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Abstract
Though genome-wide technologies, such as microarrays, are widely used, data from these
methods are considered noisy; there is still varied success in downstream biological validation.
We report a method that increases the likelihood of successfully validating microarray findings
using real time RT-PCR, including genes at low expression levels and with small differences. We
use a Bayesian network to identify the most relevant sources of noise based on the successes and
failures in validation for an initial set of selected genes, and then improve our subsequent selection
of genes for validation based on eliminating these sources of noise. The network displays the
significant sources of noise in an experiment, and scores the likelihood of validation for every
gene. We show how the method can significantly increase validation success rates. In conclusion,
in this study, we have successfully added a new automated step to determine the contributory
sources of noise that determine successful or unsuccessful downstream biological validation.
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Background
Genome-wide technologies such as gene expression microarrays offer the possibility of
large-scale screening to find new genes and pathways involved in complex biological
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processes. However, potentially, a lot of interesting findings are lost because of issues of
noise. A technique that identifies the sources of noise to guide subsequent choices of genes
to validate would improve genomic technology. We describe such a general technique in
this study.

The success of validating genes determined to be significantly involved in a process by
using genomic technologies, such as gene expression microarrays, is quite variable. Though
there are dozens of published methods to determine the most statistically significantly
differentially expressed genes given two sets of microarray data, the amplitude of difference
does not necessarily correspond with the likelihood of successful validation using a more
sensitive measurement technique such as quantitative real time reverse transcriptase-
polymerase chain reaction (RT-PCR). It is more commonly assumed that higher fold
changes (greater than 2) are more likely to validate with gold standard methods such as RT-
PCR. This assumption is based on previous work showing genes with this level of fold
change are most likely to validate on another microarray technology [1]. It is also assumed
that genes with small mRNA expression changes (under 2 fold) or low expression levels as
measured by microarrays validate less often, because of the increased noise in these
measurements [2]. Without a new approach, we cannot predict which of these small fold
changes are reproducible without validating all genes, which is not feasible. This is
unfortunate because interesting changes in biological systems may be governed by genes
showing small differences in expression, especially when measured in the context of
complex tissues consisting of many different cell types. In addition, many of the most
biologically interesting genes are expressed at the lowest levels, such as transcription
factors.

Our goal here is to consider the process of validation by RT-PCR, and to model the success
and failure of validation of a gene as a variable independent from the degree of likelihood of
a significant change in that gene. Our hypothesis was that a machine-learning method can be
used to learn which sources of noise weighted most importantly in successful gene
validation.

Failure of validation has been attributed to the multiple sources of biological and
technological noise present in these high-throughput measurement systems. Potential
sources of biological noise include circadian and other influences present at the time
samples are acquired [3, 4] and tissue complexity [5]. Sources of technical noise include
variability in scanning and high background signals [6], and dye-specific biases in
experiments using cDNA arrays [7]. As microarray generations advance, more genes and
transcripts are probed, but the specific probes designed to detect the RNA may change, and
this can introduce irreproducibility of measurement [8]. Noise is also introduced when
samples being compared are measured on different platforms; previous studies have shown
varying degrees of reproducibility for samples measured on spotted cDNA and
oligonucleotide microarrays [9].

In this work, we show how we tested our hypothesis by using Bayesian networks, a method
to model variables and the conditional probabilities between them, to probabilistically model
the likelihood of successful validation, given input sources of noise [10]. Bayesian
approaches have been previously used at many different levels of microarray analysis. At
the raw image level, Bayesian networks built using pixel data have been used to model and
improve the quality of microarray measurements [11]. At the processed measurement level,
Baldi and Long showed how a Bayesian t-test could be used on estimates of distributions of
gene expression measurements, and showed how this approach better compensates for lack
of replicates [12]. Long, et al., then showed the success of this approach in an E. coli
microarray experiment [13]. Ibrahim, et al., used a similar approach, with the crucial
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difference that a correlational structure between genes was modeled [14]. Broet, et al., used
a hierarchical model taking into account multiple discrete levels of gene expression change
[15]. At the multi-gene level, Bayesian and other probabilistic networks have been inferred
from microarray data [16–20].

