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Abstract
Computers allow describing the progress of a disease using computerized models. These models
allow aggregating expert and clinical information to allow researchers and decision makers to
forecast disease progression. To make this forecast reliable, good models and therefore good
modeling tools are required. This paper will describe a new computer tool designed for chronic
disease modeling. The modeling capabilities of this tool were used to model the Michigan model for
diabetes. The modeling approach and its advantages such as simplicity, availability, and transparency
are discussed.

Keywords
Disease Modeling; Markov; Monte-Carlo; Chronic Disease; Diabetes

1. Introduction
Chronic diseases have a significant impact on national health. A chronic disease such as
diabetes may develop over a long time period and may involve many complications.
Conducting longitudinal clinical trials to cover such long periods of time is a difficult task from
practical reasons. This is one reason why computer models are gaining popularity.

Perhaps the best sign for this increase in popularity is the diversity of disease models that can
be found in the literature [1]. Another sign for the popularity is the need for proper modeling
guidelines for general disease modeling [2], and specifically for diabetes [3].

Diabetes models are evaluated during the Mount Hood conference [4]. This is a main stage for
models to be compared and contrasted. Yet, even in such environments, comparing models is
difficult since models are not necessarily accessible. Accessibility to researchers varies
between proprietary models, where little is known about internals, to full transparency where
the model structure and software tools are available for researchers. This varied access is shown
on notable models from the Mount Hood conference.

For example, the Archimedes model [5,6,7] is commercial and proprietary, which makes it less
accessible to researchers. In contrast, the software for the Centers for Disease Control and
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Prevention / Research Triangle Institute (CDC/RTI) model [8] is not published, yet the model
is described in details in their Technical report [9]. The Eagle simulation model [10] is also
available upon request as a technical report [11]. The global diabetes model also reveals
modeling equations in [12]. The United Kingdom Prospective Diabetes Study (UKPDS)
Outcomes Model [13] is even more accessible: not only it is described in details in their
publications, it is also provided as software that can be requested through their web site
http://www.dtu.ox.ac.uk/outcomesmodel/index.php. The most accessible diabetes model to
date, however, is the Michigan model for diabetes. It is the most transparent one since it is fully
documented, and upon accepting the license terms it is freely available for download from the
web site http://www.med.umich.edu/mdrtc/cores/DiseaseModel/model.htm

Even with accessible models, often a user would like the ability to modify it at some point.
Thus, a basic and necessary requirement from the software is to allow manipulation of model
parameters. However, the ability to easily modify the structure (topology) of the disease model,
or the ability to create new disease processes using the same software tool are more advanced,
and therefore typically overlooked. For example, the models mentioned above such as the
UKPDS model or the CDC/RTI model do not describe how a new disease process can be added
or removed. Even these publicly assessable disease model software tools do not focus on
providing a modeling environment that allows manipulating the structure of the disease model.

In this paper, we will present disease modeling software that provides a platform where users
can define the structure and the parameters to implement their disease models. This general
modeling environment includes a Graphical User Interface (GUI), model parameter estimation
software, and a simulation compiler, and it is published freely with open source under General
Public License (GPL). This set of modeling tools allows users to run, modify, estimate, and
create new models using the same set of tools.

Beyond handy modeling tools, we use a combination of a simplified modeling approach based
on state transitions and a free modeling environment to facilitate increased human capabilities
with regards to creating disease models. These capabilities, which are based on state transitions,
are intuitive for humans to work with [14].

In this paper we will describe the modeling software environment and demonstrate important
features in it. We will provide several examples regarding the usefulness of this modeling
environment with regards to the Michigan model for diabetes.

2. Supported Disease Model
The Michigan model has been previously published and validated against Wisconsin
Epidemiological Study of Diabetic Retinopathy (WESDR) data in [15]. At that time, the Model
did not use the advanced modeling environment described in this paper. Recently the model
has been updated and validated against UKPDS published results [16]. During its update the
model has been generalized and our modeling software was developed to support this
generalization. This generalization not only allows users to modify the Michigan model for
diabetes, but also allows modeling of other disease models with similar structures. These
modeling capabilities are therefore described with specific examples from the Michigan model
that is shown in Figure 1.

