

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-26T07:06:35Z

Some rights reserved. For more information, please see the item record link above.

Title
Infrastructure for Dynamic Knowledge Integration --
Automated Biomedical Ontology Extension Using Textual
Resources

Author(s) Nováek, Vít; Handschuh, Siegfried; Davis, Brian

Publication
Date 2008

Publication
Information

Vit Novacek, Loredana Laera, Siegfried Handschuh, Brian
Davis "Infrastructure for Dynamic Knowledge Integration --
Automated Biomedical Ontology Extension Using Textual
Resources", Journal of Biomedical Informatics, 41(4), 2008.

Publisher Elsevier

Link to
publisher's

version
doi:10.1016/j.jbi.2008.06.003

Item record http://hdl.handle.net/10379/628

DOI http://dx.doi.org/10.1016/j.jbi.2008.06.003

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Infrastructure for Dynamic Knowledge

Integration – Automated Biomedical Ontology

Extension Using Textual Resources

Vı́t Nováček, Loredana Laera, Siegfried Handschuh, Brian Davis a,b,a,a

aDigital Enterprise Research Institute

National University of Ireland, Galway

IDA Business Park, Lower Dangan, Galway, Ireland

bDepartment of Computer Science

University of Liverpool, UK

Abstract

We present a novel ontology integration technique that explicitly takes the dynam-
ics and data-intensiveness of e-health and biomedicine application domains into ac-
count. Changing and growing knowledge, possibly contained in unstructured natural
language resources, is handled by application of cutting-edge Semantic Web tech-
nologies. In particular, semi-automatic integration of ontology learning results into
a manually developed ontology is employed. This integration bases on automatic
negotiation of agreed alignments, inconsistency resolution and natural language
generation methods. Their novel combination alleviates the end-user effort in the
incorporation of new knowledge to large extent. This allows for efficient application
in many practical use cases, as we show in the paper.

Key words: dynamic ontology integration, ontology evolution, ontology alignment
and negotiation, ontology learning, biomedical ontologies, knowledge acquisition,
lifecycle

1 Introduction

Ontologies (formal knowledge bases) on the Semantic Web are often very likely
subject to change given the dynamic nature of domain knowledge. Knowledge

Email address: vit.novacek@deri.org, lori@csc.liv.ac.uk,

siegfried.handschuh@deri.org, brian.davis@deri.org (Vı́t Nováček,
Loredana Laera, Siegfried Handschuh, Brian Davis).

Preprint submitted to Elsevier 9 June 2008

changes and evolves over time as experience accumulates – it is revised and
augmented in the light of deeper understanding; new facts are becoming known
while some of the older ones need to be revised and/or retracted at the same
time. This holds especially for scientific domains, however, even virtually any
industrial domain is dynamic – changes typically occur in product portfolios,
personnel structure or industrial processes, which can all be reflected by an
ontology in a knowledge management policy.

The domains of e-health and biomedicine are both scientific (biomedical re-
search) and industrial (clinical practice, pharmaceutics). The need for on-
tologies in biomedicine knowledge and data management has already been
recognised by the community. Ontologies can serve as structured repositories
giving a shared meaning to data and thus making it possible to process and
query them in a more efficient and expressive manner. The shared meaning
provided by ontologies also results in facilitation of integration between dif-
ferent medical data formats once they are bound to an ontology. Moreover,
the state of the art ontology-based techniques (like alignment or reasoning as
described in [39]) can help to integrate the data even if they adhere to different
ontologies.

In the biomedical domain, ontology construction is usually a result of a collab-
oration involving ontology engineers and domain experts, where the knowledge
is being extracted and modelled manually. However, it is not always feasible to
process all the relevant data and extract the knowledge manually from domain
resources, since we might not have a sufficiently large committee of ontology
engineers and/or dedicated experts at hand in order to process new data any-
time it arrives. This implies a need for automation of knowledge extraction
and maintenance processes in dynamic and data-intensive medical environ-
ments. If the knowledge is available in textual resources, ontology learning
(see [33]) can help in this task. Therefore, a lifecycle of an ontology devel-
opment process apt for universal application in the medicine domain should
also support appropriate mechanisms for the incorporation of dynamically ex-
tracted knowledge. In this paper, we introduce such a lifecycle scenario and a
novel solution to the dynamic knowledge integration task.

Our efforts have several particular motivations. While there has been a great
deal of work on ontology learning for ontology construction, e.g. in [7], as well
as on manual or collaborative ontology development in [41], relatively little
attention has been paid to the user-friendly integration of both approaches
within an ontology lifecycle scenario. By user-friendly we mean especially ac-
cessible to users who are not experts in ontology engineering (i.e. biomedicine
researchers or practitioners). In this paper, we introduce our framework for
practical handling of dynamic and large data-sets in an ontology lifecycle, fo-
cusing particularly on dynamic integration of learned knowledge into manually
maintained ontologies. However, the introduced integration mechanism is not

2

restricted only to learned ontologies – arbitrary “external” ontology can be
integrated into the primary ontology in question by the very same process.

The dynamic nature of knowledge is one of the most challenging problems not
only in biomedicine, but in the whole current Semantic Web research. Here
we provide a solution for dealing with these dynamics on a large scale, based
on the properly developed connection of ontology learning and dynamic man-
ual development. We do not concentrate on formal specification of respective
ontology integration operators, we focus rather on implementation of them,
following certain practical requirements:

(1) the ability to process new knowledge (resources) automatically whenever
it appears and when it is inappropriate for human users to incorporate it

(2) the ability to automatically compare the new knowledge with a “mas-
ter” ontology that is manually maintained and select the new knowledge
accordingly

(3) the ability to resolve possible major inconsistencies between the new and
current knowledge, possibly favouring the assertions from presumably
more complex and precise master ontology against the learned ones

(4) the ability to automatically sort the new knowledge according to user-
defined preferences and present it to them in a very simple and accessible
way, thus further alleviating human effort in the task of knowledge inte-
gration

On one hand, using the automatic methods, we are able to deal with large
amounts of changing data. On the other hand, the final incorporation of new
knowledge is to be decided by the expert human users, repairing possible
errors and inappropriate findings of the automatic techniques. The key to
success and applicability is to let machines do most of the tedious and time-
consuming work and provide people with concise and simple suggestions on
ontology integration.

The main contribution of the presented work is two-fold:

• proposal and implementation of a generic algorithm for dynamic integration
of knowledge automatically extracted from various unstructured resources
(e.g., natural language articles or web pages) into manually maintained
formal ontologies (described in Sections 4 and 5)

• presentation of an example application of the implemented algorithm in a
task of biomedical ontology extension by integrating knowledge automat-
ically learned from textual domain resources, showing usability of the ap-
proach in the context of the presented use cases (Section 6)

The rest of the paper is organized as follows: Section 2 gives basic overview
of the essential notions and background of the paper, together with respective
relevant references. Section 3 discusses the related work. Section 4 gives an

3

overview of our ontology lifecycle scenario and framework, whereas Section 5
presents the integration of manually designed and automatically learned on-
tologies in more detail. In Section 6, we describe an example practical ap-
plication of our integration technique, using real world input data (from the
biomedicine research domain). Preliminary evaluation and its discussion is
also provided. Section 7 outlines relevant real-world settings, challenges and
contributions our framework can bring in these contexts. A related user feed-
back analysis is provided in Section 7, too. Section 8 summarises the paper
and future directions of the presented research.

2 Key Notions

In the following list we give a brief description of the essential notions that are
relevant for the presented content and describe how they relate to the field of
bioinformatics:

• Semantic Web – the Semantic Web initiative is generally about giving a
formal shared meaning to the data present on the normal world wide web in
order to make them fully accessible and “comprehensible” by machines, not
only by humans (see [5]). However, the technologies that have been devel-
oped within Semantic Web research are applicable to many other fields. In
the case of bioinformatics, biomedical data management and decision sup-
port, we can exploit for instance Semantic Web methods of intelligent and
efficient knowledge representation, reasoning, data integration or knowledge
management.

