt

)

=
∂

∂x

(

x−
1

2 +
(

arctan
(

x
1

2

)

− arctan
(

x−
1

2

)) x+ 1

x

)

=
x

1

2 − 4 arctan
(

x
1

2

)

+ π

2x2
> 0

for all x ≥ 1. For the latter claim, note that the function (0,∞) ∋ x 7→ √
x −

4 arctan(
√
x) + π has a global minimizer at x = 3 with minimum

√
3 − π

3 > 0,

which can be read off the signs of its derivative x 7→ x−3
2
√
x(x+1)

.

Step 2. We prove the claim for all sequences. It remains to show that

∑∞
n=1

(

1
n

∑∞
k=n a

2
k

)
1

2

∑∞
n=1 an

≤ π

2

for all sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 and
∑∞

n=1 an ≤ ∞. Let ε > 0.
Then there exists N1, N2, N3 ∈ N such that

∞
∑

n=N+1

(

1

n

∞
∑

k=n

a2k

)
1

2

<
ε

2

for all N > N1, and
∞
∑

k=⌊N
2 ⌋
ak <

ε

8

for all N > N2, and

√
N

⌊

N

2

⌋− 1

2

≤ 2

for all N > N3. Also, for fixed N ∈ N and M ≥ N + 1, apply [8, Proposition 2.3]
with p = 1, q = 2, and s = N

2 to the sequence (an)n≥⌊N
2 ⌋ to obtain

( ∞
∑

k=N+1

a2k

)
1

2

≤
⌊

N

2

⌋− 1

2
∞
∑

k=⌊N
2 ⌋
ak.
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c1(q)

1/q

1

3

5

10.5

Figure 1. The function 1/q 7→ π

q sin(π

q ) .

For N > max {N1, N2, N3}, we conclude

N
∑

n=1

(

1

n

∞
∑

k=N+1

a2k

)
1

2

≤
N
∑

n=1

n− 1

2

⌊

N

2

⌋− 1

2
∞
∑

k=⌊N
2 ⌋
ak ≤

∫ N

0

x−
1

2dx

⌊

N

2

⌋− 1

2
∞
∑

k=⌊N
2 ⌋
ak

= 2
√
N

⌊

N

2

⌋− 1

2
∞
∑

k=⌊N
2 ⌋
ak ≤ 4

∞
∑

k=⌊N
2 ⌋
ak <

ε

2

and

∞
∑

n=1

(

1

n

∞
∑

k=n

a2k

)
1

2

=

N
∑

n=1

(

1

n

∞
∑

k=n

a2k

)
1

2

+

∞
∑

n=N+1

(

1

n

∞
∑

k=n

a2k

)
1

2

≤
N
∑

n=1

(

1

n

N
∑

k=n

a2k

)

1

2

+

N
∑

n=1

(

1

n

∞
∑

k=N+1

a2k

)
1

2

+

∞
∑

n=N+1

(

1

n

∞
∑

k=n

a2k

)
1

2

<
π

2

N
∑

n=1

an +
ε

2
+
ε

2

=
π

2

∞
∑

n=1

an + ε.

Taking the limit ε ↓ 0 proves the assertion. �

The precise values for c1(q) from [1, Theorem 3] are illustrated in Figure 1.

Remark 2.2. Our proof of Theorem 2.1 already emphasizes the importance of
finite sequences for our considerations which will be encountered again in the proof
of Theorem 3.3. Let us draw a geometric picture. Fix N ∈ N and q ∈ (1,∞). The
quantities

‖a‖1 =

N
∑

n=1

|an|
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and

γN (a) :=

N
∑

n=1

(

1

n

N
∑

k=n

|ak|q
)

1

q

define norms on R
N , whose closed unit balls shall be denoted by BN

1 and BN
1,q,

respectively. Figure 2 illustrates BN
1,q for several values of q.

Figure 2. The unit balls of the norms γN for N = 2 and q ∈ {1, 1.4, 2, 3, 6,∞}.

The inequality

(2.3)
1

c1(q)

N
∑

n=1

(

1

n

N
∑

k=n

aqk

)

1

q

≤
N
∑

n=1

an ≤ C1(q)

N
∑

n=1

(

1

n

N
∑

k=n

aqk

)

1

q

for all a = (a1, . . . , aN ) ∈ R
N with a1 ≥ . . . aN ≥ 0 then translates to the following

chain of set inclusions of convex bodies:

(2.4)
1

c1(q)
(BN

1 ∩KN ) ⊂ BN
1,q ∩KN ⊂ C1(q)(B

N
1 ∩KN ).

Here KN := {(a1, . . . , aN ) | a1 ≥ . . . aN ≥ 0}. For understanding the shape of the
convex bodies BN

1,q, we note that norm γN is the pointwise sum of the functions

γn,N : Rn → R given by γn,N (a) =
(

1
n

∑N
k=n a

q
k

)
1

q

for n ∈ {1, . . . , N}. With ◦

denoting the polar set with respect to the standard inner product, it follows that
BN

1,q =
(

B◦
1,N + . . .+B◦

N,N

)◦
, which is similar to the construction of the harmonic

mean of convex bodies introduced by Firey in [7]. For N = q = 2, the chain of set
inclusions stated in (2.4) with the optimal constants is illustrated in Figure 3. This
figure may also be used to convince oneself that for the left-hand side inequality in
(2.3), it is relevant to have a ∈ KN , and thus monotonicity is also relevant for the
left-hand side inequality in (1.1).

2.2. On the optimal upper constant. In this section, we improve the known

upper bounds on C1(q) for 1 < q ≤ 2+ln(2)
2−ln(2) . The following result adapts Stechkin’s

proof technique in [17, Лемма 3] and produces upper bounds for C1(q) from auxiliary
sequences whose entrywise inverses in ℓq′ where q′ is the Hölder conjugate of q.