The Michigan model is a state transition model that generalizes the Markov model. Each state
in the model (marked as boxes in Figure 1) is associated with a stage of disease progression.
Progression of the disease is modeled as transitions between states (marked as arrows in Figure
1) and each transition can be assigned with specific transition probabilities. The Michigan
model is a discrete time model using a preset constant time step (usually one year) to time
transitions between states. The modeling environment, however, allows implementing non-
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Markov models. These traits are useful for disease modelers, and are part of our simplified
approach and are discussed hereafter.

2.1. Instantaneous event states
The Michigan model allows defining states that take no time to pass through. The need of such
instantaneous states has been recognized by other models such as the CDC/RTI model. In
Figure 1 these states are represented as rhombuses and include the states of Stroke or
Myocardial Infraction (MI). Such states represent an event that occurs and immediately passes,
rather than a state that an individual can occupy at the end of a simulation time step. Therefore
transition probabilities leading out of an event state sum to 1. The existence of these states does
not change the Markov property since an equivalent Markov model can be constructed without
using event states. However, the existence of these states makes it easy for the modeler to
indicate an event and model event recurrence and therefore the introduction of such states is
useful for interactive human modeling.

2.2. Nested sub-processes
Modeling of diseases requires focusing in more than one disease process. This is demonstrated
with regards to the diabetes model. Looking at Figure 1, one can recognize processes such as
cardiovascular disease, nephropathy, cerebrovascular disease, retinopathy, and neuropathy.
These are all related to diabetes, yet each sub process has distinct states not shared with other
processes. Furthermore, disease progression may be independent in each sub-process. For
example an individual can progress from angina to an MI (Mayocardial Infarction) to survive
MI, and at the same simulation step progress from clinical neuropathy to amputation while
staying in a state of No-retinopathy. This example demonstrates the process in terms that are
relatively easy for a human to comprehend.

An alternative way to model such progression is using an equivalent Markov model that is
composed of aggregate states such as No Cardivascular Disease + No Nephropathy + No
Cerebrovascular disease + Blindness + No Neuropathy. However, this is not intuitive to the
user since the number of different states will be too large, and their description too long to
effectively manage. Moreover, defining transition probabilities would be nonintuitive and
cumbersome.

For these reasons, we are defining sub-processes that can each progress independently during
simulation. These sub-processes are marked with dashed outline boxes. Each sub-process can
be a Markov model containing states and transitions of its own. A set of parallel sub-processes
is initiated by progressing to a splitter state marked as a dot in Figure 1. When an individual
reaches a splitter state in the model, multiple sub-processes are initiated and the subject is
placed in the first state in each of these sub-processes. To maintain fairness each of these sub-
processes are processed in random order during simulation and the combination of states in
the sub-processes defines the condition of the individual. The individual progresses in parallel
through each of these sub-processes as long as none of these sub-processes are exited. Exiting
a sub-process means collapsing all parallel sub-processes and proceeding to a joiner state that
is also marked as a dot in Figure 1. Collapsing sub-processes is usually associated with death
and therefore the need to stop and collapse all parallel sub-processes. Note that a joiner state
is always associated with a splitter state. It is enough to reach the joiner state by exiting one
sub-process to collapse all parallel sub-processes starting from the same splitter state. This
includes sub-processes that usually will not lead to the joiner state that are marked as a dashed
arrow in Figure 1, e.g. reaching ESRD death will result in ending the retinopathy sub-process,
and collapsing all sub-processes to diabetes death through a joiner state.
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Joiner and splitter states are artificial states treated as instantaneous states. Their definition
allows encapsulating a set of sub-processes as if they were a single state. Therefore it is possible
to nest sub-processes within one another. In Figure 1, for example, the neuropathy sub-process
is encapsulated within the diabetes sub-process, meaning that this is diabetic neuropathy as
opposed to general neuropathy that may or may not be associated with diabetes. This treatment
of sub-processes allows breaking processes within a disease to a finer level of detail dealing
with more specific disease complications while maintaining a hierarchical structure that is more
intuitive for modeling purposes.

