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Abstract

Measures of semantic similarity between concepts are widely used in Natural Language Processing. In this article, we show how six
existing domain-independent measures can be adapted to the biomedical domain. These measures were originally based on WordNet, an
English lexical database of concepts and relations. In this research, we adapt these measures to the SNOMED-CT® ontology of medical
concepts. The measures include two path-based measures, and three measures that augment path-based measures with information con-
tent statistics from corpora. We also derive a context vector measure based on medical corpora that can be used as a measure of semantic
relatedness. These six measures are evaluated against a newly created test bed of 30 medical concept pairs scored by three physicians and
nine medical coders. We find that the medical coders and physicians differ in their ratings, and that the context vector measure correlates
most closely with the physicians, while the path-based measures and one of the information content measures correlates most closely with
the medical coders. We conclude that there is a role both for more flexible measures of relatedness based on information derived from

corpora, as well as for measures that rely on existing ontological structures.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Semantic relatedness refers to human judgments of the
degree to which a given pair of concepts is related. Studies
[1,2] have shown that, surprisingly, most humans agree on
the relative semantic relatedness of most pairs of concepts.
Measures of relatedness are automatic techniques that
attempt to imitate human judgments of relatedness. Many
such techniques [3-6] already exist in the realm of domain-
independent Natural Language Processing. However, the
lack of domain-specific coverage of the resources used by
these measures makes them ineffective for use in domain-
specific tasks. Because of the availability of numerous
ontologies and resources in the biomedical domain, it is
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possible to adapt these measures and apply them to
domain-specific tasks.

The existence of semantic equivalence classes between
lexical items in English makes it highly desirable to use the-
sauri of synonymous or nearly synonymous terms for
information retrieval (IR) and document retrieval (DR)
applications. The issue is particularly acute in the medical
domain due to stringent completeness requirements on
such IR tasks as patient cohort identification. We believe
that measures of semantic similarity and relatedness can
improve the performance of such systems, since they are
able to map a user’s specific search query to multiple equiv-
alent formulations. For example, a user’s query for “con-
gestive heart failure” could be expanded to include the
semantically similar terms of cardiac decompensation, pul-
monary edema, ischemic cardiomyopathy and volume over-
load. Clearly, pulmonary edema does not denote the same
or even a similar disorder as congestive heart failure but
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under the patient cohort identification conditions it could
be considered as an equivalent search term.

In this research, we adapt a number of measures of sim-
ilarity and relatedness to the biomedical domain. We
should emphasize that semantic relatedness and semantic
similarity are two separate notions. Semantic relatedness
is a more general notion of the relatedness of concepts,
while similarity is a special case of relatedness that is tied
to the likeness (in the shape or form) of the concepts. A
measure of semantic similarity takes as input two concepts,
and returns a numeric score that quantifies how much they
are alike. Such a measure (e.g., [3-5]) is usually based on is-
a relations found in the underlying taxonomy or ontology
in which the concepts reside. For example, common cold
and illness are similar in that a common cold is a kind of ill-
ness. Likewise, common cold and influenza are similar in
that they are both kinds of illness. Of course, many ontol-
ogies include additional relations between concepts such as
has-part, is-a-way-of-doing, is-a-cause-of, is-a-symptom-of,
etc. that are not directly accounted for in measures of sim-
ilarity. Thus, we view semantic similarity as a special case
of semantic relatedness, and we believe that developing
measures that take advantage of increasingly rich ontolo-
gies (particularly in the biomedical domain) which have a
wealth of relations beyond is-a is an important area of
future work. This is especially relevant in light of progress
in automatically identifying a wide range of semantic rela-
tions in medical text (e.g., [7]). We believe that the work in
this article provides a necessary stepping stone to tackling
the more general problem of identifying semantically relat-
ed concepts.

Outside the biomedical domain, measures of semantic
similarity and relatedness have proven useful in a number
of NLP tasks. For example, Budanitsky and Hirst [8] iden-
tify malapropisms using various measures of similarity
and relatedness. The premise of their approach is that a
word that is not semantically similar or related to its
neighbors may be a word that is misspelled but is acciden-
tally a valid word, as in “The nights of the round table
rode again.” Resnik [9], Patwardhan et al. [10], and
McCarthy et al. [11] carry out word sense disambiguation
based on the idea that a word should be used in the sense
that is most similar to or related to the sense of the words
that surround it.

However, all of this work has been domain-independent
and has been based on WordNet [12], which is a freely
available lexical database that represents an ontology of
approximately 100,000 general English concepts. In the
biomedical domain, there are a growing number of ontolo-
gies that organize medical concepts into hierarchies and
semantic networks, perhaps best exemplified by the Unified
Medical Language System (UMLS®) of the National
Library of Medicine (NLM). One of the largest and most
extensive sources included in UMLS® is SNOMED-CT®.
To date, relatively little work has been done on developing
and evaluating measures of conceptual similarity and relat-
edness for such resources. The premise of this article is that

some of the measures that have been found to be effective
with WordNet can be adapted and extended to
SNOMED-CT®, thereby making it possible to automate
certain NLP tasks in the biomedical domain.

This article starts by describing other related work in the
biomedical domain as well as domain-independent tech-
niques that implement or use measures of semantic similar-
ity. The article then proceeds by introducing the various
resources that we use in measuring similarity and related-
ness among concepts. This includes SNOMED-CT®, the
Mayo Clinic Corpus of Clinical Notes, and the Mayo Clin-
ic Thesaurus. We then describe the five measures of similar-
ity and one measure of relatedness (all based on WordNet)
that we have adapted to the biomedical domain."! We also
introduce a new test bed for the evaluation of measures of
semantic similarity and relatedness in the biomedical
domain. Finally, we present our experimental results, and
suggestions for future work.

2. Related work

In the biomedical domain, measures of semantic similar-
ity based on ontologies were developed as early as 1989.
Rada et al. [13] devised a ‘“‘semantic distance” measure
based on semantic networks. They used MeSH as their
semantic network, which consists of biomedical terms
organized in a hierarchy. Indeed, one of the measures
described in this paper was inspired by this work. Taking
a similar approach, Caviedes and Cimino [14] developed
the CDist measure for finding path lengths in the UMLS
hierarchy. Two of the measures we compare in this paper
are path-based measures. Our work with these measures
primarily differs in the ontology being used to compute
the paths and the path-lengths between concepts.

Recently, Lord et al. [15] adapted WordNet-based mea-
sures of relatedness to the Gene Ontology [16], which is a
highly specialized ontology of the molecular functions
and biological processes of gene products. The hierarchy
also describes cellular components associated with gene
products. In this work, they find that the semantic similar-
ity of proteins based on the ontology has a high correlation
with “sequence similarity,” a separate measure based on
the protein sequences. Our work, in comparison, deals with
more general biomedical concepts, and provides a more
robust evaluation against a manually created data set.