Proposition 2.3. Let 1 < q < ∞, set q′ = q
q−1 , and assume that b = (bn)n∈N0

is

a strictly monotonically increasing sequence with b0 = 0 and
∑∞

n=1
1

bq
′

n

<∞. Then
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Figure 3. The unit balls of the norms γN and ‖·‖1 for N = q = 2
(left) and an optimally scaled version of their intersections with
the cone KN (right).

for all (an)n∈N ∈ ℓq, we have

∞
∑

n=1

an ≤ Cb(q)

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

with Cb(q) := sup

{

(

n
q′

q (bn − bn−1)
q′
∑∞

k=n
1

bq
′

k

)
1

q′

∣

∣

∣

∣

∣

n ∈ N

}

.

Proof. Consider

∞
∑

n=1

an =

∞
∑

n=1

an
bn
bn =

∞
∑

n=1

an
bn

n
∑

k=1

(bk − bk−1)

=

∞
∑

n=1

(bn − bn−1)

∞
∑

k=n

ak
bk

≤
∞
∑

n=1

(bn − bn−1)

(

1

n

∞
∑

k=n

aqk

)
1

q
(

n
q′

q

∞
∑

k=n

1

bq
′

k

)
1

q′

=

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q
(

n
q′

q (bn − bn−1)
q′

∞
∑

k=n

1

bq
′

k

)
1

q′

≤ Cb(q)

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

where Cb(q) is chosen as stated in the assertion. �

We investigate the choice bk = (k(k + 1))p for p ∈ ( 1
2q′ , 1]. If we set

An := n
q′

q ((n(n+ 1))p − (n(n− 1))p)q
′

∞
∑

k=n

1

(k(k + 1))q′p

for n ∈ N, then C(p, q) := sup{A
1

q′

n |n ∈ N} the constant defined in Proposition 2.3
for our particular choice of the sequence (bn)n∈N.

Lemma 2.4. Let p > 1
2q′ . For all n ∈ N, we have

(2.5) An ≤
(

(n+ 1)p − (n− 1)p

np−1

)q′
1

2q′p− 1
.
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Proof. The assertion follows from

∞
∑

k=n

1

bq
′

k

=
∞
∑

k=n

1

(k(k + 1))q′p
=

∞
∑

k=n

(

∫ k+1

k

x−2dx

)q′p

≤
∞
∑

k=n

∫ k+1

k

x−2q′pdx =
1

2q′p− 1
n−2q′p+1,

for which p > 1
2q′ is crucial. �

We can say even more about the right-hand side of (2.5).

Lemma 2.5. Let 0 < p ≤ 1. The sequence (A′
n)n∈N defined by

A′
n :=

(n+ 1)p − (n− 1)p

np−1

is monotonically decreasing.

Proof. For p = 1 the claim is trivial. Otherwise, consider the functions f1, g1 :
(0,∞) → R defined by g1(x) = xp and

f1(x) =
g1(x+ 1)− g1(x − 1)

xp−1
.

Note that f1(n) = A′
n. We will show that f1 is monotonically decreasing on [2,∞)

and that A′
1 > A′

2. The Taylor expansion of g1 at x ≥ 2 is given by

g1(x+ h) =

n
∑

k=0

hk

k!
xp−k

k−1
∏

m=0

(p−m) +R(x, h, n),

and the corresponding approximation error is

R(x, h, n) :=

∫ x+h

x

(x+ h− t)n

n!
tp−n−1

n
∏

m=0

(p−m)dt.

Next, note that

|R(x, 1, n)| ≤
∫ x+1

x

|x+ 1− t|n
n!

tp−n−1
n
∏

m=0

|p−m| dt

≤
∫ x+1

x

tp−n−1dt =
1

p− n
((x + 1)p−n − xp−n) ≤ 1

n− p

and

|R(x,−1, n)| ≤
∫ x

x−1

(x− 1− t)n

n!
tp−n−1

n
∏

m=0

(p−m)dt

≤
∫ x

x−1

tp−n−1dt =
1

p− n
(xp−n − (x− 1)p−n) ≤ 1

n− p
.

This follows from 1
n!

∏n
m=0 |p−m| = p

∏n
m=1

m−p
m ≤ 1 and |x+ h+ t|n ≤ 1 for

h ∈ {−1, 1} and t between x and x + h. As limn→∞
−1
p−n = 0, we know that
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limn→∞R(x, h, n) = 0 for h ∈ {−1, 1}, and we may write

g1(x + 1) =
∞
∑

k=0

1

k!
xp−k

k−1
∏

m=0

(p−m)

and

−g1(x − 1) =

∞
∑

k=0

(−1)k+1

k!
xp−k

k−1
∏

m=0

(p−m).

Setting hn := 1
(2n−1)!

∏2n−2
m=0 (p−m) for n ∈ N and noticing hn > 0, this gives

g1(x+ 1)− g1(x− 1) = 2

∞
∑

n=1

1

(2n− 1)!
xp−(2n−1)

2n−2
∏

m=0

(p−m)

= 2pxp−1 + 2

∞
∑

n=2

1

(2n− 1)!
xp−(2n−1)

2n−2
∏

m=0

(p−m)

= 2pxp−1 + 2
∞
∑

n=2

hnx
p−(2n−1).

As a function of x, the expression

f1(x) =
g1(x+ 1)− g1(x − 1)

xp−1
= 2p+

∞
∑

n=2

hn
x2n−2

is thus monotonically decreasing on [2,∞). In order to show that

(2.6) A′
1 = 2p ≥ 3p − 1

2p−1
= A′

2

for all p ∈ (0, 1], consider the functions f2, g2 : R → R defined by f2(x) = 3x − 1
and g2(x) = 22x−1. Then f ′

2(x) = 3x ln(3), g′2(x) = 4x ln(2), f(1) = g(1), and
f2, g2, f

′
2, and g′2 are monotonically increasing. Therefore f ′

1(1) > g′2(1) shows that
f(x) ≤ g(x) for all x ≤ 1 (with equality only for x = 1). This implies (2.6). �

In Theorem 2.7, we will show how Lemmas 2.4 and 2.5 and an in some sense

optimal choice of p in bn = (n(n+ 1))p yield C1(2) ≤
√

e ln(2)√
2

which is already an

improvement to Stechkin’s C1(2) ≤ 2√
3
. More detailed analysis for a specific choice

of p in this construction yields further improvement when q = 2, coinciding with
de Bruijn’s result [4, p. 174] in the first two decimal places.

