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Abstract
Objective—Hedging is frequently used in both the biological literature and clinical notes to
denote uncertainty or speculation. It is important for text-mining applications to detect hedge cues
and their scope; otherwise, uncertain events are incorrectly identified as factual events. However,
due to the complexity of language, identifying hedge cues and their scope in a sentence is not a
trivial task. Our objective was to develop an algorithm that would automatically detect hedge cues
and their scope in biomedical literature.

Methodology—We used conditional random fields (CRF), a supervised machine-learning
algorithm, to train models to detect hedge cue phrases and their scope in biomedical literature. The
models were trained on the publicly available BioScope corpus. We evaluated the performance of
the CRF models in identifying hedge cue phrases and their scope by calculating recall, precision
and F1-score. We compared our models with three competitive baseline systems.

Results—Our best CRF-based model performed statistically better than the baseline systems,
achieving an F1-score of 88% and 86% in detecting hedge cue phrases and their scope in
biological literature and an F1-score of 93% and 90% in detecting hedge cue phrases and their
scope in clinical notes.

Conclusions—Our approach is robust, as it can identify hedge cues and their scope in both
biological and clinical text. To benefit text-mining applications, our system is publicly available as
a Java API and as an online application at http://hedgescope.askhermes.org. To our knowledge,
this is the first publicly available system to detect hedge cues and their scope in biomedical
literature.
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1. Introduction
Biomedical literature often includes sentences that express uncertainty or speculation, as
seen in the following two examples:

(1) These findings are discussed in relation to possible therapeutic approaches to the
immunotherapy of APL.

(2) No focal consolidation to suggest pneumonia.

In sentence (1), the authors indicate that therapeutic approaches for APL (Acute
Promyelocytic Leukemia) may be possible using immunotherapy, and the outcomes of their
study are presented in relation to this possibility. Similarly, in sentence (2), the report
indicates that the patient might be suffering from pneumonia because of the observation that
focal consolidation is absent. In our examples, “possible” in sentence (1) and “suggest” in
sentence (2) indicate uncertainty and speculation, a linguistic phenomenon known as
hedging [1]. Such cue words or phrases are therefore referred to as hedge cues.

In addition to the work of Lakoff, Palmer [2] and Chafe [3] studied phenomena related to
hedging in the open domain; Palmer focused mainly on the use of modal verbs in hedging,
while Chafe looked at the use of such words as “about” and “kind of” to express an
imperfect match between knowledge and categories. In the domain of scientific literature,
Hyland conducted a comprehensive study on the presence and use of hedge cues [4] and
suggested that hedging serves the purpose of weakening the force of statement and signaling
uncertainty. Based on exhaustive analysis of a corpus of molecular biology articles, he
proposed a pragmatic classification of hedge cues comprising modal auxiliaries, epistemic
lexical verbs, epistemic adjectives, adverbs, nouns and other non-lexical cues.

To help researchers discover information from literature, many text-mining applications
have been developed, and it is essential for such applications to identify the presence of
uncertainty and speculation in text [5]. Since hedged statements are often hypothetical and
may lack the proof needed to verify them as factual information, text-mining applications
should present the information extracted from such sentences separately from factual
information. For instance, guidelines for coding radiology reports state that uncertain
diagnoses should never be coded [6].

Despite the importance of this issue, the task of hedge detection is frequently ignored by
most of the current biomedical text-mining approaches. Such approaches can be generally
classified into three main categories – co-occurrence-based approaches (e.g., [7],[8]), rule-
based approaches (e.g., [9],[10]), and statistical and machine learning-based approaches
(e.g., [11–17]). None of these approaches detects hedging in text.

Hedge cue detection is not an easy task. Although certain cue phrases, such as ‘could’,
‘appears’, ‘possible’, ‘can’, ‘potential’ and ‘indicate’, are commonly used in hedged
statements, identifying hedged statements based merely on the presence of cue terms may
lead to false results. Two examples are shown below:

(3) We can now study regulatory regions and functional domains of the protein in the
context of a true erythroid environment, experiments that have not been possible
heretofore.

(4) If symptoms persist further evaluation would be indicated.

In addition to frequent cue phrases, certain cue phrases appear infrequently to indicate
uncertainty or speculation. Two examples are shown below:
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(5) The new conserved motifs are H-x3-L-x3-C-R-x-C-G and D-x3-I-h-0050-x2-F-C-
x2-C, and their function remains to be determined.