Our method is different than the many previous uses of Bayesian approaches, in that we are
modeling the success and failure of validation as a variable dependent on multiple estimators
of measurement noise. It is important to note that we are not modeling the likelihood of a
significant change in a gene given multiple measurements, nor are we building a Bayesian
network of genes.

The model we describe in this paper was built and tested on time-series measurements in the
domain of diabetic retinopathy. At the onset of the analysis of the microarray data in this
biological system, most of the observed differences in gene expression between mice under
normal oxygen and hyperoxia conditions were small, possibly because the retina is a
complex organ with different cell types. Very few genes were found to be significantly
different using established methods such as Significance Analysis of Microarrays (SAM)
[21]. Of the genes chosen by significance using conventional t-tests, only 33% initially
validated by RT-PCR (examples shown in Figure 3). Here, we show how we first created
and trained a Bayesian network on the success and failures of these genes. We then
validated a new set of genes guided by the network. The success rate of validation for the
tested set of genes improved to 92%. Interestingly, the genes in the test set showed very
small expression differences for the Affymetrix data; in most cases less than 1.5 fold. In
conclusion, we increased the likelihood of selecting genes that are successfully validated by
the introduction of an automated step after the traditional bioinformatics step in microarray
analyses.

Methods
Microarray Data

Mice were exposed to air containing a normal concentration of oxygen, and hyperoxia, a
process that parallels early stages of diabetic retinopathy with vascular loss [22]. Litters of
postnatal day-7 (P7) C57Bl/6 mice with nursing mothers were exposed to 75%±2% oxygen
for 12-hour (P7+12h), 24-hour (P7-P8), 72-hour (P7-P10), or 120-hour (P7-P12) periods in a
sealed incubator. Age-matched room-air mice (P7, P8, P10, and P12) were used as controls.
At each time point for both control and oxygen-treated mice, we pooled retinas from 8
different mice of 8 different litters to reduce biologic variability. The entire RNA
preparation process was repeated three times at each of the four time points for both control
and oxygen-treated groups, so that 24 RNA samples of 8 pooled retinas each were collected.
RNA was hybridized to Affymetrix MOE3430A microarrays using established protocols.
The image files were analyzed with Microarray Suite 5.0 (MAS 5.0) software. For each
condition, we measured RNA at the time-points P7, P8, P10 and P12 with biological
triplicates for each time-point. Data is available under accession GSE1816 at the National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus.

RT-PCR
RNA was prepared for real time RT-PCR from different pools of mice using the same
methods as were used for microarray measurements. The same time-points were used for
both techniques except for the P7 time-point under hyperoxia, which was not measured by
RT-PCR. Both cDNA preparation and the quantitative real-time RT-PCR were performed as
described previously [23]. Briefly, 100 ng of purified total RNA was reverse transcribed into
cDNA using murine leukemia virus reverse transcriptase and random primed hexamer
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(Invitrogen, Bethesda, MD). The ABI Prism 7700 Sequence Detection System (Applied
Biosystems) and the SYBR Green master mix kit (Qiagen) were used for detecting real-time
RT-PCR products from 0.25 – 2.5 ng reverse transcribed cDNA samples. Cyclophilin-A,
which exhibits a constant level in comparison with 18S rRNA in the retina samples, was
used as the normalizer. PCR reactions for each sample were done in duplicate for target
genes and triplicate for precisely quantified and 10-fold serially diluted cDNA templates.
Copy numbers were determined from the cDNA standard curves. The level of target gene
expression was calculated after normalizing against the 106 cyclophilin-A copies in each
sample and data are presented as mRNA copies per 106 cyclophilin-A copies.

Algorithm
We first used a conventional technique to determine lists of significantly differentially
expressed genes for validation by real time RT-PCR (Figure 1). Many of these genes did not
validate. A Bayesian network was trained on the success and failure of RT-PCR validation
of these and other genes, given the input of multiple characteristics of the genes. After the
creation of the Bayesian network, the network was then applied to a set of genes from the
microarray, and a sample of genes were then chosen for RT-PCR based on having the
highest predicted likelihood of validation. Each of these steps is described below.

Selection of candidate genes for the Bayesian network analysis
First, three sets of pair-wise comparisons of biological interest were defined (Figure 2): A)
Consecutive comparisons, where consecutive time-points are compared with each other in
both the normoxia and hyperoxia time series. B) Cross-condition comparisons, where each
hyperoxia time-point is compared to its corresponding normoxia time-point. C) Baseline
comparisons, where each of the hyperoxia time-points are compared to the day 7 normoxia
time-point.