Corollary 2.6. The minimal constant C1(2) > 0 for which

∞
∑

n=1

an ≤ C1(2)

∞
∑

n=1

(

1

n

∞
∑

k=n

a2k

)
1

2

holds for all (an)n∈N ∈ ℓ2 is at most 1.1086983.

Proof. For N ∈ N with N ≥ 2, Lemmas 2.4 and 2.5 give

C(p, 2) ≤ max

{

max
n=1,...,N−1

√

An, sup
n≥N

1√
4p− 1

(n+ 1)p − (n− 1)p

np−1

}
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= max

{

max
n=1,...,N−1

√

An,
1√

4p− 1

(N + 1)p − (N − 1)p

Np−1

}

.(2.7)

The last expression evaluated at N = 100 and p = 0.88 can be bounded above by
1.1086983. For the computation of A1, . . . , A100, the series

∑∞
k=n

1
(k(k+1))2p have

been truncated to
∑M

k=n
1

(k(k+1))2p with M = 2 · 105. The proof of Lemma 2.4 then

shows
∑∞

k=M
1

(k(k+1))2p ≤ 1
4p−1M

−4p+1. For n ∈ N, we also have

n((n(n+ 1))p − (n(n− 1))p)2 = n4p−1

(

(n+ 1)p − (n− 1)p

np−1

)2

≤ n4p−1

by Lemma 2.5. The truncation error is therefore at most 1
4p−1N

4p−1M−4p+1 ≈
1.9055 · 10−9, which can be neglected in the computation of the maximum in (2.7).

�

For p = 1, Lemma 2.4 gives A
1

q′

n ≤ 2(2q′ − 1)
− 1

q′ , and Proposition 2.3 yields

(2.8)

∞
∑

n=1

an ≤ 2(2q′ − 1)
− 1

q′

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

This extends the bound obtained by Levin and Stechkin [13, Д.61] for 5
3 ≤ q < 3

to arbitrary 1 < q < ∞. The q = 2 case C1(2) ≤ 2√
3

has been addressed again in

[17, Лемма 3]. For 1 < q < 2+ln(2)
2−ln(2) , we can achieve better bounds by choosing the

parameter p optimally in bk = (k(k + 1))p.

Theorem 2.7. Let 1 < q ≤ 2+ln(2)
2−ln(2) . The minimal constant C1(q) > 0 for which

∞
∑

n=1

an ≤ C1(q)

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

holds for all (an)n∈N ∈ ℓq is at most
(

e ln(2)√
2

)
1

q′

.

Proof. Choose p ∈ ( 1
2q′ , 1] and set bk = (k(k + 1))p in Proposition 2.3. Then

Lemmas 2.4 and 2.5 show that

∞
∑

n=1

an ≤ 2p

(2q′p− 1)
1

q′

∞
∑

n=1

(

1

n

∞
∑

k=n

aqk

)
1

q

for all (an)n∈N ∈ ℓq. For fixed q ∈ (1, 2+ln(2)
2−ln(2) ], we find a minimizer of p 7→ 2p

(2q′p−1)
1

q′
.

Through the change of variables λ := q′p, this expression becomes
(

2λ

2λ−1

)
1

q′

. The

latter is minimized at λ = 2+ln(2)
ln(4) , so 1

2q′ < p = λ
q′ ≤ 1, and the minimum is

e ln(2)√
2

. �

The conclude this section by comparing the bounds from (2.8) and Theorem 2.7 to
those from the literature.
Copson [3, Theorem 2.3] shows that C1(q) ≤ q

1

q . This result is also reported by
Hardy, Littlewood, and Pólya [12, Theorem 345]. The bound from (2.8) improves
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the one from [3, Theorem 2.3] when 2(2q′ − 1)
− 1

q′ < q
1

q . As

lim
q→1

q
1

q = lim
q→∞

q
1

q = 1,

lim
q→1

2(2q′ − 1)
− 1

q′ = lim
q→∞

2(2q′ − 1)
− 1

q′ = 2,

and 2(2q′−1)
− 1

q′ < q
1

q at q = 2, there are real numbers q1 and q2 such that 1 < q1 <

q2 and 2(2q′ − 1)
− 1

q′ < q
1

q for all q ∈ (q1, q2). Furthermore, the function q 7→ q
1

q

is monotonically increasing on (1, e) and monotonically decreasing on (e,∞). Also,

for q3 ≈ 1.7718, the function q 7→ 2(2q′ − 1)
− 1

q′ is monotonically decreasing on
(1, q3) and monotonically increasing on (q3,∞). Thus for q sufficiently close to
1 or ∞, the bound from [3, Theorem 2.3] is smaller than the one from (2.8). It

turns out that q1 and q2 can be chosen such that 2(2q′ − 1)
− 1

q′ < q
1

q if and only
if q ∈ (q1, q2). Analytical expressions for q1 and q2 are not available through the

inequality 2(2q′ − 1)
− 1

q′ < q
1

q . However, we have q1 ≈ 1.3229 and q2 ≈ 4.4124.
An improvement to [3, Theorem 2.3] is reported by Levin and Stechkin in their
appendix to the Russian 1948 edition [13] of Hardy, Littlewood, and Pólya’s mono-
graph. Levin and Stechkin’s bound [13, Д.61] translates to our notation as

(2.9) C1(q)



















≤ 2
1

q−2
(

3− 1
q

)

q(2− 1
q )

1

q−1, 1 < q < 5
3 ,

≤ 2
(

2 q
q−1 − 1

)− q−1

q

, 5
3 ≤ q < 3,

= (q − 1)
1

q , 3 ≤ q <∞.