This use of sub-process capabilities can lead to concurrent modeling of multiple diseases in
the future. In a sense our diabetes model already does this to some degree, since it includes
several disease processes already. Yet the focus of the model is still diabetes and parallel
processes were modeled using information from diabetics.

Yet even within diabetes, we are already modeling dependencies between sub-processes. This
is accomplished using the methods described in the next section.

2.3. Transition Probabilities Dependant on Parameters
Our diabetes model addresses individual characteristics such as Age and Gender. This is made
possible by allowing the user to define transition probabilities as functions of various
parameters. These functions can be general mathematical expressions using mathematical,
Boolean, and equality operators, and a set of mathematical functions such as exp, log, min,
max etc. As will be shown later, these functions can also include conditional statements (similar
to an “if” statement in a programming language).

Each such expression may involve one or more parameters that can represent various individual
and system characteristics. Below is a list of relevant parameter types the system supports:

• Covariates: these are parameters representing general individual characteristics such
as Age and Gender

• State Indicators: indicating if the individual is in a certain state/sub-processes. There
are several types of state indicators for each state: the entered state indicator indicates
if a state was first entered in this simulation step; the diagnosed state indicator
indicates if the state was diagnosed which may be different than the actual state the
individual is in; the treated state indicator representing that the individual is treated
for this state; and the complied state indicator specifies if the individual complied
with the treatment. Note that the computer automatically assigns values to the actual
and entered state indicators whereas the user controls the values of the diagnosed,
treated, and complied state indicators.

• Intervention parameters: additional parameters beyond diagnosed, treated, and
complied state indicators associated with interventions. For example, compliance rate
to treatment.

• Cost and Quality of Life parameters: parameters such as yearly costs or health
utility score that reflect costs of treatment and the quality of life of individuals.

• User defined Functions: these are expressions composed of other parameters saved
under a parameter name. These user defined functions can later be used in other
expressions to simplify and shorten the text. The system is responsible for expanding
the functions within the expression similar to a substitution of a mathematical
expression.

The use of such parameters in transition probabilities can govern the progression of an
individual in the model. For example in our model the transition from no-cerebrovascular
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disease to a stroke is heavily based on to the UKPDS 60 risk engine [17]. The UKPDS part of
the expression is:

1.0 − Exp( − 0.00186 * 1.092**(AgeAtDiagnosisOfDiabetes−55) * 0.700**IsFemale 
* 1.547**Smoke * 8.554**AF* 1.122**((SBP − 135.5)/10) * 1.138**(LipidRatio − 
5.11) *1.145**(DurationOfDiabetes) ) )

Where AgeAtDiagnosisOfDiabetes, Male, Smoke, AF (Atrial fibrillation), and SBP
(Systolic Blood Pressure) are covariates associated with the individual; IsFemale is a user
defined function defined as 1-Male that converts our definition of the Male covariate to the
UKPDS usage of gender in the formula. DurationOfDiabetes is defined as Age-
AgeAtDiagnosisOfDiabetes. And LipidRatio is defined as TotalCholesterol/
HDLCholesterol.

The formula above is an example of a continuous function depending on parameters that govern
the transition probability. However, our modeling system also supports conditional transition
probabilities. These can be accomplished by using the Table and Iif functions.