A list of genes significantly different from each pair-wise comparison in each of these sets
of comparisons was generated using a two-tailed Student's t-test with unpaired values with
Welch correction for unequal variance [24], and selecting genes with p < 0.01, similar to
many previous studies [25, 26]. Methods that compensated for multiple-hypothesis testing,
such as SAM, resulted in no significantly expressed genes in most comparisons [21]. Genes
were selected to be validated by RT-PCR because they were positive in at least one of the
cross-condition and baseline comparisons as shown in Table 2. Eighteen genes were initially
validated by RT-PCR. To this set, another 22 genes were added, for which there was pre-
existing RT-PCR data measured before the microarrays were measured, bringing the total
number to 40 genes used to train the network.

Database used for induction of Bayesian network
Six input variables and six output variables were calculated for each gene in the training set
and were used to create the database (Table 1). The six input variables were estimates of
noise based on the Affymetrix measurements and probe set characteristics. We also included
two output success (outcome) variables and four output variables. The output success
variables incorporate both Affymetrix and RT-PCR data and define a successful RT-PCR
validation of the Affymetrix data. The network is queried to predict these two success
variables. The other four output variables incorporate only RT-PCR data. These four output
variables were not predicted using the Bayesian network and do not define a successful RT-
PCR validation. Though we call these variables output variables, we actually have them as
input during training, but they were missing when the network was actually used in the test
set. While they are not crucial to the development of the network or the prediction of the
output success variables, we designed them into the network to secondarily learn predictors
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for these RT-PCR variables from the original microarray data. We also wanted to learn the
relative input of the RT-PCR and Affymetrix data in the output success variables.

The input variable Corr-Replic-Affy, is the mean of three Pearson correlation coefficients
calculated from the three possible pair-wise pairings of triplicate vectors. These are from
eight measurements, four measurements in the normoxia time-series and four measurements
in the hyperoxia time-series. This variable is a measure of the strength of the linear
relationship within replicates.

The input variable Unique-Affy-Probe, assumes a “yes” value if the probes in the Affymetrix
probe set are unique for the measured transcript (i.e. probe set identifier ends with “_at”) and
a ‘no’ value if the probes are potentially shared between multiple transcripts of the same or
different genes (i.e. probe set identifier ends with “_a_at” or “_s_at”) or probes for which
the rules for cross-hybridization were dropped (i.e. ends with “_x_at”). We observed
different patterns for the different types of probe sets for the same gene, and hypothesized
that the type of probe set might influence the success of validation and the output variables.
The input variable Mean-Affy, was defined as the mean expression level for a gene across all
time-points and replicates. The input variable Pcalls, reflects the count of the Present
Detection calls as reported by the Affymetrix MAS 5.0 software for each gene across all 24
microarrays [27].

The input variable Cross-Condn-Ttest-Affy, reflects the count of significant t-tests in Cross-
condition comparisons (as defined earlier), ranging from 0 to 4. The input variable Consec-
Baseln-Ttest-Affy, indicates the count of significant t-tests in Consecutive and Baseline
comparisons, ranging from 0 to 9. Corr-Replic-Rt, Mean-Rt, Cross-Condn-Ttest-Rt,, and
Consec-Baseln-Ttest-Rt, were exactly similar to their corresponding input variables, except
calculated using the RT-PCR measurements.

Two strict definitions of a successful RT-PCR validation were used as output success
variables on which the Bayesian network was queried to predict. These were as follows:

Consec-Dir-Match: In order to define whether the Affymetrix and RT-PCR data showed
similar patterns for the normoxia and hyperoxia time series, we considered the set of
Consecutive comparisons in Figure 2. Biologically, these comparisons are an indicator of
change in expression level for a gene between time points in the normal and hyperoxia
conditions. Each of the above comparisons was assigned a 1 if the Affymetrix and RT-PCR
fold changes were in the same direction (increased or decreased expression) and zero other-
wise. The average of the six was called the Consec-Dir-Match variable and ranged between
0 and 1. A Consec-Dir-Match value of greater than 0.5 was defined as a success.