In addition to adapting existing measures to the biomed-
ical domain, there has been some work in creating new
techniques for measuring the similarity of terms and con-
cepts. Work by Wilbur and Yang [17] defines a strength
metric which is used to retrieve relevant articles using lexi-
cal techniques. The metric uses the correlation between the
occurrences of a term in documents with the subjects of the
documents to define the strength of the term. This metric is

' All six of these measures were originally implemented in the Word-
Net::Similarity package, which can be found at http://search.cpan.org/
dist/WordNet-Similarity.
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used by the PubMed service to index and retrieve relevant
biomedical documents. Research done by Spasic and Ana-
niadou [18], defines a new similarity metric based on a var-
iation of edit distance [19] applied at a word level. In short,
the semantic similarity of two terms is the cost associated
with converting one term to another, using insert, delete
and replace operations on words (instead of letters). This
method additionally uses the UMLS taxonomy to mini-
mize the effect of word variants. It also varies the costs
associated with the operations, based on the “semantic
load” of the word being edited. For example, deleting a
known term present in the UMLS has a higher cost than
deleting a conjunction.

Later in this paper, we describe a measure based on con-
text vectors—inspired by Schiitze’s [20] method for word
sense discrimination. This, in turn, is an adaptation of
Latent Semantic Indexing [21] commonly used in Informa-
tion Retrieval. Latent Semantic Indexing (LSI) and Latent
Semantic Analysis (LSA) have been shown to be useful in
the biomedical domain for indexing and retrieval of clinical
records [22,23], for classifying medical events [24,25] and
for managing variations in medical terminology [26]. In
our research, we use some LSA principles for the vector-
based measure.

In the realm of domain-independent Natural Language
Processing, semantic similarity has been recently used in
numerous tasks such as spelling correction [8], word sense
disambiguation [10,27], information extraction [28] and
textual inference [29]. All of these applications show that
semantic similarity and semantic relatedness have proven
useful in a domain-independent setting.

3. Knowledge sources

In this section, we describe the three biomedical infor-
mation resources used by the measures. All of the measures
described later in this article were originally based on
WordNet. Since WordNet is a domain-independent lexical
resource, it has very little coverage in the biomedical
domain (as shown by [30]). To make the measures more
effective in a domain-specific setting, we substituted the
underlying domain-independent knowledge sources with
resources from the biomedical domain. A description of
these resources follows.

3.1. SNOMED-CT®

SNOMED-CT® (Systematized Nomenclature of Medi-
cine, Clinical Terms) is an ontological/terminological
resource that has a wide coverage of the clinical domain.
It is produced by the College of American Pathologists
and is now distributed as part of the UMLS® through
the National Library of Medicine. SNOMED-CT® is used
for indexing electronic medical records, ICU monitoring,
clinical decision support, medical research studies, clinical
trials, computerized physician order entry, disease surveil-
lance, image indexing and consumer health information

services. The version of SNOMED-CT® we use in this
study is from 2004 and consists of more than 361,800
unique concepts with over 975,000 descriptions (entry
terms) [31].

The terminology is organized into 13 hierarchies at the
top level: clinical findings, procedures, observable entities,
body structures, organisms, substances, physical objects,
physical forces, events, geographical environments, social
contexts, context-dependent categories, and staging and
scales. There is one overarching root node that joins all
13 hierarchies together. The concepts and their descriptions
are linked with approximately 1.47 million semantic rela-
tionships including is-a, assists, treats, prevents, associated
etiology, associated morphology, has property, has specimen,
associated topography, has object, has manifestation, associ-
ated with, classifies, has ingredient, mapped to, mapped from,
measures, clinically associated with, used by, anatomic struc-
ture is physical part of.

3.2. The Mayo Clinic Corpus of Clinical Notes

This resource consists of ~1,000,000 clinical notes col-
lected over the year 2003 which cover a variety of major
medical specialties at the Mayo Clinic. Clinical notes have
a number of specific characteristics that are not found in
other types of discourse, such as news articles or even sci-
entific medical articles found in MEDLINE. Clinical notes
are generated in the process of treating a patient at a clinic
and contain the record of the patient-physician encounter.
These notes are typically dictated and represent a kind of
quasi-spontaneous discourse [32] where the dictations are
made partly from notes and partly from memory. More
often than not, the speech tends to be telegraphic which
presents certain challenges for Natural Language
Processing.

At the Mayo Clinic, the dictations are transcribed by
trained personnel and are stored in the patient’s Electronic
Medical Record. These transcriptions are then made avail-
able for health science research. The notes are semi-struc-
tured where each note consists of a number of
subsections such as Chief Complaint (CC), History of Pres-
ent Illness (HPI), Impression/Report/Plan (IP), Final
Diagnoses (DX), among others.

We are particularly interested in the CC, HPI, IP and
DX section of the clinical notes. The CC section records
the reason for visit; HPI section has information of what
other treatments/problems the patient has had in the
past; IP section contains the diagnostic and current treat-
ment information, while the DX section is a summary of
the IP section — it contains only a list of diagnoses.
Other sections such as SI (Special Instructions) and
CM (Current Medications) are less interesting from the
standpoint of semantic relatedness measures, although
if we were to focus on computing semantic relatedness
between medications, then we may want to consider
the CM section as well. The SI section contains adminis-
trative information that is not relevant to the patient’s
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condition. The CM section contains a list of medications
that were prescribed to the patient. The medications on
this list may or may not be related to the condition
described in the note; however, the relevant medications
tend to be repeated in the IP and HPI sections. We have
eliminated the CM section from consideration for now
because it may introduce spurious associations on the
one hand and may be redundant with the IP and HPI
sections on the other.

3.3. The Mayo Clinic Thesaurus

The Mayo Clinic Thesaurus is a rich source of clinical
problem descriptions that have been systematically collect-
ed at the Mayo Clinic since 1909. The Mayo Clinic Thesau-
rus has its roots in the Plummer indexing system,
introduced at Mayo to index clinical problem descriptions
in 1909; it was implemented using 5 x 8 inch index cards.
The index was substantially modified to a bi-axial nomen-
clature in the course of migrating the Mayo index to IBM
Hollerith cards around 1935, and expanded again during
our migration to electronic computing environments from
1960. Since 1996, short summaries of patient diagnoses
have been created, manually coded and stored in a data-
base. At the time of this study, this resource contained over
16 million unique diagnostic phrases expressed through
natural language that are classified into over 21,000 diag-
nostic categories and represents an utterance level thesau-
rus. The 16 million phrase-category pairs contain
5,167,428 unique phrases that represent diagnostic state-
ments. Each diagnostic statement has been recorded by a
practicing physician at the Mayo Clinic as part of the
patient’s medical record, manually coded and cataloged
for subsequent retrieval using a Mayo Clinic modified Hos-
pital International Classification of Diseases Adaptation
(HICDA). The HICDA classification is a hierarchy consist-
ing of four levels. The top level is the most general and has
19 categories such as Neoplasms, Diseases of the Circulatory
System, etc. The next three levels group diagnoses into
more specific categories.