(6) Based on these results we estimate a 5–10% difference in virus production of the
LTR variants when compared to that of wild-type.

In sentence (5), the phrase “remains to be determined” is applied to the function of the two
motifs, indicating that their function is unknown. In sentence (6), the authors are uncertain
about the actual difference in virus production of the LTR type when compared to the wild-
type virus, but they hypothesize the difference to be in the range of 5–10%. A dictionary of
cue phrases might not include such infrequent cue phrases, which would affect the recall of
the system.

Although detection of hedge cues in a sentence is an important and challenging task in and
of itself, it is equally important to determine the scope of the hedge cue, since all
observations or reported events in the sentence may not be hedged. This can be seen in the
following example sentences where the hedge cue is in boldface and its scope is marked in
square brackets:

(7) Thus, the novel enhancer element identified in this study is [Probably a target site
for both positive and negative factors].

(8) Right middle and [probable right lower] lobe pneumonia.

In sentence (7), the authors do not express uncertainty regarding the discovery or novelty of
the enhancer element, but they are speculative with respect to its role as a target site for
positive and negative factors. Similarly, in sentence (8), the clinician does not hedge on the
presence of pneumonia in the right middle lobe but is uncertain about the presence of
pneumonia in the right lower lobe. Hence, a system that identifies hedge cues must identify
their scope as well; otherwise factual information will also be reported as uncertain
information.

Detecting hedge cues and their scope is, therefore, a challenging research task, and we
propose that the task of information extraction should address it in addition to relation
identification. We report here on the development of a supervised machine-learning system
called HedgeScope that detects hedge cues and their scope in biomedical sentences. The
next section describes related work, followed by the methods and evaluation.

2. Related work
Most of the studies in the area of detecting hedging in biomedical literature have focused on
determining the presence or absence of hedge cues in sentences; the scope of such cues is
ignored in most studies. Unlike our study, some studies assign different levels of certainty to
the sentence based on the hedge cue.

For example, Friedman and co-workers developed a natural language processing application
to identify clinical information in narrative reports and mapped the information into a
structured representation containing clinical terms; this system factored the use of hedging
in clinical notes [18]. Their system assigned one of five certainty categories to each
extracted finding. The five categories were no certainty, low certainty, moderate certainty,
high certainty and cannot evaluate. The findings and certainty modifiers were extracted
using rules based on semantic grammar.

Light and co-workers manually annotated speculative sentences in Medline abstracts and
found that the annotation could be done reliably by humans [19]. In their annotation, the
sentences were classified as one of the three categories: definitive, low speculative and high
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speculative. A Support Vector Machine (SVM) classifier and sub-string matching technique
were used to automatically classify abstract sentences as speculative or definitive sentences.
The sub-string matching technique achieved a slightly better accuracy (95%) than the SVM
classifier (92%), with a precision and recall of 55% and 79%, respectively. Although the
classifiers were able to reliably classify sentences as speculative or definitive sentences, they
were unable to achieve a good performance on the task of distinguishing between high
speculative and low speculative sentences.

Medlock and Briscoe extended the study of Light et al. [20]. To do so, they defined what
comprises a ‘hedge instance’, annotated a corpus that was made publicly available and
trained a weakly supervised machine-learning model using SVM. Light and co-workers’
sub-string matching based classifier was used as the baseline system. Medlock and Briscoe’s
model achieved a recall/precision break-even point (BEP) of 76%, while the baseline system
achieved a BEP of 60% on their test set. Medlock and Briscoe’s work was subsequently
expanded by Medlock [21] in which the use of additional features such as part of speech,
lemmas and bigrams was explored to improve the performance of the classifier. The use of
part of speech did not impact the performance of the classifier; however, using lemma
improved performance to 80% BEP and the use of bigrams improved performance to 82%
BEP. Szarvas also extended Medlock and Briscoe’s study [22]. He found that radiology
reports typically contained unambiguous lexical hedging cues, while multi-word hedge cues
were commonly found in scientific articles. Szarvas then developed a maxent-based
classifier to classify hedge sentences in both radiology free-text reports and scientific
articles. Feature selection for the classifier was done automatically and manually. Keywords
from external dictionaries were also added to improve the performance of the classifier. The
system was evaluated on Medlock and Briscoe’s dataset and obtained a BEP of 85%.
Kilicoglu and Bergler developed a classifier that was based on a dictionary of hedge cues
which was developed from existing linguistic studies and lexical resources and incorporated
syntactic patterns [23]. Their system was tested on two test sets: a test set of 1,537 sentences
released by Medlock and Briscoe [20] on which the system achieved a BEP of 85%, and a
test set of 1,087 sentences released by Szarvas [22] on which the system achieved a BEP of
82%.