Note that at first glance, (2.9) is not what is stated in [13, Д.61] or its Eng-

lish translation [14, D.61]. The mismatch is 2
1

q−2
(

3− 1
q

)

q(2 − 1
q )

1

q−1 versus

2
1

q−2
(

3− 1
q

)

q(1 − 1
q )

1

q−1 in the 1 < q < 5
3 case but the latter would not be an

improvement over [12, Theorem 345], and it would not fit in as a special case of the
two-parameter inequality [13, Д.62] or [14, D.62(v)], regardless of the discrepancies
between the formulas in the different versions and regardless of the fact that it is
not the r = −p special case as claimed by Levin and Stechkin but actually the
r = +p one.
The bound from (2.8) is larger than the one from [13, Д.61] when 3 < q < ∞. (In
this case the latter result provides the optimal constant.) The bounds coincide for
5
3 ≤ q ≤ 3. In the remaining case 1 < q < 5

3 , our bound from (2.8) is monotonically
decreasing in q while the Levin and Stechkin’s bound [13, Д.61] is monotonically
increasing, reversing orders at the boundaries. Thus the bounds coincide at most
once for 1 < q < 5

3 , and they do for q4 ≈ 1.3725, which means that the bound from

(2.8) is smaller for q4 < q ≤ 5
3 and larger for 1 < q < q4 than the one from [13,

Д.61].
By construction, the bound from Theorem 2.7 outperforms the one from (2.8).

Moreover, Theorem 2.7 is an improvement over [13, Д.61] for 1 < q ≤ 2+ln(2)
2−ln(2) ≈

2.0608.
Gao [9, Theorem 1] provides further improvement by showing that C1(q) = (q−1)

1

q

not only for 3 ≤ q < ∞ as stated in [13, Д.61], but even for q0 ≤ q < ∞, where
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q0 ≈ 2.8855 is a solution of the equation

2
1

q−1

(

(q − 1)
q

q−1 − (q − 1)
)

−
(

1 +
3− q

2

)
q

q−1

= 0.

De Bruijn [4, p. 174] reports that C1(2) = 1.1064957714 “with an error of at most 9
units at the last decimal place.” This is an improvement over Levin and Stechkin’s
bound C1(2) ≤ 2√

3
≈ 1.1547 established in [13, Д.61], and over our bound C1(2) ≤

√

e ln(2)√
2

≈ 1.1542 from Theorem 2.7. A visualization of the various upper bounds

on C1(q) is given in Figure 4.

1/q

upper bounds
for C1(q)

1

2

10.5

Figure 4. The upper bounds on C1(q) given by Copson [3, The-
orem 2.3] (dashed line), Levin and Stechkin [13, Д.61] and Gao [9,
Theorem 1] (solid line), and (2.8) and Theorem 2.7 from the paper
at hand (dotted line).

3. The weak discrete Stechkin inequality

Here we compute the optimal constants c1,∞(q) and C1,∞(q) > 0, for which the
inequality

(3.1)
1

c1,∞(q)
sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

≤ sup
n∈N

nan ≤ C1,∞(q) sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

holds true for all sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0, when 1 < q < ∞.
With the modification indicated in Section 1, inequality (3.1) holds true also for
q = ∞. The monotonicity assumption on (an)n∈N gives sup {ak | k ≥ n} = an, so
c1,∞(∞) = C1,∞(∞) = 1. For q = 1, we have C1,∞(1) = 1 because

sup
n∈N

nan = sup
n∈N

n
∑

k=1

an ≤
∞
∑

k=1

ak = sup
n∈N

∞
∑

k=n

ak,

which holds as an equality when an = 0 for all n ≥ 2.
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Notable results in the direction of (3.1) are the inequalities

n1−1/q

( ∞
∑

k=n

aqk

)1/q

≤
∞
∑

n=1

an

and

n1−1/q

( ∞
∑

k=n+1

aqk

)1/q

≤ (q − 1)−1/q sup
n∈N

nan

proved in [19, Лемма IV.2.1] and [8, Proposition 2.11], respectively.
The following estimate on the Riemann zeta-function is required in our calculation
of c1,∞(q).

Lemma 3.1. Let 1 < q <∞. Then ζ(q) > 1
q−1 + 1

2 .

Proof. Consider

ζ(q) − 1

q − 1
= ζ(q) −

∫ ∞

1

x−qdx > ζ(q) −
∞
∑

n=1

n−q + (n+ 1)−q

2

= ζ(q) − 2ζ(q)− 1

2
=

1

2
.

�

The estimate in Lemma 3.1 is not best possible. In fact, the constant 1
2 can be

replaced by the Euler–Mascheroni constant, see [20, (2.1.16)]. Nonetheless this
estimate enables the computation of the precise constant on the left-hand side of
(3.1).

Theorem 3.2. Let 1 < q <∞. The minimal constant c1,∞(q) > 0 for which

sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

≤ c1,∞(q) sup
n∈N

nan

holds for all (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 is c1,∞(q) = ζ(q)
1

q .

Proof. The supremum

(3.2) sup







sup
n∈N

n1− 1

q

( ∞
∑

k=n

aqk

)
1

q

∣

∣

∣

∣

∣

∣

a1 ≥ a2 ≥ . . . ≥ 0, sup
n∈N

nan = 1







is attained at the sequence (an)n∈N defined by an = 1
n for all n ∈ N. Indeed,

for any sequence (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 and supn∈N nan = 1, we have

0 ≤ an ≤ 1
n for all n ∈ N. Therefore, (

∑∞
k=n a

q
k)

1

q ≤
(
∑∞

k=n
1
kq

)
1

q for all n ∈ N

with equality if and only if an = 1
n for all n ∈ N. Also, we have supn∈N n

1
n = 1,

and (3.2) evaluates to supn∈N n
1− 1

q
(
∑∞

k=n
1
kq

)
1

q = ζ(q)
1

q . Note that the supremum

supn∈N n
1− 1

q
(
∑∞

k=n
1
kq

)
1

q is attained at n = 1 because

∞
∑

k=n

k−p = n−p +

∞
∑

k=n+1

k−p ≤ n−p +

∫ ∞

n

x−pdx = n−p +
n−p+1

p− 1
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and Lemma 3.1 give

n1− 1

q

( ∞
∑

k=n

k−q

)
1

q

≤ n1− 1

q

(

n−q +
n−q+1

q − 1

)
1

q

=

(

n−1 +
1

q − 1

)
1

q

≤ ζ(q)
1

q .

�

The result of Theorem 3.2 is depicted in Figure 5.

c1,∞(q)

1/q

1

3

5

7

10.5

Figure 5. The function 1/q 7→ ζ(q)
1

q .

The optimal constant C1,∞(q) in (3.1) turns out to be invariant under taking Hölder
conjugates.

