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Abstract
Biological ontologies are now being widely used for annotation, sharing and retrieval of the
biological data. Many of these ontologies are hosted under the umbrella of the Open Biological
Ontologies Foundry. In order to support interterminology mapping, composite terms in these
ontologies need to be translated into atomic or primitive terms in other, orthogonal ontologies, for
example, gluconeogenesis (biological process term) to glucose (chemical ontology term).
Identifying such decompositional ontology translations is a challenging problem. In this paper, we
propose a network-theoretic approach based on the structure of the integrated OBO relationship
graph. We use a network-theoretic measure, called the clustering coefficient, to find relevant
atomic terms in the neighborhood of a composite term. By eliminating the existing GO to ChEBI
Ontology mappings from OBO, we evaluate whether the proposed approach can re-identify the
corresponding relationships. The results indicate that the network structure provides strong cues
for decompositional ontology translation and the existing relationships can be used to identify new
translations.
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Introduction
Biomedical ontologies are being increasingly used in a variety of informatics applications
ranging from information retrieval, decision support and knowledge discovery. The size and
scope of biomedical ontologies is rapidly expanding under the Open Biological Ontologies
(OBO) Foundryi. There are over 60 ontologies with a total of 443,440 terms and 439,417
relationships within OBO. This volume is reflective of the increased use of ontologies in
annotation, sharing and analysis of molecular biology datasets.

The process of annotation generally involves instances of biological entities such as
proteins, genes or phenotypes being associated with one or more ontology terms. Consider,
for example, gene IGF1, which is associated with chondroitin sulfate proteoglycan
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metabolic process in the Gene Ontology (GO). One of the common ways to analyze data
annotated with such terms is to look at the orthogonal information such as chemicals,
cellular locations or anatomy associated with a given annotation. In the aforementioned
example, relevant chemical terms include chondroitin sulfate, proteoglycan and
proteochondroitin sulfates from the Chemical Entities of Biological Interest (ChEBI)
ontology.ii We refer to this process of breaking down a composite term from a given source
ontology to its constituent atomic terms in a target ontology as decompositional ontology
translation.

The problem of ontology translation has been studied in context of identifying equivalent or
similar meaning terms across a pair of ontologies.iii,iv In our previous work, we proposed a
graph traversal algorithm over the UMLS Metathesaurus based on clustering co-efficient to
perform decompositional terminology translation.v One of the recurring themes emerging
with the growing number of ontologies (and integration thereof) is the idea of using large-
scale analytic methods such as machine learning and network theory to solve ontology
translation problems.

In this paper, we seek to explore whether there is sufficient knowledge in OBO ontologies,
specifically relationships and cross-ontology mappings (signifying a semantic overlap), such
that a network-theoretic approach can be used for decompositional terminology translation.
Specifically, we study the following two questions:

a. What is the extent of semantic overlap across OBO ontologies?

b. Can the existing OBO relationships be used for decompositional ontology
translation?

Towards this goal, we develop an integrated version of OBO ontologies using cross-
ontology mappings and relationships from all ontologies in the OBO Foundry. Using a
dataset of GO-ChEBI mappings in the OBO, we evaluate a network-theoretic graph traversal
algorithm to effect decompositional ontology translation.

Background
Decompositional Ontology Translation v/s Ontology Mapping

A significant body of research literatureiii,iv,vi,vii focuses on ontology mapping involving
identification of equivalent or nearly synonymous terms across ontologies. Noy et al.iii

developed a semi-automated approach that matched ontology classes and slots using a
combination of human input and lexico-semantic matching techniques. Bodenreider et al.iv

developed an algorithm over the UMLS Metathesaurus that mapped an arbitrary UMLS
concept to a set of MeSH terms with most similar meaning by traversing specific
relationship types in the Metathesaurus graph.

Decompositional ontology translationv is a problem of identifying constituent atomic terms
for a given composite term. There are generally two or more atomic terms associated with a
single source composite term. The existing methods for ontology translation generally
attempt to find the target terms with closest meaning, whereas decompositional ontology
translation looks for the constituent atomic terms rather than synonymous terms, such as
proteoglycan for chondroitin sulfate proteoglycan metabolic process. Various lexicalviii,ix

methods have been developed that perform sub-string matching across a set of terms to
identify the atomic components, consider for example, adenocarcinoma is a sub-string of the
term adenocarcinoma of the eyelid The lexical approaches are limited in their inability to
identify constituent terms (proteochondroitin sulfates) not present in the original string of
the composite term (chondroitin sulfate proteoglycan metabolic process). The
morphosemantic approachesx,xi go beyond simple string matching by analyzing the
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morphemes such as “leuk”, “hepat”, “anti-” and “-itis” found in the medical terms such as
hepatitis, leukemia. In our research, we approach the problem by using the structure of the
ontology graph to decompose the terms.