To recognize modal information in biomedical text, Thompson and co-workers collected a
list of words and phrases that express modal information [24]. They also proposed a
categorization scheme based on the type of information conveyed, and using this scheme,
they annotated 202 Medline abstracts. The collected list of modal words and phrases was
validated through the annotations. In a study exploring the relationship between sentences
that contain citations and hedge sentences, DiMarco and Mercer found that hedging occurs
more frequently in the context of citations [25]. Their study also deduced that hedging could
be used to classify citations.

Shatkay and co-workers developed a classifier for biomedical text to classify text along five
dimensions [13]. One of the dimensions was degree of certainty, according to which the
statement could be assigned a value between 0 and 3, with 0 indicating no certainty and 3
indicating absolute certainty. They annotated a corpus of 10,000 sentences and sentence
fragments selected from full-text articles from a variety of biomedical journals. An SVM
classifier was trained on the annotated sentences to classify the certainty of a statement. To
evaluate the performance of the classifier, a five-fold cross validation on the annotated data
was performed, and a recall of 99% and precision of 99% was reported.

Uzuner and co-workers [26] developed two systems, ENegEx (Extended NegEx) and StAC
(Statistical Assertion Classifier), to determine if medical problems mentioned in clinical
narratives are present (positive assertion), absent (negative assertion), uncertain (uncertainty
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assertion) or associated with someone other than the patient (alter-association assertion).
ENegEx extended NegEx to apply rules to capture whether a medical problem mentioned in
clinical narratives is present or absent [27]. NegEx’s rule-base has been extended by other
applications as well; for example, ConText [28] extended the rule-base to identify features
such as temporality and experiencer of a disease in clinical narratives. StAC is a statistical
system that uses supervised machine learning algorithm Support Vector Machines (SVM) to
determine the assertion class. StAC makes use of lexical and syntactical features for
training. It was reported that ENegEx’s performance at identifying uncertainty assertions
ranged from 1% to 16% F1-score, whereas StAC’s performance ranged from 38% to 89%
F1-score [26]. Neither the ENegEx system, nor the corpus used for training and evaluating
StAC, was publicly available.

Morante and Daelemans [29] developed a two-phase approach to detect the scope of hedge
cues in biomedical literature. In the first phase, hedge cues were identified by a set of
classifiers, and in the second phase, another set of classifiers was used to detect the scope of
the hedge cue. The system performed better than the baseline in identifying hedge cues and
their scope. The percentage of correct scopes for abstracts, full-text and clinical articles was
65.55%, 35.92% and 26.21%, respectively.

Most of the systems reported above were developed to detect hedging in either clinical notes
or the biomedical literature. In contrast, our system was trained on annotations from a large
corpus of both clinical and biomedical texts, and therefore its ability to detect hedging in
both the medical and genomics domain is robust. Such a cross-domain hedging detection
system will also assist text-mining systems that require the analysis of both clinical data and
primary literature, an application example being the clinical question answering system
AskHERMES [30],[31] that we are now developing. Furthermore, while the previous
systems detect hedging in a sentence, most of them do not detect the scope of hedge cue; as
we have found that results detecting hedging with no regard for scope to be misleading, we
report on the detection of both phenomena here.

Finally, none of the previous systems is available for general use. To our knowledge,
HedgeScope is currently the only implemented system that is publicly available and detects
hedge cues and their scope in both the biological literature and clinical notes.

3. Methods
Our systems were built by training the supervised machine-learning algorithms known as
conditional random fields (CRF). The systems were trained on a variety of features. We
trained our systems on a corpus of hedges, as described below.

3.1. Hedge Corpus
We used the publicly available BioScope corpus [5] for training and for evaluation. The
development of the annotation guideline and the annotation process is described in [5]. The
BioScope corpus consists of three sub-corpora: abstracts from 1,273 articles used in the
GENIA corpus, full-text of nine articles and 1,954 medical free texts. Together, these sub-
corpora consist of more than 20,000 sentences, which correspond to approximately 435,000
word tokens.