Theorem 3.3. Let 1 < q <∞. The minimal constant C1,∞(q) > 0 for which

sup
n∈N

nan ≤ C1,∞(q) sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

holds for all (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 is C1,∞(q) =
(

1
q

)− 1

q
(

1− 1
q

)−(1− 1

q )
.

Proof. Step 1. We prove the claim for finite sequences. The infimum

inf







sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

∣

∣

∣

∣

∣

∣

a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0, sup
n∈N

nan = 1







is attained at the sequence (an)n∈N given by an = 1
N for n ∈ {1, . . . , N}. Its value

is thus equal to

sup
n=1,...,N

n

(

1

n

N
∑

k=n

1

N q

)

1

q

= sup
n=1,...,N

1

N
n1− 1

q (N − n+ 1)
1

q .

One can readily check that the derivative of the function f : (0, N + 1) → R,

f(x) = 1
N x

1− 1

q (N − x + 1)
1

q is given by f ′(x) = 1
Nqx

− 1

q (N − x + 1)
1

q−1((N +

1)(q− 1)− qx). Therefore, f is maximized at x = (N +1)
(

1− 1
q

)

, the maximum is
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N+1
N

(

1
q

)
1

q
(

1− 1
q

)1− 1

q

, and f is monotonically increasing for x < (N + 1)
(

1− 1
q

)

and monotonically decreasing for x > (N + 1)
(

1− 1
q

)

. Hence we have shown that

inf







sup
n∈N

n

(

1

n

∞
∑

k=n

aqk

)
1

q

∣

∣

∣

∣

∣

∣

a1 ≥ a2 ≥ . . . ≥ 0, aN+1 = 0, sup
n∈N

nan = 1







= sup
n=1,...,N

n1− 1

q

(

N − n+ 1

N q

)
1

q

≤ sup
x∈(0,N+1)

x1−
1

q

(

N − x+ 1

N q

)
1

q

=
N + 1

N

(

1

q

)
1

q
(

1− 1

q

)1− 1

q

.

Taking the infimum over N ∈ N, we see that

inf
N∈N

sup
n=1,...,N

n1− 1

q

(

N − n+ 1

N q

)
1

q

≤
(

1

q

)
1

q
(

1− 1

q

)1− 1

q

for finite sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0, which also shows that

C1,∞(q) ≤
(

1
q

)− 1

q
(

1− 1
q

)−(1− 1

q )
. Next we show that also

inf
N∈N

sup
n=1,...,N

n1− 1

q

(

N − n+ 1

N q

)
1

q

≥
(

1

q

)
1

q
(

1− 1

q

)1− 1

q

for finite sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 and we do it for q ≥ 2 first.
In this case, we have xN := 1 − 1

q − 1
N+1 ∈ (0, 1) for all N ∈ N. The monotonicity

properties of the function gN : (0, 1) → R, gN (x) = f((N+1)x) = N+1
N x1−

1

q (1−x) 1

q

yield

sup

{

gN (x)

∣

∣

∣

∣

x =
1

N + 1
, . . . ,

N

N + 1

}

≥ gN

(

1

N + 1

⌊

(N + 1)

(

1− 1

q

)⌋)

≥ gN(xN ).

If we can show that (gN (xN ))N≥3 is monotonically decreasing, then we know that

inf
N≥3

gN (xN ) = lim
N→∞

gN(xN ) =

(

1

q

)
1

q
(

1− 1

q

)1− 1

q

and, in turn,

inf
N∈N

sup
n=1,...,N

n1− 1

q

(

N − n+ 1

N q

)
1

q

= inf

{

1, sup

{

1

2
2

1

q ,
1

2
21−

1

q

}

, inf
N≥3

sup
n=1,...,N

n1− 1

q

(

N − n+ 1

N q

)
1

q

}

≥ inf

{

1, sup

{

1

2
2

1

q ,
1

2
21−

1

q

}

, inf
N≥3

gN (xN )

}
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≥
(

1

q

)
1

q
(

1− 1

q

)1− 1

q

.

Indeed, let a := 1
q ∈ (0, 12 ], and consider the function h : (0, 1 − a) → R, h(t) =

(

1−a−t
1−t

)1−a(
a+t
1−t

)a

. Then gN (xN ) = h( 1
N+1 ), and it is sufficient to show that h is

monotonically increasing on (0, 14 ) when a ≤ 1
2 . The derivative

h′(t) = (1− a)

(

1− a− t

1− t

)−a −a
(1− t)2

(

a+ t

1− t

)a

+ a

(

a+ t

1− t

)a−1
1 + a

(1 − t)2

(

1− a− t

1− t

)1−a

=
1

(1− t)2

(

a+ t

1− a− t

)a−1(

(1− a)
a+ t

1− a− t
(−a) + a(1 + a)

)

is ≥ 0 if and only if (1−a) a+t
1−a−t (−a)+a(1+a) ≥ 0 if and only if a(a+t−1)(a+2t−

1) ≥ 0. For t ∈ (0, 1−a), we have a(a+ t−1) ≤ 0, so h′(t) ≥ 0 when a+2t−1 ≤ 0.
The latter is fulfilled when t ≤ 1

4 .
For q ≤ 2, we consider the function (0, 1) ∋ x 7→ gN (1 − x) instead of gN . This
is the same as gN for the Hölder conjugate q′ ≥ 2, and this is covered by the first
case.
Step 2. We prove the claim for all sequences. It remains to show that

supn∈N
n1− 1

q (
∑∞

k=n a
q
k)

1

q

supn∈N nan
≥
(

1

q

)
1

q
(

1− 1

q

)1− 1

q

for all sequences (an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0. Let ε > 0. Then, for all sequences
(an)n∈N with a1 ≥ a2 ≥ . . . ≥ 0 and sup {nan | n ∈ N} = 1, there exists a number
N ∈ N such that aN ≥ 1−ε

N . It follows that

sup
n∈N

n1− 1

q

( ∞
∑

k=n

aqk

)
1

q

≥ sup
n=1,...,N

n1− 1

q

(

N
∑

k=n

1

N q

)

1

q

(1− ε)

= sup
n=1,...,N

n1− 1

q

(

N − n+ 1

N q

)
1

q

(1− ε) ≥
(

1

q

)
1

q
(

1− 1

q

)1− 1

q

(1− ε).

