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Abstract
Objectives—This paper illustrates how Semantic Web technologies (especially RDF, OWL, and
SPARQL) can support information integration and make it easy to create semantic mashups
(semantically integrated resources). In the context of understanding the genetic basis of nicotine
dependence, we integrate gene and pathway information and show how three complex biological
queries can be answered by the integrated knowledge base.

Methods—We use an ontology-driven approach to integrate two gene resources (Entrez Gene and
HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms,
including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL
for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway
resources. The integrated schema is populated with data from the pathway resources, publicly
available in BioPAX-compatible format, and gene resources for which a population procedure was
created. The SPARQL query language is used to formulate queries over the integrated knowledge
base to answer the three biological queries.

Results—Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene
products participate in many pathways or interact with many other gene products. The identification
of the genes expressed in the brain turned out to be more difficult, due to the lack of a common
identification scheme for proteins.

Conclusion—Semantic Web technologies provide a valid framework for information integration
in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible
solution to the integration of large volumes of information. Additional resources, which enable the
creation of mappings between information sources, are required to compensate for heterogeneity
across namespaces.

Resource page—
http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/
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1 Introduction
It is estimated that, worldwide, over one billion people smoke tobacco. The detrimental
consequences of smoking on health are well known and include coronary heart disease, lung
cancer and chronic obstructive pulmonary disease. The heritability of nicotine dependence has
long been established and we know that approximately 40–60% of nicotine dependence is due
to genetic contributions, while the remainder is largely environmental [1–3]. In the past few
years, genome-wide linkage and association studies have identified several candidate genes
(e.g., GABAB2, CHRNA4, DDC, BDNF, and COMT.) [4–6]. Saccone et al. identified and
screened 449 human genes putatively involved with nicotine dependence [6]. In addition to
identifying the genes, it is important to understand their functions and interactions, including
their involvement in biological pathways. For example, from a research management
perspective, identification of “hub” genes (i.e., genes involved in multiple pathways) can help
identify further research efforts.

Complex biological queries generally require the integration of information from several
sources. For example, gene information sources, such as Entrez Gene [7], might need to be
integrated with pathway information sources, such as KEGG (Kyoto Encyclopedia for Genes
and Genomics) [8]. Moreover, comparing results across model organisms requires homology
information (provided for example by HomoloGene [9]). These resources, described in detail
later in section 4.4, are generally cross-referenced, which makes it possible for users to navigate
among them in web-based environments. Interlinking is not the same as integration, however;
and these resources do not support the automatic and high-throughput information processing
required for answering complex queries over large amounts of data from heterogeneous
sources. An effective integration strategy is also critical to support the e-Science paradigm that
is characterized by the large volumes of data generated by industrial-scale in-silico processes
[10].

The first obstacle to integration is the format used for the representation of these information
sources. The resources available from the National Center for Biotechnology Information
(NCBI) Entrez system, such as Entrez Gene and HomoloGene, are available in multiple
formats, including XML. Although XML standardizes the representation of information from
a syntactic perspective, it does not make explicit the relations among the various types of
entities in a given resource or across resources. In other words, although the XML file for
Entrez Gene is machine-processable, it cannot be integrated easily or automatically with other
information sources without human intervention. In contrast, the pathway research community
has created a common, formal knowledge model called BioPAX [11] to represent biological
pathway data. BioPAX also provides an information model for representing those data with
formally defined semantics, which includes explicitly modeling the relationships between
different pathway entities.

Recent research in Semantic Web technologies has delivered promising results for information
integration across heterogeneous knowledge sources [12–15]. In effect, the Semantic Web
provides a robust framework that enables the integration, sharing, and reuse of data from
multiple sources. Additionally, the use of a representation based on a formal language allows
software applications to reason over information. Commonly used Semantic Web technologies
include ontology modeling languages such as Web Ontology Language (OWL) [16], data
models such as the Resource Description Framework (RDF) [17], the SPARQL query language
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[18], and OWL reasoners such as Pellet [19] and Racer [20]. Reasoning tools have been
successfully applied over knowledge bases to address biological and health care problems
[13,21–25].

The objective of this paper is to illustrate how Semantic Web technologies can support
information integration and facilitate the creation of semantically integrated resources, called
semantic mashups, for gene and pathway information. We show how complex biological
queries can be answered by the mashups. More precisely, in the context of understanding the
genetic basis of nicotine dependence, we integrate gene and pathway information in order to
answer the following queries: Which genes participate in a large number of pathways? Which
genes (or gene products) interact with each other? Which genes are expressed in the brain?

The rest of the paper is organized as follows. In section 2, we justify the use of ontology-based
integration and summarize relevant work on the use of Semantic Web technologies in
biomedicine. In section 3, we present the ontological framework we created to support the
integration. The information sources integrated are presented in section 4, along with our
integration strategy. Three biological queries and the corresponding answers extracted from
our knowledge base are explored in section 5. In section 6, we discuss the significance of this
study, as well as its limitations. Our conclusions are presented in section 7. Supplementary
materials, including the set of SPARQL queries used in this study and the EKoM schema, are
available at http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/.

2 Background
In this section, we discuss the rationale for ontology-based integration and summarize relevant
work on the use of Semantic Web technologies in biomedicine.

2.1 Ontology-based data integration
The traditional approach to integrating gene and pathway information is to create a relational
data model that can be used to integrate and store both kinds of data. As the experience of the
biological pathway research community with the BioPAX ontology clearly shows, there are
many advantages to using an ontology as a knowledge representation model for integrating
data from heterogeneous sources [11,22]. One advantage is that the formal semantics of an
ontology enable software applications to interpret ontology instance data consistently and
reason over them. For example, the entities ‘gene’ and ‘molecular function’ are represented in
the ontology, where they are linked by the relationship ‘has_function.’1 At the instance level,
a particular gene (e.g., Chrna4 in mouse) has a particular function (e.g., ‘nicotinic
acetylcholine-activated cation-selective channel activity’). This advantage has been discussed
in a wide range of application domains including national security [26], geographical
information systems [27] and biomedical informatics [28].