• ontology – according to a popular definition in [24], ontology is a represen-
tation of shared conceptualisation. As such, ontologies are used for formal
representation of knowledge in particular domains, i.e. various subfields of
biomedicine.

• ontology integration – the process of merging, consolidating and respec-
tive analysis and modification of two or more ontologies into one (integrated)
ontology (see [38]). The process can be either manual or (semi)automatical.

• ontology learning – acquisition of an ontology from unstructured or semi-
structured natural language text, typically resources relevant for a particular
domain (e.g. web pages, articles or other types of documents). Natural Lan-
guage Processing and Machine Learning methods are mostly used as a base
for ontology learning algorithms (see [33]).

• ontology alignment – ontology alignment establishes mappings between
concepts and other entities (e.g. relations or instances) in two or more on-
tologies. Either manually designed mappings (created on the fly or contained
in appropriate alignment repositories), or automatically generated ones can
be used to align the ontologies (see [17, 16]).

4

• ontology evolution – development and maintenance of ontologies in dy-
namic environments (see [40, 37, 25]), where the knowledge needs to be
updated on regular basis and changes in the domain conceptualisation oc-
cur often (e.g. science or business domains, where frequent introduction of
new concepts or revision of the old ones is essential).

• ontology lifecycle – a methodology or scenario, that describes how the
particular phases of the ontology development, maintenance and possibly
also exploitation are mutually connected and dependent (see [23, 35]).

3 Related Work

Within the Semantic Web research, several approaches and methodologies
have been defined and implemented in the context of ontology lifecycle and
integration. Recent overviews of the state-of-the-art in ontologies and related
methodologies can be found in [39] and [23]. However, none of them offers a
direct solution to the requirements specified in Section 1.

The Methontology methodology by [19] was developed in the Esperonto EU
project. It defines the process of designing ontologies and extends it towards
evolving ontologies. It is provided with an ontology lifecycle based on evolv-
ing prototypes (see [20]) and defines stages from specification and knowledge
acquisition to configuration management. The particular stages and their re-
quirements are characterised, but rather in a general manner. The automatic
ontology acquisition methods are considered in Methontology, however, their
concrete incorporation into the whole lifecycle is not covered. The ODESeW
and WebODE (see [10]) projects base on Methontology and provide an infras-
tructure and tools for semantic application development/management, which
is in the process of being extended for networked and evolving ontologies. How-
ever, they focus rather on the application development part of the problem
than on the ontology evolution and dynamic ontology integration parts.

The methods and tools referenced above lack concrete mechanisms that would
efficiently deal with the dynamics of realistic domains (so characteristic for in-
stance for e-health and biomedicine). Moreover, the need for automatic meth-
ods of ontology acquisition in data-intensive environments is acknowledged,
but the role and application of the automatic techniques is usually not clearly
studied and implemented. Our approach described in [35] offers a complex
picture of how to deal with the dynamics in the general lifecycle scenario. The
work we present here implements the fundamental semi-automatic dynamic
integration component of the scenario.

There are more specific approaches similar to the one presented by our lifecycle
framework. [14] incorporates automatic ontology extraction from a medical

5

database and its consequent population by linguistic processing of corpus data.
However, the mechanism is rather task-specific – the ontology is represented
in RDF(S) format (see [6]) that is less expressive than the OWL language
(see [4]), which we use. The extraction is oriented primarily at taxonomies
and does not take the dynamics directly into account. Therefore the approach
can hardly be applied in universal settings, which is one of our aims.

Protégé (see [22]) and related PROMPT (see [36]) tools are designed for man-
ual ontology development and semi-automatic ontology merging, respectively.
PROMPT provides heuristic methods for identification of similarities between
ontologies. The similarities are offered to the users for further processing. How-
ever, the direct connection to ontology learning, which we find important for
dynamic and data-intensive domains like e-health and biomedicine, is missing.

There are several works addressing directly the topic of ontology integra-
tion. [1] and [8] describe two approaches inspired mainly by database tech-
niques of data mediation and query rewriting in order to provide integrated
(global) view on several (local) ontologies. [28] present web ontology integra-
tion method using SHOE, a web-based knowledge representation language,
and semi-automatically generated alignments. [12] implement a dynamic and
automatic ontology integration technique in multi-agent environments, based
on relatively simple graph ontology model inclusions and other operations.
Again, none of the approaches tackles the requirements we specify in Sec-
tion 1. Even though the methods propose solutions to the integration problem
in general, there is no direct way how to integrate knowledge from unstructured
resources, minimising human intervention. Furthermore, there is no emphasis
on accessibility of the ontology integration to the laymen users. Our approach
is distinguished by the fact that it pays special attention to these features,
which we find essential for the application in e-health and/or bioinformatics.

4 DINO – A Dynamic Ontology Lifecycle Scenario

Our integration platform is a part of a broader lifecycle scenario (see [35]).
We refer to both lifecycle and integration platform by the DINO abbreviation,
evoking multiple features of our solution: it reflects three key elements of the
lifecycle scenario – Dynamics, INtegration and Ontology; however, the first two
parts can also be Data and INtensive; finally, DINO can be read as Dynamic
INtegration of Ontologies, too. All these features express the primary aim of
our efforts – to make the knowledge (integration) efficiently and reasonably
manageable in data-intensive and dynamic domains.

Figure 1 depicts the scheme of the proposed dynamic and application-oriented
ontology lifecycle that deals with the problems mentioned as a part of our mo-

6

tivations. Our ontology lifecycle builds on four basic phases of an ontology life-

Fig. 1. Dynamic ontology lifecycle scheme

cycle: creation (comprises both manual and automatic ontology development
and update approaches), versioning, evaluation and negotiation (comprises on-
tology alignment and merging as well as negotiation among different possible
alignments). The four main phases are indicated by the boxes annotated by
respective names. Ontologies or their snapshots in time are represented by
circles, with arrows expressing the information flow and transitions between
them. The boxes labelled Ai present actors (institutions, companies, research
teams etc.) involved in ontology development, where A1 is zoomed-in in order
to show the lifecycle’s components in detail.

The general dynamics of the lifecycle goes as follows: (1), the community
experts and/or ontology engineers develop a relatively precise and complex
domain ontology (the Community part of the Creation component); (2), the
experts use means for continuous ontology evaluation and versioning to main-
tain high quality and manage changes during the development process, re-
spectively; (3), if the amount of data suitable for knowledge extraction (e.g.
domain resources in natural language) is too large to be managed by the com-
munity, ontology learning takes its place; (4), the ontology learning results
are evaluated by human experts and eventually integrated (using the negoti-
ation component) into the more precise reference community ontology, if the
respective extensions have been found appropriate.

The integration in the scenario is based on alignment and merging covered
by the negotiation component. Its proposal, implementation principles and
application in selected e-health use case form the key contribution of this paper
(see Sections 5 and 6 for details). The negotiation component takes its place

7

also when interchanging or sharing the knowledge with other independent
actors in the field. All the phases support ontologies in the standard OWL
format. In the following we will concentrate on the integration mechanism.
More information on other parts of the lifecycle can be found in [35].

5 Dynamic Integration of Automatically Learned Knowledge

The key novelty of the presented lifecycle scenario is its support for incor-
poration of changing knowledge in data-intensive domains, especially when
unstructured data (i.e. natural language) is involved. This is achieved by im-
plementation of a specific integration mechanism introduced in this section.
The scheme of the integration process is depicted in Figure 2.