Taking the limit ε ↓ 0 yields the desired inequality. �

The result of Theorem 3.3 is depicted in Figure 6.
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C1,∞(q)

1/q

1

10.5

2

Figure 6. The function 1/q 7→
(

1
q

)− 1

q
(

1− 1
q

)−(1− 1

q )
.

4. The continuous Stechkin inequalities

In this section, we are concerned with the optimal constants c̄1(q), C̄1(q), c̄1,∞(q),
and C̄1,∞(q) > 0 in the inequalities

1

c̄1(q)

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt ≤
∫ ∞

0

f(t)dt ≤ C̄1(q)

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt

and

1

c̄1,∞(q)
sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

≤ sup
t>0

tf(t) ≤ C̄1,∞(q) sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

for monotonically decreasing functions f : (0,∞) → [0,∞). In both cases, precise
values for the optimal constants are available, either through the literature or shown
here. The proofs in this section are independent of their discrete counterparts, yet
there is a strong resemblance in the case of the weak Stechkin inequalities. (The
arguments turn out to be less tedious in the continuous inequality, though.)

4.1. The strong continuous Stechkin inequality. Hardy, Littlewood, and Pól-
ya [12, Theorem 337] show that for 1 < q <∞, the minimal constant C̄1(q) > 0 for
which
(4.1)

1

c̄1(q)

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt ≤
∫ ∞

0

f(t)dt ≤ C̄1(q)

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt

holds true for all monotonically decreasing functions f : (0,∞) → [0,∞) is C̄1(q) =

(q− 1)
1

q when 1 < q <∞. With the modification indicated in Section 1, inequality
(4.1) holds true also for q = ∞. The monotonicity assumption on f : (0,∞) →
[0,∞) gives sup {f(s) | s ≥ t} = f(t), so c̄1(∞) = C̄1(∞) = 1. For q = 1, the

right-hand side of (4.1) holds in the sense that
∫∞
0

(

1
t

∫∞
t
f(s)qds

)
1

q dt diverges

when
∫∞
0
f(t)dt is finite. Therefore limq→1 C̄1(q) = 0. For this, choose a function

f : (0,∞) → [0,∞) with
∫∞
0
f(t)dt 6= 0. Then F (t) :=

∫∞
t
f(s)qds defines a

monotonically decreasing function F : (0,∞) → [0,∞) for which there exist ε > 0
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and δ > 0 such that F (t) ≥ δ for all t ∈ (0, ε). It follows that
∫∞
0

1
tF (t)dt ≥

∫ ε

0
1
tF (t)dt ≥

∫ ε

0
1
t δdt = ∞.

We complement these results by computing the minimal constant c̄1(q) > 0 appear-
ing in (4.1).

Theorem 4.1. Let 1 < q <∞. The minimal constant c̄1(q) > 0 for which

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt ≤ c̄1(q)

∫ ∞

0

f(t)dt

holds for all monotonically decreasing functions f : (0,∞) → [0,∞) is c̄1(q) =
π

q sin(π

q ) .

Proof. Lower bounds on the constant c̄1(q) are given by the quotients

(4.2)

∫ t

0

(

1
t

∫∞
t f(s)qds

)
1

q dt
∫∞
0 f(t)dt

with f : (0,∞) → [0,∞) a monotonically decreasing function. For T ∈ (0,∞), take
f = 1

T χ(0,T ) : (0,∞) → [0,∞) in (4.2), where χ(0,T ) denotes the function which is

1 on (0, T ) and 0 on [T,∞). Then
∫∞
0
f(t)dt = 1 and

∫ ∞

0

(

1

t

∫ ∞

t

f(s)qds

)
1

q

dt =
1

T

∫ ∞

0

(

1

t

∫ ∞

t

χ(0,T )(s)ds

)
1

q

dt

=
1

T

∫ T

0

(

1

t

∫ ∞

t

χ(0,T )(s)ds

)
1

q

dt =
1

T

∫ T

0

(

T − t

t

)
1

q

dt

= B

(

1− 1

q
, 1 +

1

q

)

=
π

q sin(πq )

independently of T . (Here B(x, y) :=
∫ 1

0
tx−1(1−t)y−1dt denotes the beta function.)

This shows c̄1(q) ≥ π

q sin(π

q ) .

Now fix a function f : [0,∞) → [0,∞) with
∫∞
0 f(x)dx = 1. For ε > 0, let

N :=
⌊

1
ε supt∈[0,∞) f(t)

⌋

∈ N ∪ {∞}. For n ∈ N with n ≤ N , let

Tn := sup {T > 0 | f(t) ≥ εn ∀ t ∈ (0, T )} ,

λn := εTn, and gn := 1
λn
εχ[0,Tn]. Then 0 ≤ hε(t) :=

∑N
n=1 λngn(t) ≤ f(t) for

all t ∈ [0,∞) and
∫∞
0
gn(t)dt = 1 for all n, so

∑N
n=1 λn =

∫∞
0

∑N
n=1 λngn(t)dt ≤

∫∞
0 f(t)dt = 1. From the triangle inequality for integrals, it follows that

∫ ∞

0

(

1

t

∫ ∞

t

hε(s)
qds

)
1

q

dt ≤
N
∑

n=1

λn

∫ ∞

0

(

1

t

∫ ∞

t

gn(s)
qds

)
1

q

dt

=

N
∑

n=1

λn
π

q sin(πq )
≤ π

q sin(πq )
.

With the abbreviations Hε(t) :=
(∫∞

t
hε(s)

qds
)

1

q and F (t) :=
(∫∞

t
f(s)qds

)
1

q , we
have limk→∞H2−k(t) = F (t) and 0 ≤ H2−k(t) ≤ F (t) for all t ∈ (0,∞) and k ∈ N.
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The dominated convergence theorem then yields
∫ ∞

0

F (t)dt =

∫ ∞

0

lim
k→∞

H2−k(t)dt = lim
k→∞

∫ ∞

0

H2−k(t)dt ≤ π

q sin(πq )
.