We first selected all hedge sentences from the three sub-corpora. A hedge sentence is a
sentence that contains at least one hedge cue annotation. We counted the number of hedge
sentences and then randomly selected an equal number of non-hedge sentences from a pool
of all non-hedge sentences. We thus obtained 6,950 sentences with 3,475 hedge sentences
and 3,475 non-hedge sentences. We pooled these sentences and randomly divided them into
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two groups, one being the training set and the other being the testing set. Hence, both the
testing and training sets for hedge sentences contained 3,475 sentences.

We also built training and testing sets specific to biological and clinical sentences. Sentences
from the abstract sub-corpus and the full-text sub-corpus were considered to be biological
sentences, while medical free-text sentences were considered to be clinical sentences.
Hence, there were 2,620 biological hedge sentences and 855 clinical hedge sentences. As in
the case of all sentences, we selected an equal number of positive biological and clinical
sentences and divided them evenly. Hence both the training and testing sets for biological
hedge sentences contained 2,620 sentences and both the training and testing sets for clinical
hedge sentences contained 855 sentences.

Besides the test set generated from the BioScope corpus, we also used the test set made
publicly available by Medlock and Briscoe [20]. In this corpus, neither hedge cues nor their
scope are marked; rather, the sentences are labeled to indicate if they are hedge sentences
are not. This test set contains a total of 1,537 sentences with 380 hedge sentences and 1,157
non-hedge sentences.

3.2. Pre-Processing
Before training the models, we preprocessed all sentences in the BioScope training and
testing sets by separating punctuation from the word tokens. This was done because a
punctuation mark, such as a comma, could indicate the boundary of a clause, and hence
could aid in determining the limits of the scope of a particular instance of hedge cue.

3.3. Conditional Random Fields
Conditional random fields are probabilistic models that offer an advantage over the hidden
Markov Model (HMM) for sequential data because the independence assumption in HMM
can be relaxed in CRF [32]. Studies have shown that CRF models outperformed HMM in
NLP tasks including POS tagging [32], information extraction [33] and has shown to be the
best ML model for named entity recognition in the biomedical domain [34],[11]. We
therefore explored CRFs on hedge scope detection.

We used the open source CRF algorithm implementation provided by the ABNER library to
train test models [11]. ABNER was originally developed using the Mallet CRF framework
to identify biomedical named entities (e.g., proteins and cell lines) from biological literature.
ABNER’s library implementation allows users to train their own models as well and hence
can be viewed as a library implementing the CRF framework, which was used in the current
work.

3.4. Detecting hedge cues
3.4.1. Hedge cue detection using CRF—We first trained a CRF model to identify
hedge cues. ABNER, the CRF algorithm implementation that we used to train the model,
required that the data be input in a specific manner. To this end, we marked each word in the
BioScope corpus to indicate whether it was a part of the hedge cue or not. The first word in
the hedge cue was marked with ‘B-CUE’ to indicate the beginning of a cue, the remaining
words in the hedge cue were marked with ‘I-CUE’ to indicate that they were inside the cue
and words that were not a part of the cue were marked with ‘O’ to indicate that they were
outside the cue. If a hedge cue consisted of only one word, then only the beginning marker
(B-CUE) was used to mark it. A separate marker was not used to mark the end of the cue
phrase. The trained model was used to automatically identify hedge cues in the test
sentences by marking the first word with the beginning tag and the remaining words with the
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intermediate tag. We call the trained system HedgeCue. We experimented with different
strategies and baseline systems, as shown in Table 1.

3.4.2 Baseline system to detect hedge cue—For comparison, we developed a regular
expression-based baseline system (BaselineCue, as shown in Table 1) that detects hedge
cues. In the training phase, the system automatically extracts hedge cues from the training
set. In the testing phase, the system marks a test sentence as a hedge sentence if any of the
cue phrases appear in the sentence.

3.5. Detecting scope of a hedge cue
3.5.1. Detection scope of a hedge cue using CRF—We applied CRF models to
detect the scope of a hedge cue and marked scope in the same way as the hedge cue was
marked. The first word in the scope of the hedge cue was tagged with a beginning tag, while
the remaining words within the scope were tagged with an intermediate tag. The words of
the cue phrase within the scope were not given any special consideration, and they were
treated as any other word within the scope. The trained models were used to identify the
scope of hedge cues in the test set.