The Mayo Clinic Thesaurus is constructed on the
assumption that if several diagnostic phrases have been
classified to the same category in the HICDA hierarchy,
then these phrases can be considered as synonymous at
the level of granularity afforded by HICDA. For example,
diagnostic phrases such as “primary localized hilar cholan-
giocarcinoma” and ‘“‘cholangiocarcinoma of the Klatskin
variety” are linked in a thesaurus-like fashion because
these two statements have been manually classified the
same way. We consider these two phrases nearly synony-
mous and use them to generate quasi-definitions for terms
found in both SNOMED-CT® and this utterance level the-
saurus of diagnostic phrases.

We attempt to reduce the inevitable noise and redun-
dancy in this collection by excluding those phrases that
occur 5 times or less and those phrases that are classified
as “Admission, diagnosis not given.”” After these restrictions,

the original 5,167,428 diagnostic statements are reduced to
a vocabulary of 381,673 terms. Of these, 9951 (2.6%) are
also found on the list of SNOMED-CT® descriptions via
simple string matching. The terms were placed in lowercase
prior to matching.? After lowercasing, the list of descrip-
tions from SNOMED-CT® contained 798,168 unique
terms. The overlap of 9951 terms with the Mayo Clinic
Thesaurus constitutes 1.3% of the total number of unique
lowercased SNOMED-CT® terms. Due to the simplicity
of the matching method, these data provide only a very
rough approximation to the actual intersection between
the three vocabularies. These data do suggest however that
incorporating SNOMED-CT® into the Mayo Clinic The-
saurus would increase the coverage of either terminology
taken separately.

The Mayo Clinic Thesaurus is augmented by merging it
with the Medical Subject Headings (MeSH) sub-hierarchy
of the UMLS® (version 2003AB) and the 2003 version of
SNOMED-CT® (prior to its incorporation into the
UMLS®). This augmentation allows mapping from
SNOMED-CT® concepts to clusters of terms in the Mayo
Clinic Thesaurus. If a term appeared in more than one
source, the duplicates were eliminated after the terms were
linked to a Mayo Clinic Thesaurus ID.

4. Measures of semantic similarity and relatedness

Semantic relatedness refers to the judgments by
humans regarding the relatedness of pairs of concepts.
Humans usually agree of the relative relatedness of con-
cepts [1,2]. For example, most humans would agree that
bird is more related to feather than it is to fork or to car.
Research [2,33,34] has shown that humans use the con-
text of words and concepts to build a mental semantic
representation of concepts. Over time humans encounter
similar contexts for different concepts. Consequently,
humans tend to agree on the semantic relatedness of
concepts.

Many ideas have been proposed to automatically cal-
culate the semantic relatedness of words to correspond
closely to those by human subjects. Some of the com-
monly used methods derive statistical information from
text corpora and combine that information with a lexical
resource such as WordNet to make semantic relatedness
judgments that have been shown to have a high correla-
tion with those of human subjects [8,10]. Additionally,
these techniques have been shown to be useful for many
Natural Language Processing tasks such as word sense
disambiguation [10,27], spelling correction [8] and infor-
mation extraction [28]. In this section, we describe sever-
al measures based on WordNet that attempt to quantify
the semantic relatedness of concepts. Additionally, we

2 Simple lowercasing was used to maximize the processing speed. A
more sophisticated approach to lexical normalization such as the Lexical
Variant Generator (LVG) developed at the National Library of Medicine
would result in improved matching.
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Type Name Principle Pro’s Con’s
Path Path Count of edges between concepts | - Simplicity - Requires arich and consistent
Finding |Length hierarchy;
- no multiple inheritance
- WordNet nouns only
- IS-A relations only
Wu & Path length to subsumer, scaled |- Simplicity - WordNet nouns only
Palmer by subsumers path to root - IS-A relations only
Leacock & |Finds the shortest path between | - Simplicity - WordNet nouns only
Chodorow |concepts, and log smoothing - Corrects for depth of | - IS-A relations only
hierarchy
Hirst & Relies on synsets in WordNet - Measures relatedness |- WordNet specific
St-Onge of all parts of speech |- Relies on synsets and relations not
- more than IS-A available in UMLS
relations
Info. Resnik Information Content (IC) of the |- Uses empirical - Does not use the IC of individual
Content least common subsumer (LCS) | information from concepts, only that of the LCS
corpora - WordNet nouns only
- IS-A relations only
Jiang & Extensions of Resnik; scale LCS |-Accounts for the IC of | - WordNet nouns only
Conrath; |by IC of concepts individual concepts, - IS-A relations only
Lin only that of the LCS
Context |Patwardhan|Creates context vectors that - Measures relatedness | - Definitions can be short,
Vector |& Pedersen|represent the meaning of of all parts of speech inconsistent
Measures concepts derived from co- - No underlying - Computationally intensive
occurrence statistics of corpora | structure required
- Uses empirical
knowledge implicit in a
corpus of data

Fig. 1. Classification of measures of semantic similarity and relatedness and their relative advantages and disadvantages.

describe how these measures were adapted to make more
accurate judgments in the biomedical domain. The five
measures of semantic similarity all use SNOMED-CT®,
while the three similarity measures based on information
content also use the Mayo Clinic Corpus of Clinical
Notes. The Context Vector measure of relatedness only
uses the Mayo Clinic Corpus and the Mayo Clinic
Thesaurus.

Before describing the measures, we would like to
emphasize the difference between semantic similarity and
semantic relatedness. Semantically similar concepts are
deemed to be related on the basis of their likeness.
Semantic relatedness, on the other hand, is a more gen-
eral notion of relatedness, not specifically tied to the
shape or form of the concept. In other words, semantic
similarity can be considered a special case of semantic
relatedness. The measures of semantic similarity
described here are based on is-a relations that link con-
cepts (directly or indirectly) found in a hierarchy. These
measures can simply be based on the path lengths
between concepts, or they may augment such structural
information with corpus based statistics. Measures of
semantic relatedness are more general, and can include
information about other relations, or may be based on
co-occurrence statistics from corpora. We describe sever-
al existing measures of similarity and relatedness in this
section, focusing particularly on those that we adapted
for use with SNOMED-CT®. A general classification of
the measures and their relative advantages and disadvan-
tages is provided in Fig. 1.

4.1. Path finding measures

When concepts are organized in a hierarchy, where more
general concepts are near the root of the hierarchy, and
more specific ones near at the leaves, it is convenient to
measure similarity according to the path lengths between
concepts. In fact, there have been a variety of such
approaches proposed in both the biomedical domain and
in domain-independent NLP techniques.