Network Theory
Social network analysisxii provides methods for understanding interactions and social
phenomena among people, groups and organizations. The relations are the primary object of
analysis; the attributes of actors are not generally considered. Recently, these methods have
been successfully used to analyze other types of networks such as the Internet, World Wide
Web and various biological networks.xiii The network properties provide significant insights
into the structure and function of the domain. In this research, we use two network theoretic
properties: the scale-free network property and the clustering coefficient measure.

Scale-Free Networks
Scale-free networksxiii are networks with a specific topology in which a small number of
nodes (called hubs) have many relationships and large number of nodes have only a few
relationships. One of the measures to identify a scale-free network involves plotting a power
law degree distribution. The power law states that the probability p(k) of a given node in the
network connected to k other nodes is proportional to k−c, where c is generally between 2
and 3 for scale-free networks. The power law implies that a few “hub” nodes are connected
to a large number of nodes and that most other nodes in the network have only a small
number of connections. The integrated OBO ontologies exhibit (see Figure 1) a strong scale-
free network property as evidenced from the slope of the plot (power law constant) equal to
2.87 (the value is between 2 and 3 for scale-free networks). The top 10 hub nodes in the
OBO graph are shown in Table 1. The hubs are important in traversal of OBO graph as they
connect different parts of the network. They can also potentially introduce large number of
non-relevant target nodes during the traversal.xiv

Clustering Coefficient
The clustering coefficientxv is a network analysis measure used to quantify the
‘connectedness’ of the neighborhood of a given node. The clustering coefficient is a ratio of
the number of edges between the neighbors of a given node and the total possible number of
edges amongst all its neighbors. To calculate the clustering coefficient (CC) for a given node
n, let the degree (or number of immediate neighboring nodes) of n be k and let t be the total
number of edges between the neighboring nodes, then

i.e., the clustering coefficient is the ratio of number of edges between the neighbors of n and
the total possible number of edges between the neighbors (if each neighbor was connected to
every other neighbor). High (low) clustering coefficient indicates densely (sparsely)
connected neighborhood. For example, the term metabolic process has 1027 relationships
amongst its 882 unique neighbor terms, so its clustering coefficient is 1027/385521 =
0.0026. This measure is used to limit the traversal of the OBO graph as described in next
section.

TClustN Algorithm
In scale-free networks, traversing indirect edges for a given source node generally produces
a large number of paths since hubs bring together different parts of the network. Using a
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cross-ontology traversal of indirect relationships in a scale-free network, such as the UMLS
Metathesaurus or OBO, produces a large number of possible paths (which then have to be
filtered in order to find relevant translations). To overcome this problem, in our previous
work,v we proposed an approach based on the clustering co-efficient to limit the traversal
around the closely connected neighborhood of a given source node. The key steps (Figure 2)
in the algorithm are:

1. For a given source node, traverse the outgoing edges transitively until a given
depth, D.

2. At each next node in traversal step, calculate the traversal-based clustering
coefficient and stop further traversal if the value is less than a given threshold, T.

3. Calculate the encounter frequency of each node during the traversal and use it to
rank the target nodes in descending order.

Consider for example, that the source term chondroitin sulfate proteoglycan metabolic
process has 5 direct relationships to other terms such as metabolic process (clustering
coefficient of 0.0026) and chondroitin sulfate proteoglycan anabolic process (clustering
coefficient of 0.18). If the threshold parameter, T is set to 0.01, then metabolic process will
be eliminated from further traversal. A detailed description and rationale of algorithm can be
found in our previous paper.v The key idea behind the algorithm is to remove the effect of
hubs or noisy nodes that are not within the semantic locality of a given node. In this paper,
we evaluate this algorithm over OBO ontologies to perform decompositional ontology
translation.

Methods
To evaluate the proposed network theoretic approach over biological ontologies, we
prepared an integrated OBO dataset using the existing cross-ontology mappings in the OBO
Foundry. As a computationally-derived gold standard, we used the existing decompositional
ontology translations between GO and ChEBI to evaluate the proposed TClustN algorithm
based on a precision-recall measure (Figure 3).

Data Preparation
1. Integrated OBO Dataset: From the OBO Foundry server,φ we downloaded (and

were able to parse) 50 ontology files and 44 ontology mapping files in the OBO
format. We used the OBO Java APIxvi to parse the following fields from the files:
OBO ID, synonym, xref (exact reference) field, and the relationships (including
ISA). The xref field was used to create an OBO Concept Unique Identifier
(OBOCUI) across equivalent OBO IDs. The original relationships asserted across
OBO IDs were re-modeled across OBOCUIs. A mapping table for OBOCUI to
synonyms was also created.