Ontology
Merging
Wrapper

Ontology
Alignment
Wrapper

O L O M

O A

O I
Ontology
Diff Wrapper

Ontology
Learning
Wrapper

NLG

User
Preferences

Domain
Resources

DINO Integration Scheme

Accept/
Decline

 DINO Library

Sorted
Suggestions
Generator

Fig. 2. Dynamic ontology integration scheme

The integration scheme details the combination of several generic lifecycle
components—mainly the (automatic) creation and negotiation—in the process
of incorporation of learned ontologies into a collaboratively developed one. The
latter ontology serves as a master, presumably precise model in the process of
learned knowledge integration.

The master ontology – OM circle in Figure 2 – is supposed to be developed
within a dedicated external application such as Protégé 1 . The DINO inte-

1 See http://protege.stanford.edu/.

8

gration platform itself is implemented as a respective API library and GUI
interface. Simple research prototypes of these applications and user documen-
tation can be downloaded at http://smile.deri.ie/tools/dino.

OM in Figure 2 presents a reference for integration with the OL ontology re-
sulting from the learning process. Ontology Alignment Wrapper produces an
alignment ontology OA that encodes mappings between OM and OL. All these
ontologies are passed to the Ontology Merging Wrapper that resolves possible
inconsistencies and produces integrated ontology OI . Ontology Diff Wrapper
compares OI with the former master ontology OM and passes the respective
additional statements (not present in OM) to the NLG and Sorted Sugges-
tions Generator component. NLG (Natural Language Generator) produces a
comprehensive natural language representation of all the addition statements.
The Sorted Suggestions Generator component outputs the final product of the
integration process – particular natural language suggestions on the master
ontology extension, sorted according to the user preferences. The suggestions
agreed by human users form a base of a next version of the OM ontology
created after the integration. Note that during all phases of integration, we
use the former OM base namespace for all the other ontologies involved. The
integration phases outlined in Figure 2 are described in detail in the sections
below.

5.1 Ontology Learning Wrapper

In this phase, machine learning and NLP methods are used for the processing
of relevant resources and extracting knowledge from them (ontology learning).
The ontology learning is realised using the Text2Onto framework (see [9]) that
is able to extract an ontology from an arbitrary set of textual documents.
Due to space restrictions, we cannot properly comment on the methods used
for ontology extraction and post-processing in Text2Onto, however, they are
described in detail in [32, 9]. Note that this component does not tackle selection
of the documents the ontology is to be learned from – this task needs to be
performed manually by the system users.

In the current implementation, only a restricted subset of possible OWL
(DL) constructs is being extracted: rdfs:subClassOf axioms, class instances,
named class assertions, owl:disjointWith axioms and owl:ObjectProperty

assertions with rdfs:domain and rdfs:range properties specified. owl:equi-
valentClass relations can be inferred from mutual rdfs:subClassOf axioms
between particular classes. owl:equivalentClass and owl:sameAs constructs
can also be extracted using the Text2Onto concept/instance similarity deter-
mination algorithms, however, their performance, precision and coverage was
not found to be sufficient enough, therefore they are not included in the current

9

version of the DINO framework.

We have not performed a rigorous evaluation of the ontology learning step as
such, however, the informal precision rate of ontology extraction was about
70% for the sample application described in Section 6 (given by ratio of mean-
ingful axioms to all extracted axioms). Note that even an arbitrary external
ontology can be integrated instead of the learned one, however, the integra-
tion results are not necessarily complete in the case of more complex ontologies
(e.g., containing complex restrictions and anonymous classes). This is due to
the fact that the current implementation is tailored specifically to the rather
simple learned ontologies.

5.2 Ontology Alignment Wrapper

When the learned ontology OL has been created, it has to be reconciled with
master ontology OM since they cover the same domain, but might be struc-
tured differently. The reconciliation of these ontologies depends on the ability
to reach an agreement on the semantics of the terms used. The agreement takes
the form of an alignment between the ontologies, that is, a set of correspon-
dences (or mappings) between the concepts, properties, and relationships in
the ontologies. However, the ontologies are developed in different contexts and
under different conditions and thus they might represent different perspectives
over similar knowledge, so the process by which to come to an agreement will
necessarily only come through a negotiation process. The negotiation process
is performed using argumentation-based negotiation that uses preferences over
the types of correspondences in order to choose the mappings that will be used
to finally merge the ontologies (see Section 5.3). The preferences depend on
the context and situation. A major feature of this context is the ontology, and
the structural features thereof, such as the depth of the subclass hierarchy and
branching factor, ratio of properties to concepts, etc. The analysis of the com-
ponents of the ontology is aligned with the approach to ontology evaluation,
demonstrated in [13], and can be formalized in terms of feature metrics. Thus
the preferences can be determined on the characteristics of the ontology. For
example, we can select a preference for terminological mapping if the ontology
is lacking in structure, or prefer extensional mapping if the ontology is rich in
instances.

Thus, the alignment/negotiation wrapper interfaces two tools – one for the
ontology alignment discovery and one for negotiation of agreed alignment.
We call these tools AKit and NKit, respectively, within this section. For the
former, we use the ontology alignment API (see [16]) developed by INRIA
Rhone-Alpes 2 . For the negotiation we use the framework described in [30].

2 See http://alignapi.gforge.inria.fr/ for up-to-date information on the API.

10

Both tools are used by the wrapper in order to produce OA – an ontology
consisting of axioms 3 merging classes, individuals and properties in the OL

and OM ontologies. It is used in consequent factual merging and refinement in
the ontology reasoning and management wrapper (see Section 5.3 for details).

The wrapper itself works according to the meta-code in Algorithm 1. The on-

Algorithm 1 Meta-algorithm of the alignment and negotiation
Require: OL, OM — ontologies in OWL format
Require: AKit, NKit — ontology alignment and alignment negotiation tools, respectively
Require: ALMSET — a set of the alignment methods to be used
Require: PREFSET — a set of alignment formal preferences corresponding to the OL, OM ontologies

(to be used in N-kit)

1: SA ← ∅
2: for method ∈ ALMSET do
3: SA ← SA ∪ AKit.getAlignment(OL, OM , method)
4: end for
5: Aagreed ← NKit.negotiateAlignment(SA, PREFSET)

6: OA ← AKit.produceBridgeAxioms(Aagreed)

7: return OA

tology alignment API offers several possibilities of actual alignment methods,
which range from trivial lexical equality detection through more sophisticated
string and edit-distance based algorithms to an iterative structural alignment
by the OLA algorithm (see [18]). The ontology alignment API has recently
been extended by a method for the calculation of a similarity metric between
ontology entities, an adaptation of the SRMetric used in [43]. We also consider
a set of justifications, that explain why the mappings have been generated.
This information forms the basis for the negotiation framework that dynam-
ically generates arguments, supplies the reasons for the mapping choices and
negotiates an agreed alignment for both ontologies OL and OM .

5.3 Ontology Merging Wrapper

This wrapper is used for merging of the OL and OM ontologies according
to the statements in OA (each of the ontologies technically represented as
a respective Jena ontology model). Moreover, the wrapper resolves possible
inconsistencies caused by the merging – favouring the assertions in the OM

ontology, which are supposed to be more relevant. The resulting ontology OI

is passed to the ontology diff wrapper to be compared with the former OM

master ontology. The respective addition model forms a basis for the natural
language suggestions that are produced as a final product of the integration
(see Sections 5.4 and 5.5 for details).