Ampli-Cross-Condn-Match: Because we were primarily interested in the effects of
hyperoxia on each gene at each time-point, Cross-condition comparisons were also
considered informative. A fold ratio for a gene was computed by taking the arithmetic mean
of replicate expression measurements for that gene under hyperoxia and normoxia at a given
time point and dividing the means. Each of the 3 Cross-condition comparisons was assigned
a 1 if the fold ratio calculated using the RT-PCR measurements was equal or higher in
magnitude than the fold ratio calculated using the Affymetrix measurements, and greater
than a minimum relevance threshold of 1.4 fold; otherwise a zero was assigned. The average
over the 3 fold changes is a factor between 0 and 1 and defines the Ampli-Cross-Condn-
Match variable. An Ampli-Cross-Condn-Match variable value of greater than 0.5 was
defined as a success. The training data set is available as Supplemental Table 1: english
supplemental table 1.xls.
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Regarding the threshold, it does not make sense to employ a threshold of less than 0.5 for
either of the success variables, as that would mean that less than half of the comparisons met
the success criteria. For both success variables, if the threshold (ranging from 0 to a
maximum value of 1) is plotted against performance, the trend of performance versus
threshold is increasing. As a result, a threshold of 0.5 is a reasonable and conservative pick.
The performance is defined as the improvement in the success rate of the test set compared
to the initial set of 18 genes picked on bioinformatics criteria that formed part of the training
set.

Statistical Modelling of the Bayesian network
This database of variables (Supplemental Table 1) was then used to create the structure of
and ascertain the distributions for the Bayesian network. This was done using Bayesware
Discoverer, which explores a working subset of models as defined by the user by identifying
an order with which the variables in the database will be evaluated [28]. The higher the
assigned rank of a variable, the greater the number of other variables that will be tested as
potential precedent variables; thus, output success variables were placed at the highest rank.
The threshold Bayes factor was set at 3, a conservative value that reduces false positives. No
limit was put on the maximum number of parents (precedent variables) that a variable can
have. The Prior Precision, encoding the confidence of prior distributions, was set at the
default value of 1. As the construction of Bayesian networks is markedly difficulty when
handling continuous variables, all variables were discretized. In most cases, the continuous
variables were discretized into two bins of equal length by taking the range of values, and
creating two bins using the midpoint of the range. In the case of Cross-Condn-Ttest-Affy,
three bins were used.

After the Bayesian network was created using the training data, a set of the genes measured
on the microarrays was evaluated using the network. We identified a set of Affymetrix
probe-sets whose expression values across time-points correlated to one or more of five
markers of endothelial cells with a Pearson correlation coefficient of greater than 0.8. The 5
genes used as markers were ICAM-1, PECAM-1, Tie-1, Tie-2 and VE-cadherin. The
number of probe-sets correlating to each of these markers ranged from 220 to 450. The
network was used to predict which of these genes were likely to successfully validate by
RT-PCR. Based on the predicted high likelihood of validation in the two output success
variables Consec-Dir-Match and Ampli-Cross-Condn-Match, a sample of 12 genes was
selected to test the network. Significance in the difference in validation success rates was
determined using a chi-square test in Microsoft Excel 2002 (Redmond, Washington). The
test data set is available as Supplemental Table 2: english supplemental table.xls.

Results
Training and testing the network

Our goal was to develop an automated method to predict which genes implicated in an
experiment using microarray measurements would be most likely to successfully validate by
RT-PCR, trained using the experience from a starting set of genes that successfully and
unsuccessfully passed validation. To improve our ability to generalize findings, the training
set consisted of two sets of genes. We initially attempted validation of 18 genes chosen on
the basis of the statistically significant differences between comparison groups, as defined
by t-tests. This set of 18 genes became the training set. To add data on genes failing
validation, we then added another 22 genes to the training set for which there was pre-
existing RT-PCR data performed under the same biological conditions, along with the
microarray data acquired after the RT-PCR measurements. We gauged the success and
failure of this validation and calculated estimates representing potential sources of noise.
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These inputs were used to create and train a Bayesian network. Two output success
variables, Consec-Dir-Match and Ampli-Cross-Condn-Match were defined for the
successful validation of Affymetrix microarray data by RT-PCR, using strict criteria.
Success using the Consec-Dir-Match variable identifies genes that show similar patterns of
expression across the time series for microarray and RT-PCR data. Success using Ampli-
Cross-Condn-Match, which identifies genes with expression differences between
corresponding normoxia/hyperoxia time-points that can be validated, was the most relevant
to the biological question being asked. Of the initial set of 18 genes, selected using t-tests,
the rate of genes with successful Ampli-Cross-Condn-Match was only 33% and the rate of
genes with successful Consec-Dir-Match was 50%. Of the additional 22 genes, only one had
a successful Ampli-Cross-Condn-Match (4.5%). In the full training set, there were 17% of
genes with successful Ampli-Cross-Condn-Match and 57% of genes with successful Consec-
Dir-Match. Figure 3 shows examples from the training set of genes that served as
successfully and unsuccessfully validated genes.