2. GO-ChEBI Test Dataset: To evaluate the TClustN algorithm over the integrated
OBO dataset, we used the existing 5996 GO-to-ChEBI mappings available in
GO_to_ChEBI.obo file as the computationally-derived gold standard. We removed
a subset (test set) of these mappings from the relationship table and applied the
TClustN algorithm for the source GO terms (in the removed subset) to evaluate
whether it can identify the corresponding target ChEBI terms. For example, an
existing mapping from chondroitin sulfate proteoglycan metabolic process (GO) to
proteochondroitin sulfates (ChEBI) is removed from the integrated OBO

φhttp://www.obofoundry.org/ (Accessed February 10, 2009)
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relationship graph to evaluate whether TClustN can re-identify the mapping. We
developed three different versions of test datasets, G2C_20P, G2C_40P and
G2C_80P, by randomly eliminating 20%, 40% and 80% respectively of all GO-to-
ChEBI mappings from the original OBO relationship graph. By eliminating a
varying proportion of relationships, the goal was to evaluate the effect of existing
knowledge (in form of relationships or mappings) towards discovery of future
cross-ontology mappings.

Experiment Steps
1. A binary sparse-matrix representation was used to represent the OBO relationship

graph where each OBOCUI corresponded to a row or a column. The Java MTJ
libraryxvii was used to implement the sparse in-memory matrix.

2. The TClustN algorithm was executed over the source concepts in the different GO-
ChEBI datasets (with corresponding relationship matrices without the test dataset
mappings). The TClustN parameters for depth, D was set to 3 and clustering
coefficient threshold, T, was set to 0.01.

3. For baseline comparison, the TClustN algorithm was executed over G2C_20P with
clustering coefficient threshold, T = 0. This is equivalent to simple transitive
traversal of the OBO relationship graph.

4. To evaluate the performance of the algorithm, average top k precision and recall
were calculated across all datasets as defined below:

where k refers the position of the target term in the sorted results of TClustN. A target term
in the results is considered as true positive if the source ontology of the term is ChEBI. The
total relevant terms refers to the number of ChEBI terms related to the given source GO
term in the gold standard.

The top k=1, 2 and 3 positions were used to calculate the true positives in three separate
analyses.

Results
We found 259,865 OBOCUIs across the total 439,417 OBO terms, indicating a 59.13% of
overlap in meaning across the OBO ontologies under study. We found 144 distinct
relationship types (is_a, part_of, regulates, unit_of, etc.) across all OBO ontologies. There
were 895, 1777 and 2808 unique source OBOCUI in the 20%, 40% and 80% test datasets
respectively. The results of average precision and recall are shown in Figure 4. The baseline
result of simple transitive traversal was significantly lower than all other results indicating
the usefulness of using network theoretic measure of clustering coefficient towards ontology
translation. The decreasing precision and recall upon removing higher proportions of GO-
ChEBI mappings indicated the importance of the existing mappings in enabling
identification of new translations. A sample of the results for the decompositional translation
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is shown in Table 2. Consider for example, the term chondroitin sulfate proteoglycan
metabolic process was decomposed into relevant chemical terms proteoglycan, chondroitin
sulfate and proteochondroitin sulfates (the term with gold standard mapping).

Discussion
The knowledge sources such as OBO ontologies have a rich set of terms, relationships and
mappings largely created by costly manual processes. Automated methods can potentially
use this existing knowledge to reduce the cost of manual knowledge engineering. Towards
this direction, we have developed an automated method based on network theory to perform
decompositional cross-ontology translations across OBO ontologies.

Understanding the network-based structure of the ontologies can provide a strong cue
towards performing cross-ontology translation. As discussed earlier, the OBO ontologies
exhibit scale-free properties with presence of hub concepts. Our results support this network
property, for example, as shown in Table 2 under Baseline results, the top 2 concepts
(monoterpenoids, monoterpenes) are hubs in ChEBI that are connected to many other nodes.
The threshold parameter for clustering coefficient in TClustN eliminates such hub nodes as
they have very small connectedness among their neighbors.

What is the critical number of relationships required to use a network based method? This is
an important question that we attempted to answer by eliminating different proportions of
the total number of relationships from the original OBO relationship graph. The results
indicate a continuum of decrease in precision-recall as we remove higher percentage of
existing relationships. We also observed that precision is relatively stable as compared to
recall indicating that results obtained by algorithm are more accurate if not necessarily
complete.

In our previous researchv, we had successfully applied TClustN over the UMLS
Metathesuarus that has significantly higher number of relationships than the integrated
version of OBO ontologies used in this paper. Nevertheless, the precision-recall results over
OBO are comparable to the UMLS study indicating a similar network structure (scale-free)
of both resources. Furthermore, it shows the domain-independent nature of the algorithm
towards decompositional ontology translation.