Complex biological queries require precisely this kind of reasoning over a large number of
instances. Although scientists can easily interpret the connections among entities, they
generally are unable to process large amounts of data consistently. Conversely, computers can
identify connections in large graphs, but require that relations be explicitly represented. To
identify common pathways among homologous genes from the 449 genes putatively involved
with nicotine dependence, for example, two types of (instance-level) information need to be
extracted from the relevant knowledge bases and processed: homology information and gene-
pathway relations. The corresponding types of entities (here, ‘gene’ and ‘pathway’) and
relations (‘homologous_with’ and ‘involved_in’) must be represented in the corresponding
information model or ontology.

1In this paper, we represent ontology concepts in italics and within single quotes (e.g. ‘pathway’)
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From a theoretical perspective, without a knowledge model associated with the RDF instance
data, the discovery of new knowledge through entailment reasoning will be limited.
(Entailment reasoning rests on the notion that if formula A entails formula B, then every
interpretation satisfying A also satisfies B). Simple RDF interpretation and entailment ignore
the “meaning of any of the names in the graph,” as described in RDF semantics [29]. Moreover,
the W3C RDF semantics recommendation [29] suggests attaching stronger meaning to URI
references to gain maximum value from an RDF graph written “in a particular vocabulary.”
Treating an ontology as a vocabulary, with clearly defined concepts and relationships that are
used to ’type’ instance values, enables class membership-based entailment reasoning. Creating
an RDF graph by using an ontology as the reference knowledge model leads to a “stronger
notion of interpretation and entailment” [29].

The BioPAX ontology provides a common information model based on RDF/XML syntax for
various pathway information sources, including, KEGG, Reactome, and BioCyc. Conversely,
the gene information sources available through NCBI’s Entrez system, for example, Entrez
Gene and HomoloGene, are by design available only in XML format, and no common
information model representing their semantics is provided. We therefore created the Entrez
Knowledge Model (EKoM) to represent NCBI gene information in a formal semantic model.
We then created schema-level mappings between the BioPAX ontology and EKoM, to
integrate the two into a single global schema for representing both gene and pathway data. (The
details are presented in section 3, Ontology creation and schema mapping).

Ontology-based data integration, subscribing to the Local As View (LAV) data integration
theory [30], not only uses the formal semantics of the ontology language, but is also a scalable
and adaptable integration approach. The LAV approach involves the representation of data
from original sources in conformance to a common model or schema such as an ontology. An
important aspect of the LAV approach is that it “favors the extensibility of the system” [30],
which is critical here, as other data sources may be added in the future.

Another significant feature of ontology-based data integration approach is the use of inference
mechanisms for information gain. An ontology is created using a formal language, the
Description Logic– based flavor of OWL (OWL-DL) in the case of BioPAX and EKoM, which
allows the definition of inference rules that can be interpreted and processed by reasoning tools.
Given two genes that interact with one another, for example, we can define an inference rule
to assert a new relationship that exists between their respective proteins products (they either
bind together or form components of a larger biological pathway).

2.2 Related work
In previous work, we successfully created an RDF representation of the complete Entrez Gene
data set [31] by mapping the XML element tags to named relationships. We used XML Path
language [32] with eXtensible Stylesheet Language Transformation (XSLT) [33] approach to
make the conversion from the native Entrez Gene XML representation to RDF. Subsequently,
we integrated this Entrez Gene RDF data with the publicly available Gene Ontology (GO) RDF
dataset. Using a set of rules, we showed how phenotypic and genotypic information can easily
be linked using RDF [31]. Specifically, we demonstrated the existence of a link between the
disease ‘congenital muscular dystrophy’ and GO molecular function ‘glycosyltransferase.’

There is a growing body of research related to the application of Semantic Web technologies
to the life sciences domain [12,14,15,34–36]; this section discusses some of these efforts.
[37] describes work involving the classification of diseases along physio-pathological classes
and the identification of taxonomic relations between diseases using KEGG pathway data and
GO annotations. [13] presents an overview of work by the World Wide Web Consortium
(W3C) Health Care and Life Sciences Interest Group (HCLSIG) on the use of Semantic Web
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technologies toward achieving the vision of “Translational Medicine.” Many interesting
projects were discussed at the World Wide Web (WWW) conference at Banff, Canada, in 2007,
including the use of Semantic Web technologies for mining disease-causing genes through
integration of genome-phenome data [38] and a semantic mashup created by the HCLSIG to
aid neurosciences researchers [21].

These projects are similar to the work described in this paper in that they highlight the use of
Semantic Web technologies such as RDF, OWL and SPARQL to achieve relevant biomedical
objectives using data from heterogeneous sources. The work described in this paper is also a
natural progression from our previous work [31] and the HCLSIG demonstration [21]. Distinct
differences include the use of ontologies as a reference model with associated formal semantics,
schema mapping between EKoM and the BioPAX ontology, and rules to reconcile
heterogeneous instance bases.

3 Ontological framework
In this section, we give a brief presentation of the BioPAX ontology and discuss the design
decisions we made while creating the Entrez Knowledge Model (EKoM). Subsequently, we
describe the mapping we created between the EKoM and the BioPAX ontology.

3.1 BioPAX ontology
The BioPAX ontology was created to model biomolecular pathways [39]. There are two
BioPAX ontology releases namely level 1, which represents only metabolic pathways, and
level 2, which in addition represents molecular interactions, protein post-translational
modifications, and the Protein Standards Initiative–Molecular Interactions (PSI-MI,
http://www.psidev.info/) [40]. The BioPAX ontology, level 2, used in the work described in
this paper, defines pathway data in terms of concepts such as ‘interaction,’ ‘entity,’ or
‘pathway’ (Figure 1) and relationships between them such as ‘pathway_components’ (between
‘pathway’ and ‘interaction’) and ‘participants’ (between ‘entity’ and ‘interaction’). The
BioPAX ontology (level 2) is modeled using the OWL-DL language with DL expressivity of
ALCHON (D) and has 40 classes with 33 object and 37 data type properties.