This shows c̄1(q) ≤ π

q sin(π

q ) and completes the proof. �

The precise values for c̄1(q) and C̄1(q) given in Theorem 4.1 and [12, Theorem 337]
are illustrated in Figure 7.

c̄1(q)

1/q

1

3

5

10.5

C̄1(q)

1/q

1

10.5

Figure 7. The function 1/q 7→ π

q sin(π

q ) (left) and 1/q 7→ (q − 1)
1

q (right).

Theorem 4.1 and [12, Theorem 337] can be transformed into a result on functions
f : Ω → R defined on a measure space (Ω, µ). For such a function f , the assignment
f∗(t) := inf {s > 0 | µ({x ∈ Ω | |f(x)| > s}) ≤ t} defines a function f∗ : (0,∞) →
[0,∞), called the non-increasing rearrangement of f .

Corollary 4.2. Let (Ω, µ) be a measure space and 1 < q < ∞. The minimal
constants c(q), C(q) > 0 for which

1

c(q)

∫ ∞

0

(

1

t

∫ ∞

t

f∗(s)qds

)
1

q

dt ≤
∫ ∞

0

|f(x)| dµ(x)

≤ C(q)

∫ ∞

0

(

1

t

∫ ∞

t

f∗(s)qds

)
1

q

dt

holds for all functions f : Ω → R are c(q) = c̄1(q) and C(q) = C̄1(q).

Proof. Note that
∫

Ω |f(x)| dµ(x) =
∫∞
0 f∗(t)dt and apply Theorem 4.1 and [12,

Theorem 337] to f∗. �

4.2. The weak continuous Stechkin inequality. Here we compute the optimal
constants c̄1,∞(q) and C̄1,∞(q) > 0, for which the inequality
(4.3)

1

c̄1,∞(q)
sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

≤ sup
t>0

tf(t) ≤ C̄1,∞(q) sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

holds true for all monotonically decreasing functions f : (0,∞) → [0,∞), when
1 < q <∞. With the modification indicated in Section 1, inequality (4.3) holds true
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also for q = ∞. The monotonicity assumption on f gives sup {f(s) | s ≥ t} = f(t),
so c̄1,∞(∞) = C̄1,∞(∞) = 1. For q = 1, we have C̄1,∞(1) = 1 because

sup
t>0

tf(t) = sup
t>0

∫ t

0

f(t)ds ≤
∫ ∞

0

f(s)ds = sup
t>0

∫ ∞

t

f(s)ds.

Theorem 4.3. Let 1 < q <∞. The minimal constant c̄1,∞(q) > 0 for which

sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

≤ c̄1,∞(q) sup
t>0

tf(t)

holds for all monotonically decreasing functions f : (0,∞) → [0,∞) is c̄1,∞(q) =

(q − 1)−
1

q .

Proof. The supremum of the expression

(4.4) sup
t>0

t1−
1

q

(∫ ∞

t

f(s)qds

)
1

q

over the monotonically decreasing functions f : (0,∞) → [0,∞) with supt>0 tf(t) =
1 is attained at the function f : (0,∞) → [0,∞) defined by f(t) = 1

t . Indeed, for
any monotonically decreasing function f : (0,∞) → [0,∞) with supt>0 tf(t) = 1,

we have 0 ≤ f(t) ≤ 1
t for all t > 0. Therefore,

(∫∞
t f(s)qds

)
1

q ≤
(∫∞

t
1
sq ds

)
1

q for all

t > 0 with equality if and only if f(t) = 1
t for all t > 0. Also, we have supt>0 t

1
t = 1,

and (4.4) evaluates to supt>0 t
1− 1

q
(∫∞

t
1
sq ds

)
1

q = (q − 1)−
1

q . �

The optimal constant C̄1,∞(q) in (4.3) coincides with its discrete counterpart.

Theorem 4.4. Let 1 < q <∞. The minimal constant C̄1,∞(q) > 0 for which

sup
t>0

tf(t) ≤ C̄1,∞(q) sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

holds for all monotonically decreasing functions f : (0,∞) → [0,∞) is C̄1,∞(q) =
(

1
q

)− 1

q
(

1− 1
q

)−(1− 1

q )
.

Proof. Step 1. We prove the claim for functions supported by an interval (0, T )
with T > 0. The infimum of the expression

sup
t>0

t

(

1

t

∫ ∞

t

f(s)qds

)
1

q

over the monotonically decreasing functions f : (0,∞) → [0,∞) with f(T ) = 0 and
supt>0 tf(t) = 1 is attained at the function f = 1

T χ(0,T ) : (0,∞) → [0,∞). Its
value is thus equal to

sup
t∈(0,T )

t

(

1

t

∫ T

t

1

T q
ds

)
1

q

= sup
t∈(0,T )

1

T
t1−

1

q (T − t)
1

q .

One can readily check that the derivative of the function F : (0, T ) → R, F (t) =
1
T t

1− 1

q (T − t)
1

q is given by F ′(t) = q(T−t)+T
q(T−t)T

(

T−t
t

)
1

q . Therefore, F is maximized at

t = T
(

1− 1
q

)

, and the maximum is
(

1
q

)
1

q
(

1− 1
q

)1− 1

q

independently of T .
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Step 2. We prove the claim for all functions. It remains to show that

supt>0 t
1− 1

q
(∫∞

t
f(s)qds

)
1

q

supt>0 tf(t)
≥
(

1

q

)
1

q
(

1− 1

q

)1− 1

q

for all monotonically decreasing functions f : (0,∞) → [0,∞). Let ε > 0. Then, for
all monotonically decreasing functions f : (0,∞) → [0,∞) with sup {tf(t) | t > 0} =
1, there exists a number T ∈ N such that f(T ) ≥ 1−ε

T . It follows that

sup
t>0

t1−
1

q

(∫ ∞

t

f(s)qds

)
1

q

≥ sup
t∈(0,T )

t1−
1

q

(

∫ T

t

1

T q
ds

)
1

q

(1− ε)

= sup
t∈(0,T )

t1−
1

q

(

T − t

T q

)
1

q

(1 − ε) ≥
(

1

q

)
1

q
(

1− 1

q

)1− 1

q

(1− ε).