In comparison to existing ontology translation methodsiv,viii, the precision-recall values
obtained in our study were lower by 20-30%. The difference is significant and can be
attributed to the use of domain specific properties by existing translation methods such as
UMLS synonymy, semantics of relationships and so on. Our network theory based approach
is complementary that can be extended to include additional domain specific information to
influence the traversal and ranking.

Limitations
The proposed approach is dependent on the traversal of cross-ontology relationships. This
limits the applicability of the methods to ontologies with high semantic overlap with other
ontologies in the integrated OBO graph. Further the proposed method is based on the
structure of the ontology graph that resulted in lower precision and recall as compared to the
existing methods using domain specific lexical, semantic or morphosemantic propertiesx of
the terms and relationships.

Applications
The biomedical applications of the decompositional ontology translation go beyond data
analysis. One important effort of the OBO Foundry is to formally define GO and other
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ontologies with logic based definitions based on primitive concepts. Consider for example, a
complex term chondroitin sulfate proteoglycan metabolic process can be defined based on
primitive chemicals concepts (proteoglycan, chondroitin sulfate) and the processes
(metabolic process). Such definitions based on primitive concepts provide several benefits
for ontology maintenance, ontology alignment and automated reasoning.

Future Research Implications
The use of a network-based feature (clustering coefficient) can enable terminology
translation across the different ontologies in the OBO and the UMLS. Using such generic
features that are intrinsic to the OBO and UMLS provide a powerful new mechanism to
identify terminological links or relationships for different applications. The features can be
learned to predict the new links or relationships using an existing training dataset from the
application domain.

Conclusion
A network-theoretic approach was presented for decompositional ontology translation over
the OBO ontologies. An algorithm based on clustering coefficient was used to identify
relevant terms in target ontology. An integrated version of OBO ontologies was prepared
and evaluated against a test dataset based on GO to ChEBI mappings. The results indicate
that network structure provides a strong cue to perform decompositional ontology translation
and the existing set of relationships in OBO can be used to identify new translations. The
results were comparable to our previous UMLS study indicating the domain independent
nature of the algorithm.
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Figure 1.
The power-law distribution, p(k)=k−c, where k is the degree of terms in the OBO
relationship graph. The constant c is 2.87 indicating a scale-free network topology.
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Figure 2.
An illustration showing how the TClustN algorithm favors more closely clustered
neighborhoods over sparsely connected regions of graph.
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Figure 3.
The integrated OBO graph is prepared by using the cross-ontology mappings in the OBO
Foundry. The existing decompositional relationships from GO to ChEBI are eliminated from
the OBO graph. The TClustN algorithm is used over the composite source GO terms to re-
identify the atomic chemical terms in ChEBI.
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Figure 4.
The results of average precision-recall for the top 1, 2 and 3 positions across the datasets and
parameter settings. The clustering coefficient based results are significantly higher than the
baseline. The performance decreases as we eliminate higher proportion of existing
mappings.
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Table 1

The top 10 terms in OBO sorted by the descending number of relationships.

OBO Term Source Ontology Number of Relationships

Regulation Gene Ontology 2869

Adult Zebrafish Anatomy 1480

Unknown Zebrafish Anatomy 1188

Protein Complex Gene Ontology 1117

Embryonic Cell WBbt 916

Metabolic Process GO, MP, WBPhenotype 907

Cell WBbt 890

Post-Embryonic Cell WBbt 782

Catabolic Process Gene Ontology 640

Anabolism Gene ontology 638
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Table 2

A sample of 2 source GO terms and top 3 target ChEBI terms using TClustN with and without clustering
coefficient threshold. The baseline analysis produced hubs terms (monoterpenoids, monoterpenes) as top
results that got eliminated with the threshold of clustering coefficient. The true positives are shown in bold.
The algorithm also suggested other relevant atomic terms (proteogylcan, chondroitin sulfate) outside of the
gold standard.

Source Gene Ontology term Top 3 Target ChEBI terms

Clustering Coefficient threshold = 0.01 Baseline (simple traversal), Clustering
Coefficient threshold = 0

chondroitin sulfate proteoglycan
metabolic process

1. proteoglycan Monoterpenoids

2. chondroitin sulfate Monoterpenes

3. proteochondroitin sulfates sulfur molecular entities

purine deoxyribonucleoside diphosphate
metabolic process

1. purine 2 -deoxyribonucleoside
diphosphates

monoterpenoids

2. purine 2 -deoxyribonucleotides monoterpenes

3. purine nucleoside diphosphates Pyrimidine 2 –deoxyribonucleotides
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