3.2 Entrez Knowledge Model
Since no formal information model is available for the representation of gene information in
the Entrez family of sources (e.g., from Entrez Gene and HomoloGene), we considered the
following approaches to creating such a model. We could either create a new ontology to
represent gene information from NCBI sources or extend the BioPAX ontology schema to
include the concepts and relationships relevant to gene information sources. We chose not to
extend the BioPAX ontology, since it was created specifically to model bio-molecular
pathways [39]. Our goal in developing the Entrez Knowledge Model (EKoM) is to create a
standalone model specific to NCBI gene information sources, and to integrate it with other
models such as the BioPAX ontology.

Gene records from Entrez Gene contain information about the gene product(s), the
chromosomal location of the genes, the model organisms in which they are found, and the
pathways in which these genes are involved. Each record also contains information such as its
creation date and current status. The entities represented in EKoM correspond to records in
databases (e.g., Entrez Gene records), which we use as a proxy to the corresponding entities
in reality (e.g., genes).

EKoM is modeled using the OWL-DL language with SI DL expressivity (i.e., it uses concept
negation, universal and existential quantification, intersection, and disjunction between
concepts as well as inverse role for relations). There currently are 45 classes defined in EKoM,
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through which we have tried to capture essential data available in Entrez Gene (Figure 2). There
are 11 relationships defined in EKoM as object properties, which link together the classes.
These named relationships are either defined in the UMLS Semantic Network [41] or
specifically created for EKoM. (The relationships defined in reference ontologies, such as the
OBO Relation Ontology [42], were generally too coarse to be useful here.)

Using the example of gene-gene interaction, we describe the modeling approach used for
EKoM. Figure 3 illustrates our approach as applied to a specific gene (CHRNA4). The
interaction information from Entrez Gene records includes the “original” gene (CHRNA4) and
its gene product (cholinergic receptor, nicotinic, alpha 4 subunit), the “interactant” gene
(CHRNB2) and its gene product (neuronal nicotinic acetylcholine receptor beta 2), the textual
description of the interaction (“CHRNA4 (alpha-4) interacts with CHRNB2 (beta-2)”), and a
reference in the form of a PubMed identifier. We modeled this information using the concepts
‘gene,’ ‘interaction,’ ‘gene_product,’ ‘protein_db_identifier,’ and ‘reference.’

3.3 Schema-level integration of EKoM and BioPAX ontology
With the BioPAX ontology, modeling pathway information, and EKoM, modeling gene
information in sources from the Entrez system, we have two information models (or schemas)
that need to be integrated. We found three potentially similar concepts in EKoM and the
BioPAX ontology, namely ‘pathway,’ ‘protein,’ and ‘interaction.’ We chose to reuse the
concepts ‘pathway’ and ‘protein’ in EKoM, as defined in the BioPAX ontology, instead of
redefining them in EKoM. In contrast, although the ‘interaction’ concept is present in both
EKoM and BioPAX, we identified that its meaning was different in the two models. In fact,
BioPAX states “Since [‘interaction’] is a highly abstract class in the ontology, instances of
the interaction class should never be created. Instead, more specific classes should be used.
…” On the other hand, EKoM does not define any subclasses for ‘interaction’ and instantiates
this class directly. Therefore, the concept ‘interaction’ defined in BioPAX ontology was not
reused in EKoM.

We integrated the two schemas by importing the BioPAX definition of the concepts in EKoM
and created relations between EKoM and BioPAX concepts as appropriate. In practice, a gene-
pathway relation is represented as the relation (defined in EKoM) between a gene (EKoM
concept) and a pathway (BioPAX concept). For example, the relation EKoM:gene_6261 →
EKoM:functionally_related_to → bp:KEGGpathway_04730 between the gene CHRNB2
(GeneID: 6261) and the pathway Long-term depression (KEGG: 04730). The global schema
resulting from the mapping between EKoM and BioPAX provides a formal semantic
framework for integrating the data from gene resources and pathway resources at the instance
level. Specifically, it is implemented through class membership relations between specific
entities (e.g., CHRNB2) in these resources and the corresponding concepts in the information
model (e.g. ‘gene’).

3.3.1 Common ontology schema – heterogeneous instance bases—The
availability of pathway information from three large sources (KEGG, Reactome and BioCyc)
conforming to the BioPAX ontology offers a critical advantage in building a semantic pathway
knowledge repository. The assumption, regarding the three instance datasets, is that the
common ontology schema will enable their automatic and seamless integration [22]. In
practice, however, the BioPAX ontology (used as knowledge model for the three resources)
seems to be interpreted slightly differently by each data source provider. In fact, the semantics
of these class properties varies across resources, resulting in heterogeneous instance bases
despite the common ontology schema. More specifically, the instantiation of BioPAX ontology
differs in the following aspects:
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• In KEGG, the URI for ‘pathway’ instances is based on a unique alpha-numeric
identifier. The value of the ‘SHORT-NAME’ property is the KEGG identifier of the
pathway. The value of the ‘NAME’ property is the textual description of the pathway.
Both values are typed as a ‘XML schema
string’ (http://www.w3.org/2001/XMLSchema#string).

• In Reactome, the URI for ‘pathway’ instances is based on the textual description of
the pathway. The values of both ‘SHORT-NAME’ and ‘NAME’ properties are textual
descriptions of the pathway. The pathway identifier is associated with the ‘XREF’
property.

• In BioCyc, the URI for ‘pathway’ instances is based on the BioCyc identifier. The
value of the ‘NAME’ property is the textual description of the pathway. No other
property from the ‘pathway’ concept is used.

As illustrated above, the instantiation of the ‘pathway’ concept in the three pathway resources
under investigation differs in subtle but significant ways. In practice, two major types of issues
are identified. First, ‘pathway’ instances cannot be compared on the basis of their URIs. In
addition, the semantics of the properties of the ‘pathway’ concept in BioPAX (e.g., ‘SHORT-
NAME’) differs across resources. As a consequence, the instance bases for the three resources
are heterogeneous, and ‘pathway’ instances cannot be easily compared on the basis of the value
of these properties.

These heterogeneous instance bases can be potentially reconciled by using related knowledge
such as relationships and values associated with each ‘pathway’ instance. The Pathway
Knowledge Base (PKB) [43] discusses the integration of the three BioPAX conformant data
sources using Jena [44] to create RDF objects to create a unified store. To support querying
across the three data sources, PKB preprocesses the data for syntactic reconciliation including
uniformly converting all BioPAX level 1 references to level 2 and use of a standardized
namespace (http://pkb.stanford.edu). In our work, we focused on semantic reconciliation that
is partially based on syntactic reconciliation (discussed in the next section).