Rada et al. [13] developed a measure based on path
lengths between concepts in the Medical Subject Headings
(MeSH) ontology, which is distributed by the National
Library of Medicine. They relied on broader than relations,
which link to successively more or less specific concepts as
you travel from concept to concept. They used this measure
to improve information retrieval by ranking documents
retrieved from MEDLINE, a corpus made up of abstracts
of biomedical journal articles. More recently, Caviedes and
Cimino [14] developed a measure called CDist which finds
the shortest path between two concepts in the UMLS®.
Their evaluation relative to a small set of concepts and con-
cept clusters drawn from a subset of the UMLS® (consist-
ing of MeSH, ICD-9-CM* and SNOMED-CT®) shows
that even such relatively simple approaches tend to yield
reliable results.

Wu and Palmer [35] present a measure of similarity for
general English that relies on finding the most specific con-

3 International Classification of Diseases, 9th revision, Clinical
Modification.
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cept that subsumes both of the concepts being measured.
The path length from this shared concept to the root of
the ontology is scaled by the sum of the distances of the con-
cepts to the subsuming concept. Leacock and Chodorow
[36] define a similarity measure that is based on finding the
shortest path between two concepts and scaling that value
by twice the maximum depth of the hierarchy, and then tak-
ing the logarithm of the resulting score. In both of these
measures, the path length between concepts is scaled in some
way by the overall depth or size of the hierarchy, to avoid
reliance strictly on path lengths, which can be misleading
due to the fact that the semantic similarity between concepts
that is represented by a single link will vary depending on
where that link is found in the hierarchy. A link between
two very general concepts may imply a reasonably large dif-
ference between the concepts, while one between two very
specific concepts might represent a small difference.

There have been relatively few attempts to develop path
based measures that rely on relations beyond is-a. Given
the richness of relations found in resources such as
SNOMED-CT®, we believe that this is a promising area
of future work, however, we have not included such mea-
sures in this study. One example of a possible candidate
for adaptation is the relatedness measure of Hirst and St-
Onge [37]. Their measure, which is based on WordNet
determines the relatedness between two concepts by finding
the nature of the path that joins them. A path that is not
too long and has relatively few changes in direction repre-
sents a relatively higher degree of relatedness as compared
to a path which is long with many changes in direction.

For the experiments in this article, we developed two
path-based measures: a path-length measure for
SNOMED-CT®, and an adaptation to SNOMED-CT®
of a measure proposed by Leacock and Chodorow. The
path-length measure essentially computes the similarity
between two concepts by counting the numbers of nodes
on the shortest path between them in SNOMED-CT®’s
is-a hierarchy. The shortest path includes both the concept
nodes. The inverse of the path length is defined as the sim-
ilarity of the two concepts. The adaptation of the Leacock
and Chodorow measure is very similar to the path-length
measure, except that the Leacock and Chodorow measure
scales this shortest path length by the depth of the taxono-
my. Mathematically, the similarity of two concepts ¢; and
¢ using the path-length measure (path) is defined as:

Simpath(clch) = l/pv (1)

where p is number of nodes on the shortest path between
the two concepts in SNOMED-CT®. Similarly, the similar-
ity of two concepts ¢; and ¢, using the Leacock and Chod-
orow measure (Ich) is computed as

sim,ch (Cl y 02) = — log (Jﬁ) s (2)

where p is number of nodes on the shortest path between
the two concepts in SNOMED-CT® and depth is the max-
imum depth of the hierarchy.

Note that SNOMED-CT® allows multiple inheritance,
i.e. a node in the hierarchy can have multiple parents (pos-
sibly in different parts of the taxonomy). Thus multiple
possible paths can exist between any two concepts. Howev-
er, we select only the shortest path among those, for both
the measures.

4.2. Information content measures

The limitation of purely path based measures is that the
degree of semantic similarity implied by a single link is not
consistent. Links found between very general concepts con-
vey somewhat smaller amounts of similarity than do links
between very specific concepts.

Resnik [3] attempts to address this problem by augment-
ing concepts with a corpus-based statistic known as infor-
mation content, which is essentially a measure of the
specificity of a concept. The information content of each
concept in a hierarchy is calculated based on the frequency
of occurrence of that concept in a large corpus of text. A
concept with high information content is very specific,
while lower information content values are associated with
more general concepts.

The information content of a concept is estimated by
counting the frequency of that concept in a large corpus
of text. Note, however, that a single concept can be
mapped to multiple lexical terms in text, and conversely a
single lexical term can be mapped to multiple concepts.
Thus, to get frequency estimates for concepts, Resnik sug-
gests distributing the frequency count of a term equally
over the concepts it maps to. But it has also been shown
[10] that assigning all of the concepts mapped to a single
term, the same frequency count as the term also works well.
In this research, the frequency count assigned to a concept
is the sum of the frequency counts of all the terms that map
to the concept.

Additionally, the definition of information content
requires that the frequency count of every concept include
the frequency counts of all subsumed concepts in an is-a
hierarchy. For example, the frequency count for the con-
cept of disease would include frequency counts of tubercu-
losis and influenza (among others). Similarly, the concept
corresponding to the root node of the is-a hierarchy has
the maximum frequency count, since it includes the fre-
quency counts of every other concept in the hierarchy.
Thus, the frequency counts associated with concepts higher
up in the is-a hierarchy is always greater than or equal to
those lower down in the hierarchy.

After obtaining the frequency counts of all concepts, the
information content of each concept ¢ is computed as:

g (),

IC(e) = req(root)

3)
where freq (c¢) is the frequency of concept ¢ and freq (root)
is the frequency of the root of the hierarchy.

Using this notion of information content, Resnik [3]
defines a measure of similarity that holds that two concepts
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are semantically similar proportional to the amount of
information they share. The quantity of shared informa-
tion is determined by the information content of the most
specific concept in the hierarchy that subsumes both the
given concepts, which is referred to as the Lowest Common
Subsumer. Mathematically, the Resnik measure (res) com-
putes the similarity of concepts ¢; and ¢, as:

Simyes(cy,¢2) = IC(les(cy, ¢a)), (4)

where lcs(cy,co) 1s the lowest common subsumer of con-
cepts ¢; and ¢, and IC returns the information content
of the concept.

However, the Resnik measure may not be able to make
fine grained distinctions since many concepts may share the
same Lowest Common Subsumer, and would therefore
have identical values of similarity. Jiang and Conrath [5]
and Lin [4] developed measures that scale the information
content of the subsuming concept by the information con-
tent of the individual concepts. Lin does this via a ratio,
and Jiang and Conrath with a difference. The Jiang and
Conrath (jcn) measure computes the semantic distance
(inverse of similarity) of concepts ¢; and c¢; as:

distje,(c1,¢2) = 1C(c1) +1C(c2) — 2 - IC(les(cy, ¢2)) (5)

and the Lin measure (/in) computes semantic similarity of
concepts ¢; and ¢; as:

IC(c1) +1C(c) (6)

simyy(c1,¢2) =
where les(c¢y, ¢;) is the lowest common subsumer of con-
cepts ¢; and ¢, and IC returns the information content
of the concept.