The Iif function that stands for “immediate if” and is similar in structure to other languages.
This function gets three arguments 1) The conditional expression, usually a Boolean expression
where 0 means a false conditional; 2) A value/Expression to be returned in case of a true
conditional; 3) A value/Expression to returned in case of a false conditional. For example, the
transition probability between Survive Stroke and Death is governed by the formula:

Iif(Diabetes_with_treatment_by_Insulin, 0.0148, 0.0166)

Where Diabetes_with_treatment_by_Insulin is a state indicator defining the desired
treatment level. If the person is in a diabetes state that requires taking insulin, the transition
probability will be 0.0148, otherwise it will be 0.0166. Note that the system would have
accepted more elaborate expressions for the true and false values. This includes additional Iif
statements to other functions allowing the creation of a complicated decision tree to calculate
transition probabilities.

To further aid in creating complicated conditional statements, the system can use the Table
function. This function allows defining a multi-dimensional table that can be accessed by one
or more parameters to retrieve the value associated with the value in the parameter domain.
For example, the probability of a diabetic to die after surviving a MI is governed by the
following table:

Table(3, 2,2,5, 0.0156,0.0156,0.0156,0.0156,0.0156,0.0013,0.006,0.0116,0.01 
93,0.0193,0.0034,0.0034,0.0089,0.0133,0.0133,0.0034,0.0034, 
0.009,0.0131,0.0131, Type_2_Diabetes,NaN,0,1, Male, NaN, 0, 1, Age, 
0,24.999,54.999,64.999,74.999, 100)

Where the initial 3, colored in red, indicates the number of dimensions, then the three next
numbers 2,2,5, indicated in green, are the sizes of the dimensions that define the array. The
next 2*2*5=20 numbers, indicated in blue, are the data to populate the table. Finally, the
dimension names and their ranges are defined – these represent the table headers. Table 1 shows
how this table would look using a more intuitive depiction. Note that this table handles both
continuous parameters and discrete parameters using the same representation.

Using such table definitions, it is possible to relatively easily specify transition probabilities
that depend on multiple continuous or discrete parameters and includes ranges. This is a
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common way information appears in the literature, which is where our information comes from,
and therefore a relatively intuitive way to define transition probabilities avoiding complicated
and a long set of Iif statements.

Note that parameters which control the transition probabilities may hold historical information
derived from state indicators or previously generated random numbers. In general this
invalidates the Markov property of being memory-less and the model may no longer be a
Markov model. Yet, since dependency on historical events is important when describing
disease progression, and since the Markov model is intuitive, our model is a compromise
between the two. We tried to maintain the intuitive part of a state transition model while
allowing the user to create dependencies on memory. This compromise methodology no longer
allows us to calculate disease progression using matrix representation and multiplication as it
is traditional with a Markov model. Instead we have to use Monte-Carlo simulation as explained
in the next section.

2.4. Monte-Carlo Simulation with Rules
Choosing Monte-Carlo for simulation allows extending the model even further by adding
additional rules before and after each time step in the Markov Model. Figure 2 represents the
flow diagram of the simulation and the new rules. The simulation is composed of three nested
loops:

The outermost loop is the repetition loop that repeats the same simulation many times. Each
repetition generates potentially different results due to the random nature of a Monte-Carlo
simulation. After collecting these different results, mean values and the distribution
characteristics of the results can be determined. A large number of repetitions will statistically
decrease the uncertainty created by the randomness of the Monte-Carlo simulation at the price
of longer execution times. This tradeoff of calculation time and uncertainty has to be balanced
by the modeler.

The second nested loop is the individual loop that iterates through individuals in the simulation
population. This baseline population defines initial parameter values to be used for each
individual. For example the Age, Gender, and Smoking status of an individual are loaded as
the initial value of these parameters before starting the time loop.

The innermost nested loop is the time loop that handles the changes in the parameters and
states. In this loop the disease progression occurs for each individual. Note that only the box
titled “Phase 2: calculate complications” corresponds directly to the extended Markov model
seen in Figure 1, the rest of the boxes represent sets of rules to be applied as pre-processing or
post-processing terms. Simulation rules can be considered as general programming statements
and are of the following form:

If Individual is in [Rule State] then:

If random number < [Occurrence Probability Threshold] then:

where the modeler can define the rule arguments marked with brackets. This allows the user
easy control of parameters before and after the Markov Model is processed. The [Rule State]
argument represents a state indicator and defaults to “all states”. The [Occurrence Probability
Threshold] argument defines a threshold to control the random execution of the rule and
defaults to 1. The [Affected Parameter] argument holds the name of the parameter that its value
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will change. The [Given Formula] argument holds an expression that defines the value that the
[Affected Parameter] argument will receive if the conditional parts of the rule are valid.