3.3.2 Reconciling heterogeneity among instances—The heterogeneity among
pathway instances is not only syntactic (e.g., different format for the identifiers), but also
semantic. For example, as described in the previous section, the identifier for a pathway
instance in Reactome is the textual description of the pathway, whereas in KEGG it is a unique
alpha-numeric value. We used additional knowledge associated with a pathway instance to
assess whether two instances are semantically identical or not. This additional knowledge
comes from named relationships, for example ‘bp:SHORT-NAME’ and ‘bp:XREF,’ linking the
pathway instance to other entities such as database identifiers and textual descriptions.

For example, as illustrated in Figure 4, although the instances for calcium signaling pathway
are distinct in Entrez Gene and KEGG, we observed that they share the same value (hsa04020)
for the ‘SHORT-NAME’ property. We created a rule to assert the equivalence between the
corresponding instances: if two instances from Entrez Gene and KEGG share the same value
for the ‘SHORT-NAME’ property, then they must be considered as one. Technically, we assert
an ‘owl:sameAs’ relation between the two instances, so that a reasoner can interpret them as
being semantically identical. Similarly, the ‘pathway’ instances from Entrez Gene and
Reactome that share the same value for the ‘XREF’ property values are asserted to be identical.

4 Materials and Architecture
The hypothesis underlying this study is that a mashup of gene and pathway resources created
with Semantic Web technologies will help answer complex biological queries related to the
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genetic basis of nicotine dependence. The primary gene resource to be integrated is Entrez
Gene, while Entrez HomoloGene is used to identify homologous genes in various model
organisms. In addition, three pathway information sources—KEGG, Reactome, and BioCyc
—are also integrated in the mashup. While the three pathway sources are already available in
RDF/XML and conform to the BioPAX ontology schema, the gene resources Entrez Gene and
HomoloGene, available in XML, first need to be converted to RDF, conforming to EKoM, the
information model we created for these resources. Figure 5 describes the procedure for creating
the knowledge base and the overall architecture of the system.

4.1 Mapping nicotine dependence genes to Entrez Gene
The list of human genes described in [6] (henceforth referred to as the original set of genes)
consists primarily of gene names and gene symbols. In addition, chromosomal location is
provided for most genes and a short textual description is provided for some genes. Using tools
from the eUtils family (EFetch and ESearch) [45], we retrieved Entrez Gene records
corresponding to the gene symbols and validated them against ‘Gene Name,’ ‘Organism,’ and
‘Chromosomal location’ fields from the record. For example, the gene symbol SNAP25 maps
unambiguously (when restricted to human genes) to the gene identified by GeneID: 6616 in
Entrez Gene. The mapping was straightforward for 80% of the genes. In 48 cases, however,
multiple records or, more rarely, no records were retrieved from the gene symbol. Ambiguous
symbols were disambiguated manually using additional information such as the gene name or
chromosomal location. For example, TF mapped to both TF and F3 (for which TF is an alias),
and was subsequently disambiguated to TF (GeneID: 7018) using the name “transferrin”. When
no record was found for the gene symbol, the gene name was used instead of the symbol to
query Entrez Gene. For example, the symbol CALCYON did not map to any human genes,
but the corresponding name in the original set (D1 Dopamine Receptor-Interacting Protein)
mapped to the gene DRD1IP (GeneID: 50632). At the end of this process, a unique Entrez
Gene record was found for each of the 449 genes in the list.

4.2 Identifying homologous genes
HomoloGene contains homology data for several completely sequenced eukaryotic organisms
[9]. Entrez Gene records contain HomoloGene identifiers that can be used as pointers to
homologous genes. In addition to Homo sapiens (taxId: 9606), four model organisms were
considered in this study, because they exhibit biological processes known to be related to
nicotine dependence. The model organisms under investigation are Mus musculus (taxId:
10090), Caenorhabditis elegans (taxId: 6239), Danio rerio (taxId: 7955) and Drosophila
melanogaster (taxId: 7227). Beginning with a record in Entrez Gene (e.g., ALDH2, GeneID:
217), a link is found to record 55480 in HomoloGene, from which the Entrez Gene IDs for
homologous genes can be extracted. For example, this HomoloGene record identifies aldh2a
(GeneID: 393462) in zebrafish. Here again, the process of identifying homologous genes from
HomoloGene is completely automated through the use of EFetch. A total of 1,401 gene records
were extracted from Entrez Gene. In addition to the 449 gene records for Homo sapiens, we
retrieved the records for homologous genes in the following model organisms: Mus
musculus (381), Caenorhabditis elegans (99), Danio rerio (364) and Drosophila
melanogaster (108).

4.3 Acquiring gene information
Resources from the Entrez family, including Entrez Gene and HomoloGene, are made available
by NCBI in XML. However, we use RDF/XML for the representation of our integrated gene-
pathway resource. Therefore, we need to convert XML records from Entrez Gene and
HomoloGene to RDF. Moreover, in order to be able to reason over the RDF store, we require
the RDF data to conform to the Entrez Knowledge Model (EKoM) we created for this purpose.
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In other words, entities from the RDF store become instances of the classes and relationships
in EKoM schema.

In previous work [31,46], we developed a method for converting Entrez Gene records from
XML to RDF, based on XPath and XLST stylesheet transformation. The mapping (created
manually) between element tags in XML and properties in RDF is recorded as a set of
transformation rules in the stylesheet. This process transforms a relation, implicitly represented
in Entrez Gene (e.g., between a given gene and its gene product), into a RDF triple in which
this relation is made explicit. Our current works expands this procedure by creating class-
membership relations between the instances in RDF and classes from EKoM. For example,
the relation ‘has_product’ between the gene CHRNA4 (GeneID: 1137) (with XML element
tag ‘<Gene-track_geneid>’) and the protein cholinergic receptor, nicotinic, alpha 4 subunit
precursor (GI: 4502827) (with XML element tag ‘<Prot-ref_name_E>’) is made explicit and
transformed into a RDF triple GeneID: 1137 → has_product→ GI: 4502827, where GeneID:
1137 is an instance of the class ‘gene’ and GI: 4502827 and instance of the class ‘protein’. The
process of populating the ontology is applied automatically using XPath to all the gene records.
Since, the ontology population procedure is underpinned by EKoM, the consistency of the
resulting knowledge base is ensured. The set of triples resulting from the conversion constitutes
an RDF graph. The EKoM instance base is a ‘grounded’ RDF graph [29] as no blank
(anonymous) nodes are created during the ontology population process.