Taking the limit ε ↓ 0 yields the desired inequality. �

The precise values for c̄1,∞(q) and C̄1,∞(q) are illustrated in Figure 8.

c̄1,∞(q)

1/q

1

3

5

10.5

C̄1,∞(q)

1/q

1

10.5

2

Figure 8. The function 1/q 7→ (q − 1)−
1

q (left) and 1/q 7→
(

1
q

)− 1

q
(

1− 1
q

)−(1− 1

q )
(right).

5. Applications to sparse approximation

As mentioned in Section 1, the inequalities (1.1) and (1.2) play an important
role in nonlinear approximation. More precisely, we will outline the connection
of [5, Theorem 4] and our results. Let H be an infinite-dimensional separable real
Hilbert space with inner product 〈· | ·〉H and norm ‖·‖H. The choice of an orthonor-
mal basis (ek)k∈N and Parseval’s identity give an isometric isomorphism H → ℓ2,
f 7→ (〈f | ek〉H)k∈N. Sparse approximation in H is implemented by defining the
approximation error for f ∈ H as

En(f)H = {‖f − g‖H | g ∈ Σn−1(H)}

where Σn−1(H) :=
{
∑

k∈Λ λkek
∣

∣ λk ∈ R,Λ ⊂ N,#Λ < n
}

. Then, for α > 0, the
approximation space Aα

r (H) is defined as the set of elements f ∈ H for which the
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quantity

‖f‖Aα
r (H) :=

{

(
∑∞

n=1(n
αEn(f)H)r 1

n

)
1

r , 0 < r <∞,

supn∈N n
αEn(f)H, r = ∞

is finite. Approximation spaces are then subject to characterizations in terms of
Lorentz sequence spaces ℓp,r, i.e., the sets of bounded sequences for which the
quantity

‖(fk)k∈N‖ℓp,r :=







(

∑

n∈N
(n

1

p f∗
n)

r 1
n

)
1

r

, 0 < r <∞,

supn∈N n
1

p f∗
n, r = ∞

is finite. Here 0 < p ≤ ∞, and (f∗
k )k∈N is the non-increasing rearrangement of the

sequence (|fk|)k∈N. Now, given f ∈ H and fk := 〈f | ek〉H for k ∈ N, DeVore [5,
Theorem 4] shows that

(5.1) ‖f‖Aα
r (H) ≍ ‖(fk)k∈N‖ℓτ,r ,

meaning that there exist constants c, C > 0 such that

1

c
‖f‖Aα

r (H) ≤ ‖(fk)k∈N‖ℓτ,r ≤ C ‖f‖Aα
r (H) .

Here τ = (α + 1
2 )

−1. Notable special cases of (5.1) are re-parameterized by the
results from Sections 2 and 3.

Theorem 5.1. With the definitions above, the following statements are true for
the minimal constants c, C > 0 in the inequality

(5.2)
1

c
‖f‖Aα

r (H) ≤ ‖(fk)k∈N‖ℓτ,r ≤ C ‖f‖Aα
r (H) ,

where τ = (α + 1
2 )

−1.

(i) If r = τ , then c = c1(2α+ 1)α+
1

2 and C = C1(2α+ 1)α+
1

2 .

(ii) If r = ∞, then c = c1,∞(2α+ 1)α+
1

2 and C = C1,∞(2α+ 1)α+
1

2 .

Proof. For r = τ , inequality (5.1) becomes

1

C1





∞
∑

n=1



nα

( ∞
∑

k=n

(f∗
k )

2

)
1

2





τ

1

n





1

τ

≤
( ∞
∑

k=1

(f∗
k )

τ

)
1

τ

≤ C2





∞
∑

n=1



nα

( ∞
∑

k=n

(f∗
k )

2

)
1

2





τ

1

n





1

τ

.

Setting ak = (f∗
k )

τ and q = 2
τ = 2α+ 1 gives

1

C1





∞
∑

n=1

n− 1

q

( ∞
∑

k=n

aqk

)
1

q





1

τ

≤
( ∞
∑

k=1

ak

)
1

τ

≤ C2





∞
∑

n=1

n− 1

q

( ∞
∑

k=n

aqk

)
1

q





1

τ

.

Raising everything to the τth power shows (i). Similarly, for r = ∞, inequality
(5.1) becomes

1

C1
sup
n∈N

nα

( ∞
∑

k=n

(f∗
k )

2

)
1

2

≤ sup
k∈N

k
1

τ f∗
k ≤ C2 sup

n∈N

nα

( ∞
∑

k=n

(f∗
k )

2

)
1

2
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Raising everything to the τth power gives

1

C1
sup
n∈N

nατ

( ∞
∑

k=n

(f∗
k )

2

)
τ
2

≤ sup
k∈N

k(f∗
k )

τ ≤ C2 sup
n∈N

nατ

( ∞
∑

k=n

(f∗
k )

2

)
τ
2

.

Setting ak = (f∗
k )

τ and q = 2
τ = 2α+ 1 shows (ii). �

Stechkin [17] considers the Hilbert space H = L2(T
d) of square-integrable func-

tions on T
d = [0, 2π]d. An orthonormal basis in L2(T

d) is given by ek(x) :=
1√
2π

exp(ikx) for k ∈ Z and x ∈ T
d. Then (5.1) for r = τ = 1 shows that the

approximation space A1/2
1 (L2(T

d)) coincides with the Wiener algebra A(Td) :=
{

f ∈ C(T)
∣

∣

∣

∑

k∈Zd |f̂(k)| <∞
}

and, moreover, their quasi-norms are equivalent in

the sense of (5.2). Theorem 5.1 yields

2

π

‖f‖A1/2
1

(L2(Td))
≤ ‖f‖A(Td) ≤ 1.1064957714 ‖f‖A1/2

1
(L2(Td))

for f ∈ L2(T
d), the constants being independent of d.

Following DeVore [5, Remark 7.4], if the Hilbert space H is chosen to be L2(R)
with a wavelet orthonormal basis (ψI)I∈D, then the approximation space can be
characterized in terms of Besov smoothness. A multivariate version of this result
using a tensorized wavelet basis is derived by Sickel and Ullrich in [16, Theorem 2.7].
For further results in this direction, see the papers of Hansen and Sickel [10, 11].
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