A rule, for example, can indicate the increase in age every year as in: Age = Age +1

A rule can also be more complicated. For example, in diabetes modeling, Glycated hemoglobin
(HbA1c or A1c for short) is an underlying physiologic measurement used in many cases to
diagnose diabetes and classify its severity. Our model simulates A1c progression in people
without diabetes using a probabilistic bounded increase in a variable named A1c using the
following rule:

If Individual is in No_Diabetes:

If random < 0.03 then:

Note that the expression is general and may contain mathematical operations and functions,
other parameters, and even conditional Table and Iif functions. This allows the user to change
the model in a general way.

Although the rules are general, the system structures the modeling tasks by defining different
phases of rule application. These phases limit the type of parameters that can be used as the
[Affected parameter]. Phase 1 allows the update of covariates such as age or A1c. Phase 2
executes a single simulation step in the previously described Extended Markov model. Phase
3 limits the update to diagnosed, treated, and complied state indicators and to intervention
parameters. Phase 4 is limited to updating cost and quality of life parameters.

These limitations follow the following reasoning: At the beginning of the year the individual
characteristics are updated. Then the disease progresses according to these new characteristics
using the extended Markov model. Then the individual is diagnosed and treated for new
conditions. Finally the cost of treatment and the individual's quality of life is determined. Then
the same cycle can be repeated for the next year within the time loop. This simulation is repeated
for each individual in the individual loop. Finally, the entire population undergoes the
simulation in the repetition loop. Results can then be analyzed using additional tools described
in the next section.

3. System Capabilities
A software tool was developed allowing chronic disease modeling similar to the Michigan
model for diabetes. The system supports the following features:

• Parameter storage: The system allows storage of multiple parameters that are used
within the system, including multi-dimensional tables that can be accessed using
another parameter defined in the system. The user can define the parameter name, its
type, and validation rules to be observed during simulation. Validation rules may
restrict parameter values to be integer, general numbers, matrix/vector, tables, or
general expressions. Validation rules may also include maximal and minimal bounds
on the parameter value. Validation rules are important in increasing the programmatic
integrity of the model and can be used as a simple model debugging tool, especially
with larger models where the chance for human error increases. This validation feature
proved to be essential during the development of the Michigan model for diabetes.

• Storage of multiple disease models: The system can hold multiple disease models
defined by states, sub-processes and transition probabilities. Different models can
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share states and therefore allows building a model using common terminology. This
also allows maintaining several versions of the same model in the system at the same
time. This has proved to be a useful option during earlier development stages where
there is a lot of uncertainty and therefore several model versions.

• Storage and Manipulation of multiple population sets: The system allows storing
population cohort information as a snapshot of the individual characteristics. The
system can support storage of multiple such population sets, each can be later used
to initialize simulation parameters. Note that population sets are stored separately
from the models to allow simulating a model with different population sets or the
same population set with different models. The system allows importing these
population sets from comma separated values text files. The system also supports
definition of population sets as distributions and expressions. Such distribution-based
populations allow describing a population set in a similar way populations are
described in the literature. It can then be used by the system to create a new data-based
population set by random generation. This capability allows imitation of study
populations from publicly available data, without the need to access propriety data
gathered by this study. This allows independent modeling as experienced in our
diabetes model. For example, we did not need access to the UKPDS dataset during
validation, the UKPDS publication [16] that can be found in the literature was
sufficient. Note that similar population generation mechanism is provided by the
Global Diabetes Model [12]. However, that generator is limited to a certain set of
studies and complications and does not allow correlation between complications. In
contrast, our population generation method is general and a population can be defined
by a set of expressions that can depend on other population parameters, e.g. the age
distribution can depend on gender in our method and the same is true for disease states.