4.4 Acquiring pathway information
The sources of pathway information used in this study include KEGG (Kyoto Encyclopedia
for Genes and Genomics) [8], Reactome [47] and BioCyc [48]. As mentioned earlier, these
three resources share a common information model, the BioPAX ontology, and are available
in RDF, conforming to either version 1 or 2 of the BioPAX ontology.

KEGG is a large resource created by the Kanehisa Laboratories in the Bioinformatics Center
of Kyoto University and the Human Genome Center of the University of Tokyo. KEGG
contains information for various model organisms about molecular interactions, reaction
networks, cellular processes and human diseases. We restricted the extraction of KEGG data
to the five organisms under investigation. KEGG is available in BioPAX level 1 format.

Reactome is a curated knowledgebase of biological pathways resulting from collaboration
among Cold Spring Harbor Laboratory, the European Bioinformatics Institute, and the Gene
Ontology Consortium. Reactome contains various types of pathways, including metabolic,
signaling, replication and regulation processes. Human pathway information in Reactome is
manually curated, whereas non-human pathway information is generated by electronic
projection and ortholog mapping. Importantly from an integration perspective, Reactome
contains cross-references to other biological resources, including KEGG, UniProt and Entrez
Gene. We restricted the extraction of Reactome data to four files corresponding to humans,
C.elegans, mouse and fruit fly. Reactome is available in BioPAX level 2 format.

BioCyc is a collection of pathway/genome databases of predicted and curated metabolic
pathways for many organisms created by the SRI Bioinformatics Research Group. The data in
BioCyc is categorized based on the level of curation, namely Tier 1 (with at least one year of
literature-based human curation), Tier 2 (with less than one year of literature-based curation)
and Tier 3 (predicted pathways that have not undergone any curation). Two files, corresponding
to humans (HumanCyc, from Tier 2) and fruit fly (from Tier 3), were integrated into the
knowledge base. (The files for other organisms were not available from BioCyc site at this
time). BioCyc data is available in BioPAX level 1 format.
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As noted above, the three resources use different version of the BioPAX format. KEGG and
BioCyc use level 1, while Reactome uses level 2. In order to ensure syntactic operability
between the three pathway resources, we followed the approach suggested in [43] and
converted all BioPAX namespace references in KEGG and BioCyc to the BioPAX level 2
namespace.

4.5 Implementation
The Oracle 10g database management system provides native support for RDF and was used
as our RDF store. Oracle also provides support for querying RDF triples, rule indices and
indexing options for optimization. The total number of RDF triples generated in the knowledge
base is about 1.5 million, with the 334,438 triples from Entrez Gene; 695, 301 triples from
Reactome; 175, 160 triples from BioCyc and 352, 793 triples from KEGG. The instance files
were converted to N3 format (using the Jena API [44]) prior to being loaded into the Oracle
store. The total time taken for this process was about one hour. Three indexes were created,
one for each of the three components of an RDF triple: ‘subject,’ ‘object,’ and ‘predicate.’
Using the Oracle implementation of the SPARQL query language [18], a set of queries was
executed against the knowledge base. The average query time was about 30 seconds with the
indexes in place.

5 Queries and results
The integrated resource we created from gene and pathway information can be seen as large
graph in which the nodes are instances of the classes in the BioPAX and EKoM ontologies
(e.g., genes, proteins, pathways, model organisms) and the edges are semantic relationships
among these instances. This graph can be queried with query languages such as SPARQL. In
practice, a SPARQL query is the formal representation of constraints on the graph. Evaluating
the query against the RDF graph consists in the identification of the patterns in the graph that
satisfy the query.

This work was motivated by the following three complex biological queries regarding the 449
genes putatively involved with nicotine dependence: Which genes participate in a large number
of pathways? Which genes (or gene products) interact with each other? Which genes are
expressed in the brain? In order to answer these questions, we created SPARQL queries, which
we executed against the integrated gene-pathway resource in RDF. In this section, we present
the rationale for these queries, the approach we used, and the results we obtained.

5.1 Which genes participate in a large number of pathways?
Rationale—This query seeks to identify hub genes, that is, those genes involved in a large
number of pathways. These genes are most likely to play a particularly important role in
biological systems. Downstream effectors, or proteins in the pathway, are also important as
they represent the part of a particular pathway that is “closer” to the phenotypic effect of that
pathway. Therefore, the objectives of this query are to 1) confirm the existence in the
knowledge base of known hub genes, 2) identify proteins with which those hub genes’ products
interact or affect, both immediate and downstream, and 3) identify new candidates for further
experimental studies.

Approach—For the 449 genes from the original set and their homologs in four model
organisms, the RDF graph is explored to find all pathway entities from the three pathway
resources. The list of genes is then ranked by the number of pathways in which the genes are
involved.
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Results—Table 1 lists the top 10 hub genes in the five model organisms under investigation.
MAPK1 and MAPK3 are involved in as many as 30 pathways in Homo sapiens, including
Axon guidance and Glioma. Homology information is not always available. N/A indicates that
no homologous gene is present in HomoloGene for a given gene. In many cases, no pathway
information is recorded for zebrafish, despite the presence of homology information (indicated
by 0).

In most cases, the hub genes in humans (Homo sapiens) are the same as hub genes in mouse
(Mus musculus) and, to a lesser extent, in the other model organisms. However, pathways
specific to a particular organism may reveal a feature specific to this organism or indicate a
gap in the knowledge of other organisms. For example, although most of the pathways for
CALM3 are common to human and mouse, one of them (Reactome Event: Metabolism of
carbohydrates, identified by 71387) is specific to human. When no pathway information is
available for a given gene in an organism, it is not possible to distinguish between the absence
of study for this pathway in a given organism and a negative finding (i.e., the absence of
participation of this particular gene in the pathway).