3 Using constructs like owl:equivalentClass, owl:sameAs, owl:equivalentProperty,
rdfs:subClassOf or rdfs:subPropertyOf.

11

Algorithm 2 describes the meta-code of the process arranged by the ontol-
ogy merging and reasoning wrapper. We currently employ no reasoning in

Algorithm 2 Meta-algorithm of the merging and inconsistency resolution
Require: OL, OM , OA — ontologies in OWL format
Require: merge() — a function that merges the axioms from input ontologies, possibly implementing

reasoning routines according to the ontology model used
Require: C — set of implemented consistency restrictions; each element r ∈ C can execute two functions

r.detect() and r.resolve() that detect (and return) and resolve an inconsistency in the input ontology,
respectively

1: OI ← merge(OM , OL, OA)
2: inconsistencies← ∅
3: for r ∈ C do
4: inconsistencies← inconsistencies∪ r.detect(OI)
5: OI ← r.resolve(OI)
6: end for
7: return OI , inconsistencies

the merge() function. However, sub-class subsumption (as implemented by
the Jena framework) is used when detecting and resolving inconsistencies.
The inconsistencies are constituted by user-defined restrictions. These restric-
tions are implemented as extensions of a generic inconsistency detector and
resolver in the ontology merging wrapper. Thus we can implement either logi-
cal (in terms of Description Logics, see [2]) inconsistencies, or custom-defined
inconsistencies (i.e. cyclic definitions) according to requirements of particular
practical applications.

The automatic inconsistency resolution itself is somewhat tricky. However, we
can apply a sort of “greedy” heuristic, considering the assertions in the master
OM ontology to be more valid. Therefore we can discard axioms from OL or
OA that are inconsistent with axioms in OM – we call such axioms candidate
in the text below. If there are more such axioms, we discard them one by one
randomly until the inconsistency is resolved 4 . If all the conflicting axioms
originated in OM , we just report them without resolution.

We currently implement and resolve the following inconsistencies:

• sub-class hierarchy cycles: these are resolved by cutting the cycle, i.e.
removing a candidate rdfs:subClassOf statement;

• disjointness-subsumption conflicts: if classes are said to be disjoint and
a sub-class relationship holds between them at the same time, a candidate
conflicting assertion is removed;

• disjointness-superclass conflicts: if a class is said to be a sub-class of
classes that are disjoint, a candidate conflicting assertion is removed;

4 This is the currently implemented way, however, we plan to improve the selection
of candidate axioms according to confidence ranking produced by the Text2Onto
tool – similarly to the technique described in [26]. This is scheduled for the next
version of the DINO integration library.

12

• disjointness-instantiation conflicts (specialisation of the above): if an
individual is said to be an instance of classes that are disjoint, a candidate
conflicting assertion is removed.

The first one is non-logical inconsistency, whereas the remaining free are ex-
amples of logical inconsistencies. More on the types and nature of logical
(DL) inconsistencies can be found for instance in [21]. Since most logical in-
consistencies are introduced by negative constructs like owl:disjointWith,
owl:complementOf or owl:differentFrom, we can easily adapt the above
techniques related to disjointness in order to support additional inconsistency
types.

A transparent and flexible support of arbitrary non-logical consistency con-
straints is a part of our future work. We plan to implement this feature on
the top of user-defined rules (expressing facts like “if X is a male mammal,
then it does not have an ovary”). DINO will not include the learned state-
ments that are in a conflict with the respective rule-based constraints into the
merged ontology. Certain more subtle issues related to the ontology design
(such as possibly unwelcome multiple inheritance) cannot, however, be gen-
erally handled even by the rule-based inconsistency resolution, therefore the
more sophisticated refinement of the integrated ontology is deliberately left
for the user.

Note that each element of the set of inconsistencies returned by Algorithm 2
(besides the integrated ontology itself) is associated with respective simple
natural language description. The descriptions are presented for further ex-
aminations by human users in the DINO user interface.

5.4 Ontology Diff Wrapper

Possible extension of a master ontology OM by elements contained in the
merged and refined ontology OI naturally corresponds to the differences be-
tween them. In particular, the possible extensions are equal to the additions
OI brings into OM . The additions can be computed in several ways. Ontology
diff wrapper in DINO offers a way how to uniformly interface the particu-
lar methods of addition computation. No matter which underlying method is
employed, a respective Jena ontology model containing the respective addi-
tions is returned. Currently, the following methods are implemented within
the wrapper:

(1) SemVersion-based diff computation – additions at the RDF (triple) level
computed using the SemVersion library (see [44])

(2) addition model computation by set operations on the underlying Jena
RDF models

13

(3) addition model computation by direct iterative querying of the former
master ontology model, integrated model and alignment model for refer-
ence purposes (see Algorithm 3 for details on implementation)

For the practical experiments with ontologies, we have used the third method
– mainly due to the fact that it computes the additions directly at the ontology
level and not at the lower triple level (which means subsequent processing load
when getting back to the ontology model again).

Algorithm 3 Meta-algorithm of the addition model computation (by direct
model querying)
Require: OM , OI , OA — former master, integrated and alignment ontologies, respectively
Require: copyResource() — a function that returns a copy of an ontology resource (e.g. class or property)

including all relevant features that are bound to it (e.g. subclasses, superclasses, instances for a class or
domain and range for a property)

1: Oadded ← ∅
2: for c ∈ OI .getNamedOntologyClasses() do
3: if not OM .contains(c) or OA.contains(c) then
4: Oadded ← copyResource(c)
5: end if
6: end for
7: for p ∈ OI .getOntologyProperties() do
8: if not OM .contains(p) or OA.contains(p) then
9: Oadded ← copyResource(p)

10: end if
11: end for
12: return Oadded

Note that the algorithm does not compute all differences between arbitrary
ontologies in general. However, this is no drawback for the current imple-
mentation of DINO integration. We deal with learned ontology extending the
master one. The extensions originating in automatically learned knowledge
do not cover the whole range of possible OWL constructs, thus we do not
need to tackle e.g. anonymous classes and restrictions in the addition model
computation. Therefore the employed custom addition computation can be
safely applied without any loss of information. The computed addition ontol-
ogy model is passed to the suggestion sorter then (see Section 5.5 for details).

5.5 Sorted Suggestions Generator

The addition ontology passed to this component forms a base for the eventual
extension suggestions for the domain experts. In order to reduce the effort in
the final reviewing of the master ontology extensions, we create respective sim-
ple natural language suggestions that are associated with corresponding facts
in the addition ontology model. The natural language suggestions are then
presented to users – when a suggestion is accepted by the users, the associ-
ated fact is included into the master ontology model. Table 1 shows a scheme
of the natural language (NL) suggestion generation. The r variable repre-
sents possible relations between classes or properties (e.g. rdfs:subClassOf,

14

Table 1
Scheme of suggestion generation
Axiom pattern NL suggestion scheme Example

class c1 is related by The class c1.label() f(r) The class ”difference c” is

relation r to class c2 the class c2.label(). disjoint with the class ”inclusion c”.

individual i is a The class c.label() has the The class ”the cytoskeleton organiser c”

member of class c i.label() instance. has the ”centrosome i” instance.

property p1 with features There is a p1.label() g(x) There is a ”contain r” object property.

features x is related to property. It is f(r) p2.label(). Its range is the ”organ c” class.

property p2 by relation r

property p1 with There is a p1.label() g(x) There is a ”contain r” object property.

features x has domain/ property. Its domain/range It has the ”has part r” superproperty.

range class c is the c.label() class.

rdfs:subPropertyOf or owl:disjointWith), mapped by the function f() to
a respective natural language representation (e.g. is a sub-class of, is a sub-
property of or is disjoint with). The x variable represents possible features of
a property (e.g. owl:ObjectProperty or owl:FunctionalProperty, mapped
by the function g() to a respective natural language representation (e.g. object
or functional).

In general, the number of suggestions originating from the addition ontology
model can be quite large, so an ordering that takes a relevance measure of
possible suggestions into account is needed. Thus we can for example elim-
inate suggestions with low relevance level when presenting the final set to
the users (without overwhelming them with a large number of possibly irrel-
evant suggestions). As a possible solution to this task, we have proposed and
implemented a method based on string subsumption and a specific distance
measure (see [31]). These two measures are used within relevance computa-
tion by comparing the lexical labels occurring in a suggestion with respect
to two sets Sp, Sn of words, provided by users. The Sp and Sn sets contain
preferred and unwanted words respectively, concerning the lexical level of op-
timal extensions. The suggestions T are sorted according to the respective
rel(T, Sp)− rel(T, Sn) values, where rel(T, S) is a function measuring the rel-
evance of the suggestion triple T with respect to the words in the set S. The
higher the value, the more relevant the suggestion triple is. We develop the
relevance function in detail in Algorithm 4.