In our study, we have adapted all three of these mea-
sures (res, lin and jcn) to the biomedical domain by using
the the is-a hierarchy of SNOMED-CT®. We used the
Mayo Clinic Corpus of Clinical Notes as the source of
the frequency counts of the SNOMED-CT® concepts,
required to derive their information content values.

4.3. Context Vector measure

Patwardhan [6,38] developed a measure of semantic
relatedness that represents a concept as a Context Vector.
This is intended to be a more general representation than
similarity measurements, since the source of the informa-
tion for the context vectors is a raw corpus of text, not
the paths found between concepts in an ontology. This
technique is an adaptation of Schiitze’s [20] method of
word sense discrimination, which is in turn an adaptation
of Latent Semantic Indexing [21] as practiced in Informa-
tion Retrieval. In this technique, we build co-occurrence
vectors that represent the contextual profile of concepts.
The cosine of the angle between vectors corresponding to
two given concepts then determines the relatedness of those
concepts.

We start by creating Word Vectors, which are first order
context vectors, for every content word w in our corpus of

text. The dimensions of these vectors are content words
from the same corpus of text (each dimension correspond-
ing to one content word). The vector for a word w is creat-
ed as follows:

—

. Initialize the first order context vector to a zero vector w.
2. Find every occurrence of word w in the given corpus.
3. For each occurrence of w, increment by 1 those dimen-
sions of w which correspond to the words present in a
specified window of context around w.

The first order context vector w, therefore, encodes the
co-occurrence information of word w and is called its word
vector. In this research, we use the Mayo Clinic Corpus of
Clinical Notes to create word vectors for all content words
occurring in the clinical notes. We used one line of text as
the window of context.

Having created a set of word vectors, we then use these
to create context vectors corresponding to every
SNOMED-CT® concept whose frequency in the corpus
of clinical notes exceeds a predefined threshold. We use
the Mayo Clinic Thesaurus to get a list of descriptor terms
for each concept. The word vectors corresponding to the
descriptor terms of a concept are then aggregated to get
the context vector for that concept. Thus, a SNOMED-
CT® concept is represented as the resultant of descriptor
term word vectors, where word vector represents the
“contextual profile” of the term, as computed from the
Mayo Corpus of Clinical Notes. For example, the
SNOMED-CT® concept “angina pectoris” (SNOMED-
CT ID: 367416001) maps to a cluster of terms in the
Mayo Clinic Thesaurus (Cluster ID: M00587016). This
cluster also contains terms such as “vasospastic angina,”
“CAD with exertional angina,” ‘“‘angina functional class
2, “ischemic heart disease with angina pectoris” that are
not originally part of SNOMED-CT® but are associated
with a SNOMED-CT® concept via the Mayo Clinic The-
saurus. Thus, the context vector for “angina pectoris’ is
computed as the resultant of the word vectors for “vaso-
spastic angina,” “CAD with exertional angina,” “‘angina
Sfunctional class 2" and “ischemic heart disease with angina
pectoris.”

The semantic relatedness of two concepts ¢; and ¢, is
then computed as the cosine of the angle between their con-
text vectors:

Uy - Uy

o1 - [va]”

relvecmr(clac2) (7)
where ¥) and ¥, are the context vectors corresponding to ¢;
and c¢,, respectively.

5. Experimental data

Measures of semantic similarity and relatedness can be
evaluated both directly and indirectly. The direct method
compares the results of the measures relative to human
judgments; common standards for domain-independent
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English are provided by pairs of manually rated concepts
as created by Rubenstein and Goodenough [1] and Mill-
er and Charles [2]. The indirect methods evaluate mea-
sures based upon the performance of an application
that relies on the measures. Spelling correction [8] and
word sense disambiguation [10] have both been used as
applications to evaluate measures. Both of these studies
found the similarity measure of Jiang and Conrath to
be most effective at improving the results of their appli-
cation, although the word sense disambiguation evalua-
tion also reported that a measure based on finding
overlaps in the definitions of words was equally
successful.

There are no existing sets of words for the biomedical
domain that have been manually scored for similarity by
human experts that could be used as a direct means of
evaluation. In this research, we created a test bed of pairs
of medical terms that were scored by human experts
according to their relatedness. A Mayo Clinic physician
(Alexander Ruggieri, MD) trained in Medical Informatics,
followed the methodology of Rubenstein and Goodenough
and generated a set of 120 term pairs that consists of 30
pairs in each of four broad categories of relatedness values
from not related at all (1) to very closely related (4). Sub-
sequently, we had 13 medical coders annotate each pair
with a relatedness value on a scale of 1-10. A wider scale
was chosen for experimental purposes—it is easier to
collapse a wider scale than to expand a narrow one. We
later collapsed this scale to match Rubenstein and
Goodenough’s.

A group of medical coders specially trained to classify
clinical diagnoses using the same HICDA classification sys-
tem as the one used to construct the Mayo Clinic Thesau-
rus annotated the test set for this study. These medical
coders had between five and 14 years of coding experience
at the time of the study. Although they do not have formal
training in medicine, by virtue of working with clinical
records and terminologies have had significant exposure
to medical language and we considered them as good can-
didates for this annotation task.

We implemented two measures of semantic similarity
based strictly on the is-a relations as found in
SNOMED-CT®: the path-length measure and the Leacock
and Chodorow measure. We also implemented three mea-
sures that are based on a combination of information con-
tent statistics derived from the entire Mayo Clinic Corpus
of Clinical Notes, and the is-a relations provided by
SNOMED-CT®. Finally, we implemented a Context Vec-
tor measure by finding co-occurrence vectors from the
Mayo Clinic Corpus of Clinical Notes based on the
descriptor terms associated with concepts in the Mayo
Clinic thesaurus. As such the Context Vector measure
was the only measure that was not dependent on a hierar-
chical terminology or ontology in some way. We computed
the vectors in two different ways, first using the entire
Mayo Corpus of Clinical Notes, and then using just the
IP sections.