• Storage of simulation projects: A simulation project is defined by a combination of
a model, a population set, simulation rules, and some other simulation parameters.
Combining these together with clerical information allows defining different
simulation projects that can explore different situations of interest. This option was
useful when a single parameter, such as compliance level to treatment, was changed
between different simulations and we needed to compare results between these
projects.

• Simulation execution and storage of its results: The system can compile the project
into a Python program that is run to generate simulation results. These results are then
loaded back to the system to be stored with association to the simulation project. The
use of python as a programming language allowed debugging simulation programs
with external python tools, while still maintaining readable text pertaining to the
disease model.

• Model parameter estimation: Beyond simulation, the system is capable of model
parameter estimation for a single Markov process using a maximum likelihood
technique. This technique allows gathering summary data from the publicly available
literature and using it to estimate model parameters of a single sub-process. The model
parameter estimation method is described in further details in [18,19] . The
implementation of the estimation method was accomplished using the Python with
the Scipy optimization library that allows constrained optimization routine [20,21].
The Estimation Technique is also freely available online as a Matlab Prototype as the
project web site:
http://www.med.umich.edu/mdrtc/cores/DiseaseModel/software.htm

• Storage of the data as files: The system is currently a standalone system and allows
maintaining all the above entities in a file. The system allows minimal version control
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of its saved files. This has been sufficient so far, however, future development is
geared towards shared environment by multiple users.

• Graphic User Interface (GUI): The system can be controlled using forms and reports
based on WxPython that enable management of the above entities. The form system
allows drilling down the information hierarchy to locate and edit details of interest.
For example double clicking the model in the project page will pop up the model form
and then clicking on the main process of the model will bring the states form with the
appropriate process definition and so forth. The GUI also supports the use of a cost
wizard that aids with calculating cost and quality of life in phase 4 of the simulation.
Figure 3 shows the project form to demonstrate how the system handles easy
definition of rules. This GUI proved extremely useful when developing our diabetes
model. The ability to visually access the model allowed quicker and easier modeling
by the human. Just to give an idea of the importance of the GUI, consider that our
diabetes model when described as a document is about 40 pages long. Whereas using
the GUI we reach each parameter with several guided clicks and perform controlled
changes that accompanied with feedback. For example, when a user types in a bad
expression, the GUI will raise an error correcting the user, this syntax check was useful
to filter out human errors in our diabetes model. Even during development, once our
GUI was operational, many testing tasks were modeled using the GUI and exported
back as code since the human user found it easier than coding.

The described system was tested using several case scenarios that test its expression, simulation
and other capabilities. The test suite for the software, the source code, the user documentation,
and the developer documentation, are all published freely. The system is published under GPL
license and can be obtained using the following URL:
http://www.med.umich.edu/mdrtc/cores/DiseaseModel/software.htm

4. Results
The utility of a system such as described in this paper depends heavily on the feasibility and
validity of the models used. To demonstrate the system feasibility, we have created many
simulation tests that are published with the software. This first level of validation demonstrates
correctness and serves for quality assurance.

To demonstrate applicability to disease modeling, we have developed the Michigan model for
diabetes using our software framework. This model includes 7 disease subprocesses with about
30 states and about 50 transitions as seen in Figure 1. More than 100 variables and more than
100 simulation rules are used by this model. The model went through more than 30 versions
during its development process. The development process included the following stages: 1)
literature review; 2) model formulation; 3) validation of our model against clinical study results.
These development stages were repeated until convergence to the published model version was
achieved. The model file titled “Michigan model for diabetes 11-May-2009” can be
downloaded from the model section of web site using the following link:
http://www.med.umich.edu/mdrtc/cores/DiseaseModel/model.htm

This model file is a compressed archive that contains a documentation file that details the above
development stages: 1) The literature used to create the model is provided in the bibliography;
2) The manual calculations used to extract the transition probabilities from the literature are
described in great detail so these can be replicated by others; and 3) The model validation
against the UKPDS 33 results are summarized in more detail than will be presented below.
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To allow model validation, a population of 1138 individuals was artificially generated from
distributions provided by the UKPDS33 population as described in section 3. This population
was used as a baseline population for the model simulation the results of which were validated.