The function naturally measures the “closeness” of the labels occurring in
the suggestion to the set of terms in S. The value of 1 is achieved when the
label is a direct substring of or equal to any word in S or vice versa. When
the Levenshtein distance between the label and a word in S is lower than or
equal to the defined threshold t, the relevance decreases from 1 by a value
proportional to the fraction of the distance and t. If this is not the case (i.e.
the label’s distance is greater than t for each word in S), a similar principle
is applied for possible word-parts of the label and the relevance is further

15

Algorithm 4 The relevance function
Require: St — a set of (possibly multiword) lexical terms occurring in the suggestion
Require: S — set of words
Require: ρ ∈ (0, 1) influences the absolute value of relevance measure
Require: t — integer constant; maximal allowed distance
Require: levDist(s1, s2) — Lev. distance implementation

1: for elem ∈ St do
2: Relem ← 0
3: end for
4: for elem ∈ St do
5: if elem is a substring of or equals to any word in S or vice versa then
6: Relem ← 1
7: else
8: d←∞
9: for v ∈ S do

10: if levDist(elem, v) < d then
11: d← levDist(elem, v)
12: end if
13: end for
14: if d ≤ t then
15: Relem ← (1− d

t+1
)

16: else if elem is a multiword term then
17: L← set of single terms in the elem label expression
18: EXP ← 0
19: for u ∈ L do
20: if u is a substring of or equals to any word in S or vice versa then
21: EXP ← EXP + 1
22: else
23: d←∞
24: for v ∈ S do
25: if levDist(u, v) < d then
26: d← levDist(u, v)
27: end if
28: end for
29: if d ≤ t then
30: EXP ← EXP + (1− d

t+1
)

31: end if
32: end if
33: end for
34: if EXP = 0 then
35: Relem ← 0
36: else
37: Relem ← ρ

1

EXP

38: end if
39: end if
40: end if
41: end for

42: return

∑
elem∈St

Relem

|St|

proportionally decreased (the minimal possible value being 0).

Note that the complexity of the sorting itself mostly contributes to the overall
complexity of the relevance-based sorting of suggestions. As can be found out
from Algorithm 4, the complexity is in O(cmnl2 + m log m) (c – maximal
number of terms occurring in a suggestion, thus a constant; m – number of
suggestions; n – number of words in the preference sets; l – maximal length of
a word in suggestion terms, basically a constant), which gives O(m(n+log m)).
As the size of the sets of user preferences can be practically treated as constant,
we obtain the O(m logm) complexity class with respect to the number of

16

suggestions, which is feasible.

5.6 Natural Language Generation (NLG) Component

The DINO framework is supposed to be used primarily by users who are not
experts in ontology engineering. Therefore the suggestions are produced in a
form of very simple natural language statements, as seen in the previous sec-
tion. Moreover, we automatically create a natural language representation of
the whole addition model, interfacing the framework described in [42]. This is
meant to further support laymen users by readable representation of the whole
addition model in order to give them an overall impression of the changes.

The single suggestions are still bound to the underlying statement in the ad-
dition ontology model. Therefore a user can very easily add the appropriate
OWL axioms into the new version of the OM master ontology without actu-
ally dealing with the intricate OWL syntax itself. Concrete examples of both
suggestions and continuous natural language representation of the addition
model are given in Section 6.

6 Example Application and Results of DINO Integration

We applied the integration technique described in Section 5 in the context of
data typical for biomedical research. However, the way of exploiting the DINO
integration technique reported in this section is rather general, since it aims
at cost-efficient extension or population of a master ontology by knowledge
learned from empirical data. Thus, a similar deployment of the integration
can actually help to tackle needs of many other possible use cases.

Real world data for the master ontology and ontology learning sources were
used. More specifically, we employed resources from CO-ODE biomedicine
ontology fragment repository 5 and data from relevant Wikipedia topics, re-
spectively.

Rigorous evaluation of the whole process of integration is a complex task in-
volving lot of open problems as its sub-problems (for instance, there is no
standard ontology evaluation process applicable in general – see [27, 13]).
Moreover, there is an emphasis on the human-readable and laymen oriented
form of the integration process results. This dimension forms a primary axis
of the evaluation, however, its realisation involves logistically demanding par-
ticipation of a broader (biomedicine) expert community.

5 See http://www.co-ode.org/ontologies.

17

Accomplishing the above tasks properly is a part of our future work. Nonethe-
less, there are several aspects that can be assessed and reported even without
devising an optimal ontology evaluation method (which may be impossible
anyway) and/or getting involved large representative sample of domain ex-
perts:

• features of the learned ontology (e.g. size or complexity)
• mappings established by alignment
• basic assessment of the quality and correctness of suggestions and their

sorting according to defined preferences

These factors of integration are analysed and discussed within an experimental
application described in Section 6.1.

The negotiation component has recently been evaluated separately as a stand-
alone module, using the Ontology Alignment Evaluation Initiative test suite 6

and experiments on the impact that the argumentation approach has over a set
of mappings. A comparison wrt. current alignment tools is presented in [29].
The preliminary results of these experiments are promising and suggest that
the argumentation approach can be beneficial and an effective solution to the
problem of dynamically aligning heterogeneous ontologies. This justifies also
the application of the implemented technique in the ontology integration task.

6.1 Experimental Integration of Biomedical Research Knowledge – Extension
of (Blood) Cells Ontology Fragment

In order to show the basic features of our novel integration technique in prac-
tice, we tested the implementation using knowledge resources from biomedi-
cine domain 7 . In particular, we combined fragments of GO cellular component
description and eukaryotic cell description 8 to form the master ontology. In
the example scenario, we wanted to extend this master ontology using con-
tent of Wikipedia entries on Cells_(biology) and Red_blood_cell. These
resources were passed to the ontology learning DINO component and respec-
tive ontology was learned. Both master and learned ontology samples are dis-
played in Figure 3 (on the left-hand and right-hand side, respectively). Note

6 See http://oaei.ontologymatching.org/.
7 Should the reader be interested, all relevant resources used and/or created dur-
ing the described experiment are available at http://smile.deri.ie/resources/
2007/08/31/dino_exp_data.zip
8 Samples downloaded from the CO-ODE repository, see http://www.co-ode.

org/ontologies/bio-tutorial/sources/GO_CELLULAR_COMPONENT_EXTRACT.

owl and http://www.co-ode.org/ontologies/eukariotic/2005/06/01/

eukariotic.owl, respectively.

18

Fig. 3. Sample from master and learned ontology

that these master and learned ontologies correspond to the OM , OL ontologies
displayed in Figure 2, Section 5. The names in learned ontology have specific
suffixes (i.e. “ c”). This is due to naming conventions of the ontology learning
algorithm we use. We keep the suffixes in suggestions, since they help to eas-
ily discriminate what comes from empirical data and what from the master
ontology. However, we filter them out when generating the text representing
the whole extension model (see below for examples).

Table 2 compares metric properties of the master and learned ontologies, as
computed by the Protégé tool. The particular metrics are expanded as follows:

Table 2
Metrics of master and learned ontologies

Metric/ M1 M2 M3 M4 M5 M6

Ontology

Learned 391 / 379 / 12 3 / 1 / 5 7 / 1 / 16 0 13 / 13 / 0 ALC(D)

Master 40 / 36 / 4 2 / 1 / 2 5 / 1 / 15 16 (restr.) 1 / 1 / 0 ALCN

M1 – number of named classes (all/primitive/defined); M2 – number of par-
ents per class (mean/median/maximum); M3 – number of siblings per class
(mean/median/maximum); M4 – number of anonymous classes (restrictions);
M5 – number of properties (all/object/datatype); M6 – Description Logics
expressivity.