Using the information returned by this query, we created a gene-pathway network for human
genes, involving 247 genes from the original set and 112 pathways (Figure 6). Four of the
genes MAPK1, MAPK3, MAP2K1, and CREBBP, involved in many pathways, are found at
the center of a cluster of pathways, which provides a graphical rendering of the information in
Table 1. The same view also clearly shows those pathways in which many genes from the
original set participate (e.g., SNARE interactions in vesicular transport and Calcium signaling
pathway).

5.2 Which genes (or gene products) interact with each other?
Rationale—This query also seeks to identify “hub genes”, but from the perspective of gene
interaction. These genes might play a particularly important role in nicotine dependence,
especially if the genes with which they interact also belong to the original set. This query forms
the basis for establishing networks of interacting genes.

Approach—Interactions among genes from various knowledge bases (HPRD, BIND,
BioGrid, etc.) are recorded in Entrez Gene. A given interaction between two genes (as
represented by an interaction of their gene products, or proteins) is often reported multiple
times (e.g., in different sources or with different supporting evidence in the same source). For
the 449 genes form the original set and their homologs in four model organisms, the RDF graph
is explored to find all interactions (between one gene from the original set and another gene),
with the number of mentions for each interaction. The list of genes is then ranked by the number
of mentions. This query takes advantage of the modeling characteristics presented in Section
3.2.1 (EKoM schema design). More specifically, the query uses the relationship defined
between two genes that are related to another gene through the property
‘have_common_pathway.’

Results—Five genes from the original set (CALM1, HSP90AA1, GRIN1, SNAP25 and
STX1A) interact with more than ten other genes each. Figure 7 shows an interaction network
derived from the results of this query for the 449 human genes in the original set. The five top
hub genes are highlighted in the network. Table 2 lists the top six interactions with the highest
number of mentions. Of note, Table 2 includes mentions of interactions that are not explicitly
listed in the gene records from Entrez Gene, but rather revealed from the integrated knowledge
base through the harmonization (reconciliation) of interaction identifiers across sources. For
example, the gene SNAP 25 [Homo sapiens] (geneID: 6616) has fifty reported interactions in
the Entrez Gene record. Forty seven additional mentions (but no additional interactions) are
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found for this gene in our integrated resource. Figure 8 shows all interactions for the gene
SNAP25, along with the number of mentions for each interaction.

5.3 Which genes are expressed in the brain?
Rationale—The neurobiology of nicotine dependence has already shown strong connections
with various neurotransmitters in the central nervous system. Therefore, we want to identify
those genes from the original set that are known to be expressed in various parts of the brain
in order, for example, to focus subsequent experimental studies that could then examine gene
function.

Approach—Although specific tissues may be mentioned in textual descriptions in the Entrez
Gene record and would be amenable to text mining techniques, no explicit links to tissues can
be easily and reliably processed. In contrast, the BioPAX ontology models the anatomical or
tissue location using classes such as ‘bioSource’ and properties such as ‘TISSUE,’ both linked
to ‘protein.’ Starting from a gene from Entrez Gene, we can thus follow its links to proteins
(‘gene’ → ‘has_product’ → ‘protein’). As mentioned in section 3.3.1, ‘protein’ is common to
EKoM and BioPAX and bridges between gene resources (our starting point) and pathway
resources (where we find the information about tissues). However, although the concept
‘protein’ is shared by EKoM and BioPAX (at the schema level), protein instances from Entrez
Gene and the pathway resources use distinct identification schemes (URIs). As a consequence,
it is not possible to automatically exploit tissue information in relation to genes.

Results—Because of heterogeneity in the identification of protein instances, our query did
not return any results. However, we verified that if protein instances were reconciled (e.g.,
through the use of a protein-centric integrative resource such as UniProt), we would be able to
link genes to tissues. For example, in Reactome, the protein Catechol O-methyltransferase
instance is represented as
‘UniProt_P21964_Catechol_O_methyltransferase__EC_2_1_1_6_.’ On the other hand, the
Entrez Gene record identified the protein through its name ‘catechol-O-methyltransferase.’
We manually created a mapping between the two instances (as we did to reconcile pathway
instances), which enabled the traversal of the RDF graph from ‘gene_1312’ (COMT Catechol
O-methyltransferase) → ‘ekom:has_product’ → ‘catechol-O-methyltransferase’ →
‘bp:COMMENT’ → ‘….TISSUE SPECIFICITY: Brain, liver, placenta, lymphocytes and
erythrocytes…‥’ Here again, the comment field needs to be parsed for keywords such as ‘brain,’
a feature supported by RDF. However, the semantics of this text field is explicit (TISSUE
SPECIFICITY). The results are therefore likely to be reliable.

6 Discussion and Future Work
6.1 Technical significance

The ontology-driven framework for creating integrated knowledge bases outlined in this paper
is flexible, sustainable and extensible. Answering complex biological questions typically
requires manual work or the development of specific software. In contrast, we showed that the
integrated resource we created can be used to answer various types of questions, demonstrating
the flexibility of our approach. Because manual intervention is required only for the creation
of the ontology and linkage between XML element tags and classes and relationships from the
ontology, it is possible to process large volumes of data automatically and to update sources
frequently. Our effort is therefore likely to be sustainable. Finally, additional information
sources (e.g., transcriptome resources such as UniGene and proteome resources such as
UniProt), can easily be added to the integrated resource by extending the ontology or integrating
with other ontologies to accommodate new types of instances.
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Some key issues encountered in this study are worth discussing and include the central role
played by the ontology in typing instances, the inference of new knowledge (i.e., information
gain) and the reconciliation of heterogeneous instances. But first, we want to emphasize the
benefit of using Semantic Web technologies for data integration.