Model validation was conducted by repeating the model simulation for 100 times. The
simulation process took about 18 hours on 4 processor cores (about 3 days on a single processor
core). At the end of the simulation process, a large array of records was generated. Each record
contained the values of all model parameters for each person in each living year for each
repetition. An example of such output is presented in the appendix. These simulation results
were analyzed and compared against UKPDS 33 results appearing in [16].

Table 2 shows selected simulation results compared to UKPDS 33 aggregate results. This
validation shows a good fit in most categories. The micro-vascular category, as defined by
UKPDS 33 [16], includes elements from the retinopathy process, which we recognize needs
improved modeling. This is an area of active research.

Our diabetes model used parameters based on the UKPDS. For example we calculated death
rates from MI based on published rates in the UKPDS 33. Simulation results were tabulated
to comparable summary measures as reported in figure 4 in [16].

Our report engine allowed proper counting of incidences and of persons affected by incidences
for each category for specified periods. More specifically, using our software, it is possible to
count the number of persons who had a stroke in the first 10 years, or the total number of strokes
in the population in the same time period. Our framework also calculates statistics of
repetitions. The results in table 2 were calculated using these mechanisms.

To allow further and more detailed scrutiny of our work, these validation results along with a
fully documented diabetes model are available online at our web site.

5. Discussion
Recent interest in disease forecast has resulted in a multitude of disease models with competing
strengths and weaknesses. For example, most disease models are dedicated software tools in
a variety of languages that are developed for the sole purpose of simulating a specific disease
model. The UKPDS outcomes model [13] is embodied within an XL workbook, the global
diabetes model [12] is implemented in Visual Basic, and the eagle diabetes model [10,11] is
coded in C++.

These models use Monte-Carlo simulation, which is the simulation engine that is generalized
and implemented by our software. The CDC/RTI model was designed using a Markov model,
which our tool also allows. All of these tools are limited to diabetes, this is reasonable
considering the huge cost involved in developing the model.

In contrast, the Archimedes model [5,6,7] is different from the above models in that it uses an
object oriented approach to model progression of continuous variables. Archimedes has been
published extensively, yet being proprietary and of a different mathematical framework, it is
conceptually different than our open framework.

Similar to our framework, some diabetes models have an associated GUI. The Global diabetes
model [12] has an interface that allows defining population parameters before simulation.
Another notable user interface is the Diabetes Ph.D. web site [22] that uses the Archimedes
simulation engine. However, these interfaces are limited to managing values of model specific
parameters and model structure can not be changed. It is also not possible to define a new
model using these user interfaces.
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In contrast, our framework can accommodate and manipulate multiple distinct models and it
is not dedicated to a single model. This is a major difference between our software framework
and other modeling tools. For example, our software can be used to develop disease models
other than diabetes. Furthermore, by modifying our model structure, diabetes researchers can
use our existing diabetes model to project outcomes based on the results of their own innovative
research. We consider this to be an important benefit of our general simulation engine and
GUI.

However, disease models are not limited to diabetes. During the work on our project we
encountered disease models and related tools for various other diseases, including Influenza
[23], Coronary Heart Disease [24], and Cancer [25]. This is just a partial list that demonstrates
the variety of dedicated tools available. To our knowledge to date there is no other software
framework that is flexible enough to accommodate multiple chronic disease models that has
the following capabilities: 1) The ability to define the model structure, 2) the ability to define
parameters and formulas, 3) the ability to set simulation rules and perform simulation, 4) the
ability to analyze the output data.