The learned ontology has higher ratio of primitive classes, moreover, it contains
no restriction on class definitions. There are some simple object properties
with both domains and ranges defined. Its DL expressivity allows concept
intersection, full universal and existential quantification, atomic and complex
negation and datatypes. The expressivity of the master ontology does not
involve datatypes, however, it contains numeric restrictions. Summing up, the
master ontology contains several complicated constructs not present in the
learned ontology, however, the ontology learned only from two simple and
relatively small resources is much larger.

When computing the negotiated alignment (the OA ontology as given in Fig-
ure 2, Section 5) between master and learned ontology, 207 mappings were
produced and among them, 16 were accepted. A sample from the alignment
ontology is displayed in Figure 4.

19

Fig. 4. Sample alignment

Merging of the learned and master ontologies according to the computed align-
ments results in several inconsistencies – the report generated by DINO is
displayed in Figure 5. Two of these three inconsistencies are resolved cor-

Fig. 5. Report on inconsistencies

rectly (according to human intuition) by the algorithm, forming an integrated
ontology OI , as displayed in Figure 2, Section 5.

After resolving the inconsistencies (3 inconsistencies per an integrated resource
were resolved in average within our experiment) and generating the addition
model, natural language suggestions (associated with respective OWL axioms)
are produced. Sample suggestions associated with respective relevance mea-
sures are displayed in Figure 6. A portion of the continuous text generated by
the NLG component that is corresponding to the addition model is displayed
in Figure 7. Similar “pretty” texts are to be presented to users in the extended
DINO interface (the current interface offers only raw text, however, necessary
parsing, filtering and highlighting of the ontology terms is under construc-
tion). It provides users with additional source of lookup when deciding which
suggestions to accept into the next version of the master ontology.

The suggestions are the ultimate output of the integration algorithm. Their

20

Fig. 6. Sample suggestions

Fig. 7. Sample from the generated continuous text

main purpose is to facilitate laymen effort in incorporation of new knowledge
from unstructured resources into an ontology. Therefore we performed basic
evaluation of several parameters that influence actual applicability of the sug-
gestions. We ran the integration algorithm on the same data with four differ-
ent suggestion-preference sets, simulating four generic trends in the preference
definition:

• specification of rather small number of preferred terms, no unwanted terms
• specification of rather small number of preferred and unwanted terms
• specification of larger number of preferred terms, no unwanted terms
• specification of larger number of preferred and unwanted terms

Table 3 gives an overview of the four iterations, the particular preferred and
unwanted terms and distribution of suggestions into relevance classes. The
terms were set by a human user arbitrarily, reflecting general interest in clinical
aspects of the experimental domain knowledge. The terms in preference sets
reflect possible topics to be covered by the automatic extension of the current
ontology. S+, S0 and S− are classes of suggestions with relevance greater, equal
and lower than zero, respectively (S = S+ ∪ S0 ∪ S−).

For each of the relevance classes induced by one iteration, we randomly selected
20 suggestions and computed two values on this sample:

21

Table 3
Iterations – the preference sets and sizes of the resulting suggestion classes
Iteration Preferred Unwanted |S+| |S0| |S−| |S|

cell; autoimmune

I1 disease; transport; ∅ 310 429 0 739

drug; gene; DNA

cell; autoimmune bacteria; prokaryotic;

I2 disease; transport; organelle; wall; 250 344 145 739

drug; gene; DNA chromosome; creation

cell; autoimmune

disease; transport;

drug; gene; DNA

eukaryotic; organ;

I3 function; part; ∅ 485 254 0 739

protein; disease;

treatment; cell part

immunosuppression;

production

cell; autoimmune bilayer; bacteria;

disease; transport; prokaryotic; additional

drug; gene; DNA function; organelle;

eukaryotic; organ; macromollecule; archaeon;

I4 function; part; vessel; wall; volume; 314 292 133 739

protein; disease; body; cell nucleus;

treatment; cell part chromosome; erythrocyte;

immunosuppression; creation

production

• Px, x ∈ {+, 0,−} – ratio of suggestions correctly placed by the sorting
algorithm into an order defined by a human user for the same set (according
to the interest defined by the particular preferences)

• Ax, x ∈ {+, 0,−} – ratio of suggestions that are considered appropriate by
a human user according to his or her knowledge of the domain (among all
the suggestions in the sample)

The results are summed up in Table 4. More details on interpretation of all
the experimental findings are given in consequent Section 6.2.

Table 4
Evaluation of random suggestion samples per class
Iteration P+ A+ P0 A0 P− A−

I1 0.45 0.75 0.90 0.60 - -

I2 0.45 0.75 1.00 0.80 0.60 0.70

I3 0.70 0.80 0.95 0.75 - -

I4 0.55 0.75 0.70 0.85 0.50 0.85

22

6.2 Discussion of the Experiment Results

The DINO integration library allows users to submit the resources containing
knowledge they would like to reflect in their current ontology. The only thing
that is needed is to specify preferences on the knowledge to be included us-
ing the sets of preferred and unwanted terms. After this, sorted suggestions
on possible ontology extensions (after resolution or reporting of possible in-
consistencies) can be produced and processed in minutes, whereas the purely
manual development and integration of respective ontology would take hours
even for relatively simple natural language resources. Moreover, it would re-
quire a certain experience with knowledge engineering, which is uncommon
among biomedicine domain experts.

In Section 6.1 we described the application of our integration technique to
an extension of biomedical research ontology fragment. The analysed results
show that the suggestions produced are mostly correct (even though rather
simple and sometimes obvious) with respect to the domain in question, rang-
ing from 50% to 85% among the algorithm iterations. The relevance-based
sorting according to preferences is more appropriate in case of irrelevant (zero
relevance) suggestions, ranging from 70% to 100% of correctly placed sugges-
tions. Its precision in case of suggestions with positive and negative relevance
is lower, ranging from 45% to 70%. More terms in the preference sets cause
better sorting performance (the ratio of appropriate suggestions being inde-
pendent on this fact). Thus, the best discrimination in terms of presenting the
most relevant suggestions first is achieved for larger preference sets. However,
even the discrimination for smaller sets is fair enough (as seen in Table 3 in
the previous section).

The automatically produced natural language suggestions can be very easily
browsed and assessed by users who are not familiar with ontology engineering
at all. Since the respective axioms are associated to the suggestions, their in-
clusion into another version of the master ontology is pretty straightforward
once a suggestion is followed by a user. The DINO integration technique still
needs to be evaluated with a broader domain expert audience involved, how-
ever, even the preliminary results presented here are very promising in the
scope of the requirements specified in Section 1.

7 Notes on Realistic DINO Deployment

The EU IST 6th Framework project RIDE has identified and analysed sev-
eral biomedical use case areas in [15] relevant concerning deployment of the
Semantic Web technologies (i.e., ontologies and related querying, knowledge

23

and data management tools). The scope of [15] is rather broad, however, we
can track few specific areas with significant needs that can be covered by the
DINO ontology lifecycle and integration framework (Section 7.1). Section 7.2
discusses preliminary feedback of our potential users and consequently sug-
gests most appropriate modes of the DINO prototype exploitation.

7.1 Selected Use Case Areas

Longitudinal Electronic Health Record: The main topic here is devel-
opment of standards and platforms supporting creation and management of
long-term electronic health records of particular patients. These records should
be able to integrate various sources of data coming from different medical in-
stitutions a patient may have been treated in during his whole life. Quite
obviously, one needs to integrate different data sources, present very often in
unstructured natural language form. Ontologies extracted from the respec-
tive patient data resources can very naturally support their integration into
longitudinal electronic health records by means of DINO.