Semantic Web technologies vs. traditional approaches—This study showcases
Semantic Web technologies, but could have been realized with traditional approaches as well
(e.g., using relational databases techniques). In our experience, Semantic Web technologies
offer a simpler, adaptable and scalable approach to integrating biological data. In [49] we
discussed the three main data integration approaches, namely, data warehousing, navigational
integration and mediator-based integration. The data warehousing approach, such as GUS
[50], involves importing and storing data locally in a common format. Navigational integration,
exemplified by Entrez [51], creates cross-references that enables users to navigate across
different data sources, interlinking resources without really integrating them. In mediator-
based integration, such as in TAMBIS [14], queries are rewritten by the system before being
executed against remote data sources. The approach proposed in this paper is based on Semantic
Web technologies, but shares some of the features of the traditional approaches. It requires the
various data sources to be converted into a common format, here RDF. The RDF store
constitutes a large graph and links among entities are reminiscent of navigational integration.
Finally, our approach relies on ontologies to support inference, which is also a feature of many
mediator-based systems.

There are, however, several key differences between our approach and traditional data
integration methods. The benefit of using Semantic Web technologies for biological data
integration can be outlined as follows. Unlike databases, Semantic Web technologies provide
built-in support for inference (e.g., subsumption reasoning), making it possible to infer new
knowledge from existing knowledge sources (discussed later in this section). Ontologies are
more expressive than database schemas and can be extended more easily. Moreover, unlike
database schemas, ontologies provide a representation of entities and the relations among them
that is independent of storage considerations. For these reasons, we believe that an RDF store
organized around an ontology provides a simpler model and is easier for a biologist to
conceptualize and query.

Although the query time was generally longer with our RDF store than expected with well-
tuned relational databases, the advantages of Semantic Web technologies discussed above
clearly outweigh the performance issues observed in our study. Moreover, the query time
presented here must be understood as the lower bound of performance, because limited
resources were spent on optimization in this feasibility study.

Typing instances—A reference model with well-defined, formal semantics is essential to
the creation of an effective knowledge repository. XML only provides data types such as
‘string’, which cannot be used for reasoning purposes. It is virtually impossible, for example,
to extract all instances of proteins from the Entrez Gene XML file. Therefore, in the absence
of an ontology, only particular instances can be queried, not classes of instances. In contrast,
typing the instances from information sources with concepts from an ontology through class-
membership relations makes it possible to easily query all instances of a given class. Query 1
presented in section 5.1 (Which genes participate in a large number of pathways?) can be used
to illustrate this feature. In this query, we need to traverse the graph to find what genes are
related to pathways through the relationship ‘functionally_related_to.’ In the absence of an
ontology to type gene instances, the entry point to the graph would necessarily be an individual
gene and 449 such queries would need to be issued to find all gene-pathway associations for
the 449 genes from the original set. In contrast, with all instances of genes typed with the class
‘gene’ from the ontology and all instances of pathways typed with the class ‘pathway’ from
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the ontology, this biological question requires only one query to extract all relations between
instances of the class ‘gene’ and instances of the class ‘pathway’ through the relationship
‘functionally_related_to.’ Moreover, it does not matter whether or not the
‘functionally_related_to’ is used elsewhere in the ontology, as queries can put constraints on
its domain and range.

Inferring new knowledge—One significant advantage of typing instances with classes
from an OWL DL-based ontology is the ability to infer new knowledge from the gene-pathway
knowledge base. This feature can be illustrated by the results of Query 2 presented in section
5.2 (Which genes (or gene products) interact with each other?). Although we did not discover
any new interactions, we found additional mentions for some interactions, not recorded in
Entrez Gene. In fact, additional mentions for existing interaction are important, as they increase
our confidence in the existence of these interactions. These additional mentions were inferred
by transitivity (i.e., if interaction identifier I identifies the interaction of gene A with gene B
and the same interaction identifier I also identifies the interaction of gene B with gene C; then
it can be inferred that gene A and gene C also interact). Information gain through entailment
reasoning is an important advantage of ontology-based data integration. As shown in the
example above, information gain can be implemented through rules on the knowledge base.
The new information inferred from these rules is added to the knowledge base and extends it.
Although no new interactions were discovered here, the example above illustrates the potential
of ontology-based inference from biological information sources.

Reconciling heterogeneous instances—One important issue encountered in this study
and, more generally, inherent to Semantic Web approaches to integrating resources, is the
absence of a central authority or universal framework for identifying and reconciling instances.
For example, the pyruvate metabolism pathway is identified by 00620 in KEGG and 71406 in
Reactome. When both instances are present in an Entrez Gene record (e.g., GeneID: 4191),
nothing indicates they both refer to the same pathway entity. A knowledge base created from
Entrez Gene is therefore likely to contain heterogeneous instances, limiting the quality of
integration.

One solution to this problem would be for the community to create a resolution service for
instances, which could take the form of a common registry. This approach would be costly and
difficult to maintain as the resources to be integrated evolve. Alternatively, reconciliation can
be implemented locally and automatically if rules can be created from the information available
in the sources. We used the latter approach in this study. As mentioned in section 3.3.2,
instances referring to the same entity in different sources were identified automatically by
leveraging cross-reference information and linked together using the ‘owl:sameAs’property.

6.2 Significance for biologists
Today, a major contribution of information technologies to biology remains facilitating the
work of biologists by enabling them to integrate information from heterogeneous sources and
process large amounts of data. This integration then can facilitate the generation of new
hypotheses about biological significance to be confirmed by future experiments.

We showed that it was possible to integrate gene and pathway information into a common
framework and to reason over the integrated resources, taking advantage of an ontology to
ensure the consistency of and facilitate queries against the knowledge base we created. We
also showed that standard tools and technologies could support various types of queries and
that the information returned by these queries could be easily converted to produce the kinds
of representations used by biologists (e.g., interaction networks created with Cytoscape).
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Among the 449 genes from the original set, only 247 are linked to pathways described in the
three sources integrated in our knowledge base (Figure 6). Analogously, gene-gene interactions
are recorded in our resources for only 219 genes from the original set (Figure 7). In addition
to hub genes, likely to play a particularly important role in biological systems, the genes
identified by genome-wide linkage and association studies as potentially related to nicotine
dependence for which no interactions to other genes and links to pathways are currently
recorded probably deserve the attention of researchers.