We observed that the scope of a hedge cue was often a clause containing a hedge cue phrase.
We speculate that linguistic features can be useful for hedge scope identification. To this
end, we explored POS as learning features for the CRF model. Specifically, we replaced all
words except the words of the cue phrase with their corresponding part of speech tags in the
training data (Figure 1). We experimented with either replacing the hedge-word with a
custom tag ‘CUE’ or retaining the word. In the case of the test set, since the cue phrases
were not marked, we used HedgeCue or BaselineCue to identify the hedge cues.

Morante and Daelemans (2009) [29] also developed a supervised machine-learning (ML)
model for hedge cue detection. Although they made use of the Bioscope corpus, they limited
the data to abstracts only, a small portion of the Bioscope corpus. They first trained on three
independent ML classifiers; subsequently, a fourth classifier was built upon the output of the
three independent classifiers. They however, did not report the results of each classifier, nor
did they report how such a two-tiered model of four ML classifier improved the
performance. In contrast, single-classifier-based CRF models have shown success in
biomedical named entity recognition [11],[34]. We therefore trained such a single-classifier-
based CRF model for hedging cue and scope detection.

3.5.2. Baseline systems for detecting scope of hedge cues—We developed two
baseline systems to detect the scope of hedge cues. BaselineScope-1 first applies
BaselineCue to mark a hedge cue in a sentence and then marks the scope as the text from the
beginning of the identified cue phrase to the first occurrence of a comma or period (Figure
2). BaselineScope-2 marks the scope as the text from the beginning of the identified cue
phrase to the first occurrence of a period (Figure 2).

3.6. Evaluation
To evaluate the performance of the systems on the BioScope testing data, we calculate and
report the system’s recall, precision and f-1 score. The recall and precision of the systems
were calculated as follows:

Recall = True positive count / (True positive count + False negative count)

Precision = True positive count / (True positive count + False positive count)

The system’s F1 score was calculated as the harmonic mean of the recall and precision. We
also calculated the system’s accuracy, which is the number of correctly predicted words

Agarwal and Yu Page 7

J Biomed Inform. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



divided by the total number of words. For every word in the test sentence, if both the
original annotation and tested system marked the word as a part of a cue phrase or scope,
then the word was counted as a true positive; if the original annotation only marked the
word as a part of the cue phrase, then the word was counted as a false negative; if only the
tested system marked the word as a part of the cue phrase, then the word was counted as a
false positive; and if neither the original annotation nor the tested system marked the word
as a part of the cue phrase, then the word was counted as a true negative. We report the
performance of HedgeCue, HedgeScope and the baseline systems.

We also calculated the percentage of the correct scope (PCS) to evaluate the performance of
scope predicting systems. If for a sentence, none of the words were marked as false positive
or false negative, then we considered that the system had correctly predicted the scope of the
sentence. Note that for sentences with no hedging, the system correctly predicted the scope
of the sentence only if it indicated that there were no hedge cues or their scope in the
sentence.

We split all test sets into 10 equal parts to measure the variance in results. For all results, we
report the standard deviation along with the average.

To evaluate the performance of our systems on the test set provided by Medlock and Briscoe
[20], we used HedgeCue and BaselineCue to detect the presence of hedge cues in the
sentences. The systems were trained on sentences from both the training set and the testing
set derived from the BioScope corpus. If the system predicts that the sentence contains a
hedge cue, the sentence is marked as a hedge sentence; otherwise it is marked as a non-
hedge sentence. We report the recall, precision and F1-score of our systems at detecting the
hedge status of sentences in this data set.

We were unable to test our system against other systems or datasets, such as ENegEx [26],
StAC [26], Thompson and co-workers’ system [24] and Shatkay and co-workers’ system
[13], as they were not publicly available.

4. Results
We found that the BaselineCue system extracted 197 cue phrases. The performance of
HedgeCue and BaselineCue at predicting hedge cues in the clinical sub-corpus, the
biological sub-corpus, and the combination of both clinical and biological sub-corpora in
BioScope test set is shown in Table 2.