6. Experimental results
6.1. Inter-annotator agreement

As a control, we had 10 of the 13 medical coders* anno-
tate the 30 domain-independent English term pairs in the
tests sets of Rubenstein and Goodenough and of Miller
and Charles using a 10 point scale. This was done to make
sure the medical coders understood the instructions and the
notion of relatedness. The correlation of the medical cod-
ers’ judgments with those of the annotators used by Ruben-
stein and Goodenough was a relatively high value of 0.84.
Similarly, the correlation with the Miller and Charles’s test
set was 0.88. The correlation on the medical test set of 120
concept pairs was 0.51. To derive a more reliable test set we
extracted only those pairs whose agreement was high. This
resulted in a set of 30 concept pairs (displayed in Table 1)
that were then annotated by three physicians and a subset
of 9 medical coders from the 13 who annotated the original
120 pairs. All three physicians are specialists in the area of
rheumatology. The fact that all of them specialize in the
same sub-field of medicine can be helpful in getting good
inter-rater agreement. Each pair was annotated on a 4
point scale: practically synonymous (4.0), related (3.0),
marginally related (2.0) and unrelated (1.0). We have listed
the term pairs and the averaged scores assigned by the phy-
sicians and the experts in Table 1. Term pair 20 (shown in
boldface) has been excluded from the test bed because the
term “‘lung infiltrates” was not found in the SNOMED-
CT® terminology. Thus, the resulting test set consists of
29 pairs; however, we were able to calculate the inter-rater
agreement using all 30 pairs. The average correlation
between physicians is 0.68. The average correlation
between medical coders is 0.78. We also computed the cor-
relation across the two groups after we averaged the scores
each member of the respective groups had assigned to each
pair in the test set. The correlation across groups is 0.85.

6.2. Comparison among measures

We scored each of the 29 test bed pairs using each of the
measures, and then computed the correlation between the
measures’ output and the human expert judgment scores
shown in Table 1. These correlations are shown in Table
2. The highest correlation is achieved by the Context Vec-
tor measure when it is derived only from the IP section of
the clinical notes. This is particularly true in the case of cor-
relation with the physician judgments. The choice of corpo-
ra to use with Context Vector is clearly critical, since the
correlation attained by this measure when using the entire
Mayo Clinic Corpus of Clinical Notes drops considerably.

4 Not all of the experts were always available to us at all times, so the
number of annotators changed from one set of annotations to the next.
No new experts were added, only subtracted based on their availability
and work load.
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Table 1
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Test bed of 30 medical term pairs; sorted in order of the averaged

physicians’ scores

Term 1 Term 2 Physician  Coder
Renal failure Kidney failure 4.0 4.0
Heart Myocardium 33 3.0
Stroke Infarct 3.0 2.8
Abortion Miscarriage 3.0 3.3
Delusion Schizophrenia 3.0 2.2
Congestive heart failure ~ Pulmonary edema 3.0 1.4
Metastasis Adenocarcinoma 2.7 1.8
Calcification Stenosis 2.7 2.0
Diarrhea Stomach cramps 2.3 1.3
Mitral stenosis Atrial fibrillation 2.3 1.3
Chronic obstructive Lung infiltrates 2.3 1.9
pulmonary disease
Rheumatoid arthritis Lupus 2.0 1.1
Brain tumor Intracranial hemorrhage 2.0 1.3
Carpel tunnel syndrome  Osteoarthritis 2.0 1.1
Diabetes mellitus Hypertension 2.0 1.0
Acne Syringe 2.0 1.0
Antibiotic Allergy 1.7 1.2
Cortisone Total knee replacement 1.7 1.0
Pulmonary embolus Myocardial infarction 1.7 1.2
Pulmonary fibrosis Lung cancer 1.7 1.4
Cholangiocarcinoma Colonoscopy 1.3 1.0
Lymphoid hyperplasia Laryngeal cancer 1.3 1.0
Multiple sclerosis Psychosis 1.0 1.0
Appendicitis Osteoporosis 1.0 1.0
Rectal polyp Aorta 1.0 1.0
Xerostomia Alcoholic cirrhosis 1.0 1.0
Peptic ulcer disease Myopia 1.0 1.0
Depression Cellulites 1.0 1.0
Varicose vein Entire knee meniscus 1.0 1.0
Hyperlidpidemia Metastasis 1.0 1.0

The scores represent an averaged relatedness value (scale is 1-4) over all
participating physician and coder annotators.

Table 2

Comparison of correlations across measures for physicians and coders

separately and combined

Measure Phys. Coder Both
Vector (IP only, 1M notes) 0.84 0.75 0.76
Vector (All sect, 1M notes) 0.62 0.68 0.69
Lin 0.60 0.75 0.69
Jiang and Conrath 0.45 0.62 0.55
Resnik 0.45 0.62 0.55
Path 0.36 0.51 0.48
Leacock and Chodorow 0.35 0.50 0.47

Two types of the vector measure are presented—one trained on only the
Impression/Report/Plan section of clinical note and the other trained on

all sections.

In fact, the Context Vector measure based on all the clini-
cal notes performs much like the Lin measure.
We also note that the Context Vector measure produces

a much closer correlation with physicians than with the
medical coders. For all other measures, this is reversed.
We hypothesize that this is due to the nature of the profes-
sional training and activities of the two groups—medical
coders are trained in the use of hierarchical classifications,
while physicians are trained to diagnose and treat patients.

One possible indication from this observation is that the
data contained in the clinical notes may reflect certain
kinds of semantic relations between medical concepts in
the mind of a physician better than a hand-crafted medical
ontology such as SNOMED-CT®. By all means, more
experimentation is necessary to test this hypothesis.

The three information content measures occupied the
middle range of performance, with Lin showing a consid-
erably higher level of correlation to be physicians and
medical coders. Both Jiang and Conrath, and Resnik per-
formed at somewhat lower levels than Lin, and at identi-
cal levels to each other. This is in contrast to direct
evaluations made to the Miller and Charles test set in a
domain-independent setting, where both Budanitsky and
Hirst [8] and Patwardhan et al. [10] report that Jiang
and Conrath achieves much higher levels of correlation
than Lin or Resnik.

The overall success of the vector measure suggests that
an ontology-independent measure can perform at least as
well or better than ontology-based measures. However, in
the same way that the Context Vector measure is strongly
affected by the corpora it is derived from, the same may be
true of the information content measures. An important
avenue for future work is to experiment with using different
portions of the clinical notes and different types of corpora
in arriving at information content estimates.

6.3. Impact of size and type of corpora on Context Vector
measure

The Context Vector measure is the most flexible of the
measures presented here, and as such requires that a num-
ber of informed choices be made in order for it to function
effectively. Among the most critical is the amount and type
of corpora to derive the vectors. To determine if the section
types from the clinical notes had an impact on the perfor-
mance of the Context Vector measure, we experimented
with the four section types when using a 100K word por-
tion of the clinical notes. Table 3 displays the correlation
of the Context Vectors derived from these different sec-
tions, sorted in order of correlation with the physicians.

The best correlation is achieved on the corpus compiled
from the IP sections, closely followed by DX. This is not
surprising as the IP section contains the diagnostic infor-
mation pertinent to the patient’s condition and intuitively
should contain more closely related terms than other sec-
tions. The DX section is a summary of the IP section in
that it only contains the diagnoses without additional
descriptions. It is interesting to note that each of the sub-
sections result in better performance than context vectors
derived from the entire corpus Table 4.