Results from the Bayesian network
After extracting the network from the data (Figure 4), we applied it to a set of genes on the
microarray. The retina is a complex organ made up of different kinds of cells, of which
endothelial cells are a small proportion. Under conditions of hyperoxia, the endothelial cells
undergo vaso-obliteration and thus are likely to show genes changes between normoxia and
hyperoxia. These gene changes are likely very small as the whole retina was used in the
experiment. It was of interest to identify potential novel endothelial cell genes that showed
expression differences between normoxia and hyperoxia conditions that could be validated
by RT-PCR. Towards this end, we applied the network to a set of genes whose mean
expression values correlated to one or more of five known markers of endothelial cells.
Running the genes through the network identifies genes that are more likely to meet our
criteria for successful validation by RT-PCR. And as genes from other cell types would also
show gene changes between normoxia and hyperoxia conditions, restricting to genes that
show a correlation with known markers of endothelial cells may be more likely to identify
genes potentially expressed in endothelial cells.

We picked a set of 12 genes to validate out of the genes most likely to have a successful
Consec-Dir-Match and Ampli-Cross-Condn-Match, our strict definitions of biological
validation. The distributions of microarray measurements for the entire set of genes, the
training set, and the test set are similar as determined by ANOVA (p = 0.09). We found that
performing RT-PCR on genes where the Bayesian network predicted successful validation
resulted in a significant improvement in the rate of successful validation (Table 3).
Compared to the results from our initial set of genes selected on bioinformatics criteria, the
rate of genes with Consec-Dir-Match improved from 50% to 67%, and for Ampli-Cross-
Condn-Match, the rate improved significantly from 33% to 92% (chi-square p = 0.000005).
Of note, the genes chosen for the test set actually score more poorly than the original set of
genes based on the traditional bioinformatics criteria (Table 2) suggesting that in this
experiment, successful validation is governed more by choosing genes with less noisy
measurements than by choosing genes based on statistical significance.

The goal of Bayesian network extraction is to find the model with the maximum marginal
log-likelihood compared to the next most probable model given the data. The marginal log-
likelihood of the entire network is the sum of the marginal log-likelihood of each
dependency. In order to do this, for each variable, we find the most probable parent
dependencies given the data. The marginal log-likelihood of each variable is used to
compute the Bayes factor. For a given variable, the Bayes factor is computed as a ratio
between the most probable dependency and other sets of dependencies, including the null
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hypothesis of no dependence. The Bayes factor serves as a measure of how many times
more probable is one dependency compared to another.

Our resultant Bayesian network (Figure 4) identified a single most informative variable,
Corr-Replic-Affy, which measures the strength of the linear relationship within replicates
using the Pearson correlation coefficient. Both output success variables conditionally depend
on Corr-Replic-Affy. The likelihood of Consec-Dir-Match and Ampli-Cross-Condn-Match
explaining the output variable increased 17 and 10,982 fold, respectively, after the addition
of Corr-Replic-Affy as a parent dependency. In addition, these were positive correlations, in
that a higher value for this variable, indicative of stronger correlation between the triplicate
measurements by microarray, was associated with greater likelihood of validation by RT-
PCR. We used this variable as the primary basis for selecting genes for the test set, for
further validation.