This study exploits existing knowledge and was not expected to result in any new findings.
However, our findings corroborate analyses of some of the same sources (e.g., KEGG)
independently conducted by other researchers using different techniques [52]. For example,
the pathways Neuroactive ligand-receptor interaction and Calcium signaling pathway
highlighted in Figure 6 are also mentioned by [52] as being significantly enriched for addiction-
related genes. The genes from the MAPK group and the CREBBP gene, which form a cluster
of hub genes in Figure 6 are also cited by [52]. Analogously, the five pathways listed by [52]
in relation with nicotine dependence (Neuroactive ligand-receptor interaction, Long-term
potentiation, GnRH signaling pathway, MAPK signaling pathway and Gap junction) are all
present in our dataset and all appear to be linked to at least 15 genes from our original dataset.

6.3 Limitations and future work
The study presented here has several limitations, which we plan to address in the future,
regarding the heterogeneity of instances, the identification of anatomical information and the
absence of integration between structured information sources and the biomedical literature.

Heterogeneity of instances—As mentioned earlier, the presence in the knowledge base
of distinct instances referring to the same entity results in limited integration between
information sources. In this study, we observed this phenomenon mostly for proteins and
pathways. Proteins were generally identified by their name, making it difficult to match them
exactly and reliably across resources. Pathways, on the other hand, were generally identified
with identifiers local to a given resource, making it impossible to relate them across sources
in the absence of a mapping service. We solved the problem in part for pathways by exploiting
the cross-reference information provided in some sources, such as Reactome. We would need
to integrate additional information sources to bridge across namespaces for proteins. We plan
to integrate UniProt for this purpose.

Anatomical information—The reason why Query 3 (Which genes are expressed in the
brain?) was not successful is not because of the absence of anatomical information, but rather
because it was extremely difficult to bridge between proteins across resources due to instance
heterogeneity. Moreover, extracting anatomical information from the comments field in
Reactome, related to the ‘protein’ concept in pathway resources by ‘bp:COMMENT’
relationship, was possible, but not straightforward, as the field had to be parsed for keywords.
However, had proteins been perfectly integrated and anatomical information been present in
a specific string, queries would still have been suboptimal, due to the absence of a reference
ontology of anatomy. In fact, to a biologist, the query “expressed in the brain” is actually a
shortcut for “expressed in the brain or any of its parts.” An ontology of anatomy such as the
Foundational Model of Anatomy [53] would support the expansion of the query by exploiting
subclass and partonomic relations among anatomical entities. More generally, reasoning over
specialized information sources such as gene and pathway resources often benefits from
reference ontologies for domains such as anatomy, diseases, and drugs.

Integrating knowledge extracted from the biomedical literature and structured
knowledge bases—This work is a pilot contribution to the Biomedical Knowledge
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Repository under development at the U.S National Library of Medicine (NLM) as part of the
Advanced Library Services project [54]. This repository integrates knowledge not only from
structured resources (database and knowledge bases), but also from the biomedical literature
(e.g., MEDLINE), in order to support applications, including knowledge discovery. This study
is limited to the information extracted from five structured information sources. However, we
are working on the integration of knowledge extracted from MEDLINE citations. To select the
appropriate corpus from MEDLINE, we plan to use not only a PubMed search on “nicotine
dependence,” but also the list of PubMed identifiers (PMIDs) cited as evidence by the curators
of the pathway information sources. Combining these two sources of information, structured
and unstructured, is expected to fill the gaps observed in pathway resources for some
organisms.

7 Conclusion
Semantic Web technologies provide a valid framework for information integration in the life
sciences. We illustrated how two gene information sources (Entrez Gene and HomoloGene)
and three pathway information sources (KEGG, Reactome and BioCyc) can be integrated into
a knowledge base using RDF for its representation. Ontology-driven semantic integration
represents a flexible, sustainable and extensible solution to the integration of large volumes of
information. Because instance entities are typed with classes from the ontology, ontology-
driven integration ensures the consistency of the knowledge base and facilitates the query
process. For example, we showed that queries could be formulated for the class ‘gene’ as a
whole, not only for individual gene instances. This work also illustrates the versatility of the
integration framework, as no specific tools are required to produce results that can be imported
in the tools used by biologists for visualization purposes. The limitations encountered in this
study can be compensated for by integrating additional resources to bridge across namespaces
(e.g., UniProt), to support reasoning (e.g., anatomical ontologies), and to broaden the scope of
information sources (e.g., with information extracted from the biomedical literature).
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Figure 1.
Top-level BioPAX concepts and relationships (Protégé TGViz plug-in diagram with 1-level
fan-out)
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Figure 2.
Top level concepts and relationships of EKoM
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Figure 3.
Interaction between genes modeled in EKoM (using gene 1137 and 1141 as examples)
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Figure 4.
Reconciling KEGG and EKoM pathway instances through a rule
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Figure 5.
Overview of the creation process for the gene pathway knowledge base
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Figure 6.
Gene-pathway network for the genes from the original set
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Figure 7.
Interaction network among the genes putatively involved with nicotine dependence (hub genes
are highlighted and labeled)
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Figure 8.
Interaction network for the genes interacting with SNAP25 (the labels on the edges represent
the number of mentions for each interaction)
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Table 2
List of six gene-gene interactions, among the 449 genes putatively involved with nicotine dependence, with the largest
number of mentions (human genes)

Gene-gene interaction Number of
mentions

1.
NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid
receptor) (GeneID: 2908) – 12AR androgen receptor (dihydrotestosterone receptor; testicular feminization;
spinal and bulbar muscular atrophy; Kennedy disease) (GeneID: 367)

2 SNAP25 synaptosomal-associated protein, 25kDa (GeneID: 6616)– 11STX1A syntaxin 1A (brain) (GeneID: 6804)

3. SNAP25 synaptosomal-associated protein, 25kDa (GeneID: 6616) – 10VAMP8 vesicle-associated membrane protein 8 (endobrevin) (GeneID: 8673)

4.
NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid
receptor) (GeneID: 2908) – 10
NR3C2 nuclear receptor subfamily 3, group C, member 2 (GeneID: 4306)

5.
PTGES3 prostaglandin E synthase 3 (cytosolic) (GeneID: 10728)–

10HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A member 1
(GeneID: 3320)

6.
NCOA1 nuclear receptor coactivator 1 (GeneID: 8648) –

10AR androgen receptor (dihydrotestosterone receptor; testicular feminization;
spinal and bulbar muscular atrophy; Kennedy disease) (GeneID: 367)
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