Epidemiological Registries: Epidemiology analyses diseases, their reasons,
statistical origins and their relation to a selected population sample’s socioe-
conomic characteristic. Epidemiological registries should be able to reasonably
store and manage data related to population samples and their medical at-
tributes in order to support efficient processing of the respective knowledge
by the experts. In this use case area, one has to integrate knowledge from
electronic health records in order to create population-wise repositories. Once
the ontology-enabled electronic health records are created (DINO can help
here as mentioned above), one can integrate them within another version of
an “epidemiology” ontology (again, by means of the DINO framework). The
resulting model can be employed in order to perform symbolic analysis (using
ontology-based symbolic querying and logical inference) of the registry data,
complementing the statistical numeric analysis methods.

Public Health Surveillance: Public health surveillance presents ongoing
collection, analysis, interpretation and dissemination of health-related data in
order to facilitate a public health action reducing mortality and/or improving
health. The use case area puts an emphasis on efficient dynamic processing of
new data that are mostly in the free natural language text form, which can be
directly facilitated by the DINO integration of respective learned ontologies.
Ontologies created from and extended by urgent dynamic data can efficiently
support expert decisions in risk management tasks. Continuous integration of
less urgent data from various sources (either texts or ontologies) can support
studies on public health issues in the long term perspective then.

24

Management of Clinical Trials: Clinical trials are studies of the effects
of newly developed drugs on real patient samples. They are essential part of
approval of new drugs for normal clinical use and present an important bridge
between medical research and practice. Efficient electronic data representa-
tion and querying is crucial here. However, even if the data are electronically
represented, problems with their heterogeneity and integration occur as there
are typically several different institutions involved in a single trial. The pre-
sented integration method can help in coping with the data heterogeneity here,
especially when some of the data is present in the natural language form.

7.2 Preliminary User Feedback and Lessons Learned

We presented a DINO demo and/or sample knowledge integration results to
biomedical domain and ontology engineering experts 9 . We also discussed a
sketch of the DINO application in the above practical use cases with them.

Their preliminary feedback can be summarised into the following three points:
(1), the framework was considered as a helpful complement to the traditional
manual ontology development environments (such as Protégé); (2), the re-
sults were found promising concerning the scalable ontology extension by the
knowledge in unstructured domain resources, however, certain refinement by
ontology engineers was generally considered as a must in order to maintain
high quality of the respective master biomedical ontologies; (3), the natural
language presentation of the sorted extension suggestions was found to be very
useful for the domain experts with no ontology engineering background. The
last finding has been further supported by the recent evaluation of the natural
language generation framework we use in DINO (see [11] for details).

Following the discussion with the domain and ontology engineering experts,
we can distinguish between two practical and reliable DINO application modes
with different requirements on the expert user involvement:

• Instance-only integration: Ontology learned from the textual resources is
semi-automatically integrated into a master ontology, taking only instance-
related assertions into account, i.e., the upper ontology is populated with
new instances of the present concepts and with relations among the in-
stances. Such an application does not require any extensive expert involve-
ment of ontology engineers, since the instance-related suggestions produced
by DINO are relatively reasonable according to our discussions with domain

9 These were namely researchers from the REMEDI institute, see http://www.

nuigalway.ie/remedi/, Prof. Werner Ceusters, M.D. (director of the Ontology
Research Group of the New York State Center of Excellence in Bioinformatics and
Life Sciences) and ontology engineers from the Knowledge Engineering Group at
the University of Economics in Prague.

25

experts. Severe modelling errors can only be introduced very rarely, there-
fore only the expert knowledge of the domain is generally enough to decide
which DINO suggestions to follow in the master ontology extension.

• Full-fledged integration: An unrestricted processing of the DINO sug-
gestions, i.e., taking also the class-related assertions into account, requires
more careful expert involvement in order to guarantee high quality of the
integration results. Ontology experts are generally still needed when resolv-
ing possible modelling bugs (such as multiple class inheritance or redundant
disjointness relations) that might be insufficiently tackled by the domain ex-
perts when processing the natural language DINO suggestions. State of the
art methodologies such as ontology “re-engineering” as introduced in [3] can
help when applying DINO this way.

8 Summary and Future Work

We have presented the basic principles of DINO – a novel lifecycle scenario and
framework for ontology integration and maintenance in dynamic and data-in-
tensive domains like medicine. As a core contribution of the paper, we have
described the mechanism of integration of automatically learned and man-
ually maintained medical knowledge. The presented method covers all the
requirements specified in Section 1. The proposed combination of automatic
and manual knowledge acquisition principles, integration and inconsistency
resolution ensures more scalable production and extension of ontologies in dy-
namic domains. We presented and analysed results of a preliminary practical
application of the DINO integration technique in Section 6. Section 7 out-
lined possible applications in realistic use case areas that have been recently
identified in the biomedicine and e-health fields. The section also summarised
preliminary feedback of our potential users. Based on the feedback analysis,
two practical DINO application modes were suggested. Note that we have
also delivered prototype implementations of a DINO API library and a re-
spective GUI interface (research prototypes of the respective software can be
downloaded at http://smile.deri.ie/tools/dino).

Since the primary funding project has finished, we are in the process (as of
2008) of securing another funding that could support further improvements of
DINO. These improvements consist mainly of an extended support for incon-
sistency resolution, integration with state of the art ontology editors (primar-
ily Protégé) and extension of the DINO user interface (e.g., providing explicit
support for the two application modes given in Section 7.2).

Moreover, we have recently started to work on another project with mo-
tivations similar to DINO, however, with much more ambitious goals. [34]
presents a preliminary proposal and results of a novel empirical knowledge

26

representation and reasoning framework. One of the principal applications of
the researched framework is a complex empirical inference-based integration
of arbitrary emergent knowledge (e.g., learned ontologies) with precise manu-
ally designed knowledge bases. We plan to combine the ontology integration
powered by the reasoning described in [34] with the results achieved within
the DINO implementation in order to allow for more efficient, scalable, user-
friendly and robust dynamic maintenance of (partially emergent) ontologies.
Last but not least, we are going to continuously evaluate the resulting frame-
work among broader biomedicine expert communities and improve it in line
with demands of interested industry partners (possibly, but not only within
the presented real-world application domains).

Acknowledgements The article is a significantly extended version of the
paper: V́ıt Nováček, Loredana Laera, Siegfried Handschuh. Dynamic Integra-
tion of Medical Ontologies in Large Scale. In: Proceedings of the WWW2007 /
HCLSDI workshop. ACM Press, 2007. (see http://www2007.org/workshops/
paper_141.pdf). The presented work has been kindly supported by the EU
IST 6th framework’s Network of Excellence ‘Knowledge Web’ (FP6-507482),
by the ‘Ĺıon’ project funded by Science Foundation Ireland under Grant No.
SFI/02/CE1/I131 and partially by Academy of Sciences of the Czech Repub-
lic, ‘Information Society’ national research program, the grant number AV
1ET100300419. Moreover, we greatly appreciated the anonymous reviewers’
remarks that resulted in significant improvements of the submitted text.

References

[1] A. Alasoud, V. Haarslev, and N. Shiri. A hybrid approach for ontology
integration. In Proceedings of the 31st VLDB Conference. Very Large
Data Base Endowment, 2005.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider. The Decription Logic Handbook: Theory, implementation, and
applications. Cambridge University Press, Cambridge, USA, 2003.

[3] S. Bechhofer, A. Gangemi, N. Guarino, F. van Harmelen, I. Horrocks,
M. Klein, C. Masolo, D. Oberle, S. Staab, H. Stuckenschmidt, and R. Volz.
Tackling the ontology acquisition bottleneck: An experiment in ontol-
ogy re-engineering, 2003. Retrieved at http://citeseer.ist.psu.edu/
bechhofer03tackling.html, Apr 3 2008.

[4] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language
Reference, 2004. Available at (February 2006): http://www.w3.org/TR/
owl-ref/.

27

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 5, 2001.

[6] D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema, 2004. Available at (February 2006): http://www.w3.org/
TR/rdf-schema/.