To evaluate the impact of the size of the corpora on the
Context Vector measure, we ran experiments with the Con-
text Vector measure on varying amounts of the Mayo Clin-
ic Corpus of Clinical Notes ranging from 100,000 to 1
million words. For these experiments, we used data from
four sections of the clinical notes—Chief Complaint
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Table 3
Correlation of the Context Vector measure derived from different sections
of a 100K portion of the Mayo Clinic Corpus of Clinical Notes

Section Physicians Coders Both # Tokens
1P 0.56 0.59 0.60 10,883,117
DX 0.53 0.55 0.56 490,417
CcC 0.47 0.53 0.53 956,438
HPI 0.46 0.54 0.56 7,487,209
ALL 0.41 0.53 0.51 21,593,156
Table 4

Descriptive statistics (size and overall number of tokens) for varying sized
portions of Mayo Clinic Corpus of Clinical Notes

# of Notes Matrix size # of Tokens
100K 32594 x 32594 21,593,156
200K 43179 x 43179 43,459,602
300K 50928 x 50928 66,176,995
400K 57328 x 57328 88,885,380
500K 62733 x 62733 111,019,453
600K 64910 x 64910 133,719,224
700K 67382 x 67382 156,467,734
800K 69883 x 69883 179,114,059
900K 72911 x 72911 206,489,197
1000K 75195 x 75195 232,080,038

(CC), History of Present Illness (HPI), Impression/Plan
(IP) and Final Diagnosis (DX).

The number of words in each sized portion of the clini-
cal notes is shown in Table 3. The number of words
(tokens) is found by excluding all words that occur less
than five times and more than 1000 times. The matrix size
indicates the number of unique words that are found given
those cutoffs. For example, there are 32,594 distinct word
types found in the 100,000 word portion of the clinical
notes. The co-occurrence matrix used in the Context Vec-
tor measure is symmetric, meaning that a word vector is
created for every word in the corpus that occurs in the des-
ignated frequency range, and two words are said to co-oc-
cur with each other when they are on the same line of text.
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Fig. 2. Correlation of Context Vector measure with human experts across
different training corpus sizes. The trendline is fitted to the results obtained
by physicians on a logarithmic scale.

Test results relative to the test set of 29 term pairs are
shown in Fig. 2. The overall trend suggests that the corre-
lation between relatedness judgments of the Context Vec-
tor measure and those of human experts improves with
larger amounts of data, where 300K size appears to be
the point where gains level off. Fig. 2 shows the correlation
of the Context Vector measure with the scores of the phy-
sicians and medical coders separately, as well as combined
scores averaged across both groups. The log line shows the
overall improvement with corpus size.

7. Limitations

Certain limitations of this work must be mentioned to
facilitate the interpretation of the results. The main limita-
tion of this research is the relatively low inter-annotator
agreement on the initial set of 120 term pairs we compiled
to create the test set. To address this limitation, we focused
on the main goal of our project which was to compare sev-
eral established measures of similarity and relatedness that
are based on manually compiled ontological knowledge
sources to an ontology-independent method. In the context
of these comparisons, we felt it was justified to take a sub-
set of 30 of the 120 pairs that were agreed upon by the
majority of the annotators. Thus, this smaller set is more
reliable but is clearly biased towards ‘“easy’” term pairs.
The correlation values reported in this paper cannot be
interpreted in absolute terms; however, the reduced test
set can be used to establish relative performance of differ-
ent measures.

8. Conclusions and future work

In this article, we have shown the efficacy of adapting
measures of semantic similarity and semantic relatedness
measures developed for domain-independent English to a
specialized subdomain of biomedicine represented by
SNOMED-CT®. We have also shown that the ontology-in-
dependent Context Vector measure is at least as effective
other ontology-dependent measures, provided that there
is a large enough corpus of unlabeled training data avail-
able. This finding is important because developing special-
ized ontologies such as WordNet, SNOMED-CT® or
UMLS® is a very labor intensive process. Also, there are
some indications that manually constructed ontology
may not fully reflect the reality of semantic relationships
in the mind of a practicing physician. The vector based
measure can help alleviate these problems in addition to
the benefit of rapid adaptation to a new domain.

In the near future, we plan to extend the measures of
relatedness to use the UMLS® as a source of the ontolog-
ical relations for path-based measures, and to use the
UMLS definitions for the context vector measure. We also
would like to experiment with applications of semantic
relatedness measures to NLP tasks such as word-sense dis-
crimination, information retrieval and spelling correction,
in the biomedical domain.



298 T. Pedersen et al. | Journal of Biomedical Informatics 40 (2007) 288-299

Acknowledgments

We thank the Mayo Clinic Medical Index staff as well as
Dr. Alexander Ruggieri, Dr. Peter Kent and Dr. Auet-
havekiat Paranee for their contribution to the annotation
of the test pairs. Dr. Ted Pedersen’s role in this work has
been partially supported by a National Science Foundation
Faculty Early CAREER Development Award (#0092784).
This work was also supported by the NLM Training Grant
in Medical Informatics (T15 LM07041-19) and the NIH
Roadmap Multidisciplinary Clinical Research Career
Development Award Grant (K12/NICHD)-HD49078.

References

[1] Rubenstein H, Goodenough J. Contextual correlates of synonymy.
Communications of the ACM 1965;8:627-33.

[2] Miller G, Charles W. Contextual correlates of semantic similarity.
Language and Cognitive Processes 1991;6(1):1-28.

[3] Resnik P. Using information content to evaluate semantic similarity
in a taxonomy. In: Proceedings of the 14th international joint
conference on artificial intelligence. Montreal, Canada; 1995. p. 448—
53.

[4] Lin D. An information-theoretic definition of similarity. In: Pro-
ceedings of the 15th International Conference on Machine Learn-
ing. Madison, WI; 1998. p. 296-304.

[5] Jiang J, Conrath D. Semantic similarity based on corpus statistics and
lexical taxonomy. In: Proceedings of the 10th international confer-
ence on research in computational linguistics, Taipei, Taiwan; 1997.
p. 19-33.

[6] Patwardhan S, Pedersen T. Using WordNet-based context vectors to

estimate the semantic relatedness of concepts. In: Proceedings of the

EACL 2006 workshop, making sense of sense: Bringing computa-

tional linguistics and psycholinguistics together. Trento, Italy; 2006.

p. 1-8.

Rosario B, Hearst M. Classifying semantic relations in bioscience

texts. In: Proceedings of the 42nd annual meeting of the association

for computational linguistics. Barcelona, Spain; 2004. p. 430-7.

Budanitsky A, Hirst G. Semantic distance in WordNet: an experi-

mental application oriented evaluation of five measures. In: Proceed-

ings of the NACCL 2001 Workshop: on WordNet and other lexical
resources: Applications, extensions, and customizations. Pittsburgh,

PA; 2001. p. 29-34.