These simulation capabilities, offered by our framework are general enough to model chronic
diseases. Yet our framework is not suitable for modeling infectious diseases since these require
interaction between individuals, which our framework does not currently support. Also, our
support does not extend to general continuous time modeling as we are confined by a constant
length simulation step. Since our simulation engine includes event states, it already handles
event queues, which can be extended further in future research. Another gap in our framework
is that our simulation capabilities are more advanced than the estimation capabilities.
Estimation of model parameters is currently confined to a Markov model in a single process.
Expanding estimation capabilities is currently a research topic of much interest. Possible
research directions include multiple subprocesses, and model expression support. To allow
others to participate in this research effort, we are publishing our methodology [18,19], and
we have published our estimation source code both in Matlab and Python environments.

Publishing the disease modeling software for free along with its open source is compatible with
the design of the modeling approach that uses simpler more intuitive techniques to model
diseases. These intuitive approaches reduce the learning curve for researchers who are entering
the field. It also enables collaboration between researchers specializing in different facets of a
single disease. Finally, it enables researchers to develop new disease models without recreating
a GUI or a computation engine. The tool exists, and clinical collaborators can focus their efforts
on clinical matters rather than technical matters.

Another advantage of our software framework is that with our relatively simple modeling
techniques, we support a wider human comprehension of disease processes. Using standardized
“base” models of the natural history of disease, researchers can incorporate the effect of
proposed interventions into the base model and simulate expected long-term outcomes of early
intervention. This not only gives feedback to researchers about the utility of their preventive
actions; but it provides a motivation to target transitions in a model where an intervention will
have the most significant effect. Then, as studies are conducted, that data may be used to
calibrate and correct the base model as the state of the science advances. Together, these and
other practical uses of the software will help researchers comprehend complex disease
processes. Making this tool available freely and openly, facilitates disease modeling activities
and therefore contributes to better understanding of disease progression.

Not only can researchers benefit from a disease modeling software, we hope that in the future
physicians can eventually use the software as an educational tool. Working with a patient, a
physician can simulate patient outcomes based on the demographic characteristics of a specific
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patient, for a variety of proposed treatment plans. In this manner, a patient can become a more
active participant in his or her own health care decisions.

Our web site also contains additional information on the project, beyond the published software
and diabetes model. The web site can be accessed online at:
http://www.med.umich.edu/mdrtc/cores/DiseaseModel/
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APPENDIX
This appendix shows the Michigan Model for diabetes raw simulation output. It is
representative of output results typically generated by our software framework. Table 3
demonstrates a sample of this raw output for a single simulation repetition. Due to the size of
the table, only part of the information is shown. This raw information was analyzed by tools
provided with our software framework to create the results in table 2.
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FIGURE 1.
The Michigan model for diabetes. IGT means Impaired Glucose Tolerance, ESRD means End
Stage Renal Disease, and MI means Myocardial Infarction.
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FIGURE 2.
Flow diagram of the Monte-Carlo simulation
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FIGURE 3.
An example of the project form. This form allows defining the model and population set to be
used as well as simulation parameters such as the number of simulation steps and the number
of repetitions. The form allows manipulating rules according to their phase in the simulation.
Each phase is displayed in a different tab for the convenience of the user.
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TABLE 1

Example of a multidimensional table as defined by the system

Male<=0 0<Male<=1

Type_2_Diabetes<=0 0<Age<=24.999 0.0156 0.0013

24.999<Age<=54.999 0.0156 0.006

54.999<Age<=64.999 0.0156 0.0116

64.999<Age<=74.999 0.0156 0.0193

74.999<Age<=100 0.0156 0.0193

0<Type_2_Diabetes<=1 0<Age<=24.999 0.0034 0.0034

24.999<Age<=54.999 0.0034 0.0034

54.999<Age<=64.999 0.0089 0.009

64.999<Age<=74.999 0.0133 0.0131

74.999<Age<=100 0.0133 0.0131
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