[7] F. C. C. Brewster and Y. Wilks. User-centred onlology learning for knowl-
edge management. In In Proceedings 7th International Workshop on Ap-
plications of Natural Language to Information Systems, Stockholm., 2002.

[8] D. Calvanese, G. D. Giacomo, and M. Lenzerini. A framework for ontol-
ogy integration. In In Proc. of the First Semantic Web Working Sympo-
sium. Springer-Verlag, 2001.

[9] P. Cimiano and J. Völker. Text2Onto - a framework for ontology learning
and data-driven change discovery. In Proceedings of the NLDB 2005
Conference, pages 227–238. Springer-Verlag, 2005.

[10] O. Corcho, A. Lopez-Cima, and A. Gomez-Perez. The ODESeW 2.0
semantic web application framework. In Proceedings of WWW 2006,
pages 1049–1050, New York, 2006. ACM Press.

[11] B. Davis, A. A. Iqbal, A. Funk, V. Tablan, K. Bontcheva, H. Cunningham,
and S. Handschuh. Roundtrip ontology authoring. In Proceedings of
ISWC 2008. Springer-Verlag, 2008. Submitted.

[12] S. M. Deen and K. Ponnamperuma. Dynamic ontology integration in a
multi-agent environment. In Proceedings of AINA ’06. IEEE Computer
Society, 2006.

[13] K. Dellschaft and S. Staab. On how to perform a gold standard based
evaluation of ontology learning. In Proceedings of the International Se-
mantic Web Conference. Athens, GA, USA., 2006.

[14] R. Dieng-Kuntz, D. Minier, M. Ruzicka, F. Corby, O. Corby, and L. Ala-
marguy. Building and using a medical ontology for knowledge manage-
ment and cooperative work in a health care network. Computers in Bi-
ology and Medicine, 36:871–892, 2006.

[15] M. Eichelberg. Requirements analysis for the ride roadmap. Deliverable
D2.1.1, RIDE, 2006.

[16] J. Euzenat. An API for ontology alignment. In ISWC 2004: Third
International Semantic Web Conference. Proceedings, pages 698–712.
Springer-Verlag, 2004.

[17] J. Euzenat, T. L. Bach, J. Barrasa, P. Bouquet, , J. D. Bo, R. Dieng,
M. Ehrig, , M. Hauswirth, M. Jarrar, , R. Lara, , D. Maynard, A. Napoli,
G. Stamou, H. Stuckenschmidt, P. Shvaiko, S. Tessaris, S. V. Acker, and
I. Zaihrayeu. D2.2.3: State of the art on ontology alignment. Technical
report, Knowledge Web, 2004.

[18] J. Euzenat, D. Loup, M. Touzani, and P. Valtchev. Ontology alignment
with ola. In Proceedings of the 3rd International Workshop on Evaluation
of Ontology based Tools (EON), Hiroshima, Japan, 2004. CEUR-WS.

[19] M. Fernandez-Lopez, A. Gomez-Perez, and N. Juristo. Methontology:
from ontological art towards ontological engineering. In Proceedings of

28

the AAAI97 Spring Symposium Series on Ontological Engineering, pages
33–40, Stanford, USA, March 1997.

[20] M. Fernandez-Lopez, A. Gomez-Perez, and M. D. Rojas. Ontologies’
crossed life cycles. In Proceedings of International Conference in Knowl-
edge Engineering and Management, pages 65–79. Springer–Verlag, 2000.

[21] G. Flouris, Z. Huang, J. Z. Pan, D. Plexousakis, and H. Wache. Incon-
sistencies, negations and changes in ontologies. In Proceedings of AAAI
2006. AAAI Press, 2006.

[22] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy,
H. Eriksson, N. F. Noy, and S. W. Tu. The evolution of Protégé: an
environment for knowledge-based systems development. International
Journal of Human–Computer Studies, 58(1):89–123, 2003.

[23] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Ontological En-
gineering. Advanced Information and Knowledge Processing. Springer-
Verlag, 2004.

[24] T. R. Gruber. Towards principles for the design of ontologies used for
knowledge sharing. In N. Guarino and R. Poli, editors, Formal Ontology
in Conceptual Analysis and Knowledge Representation, Deventer, The
Netherlands, 1993. Kluwer Academic Publishers.

[25] P. Haase and Y. Sure. State-of-the-art on ontology evolution. Deliverable
3.1.1.b, SEKT, 2004.

[26] P. Haase and J. Völker. Ontology learning and reasoning - dealing with
uncertainty and inconsistency. In Proceedings of the URSW2005 Work-
shop, pages 45–55, NOV 2005.

[27] J. Hartmann, P. Spyns, A. Giboin, D. Maynard, R. Cuel, M. C. Suarez-
Figueroa, and Y. Sure. Methods for ontology evaluation (D1.2.3). Deliv-
erable 123, Knowledge Web, 2005.

[28] J. Heflin and J. Hendler. Dynamic ontologies on the web. In Proceedings
of AAAI 2000. AAAI Press, 2000.

[29] L. Laera, I. Blacoe, V. Tamma, T. Payne, J. Euzenat, and T. Bench-
Capon. Argumentation over ontology correspondences in mas. In In
Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2007), Honolulu, Hawaii,
USA. To Appear, 2007.

[30] L. Laera, V. Tamma, J. Euzenat, T. Bench-Capon, and T. R. Payne.
Reaching agreement over ontology alignments. In Proceedings of 5th
International Semantic Web Conference (ISWC 2006). Springer-Verlag,
2006.

[31] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Cybernetics Control Theory, 10:707–710, 1966.

[32] A. Maedche and S. Staab. Learning ontologies for the semantic web. In
Semantic Web Workshop 2001, 2001.

[33] A. Maedche and S. Staab. Ontology learning. In S. Staab and R. Studer,
editors, Handbook on Ontologies, chapter 9, pages 173–190. Springer–
Verlag, 2004.

29

[34] V. Nováček. Complex inference for emergent knowledge. Technical
Report DERI-TR-2008-04-18, DERI, NUIG, 2008. Available at http:

//smile.deri.ie/resources/2008/vit/pubs/aerTR0408.pdf.
[35] V. Nováček, S. Handschuh, L. Laera, D. Maynard, M. Völkel, T. Groza,

V. Tamma, and S. R. Kruk. Report and prototype of dynamics in the
ontology lifecycle (D2.3.8v1). Deliverable 238v1, Knowledge Web, 2006.

[36] N. Noy and M. Musen. The prompt suite: Interactive tools for ontology
merging and mapping, 2002.

[37] N. F. Noy and M. Klein. Ontology evolution: Not the same as schema
evolution. Knowledge and Information Systems, pages 428–440, 2004.

[38] H. S. Pinto and J. P. Martins. A methodology for ontology integration.
In Proceedings of K-CAP’01, 2001.

[39] S. Staab and R. Studer, editors. Handbook on Ontologies. International
Handbooks on Information Systems. Springer-Verlag, 2004.

[40] L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis,
University of Karlsruhe, 2004.

[41] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke.
OntoEdit: Collaborative Ontology Development for the Semantic Web.
In 1st International Semantic Web Conference (ISWC2002), Sardinia,
2002. Springer.

[42] V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva. User–friendly
ontology authoring using a controlled language. In Proceedings of LREC
2006 - 5th International Conference on Language Resources and Evalua-
tion. ELRA/ELDA Paris, 2006.

[43] B. L. S. V. Tamma, I. Blacoe and M. Wooldridge. Introducing auto-
nomic behaviour in semantic web agents. In In Proceedings of the Fourth
International Semantic Web Conference (ISWC 2005), Galway, Ireland,
November., 2005.

[44] M. Völkel and T. Groza. SemVersion: RDF-based ontology version-
ing system. In Proceedings of the IADIS International Conference
WWW/Internet 2006 (ICWI 2006), 2006.

30