Resnik P. WordNet and class-based probabilities. In: Fellbaum C,

editor. WordNet: An electronic lexical database. Cambridge,

MA: MIT Press; 1998. p. 239-63.

[10] Patwardhan S, Banerjee S, Pedersen T. Using measures of semantic
relatedness for word sense disambiguation. In: Proceedings of the
fourth international conference on intelligent text processing and
computational linguistics. Mexico City, Mexico; 2003. p. 241-57.

[11] McCarthy D, Keoling R, Weeds J, Carroll J. Finding predominant
word senses in untagged text. In: Proceedings of the 42nd meeting of
the association for computational linguistics. Barcelona, Spain; 2004.
p. 276-86.

[12] Fellbaum C, editor. WordNet: An electronic lexical database. Cam-
bridge, MA: MIT Press; 1998.

[13] Rada R, Mili H, Bicknell E, Blettner M. Development and
application of a metric on semantic nets. In: IEEE transactions on
systems, man and cybernetics, 1989;19(1): p. 17-30.

[14] Caviedes J, Cimino J. Towards the development of a conceptual
distance metric for the UMLS. J Biomed Informatics 2004;37:77-85.

[15] Lord P, Stevens R, Brass A, Goble C. Investigating semantic
similarity measures across the gene ontology: the relationship
between sequence and annotation. Bioinformatics 2003;19(10):
1275-83.

3
=

o0
=X

=)
X

[16] The Gene Ontology Consortium, Gene Ontology: Tool for the
Unification of Biology. Nat Genet 2000;25:25-9.

[17] Wilbur W, Yang Y. An analysis of statistical term strength and its use
in the indexing and retrieval of molecular biology texts. Comput Biol
Med 1996;26:209-22.

[18] Spasic I, Ananiadou S. A flexible measure of contextual similarity for
biomedical terms, Pacific Biocomputing Symposium 2005;10:197—
208.

[19] Levenshtein V. Binary codes capable of correcting deletions, inser-
tions and reversals. Sov Phys Dokl 1966;10:707-10.

[20] Schiitze H. Automatic word sense discrimination. Comput Linguist
1998;24(1):97-123.

[21] Deerwester S, Dumais S, Furnas G, Landauer T, Harshman R.
Indexing by latent semantic analysis. J Am Soc Inf Sci
1990;41:391-407.

[22] Chute C. Classification and retrieval of patient records using natural
language: an experimental application of latent semantic analysis. In:
Proceedings of the annual international conference of the IEEE
engineering in medicine and biology society. Orlando, FL; 1991. p.
1162-3.

[23] Chute C, Yang Y. An evaluation of concept-based latent semantic
indexing for clinical information retrieval. In: Proceedings of the 16th
annual symposium on computer applications in medical care.
Baltimore, MD; 1992. p. 639-43.

[24] Chute C. The classification of medical events using latent semantic
analysis. In: Advances in classification research vol. 2: Proceedings of
the second ASIS SIG/CR workshop on classification research.
Medford, NJ; 1992. p. 45-51.

[25] Chute C, Yang Y, Evans D. Latent semantic indexing of medical

diagnoses using UMLS semantic structures. In: Proceedings of the

15th annual symposium on computer applications in medical care.

New York City, NY; 1991. p. 185-9.

Evans D, Chute C, Handerson S, Yang Y, Monardch I, Hersh W.

Latent semantics as a basis for managing variation in medical

terminologies. In: Proceedings of the seventh world congress on

medical informatics (MEDINFO °92). Geneva, Switzerland; 1992. p.

1462-8.

Banerjee S, Pedersen T. An adapted Lesk algorithm for word sense

disambiguation using WordNet. In: Proceedings of the third inter-

national conference on intelligent text processing and computational

linguistics. Mexico City, Mexico; 2002. p. 136-45.

Stevenson M, Greenwood M. A semantic approach to IE pattern

induction. In: Proceedings of the 43rd annual meeting of the

association for computational linguistics. Ann Arbor, MI; 2005. p.

379-86.

[29] Raina R, Ng A, Manning C. Robust textual inference via learning

and abductive reasoning. In: Proceedings of the Twentieth national

conference on artificial intelligence. Pittsburgh, PA; 2005. p. 1099-

105.

Burgun A, Bodenreider O. Comparing terms, concepts and semantic

classes in WordNet and the Unified Medical Language System. In:

Proceedings of the NAACL 2001 Workshop: WordNet and other

lexical resources: Applications, extensions and customizations. Pitts-

burgh, PA; 2001. p. 77-82.

[31] SNOMED-CT: Fact sheet. 2004. College of American Pathologists.

[32] Pakhomov S. Modeling filled pauses in medical dictations. In:
Proceedings of the 37th annual meeting of the association for
computational linguistics. College Park, MD; 1999. p. 619-24.

[33] Carnine D, Kameenui E, Coyle G. Utilization of contextual
information in determining the meaning of unfamiliar words. Read
Res Quart 1984;19:188-204.

[34] McDonald S, Ramscar M. Testing the distributional hypothesis: the
influence of context on judgements of semantic similarity. In:
Proceedings of the 23rd annual conference of the cognitive science
society. Edinburgh, Scotland; 2001. p. 611-6.

[35] Wu Z, Palmer M. Verb semantics and lexical selection. In: Proceed-
ings of the 32nd annual meeting of the association for computational
linguistics. Las Cruces, NM; 1994. p. 133-8.

126

=

[y

[27

28

[

[30

=



T. Pedersen et al. | Journal of Biomedical Informatics 40 (2007) 288-299 299

[36] Leacock C, Chodorow M. Combining local context and WordNet WordNet: An electronic lexical database. Cambridge, MA: MIT
similarity for word sense identification. In: Fellbaum C, editor. Press; 1998. p. 305-21.
WordNet: An electronic lexical database. Cambridge, MA: MIT [38] Patwardhan, S. Incorporating dictionary and corpus information into
Press; 1998. p. 265-83. a context vector measure of semantic relatedness. Master of Science
[37] Hirst G, St-Onge D. Lexical chains as representations of context for Thesis, Duluth, MN: Department of Computer Science. Duluth:

the detection and correction of malapropisms. In: Fellbaum C, editor. University of Minnesota; 2003.



	Measures of semantic similarity and relatedness in the biomedical domain
	Introduction
	Related work
	Knowledge sources
	SNOMED-CT reg 
	The Mayo Clinic Corpus of Clinical Notes
	The Mayo Clinic Thesaurus

	Measures of semantic similarity and relatedness
	Path finding measures
	Information content measures
	Context Vector measure

	Experimental data
	Experimental results
	Inter-annotator agreement
	Comparison among measures
	Impact of size and type of corpora on Context Vector measure

	Limitations
	Conclusions and future work
	Acknowledgments
	References