Besides Corr-Replic-Affy, the only other input variable conditioning Ampli-Cross-Condn-
Match is Consec-Baseln-Ttest-Affy. The relationship is positive, in that the greater the
number of significant comparisons for a gene, the greater the likelihood of a positive match
for that gene, but weaker than Corr-Replic-Affy. The output variables Corr-Replic-Rt and
Cross-Condn-Ttest-Rt also condition Ampli-Cross-Condn-Match.

Other than Corr-Replic-Affy, the other variable that conditions Consec-Dir-Match is Mean-
Affy, which represents the mean expression level across all time-points as measured by the
microarrays. Specifically, for genes with high Corr-Replic-Affy, if the mean expression
measurements are high (in this experiment, above 5600 arbitrary Affymetrix units), the
likelihood of Consec-Dir-Match is 90.0%, compared to 99.3% if the mean expression levels
are lower. For genes with low Corr-Replic-Affy, the likelihood of Consec-Dir-Match is
80.6% if the mean expression level is low, which drops to only 5.6% if the mean expression
level is high. This is a surprising result, as genes at higher expression levels are commonly
considered as being measured with less noise. But Mean-Affy is a weaker parent variable for
Consec-Dir-Match than Corr-Replic-Affy, as indicated by the fact that adding the Mean-Affy
dependency improves the likelihood of explaining Consec-Dir-Match only by 4 as compared
to 17 fold for Corr-Replic-Affy.

Another unexpected relation was seen in that Consec-Baseln-Ttest-Affy conditions Corr-
Replic-Rt, but this relationship is negative. In other words, the greater the number of
significant comparisons for a gene, the lower the likelihood of a high correlation between
replicates, as measured by RT-PCR.

As expected, the input variable Mean-Affy conditions the output variable Mean-Rt. Mean-
Affy and Mean-Rt are the mean expression measurements across all time-points for a single
gene as measured by Affymetrix microarray and RT-PCR respectively. It is encouraging that
there is a direct relationship between the two variables, and this can serve as a positive
control.

The four non-success output variables also provide useful information to the
experimentalist. For example, it is informative that correlation between RT-PCR replicates
as well as significant t-tests for RT-PCR both contribute to a successful RT-PCR validation
of Affymetrix data. It is also informative that none of the Affymetrix nodes points to Cross-
Condn-Ttest-Rt, while this is not the case for Corr-Replic-Rt.

Finally, the orphaned input and output variables, whose distributions neither condition nor
are not conditioned by any other variables, also provide information. These variables include
Pcalls, Unique-Affy-Probe, and Consec-Baseln-Ttest-Rt. In other words, the type of probe
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set and the number of Detection calls as reported by the Affymetrix MAS 5.0 software did
not significantly influence the likelihood of a successful validation.

Discussion
Using Bayesian networks, we were successful in our goal of creating an automated method
that can determine which factors contribute most significantly to the successful RT-PCR
validation of genes implicated from microarray measurements. We trained a Bayesian
network on the successes and failures of an initial set of genes using input sources of noise.
This helped us identify predictors of successful validation that we did not know of a priori.
Significantly, the Bayesian network can allow for the successful validation of genes that
show small fold changes, such as one shown in Figure 3A; many biologically interesting
genes are in this category. Of the successfully validated genes in our test set, most showed
microarray data fold changes of less than 1.5 fold. The network can also allow for the
validation of genes that show low expression levels.

With the Bayesian network created on our preliminary experimental data, we determined
that optimizing the selection of genes based on “within gene” correlation of microarray
measurements would most greatly improve our rate of biological validation, as defined by
equal or greater fold-changes by RT-PCR between hyperoxia and normoxia at each time
point than by microarray. We have shown that optimizing “within gene” correlation in the
subsequent selection of genes allowed us to significantly increase rates of validation, as the
model predicted.

When used to boost validation rates in this experiment, the network provided few results that
were counter-intuitive. The inverse relationship between a gene’s mean expression level
across all microarrays (Mean-Affy) and the likelihood of validation (Consec-Dir-Match) is
unexpected, as genes at higher expression levels are thought to have measures that are less
influenced by technical noise. In actuality, gene expression differences between time points
in both conditions were less likely to be reproducible when mean gene expression was
higher, even when only the direction of change was evaluated. Similarly, the degree of
correlation of a gene within replicate RT-PCR measurements (Corr-Replic-Rt) drops slightly
as the number of significant Base-line and Consecutive comparisons for that gene increases
(Consec-Baseln-Ttest-Affy), though this relation is relatively weak (evidenced by the Bayes
Factor of only 5 as compared to no relationship existing). Further interpretation of these
unexpected relations is limited by the size of the training set of genes.

Use of the Bayesian network successfully allowed us to find those variables, representing
sources of noise, that when optimized would allow a greater rate of validation. However, the
lack of connections between variables was also illuminating. For example, the likelihood of
validating a difference between hyperoxia and normoxia and finding an increased fold-
change (Ampli-Cross-Condn-Match) was not conditioned on the number of “Present”
Detection calls (Pcalls), or the mean expression level (Mean-Affy). Intuitively, without the
network, we would have considered choosing genes with higher expression levels or with
many “Present” calls, as recommended by others [29]. With the network, we instead found
an alternate variable (Corr-Replic-Affy) to optimize that would yield a higher rate of
validation.

Although a high correlation between replicates was the best predictor of success for this
particular experiment, we are not making the case that correlation within replicates will be
the best predictor for another experiment. We are making the case that it is possible to
statistically learn from failures in validation and improve choices midstream within an
experiment.

English et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2014 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The approach that we used has some limitations. We recognize that there are many more
potential sources of noise those discussed here, but for the purposes of the present paper we
have only discussed a few. For example, our approach could be improved by adding
variables representing the distribution of raw intensities over the each probe pair of every
probe set. Another useful variable might be the number of probes that match sequences in
the NCBI Reference Sequence (RefSeq) database, as this can implicate the validity of
expression measurements [30]. We acknowledge that over-fitting may be a serious issue as
not every gene was validated using RT-PCR, and only a small sample of genes was used to
train and test the network. It is also true that we cannot completely discount the possibility
of an introduced bias based on the selection of the test set. However, two separate issues are
involved 1) identifying gene changes that are relevant to the experimentalist and 2)
identifying reproducible (verifiable) gene changes. The methods used to select genes for the
training and the test sets both target relevant gene changes. The second issue, the
reproducibility of gene changes, is dependent on noise factors. Another factor is that straight
discretization by range may oversimplify the complex distributions of each variable. In
addition, our initial bioinformatics criteria of selecting genes by count of significant t-tests
may appear naïve when alternate methods are available, including methods involving
permutation testing, such as SAM [21]. However, using SAM we obtained no significantly
changed genes at the earlier time-points, possibly because of the smaller number of
replicates. As our goal was to increase the number of true positives that successfully validate
by a gold-standard method such as RT-PCR, the technique used to identify significantly
changed genes is less critical. Finally, we also acknowledge that our results may not be
generalizable to other platforms and analysis methods other than differential expression.
However, whichever the platform used for a microarray study, there will be noise factors
that negatively affect the reproducibility of the data. And learning these sources of noise and
using the knowledge to guide further choices for validation might be expected to improve
the reproducibility.

In spite of the above limitations, we suggest that our method can improve the optimization
of countless other parameters which are not presently used or weighted highly by existing
bioinformatics methods.

Conclusions
This approach represents an improvement in the standard methodology of genomic
exploration. Based on our results, we suggest the addition of a new automated step to
determine the contributory sources of noise that determine a successful or unsuccessful RT-
PCR validation, and we suggest taking advantage of this step midway through the validation
of any experiment guided by microarray data. This process can be tailored to different
experiments and conditions in other biological systems. Though we used Bayesian networks
as our automated prediction step, other supervised learning methods can be used as well,
such as support vector machines or decision trees [31, 32]. If output variables are carefully
crafted to match ones own definition of a successful validation, the resultant network may
significantly improve validation efforts.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schema used for the analysis
Microarray data was used to generate a list of significant gene expression changes using
pair-wise t-test comparisons (1). These genes were validated by RT-PCR (2). The successes
and failures for these genes as well as 22 additional genes for which there was pre-existing
RT-PCR data (3) were used to train a Bayesian network. This became our predictive model
for future successful validation (4). Based on the predicted likelihood of validation, we
performed RT-PCR validation on 12 newly selected genes (5) and our success rate improved
to 92%, despite these genes actually performing worse on the specific t-test comparisons
than the original set (6).
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Figure 2. Three sets of comparisons of biological interest
1) Consecutive comparisons (dashed lines). 2) Cross-condition comparisons (solid lines).
Note: The 7H → 7N comparison exists for Affymetrix data alone. 3) Baseline comparisons
(dotted lines).
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Figure 3. Example of genes with successful and unsuccessful validation
A: Pfkp is an example of a gene with high Consec-Dir-Match score (0.83) because the
Affymetrix and RT-PCR data have similar trends across both the normoxia and hyperoxia
time series, even though by microarray the highest Consecutive comparison fold difference
is only 1.6 fold. B: Ak4 is an example of a gene with high Ampli-Cross-Condn-Match score
(1.00), indicating that at corresponding time points, the difference between hyperoxia and
normoxia seen in the RT-PCR measurements was at least as high as that seen in the
Affymetrix measurements; the highest fold difference in a Cross-condition comparison is
only 2.4 fold for the Affymetrix measurements. C: Fish is an example of a gene that
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validated poorly and showed low scores for both output variables, despite having a higher
maximum Consecutive comparison fold difference (2.0 fold) and higher maximum Cross-
condition comparison fold difference (2.5 fold) than the other two genes.
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Figure 4. Topology of the identified Bayesian network
The identified Bayesian network consists of nodes (variables) connected by significant
conditional dependencies between variables. The six input variables (black text on white)
reflect calculated indications of biological or technical noise in microarray measurements.
The four output variables (black text on gray) indicate similar calculations made using the
RT-PCR measurements. The two output success variables (white text on black) reflect the
event of successful biological validation (as strictly defined in the text). Dependencies can
be positively (plus sign) or negatively (minus sign) correlated. Numbers within nodes
indicate the Bayes factor between the given set of parent dependencies (i.e. the most
probable) and no parent dependencies. For example, as a model explaining the given
training data, the set of four parent dependencies into the Ampli-Cross-Condn-Match
variable is 7176 times more likely than no parent dependency. Numbers on arrows indicate
the Bayes factor between the given set of parent dependencies and the set without the
annotated dependency. For example, adding the Corr-Replic-Affy parent dependency to the
other three parent dependencies into Ampli-Cross-Condn-Match improves the likelihood of
explaining the output variable by 10,982 fold. The interpretation of this network is that
Corr-Replic-Affy, which measures the intra-replicate correlation between gene
measurements by microarray, is the most informative input variable in the network in that it
is strongest in conditioning both output success variables.
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Table 1
Variables used to train the Bayesian network

Six input variables, four output variables, and two output success variables were used to train the Bayesian
network. Details of these variables are explained in the text.

Input Variables (for each gene) Definition

Pcalls Number of “Present” detection calls

Unique-Affy-Probe Type of microarray probe

Corr-Replic-Affy Mean pair-wise triplicate correlation

Consec-Baseln-Ttest-Affy Number of significant Consecutive and Baseline comparison t-tests

Cross-Condn-Ttest-Affy Number of significant Cross-condition t-tests

Mean-Affy Mean signal across all 24 microarrays

Output Variables Definition

Corr-Replic-Rt Within duplicate correlation

Consec-Baseln-Ttest-Rt Number of significant Consecutive and Baseline comparison t-tests

Cross-Condn-Ttest-Rt Number of significant Cross-condition t-tests

Mean-Rt Mean expression level

Output Success Variables Definition

Consec-Dir-Match RT-PCR measurements successfully validated the direction (increased or decreased) of change

Ampli-Cross-Condn-Match RT-PCR measurements successfully validated the fold changes across conditions
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Table 2

Number of genes with significant t-tests for one or more of the defined biologically interesting comparisons.

Number of genes with a positive
t-test for one or more of the
Cross-condition comparisons

Number of genes with a positive t-test for
one or more of the Baseline comparisons

Before Network 15/18 (83%) 3/18 (17%)

After Network 8/12 (67%) None
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Table 3
RT-PCR validation rates of genes selected without and with the network

The success rates without the network are for the set of 18 genes which later formed part of the training data
for the network.

Number of genes with a Consec-
Dir-Match > 0.5

Number of genes with an Ampli-Cross-
Condn-Match > 0.5

Before Network 9/18 (50%) 6/18 (33%)

After Network 8/12 (67%) 11/12 (92%)
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