Table 3–Table 5 shows the performance of HedgeScope and BaselineScope systems in
predicting the scope of a hedge cue in the BioScope testing set. In Table 3, both biological
and clinical sentences were used for training and testing; in Table 4, only biological
sentences were used for training and testing; and in Table 5, only clinical sentences were
used for training and testing. As defined earlier, the PCS is calculated as the number of
sentences for which the scope is correctly identified divided by the total number of
sentences. The micro-average of the F1-score of HedgeScope and BaselineScope systems
when trained and tested separately on biological or clinical data was 87.14% and 82.48%,
respectively. Compared to this, the F1-score of HedgeScope and BaselineScope on all
sentences was 86.97% and 80.12%, respectively. Hence, training a dedicated model for
biological and clinical data increased the performance by 0.2–2.3% (p < 0.0001, two-tailed
t-test).

The performance of HedgeCue and BaselineCue at detecting the hedge status of sentences in
the test set provided by Medlock and Briscoe [20] is shown in Table 6. The classifiers were
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trained on clinical sentences only, biological sentences only, and both clinical and biological
sentences. Results for all three training data combinations are shown in Table 6.

5. Discussion
Here, we have developed CRF-based models to predict the hedge cues and their scope in
biomedical sentences. We compare these models with baseline systems, which make use of
regular expressions and rules to mark the hedge cues and their scope in a sentence. Our
results indicate that models using CRF for detection of hedge cue and their scope in
biomedical sentences perform better than models based on the use of regular expressions (p
< 0.0001). Our system can be used to detect hedge cues and their scope in both biological
and clinical text.

For the detection of hedge cues, we observed that in the case of biological sentences, the F1-
score and accuracy of HedgeCue is better than BaselineCue (p < 0.0001); however, the
recall of BaselineCue is better than that of HedgeCue (p < 0.0001). This is because
BaselineCue collects all phrases that have been seen as hedge cues and marks any such
phrase in the sentence as a hedge cue, without considering the context in which it appears.
Hence, BaselineCue achieves a lower precision than the CRF system, which lowers its F1-
score and accuracy. Interestingly, the performance of BaselineCue was better than that of
HedgeCue at detecting hedge cues in clinical sentences, as the increase in recall was enough
to overcome the decrease in precision. This suggests that the hedge cues in clinical sentences
are rarely ambiguous, an observation made earlier by Szarvas [22].

With respect to the task of detecting the scope of hedge cues, we noticed that the micro-
average of the F1-score of HedgeScope trained specifically for biological or clinical text was
better than the F1-score of the CRF model trained on the combination of biological and
clinical text. This is because there are several differences in biological and clinical text. For
example, biological sentences from articles published in journals are generally
grammatically well-formed, while many sentences from clinical notes are not (e.g. “Left
lower lobe air space disease, atelectasis vs pneumonia.”).

We found that the HedgeScope system (CRF-based) performed better than the
BaselineScope system (regular expression based; F1-Score and PCS p < 0.0001). In case of
biological sentences, a better performance was obtained when the cue phrases were
identified using the HedgeCue system, whereas in clinical sentences, a better performance
was obtained when the cue phrases were identified using the BaselineCue system. This is in
line with the performance of HedgeCue and BaselineCue at detecting hedge cues in clinical
and biological sentences.

In analyzing the cases in which HedgeScope did not identify the scope of hedge cues
correctly, we found that the errors could be classified into three categories: 1) false positive
errors: the model assigns scope where none exists (i.e. it is a non-hedge sentence); 2) false
negative errors: the model assigns no scope when one does exist (i.e. it is a hedge sentence);
and 3) boundary errors: the model correctly identifies the sentence as a hedge sentence, but
it assigns a different scope than that assigned in the testing data. The first category of errors
(false positive errors) was observed in 61 of the 3,475 test sentences. In most cases where
the model assigned a scope and hedging did not exist, the hedge cue was a common hedge
cue phrase, but it did not indicate hedging in the context of that sentence. For example, ‘or’
was incorrectly predicted to be a hedge cue in the sentence ‘Site-directed mutagenesis
demonstrated that the two NF-IL-6 motifs could be independently activated by LAM, LPS, or
TNF-alpha and that they acted in an orientation-independent manner’.
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The second category of errors (false negative errors) was observed in 135 of the 3,475 test
sentences. We found that in most cases in which the model did not assign a scope when such
scope existed, the sentence incorporated an infrequent hedge cue. For example, in the
sentence ‘Reevaluate for renal stones.’, ‘reevaluate’ was not detected as a hedge cue. Errors
occurred in 196 sentences due to error categories 1) and 2). As there are 3,475 sentences in
the test data, this indicates that our system achieved an accuracy of 94.36% (F1-score:
94.20%) at predicting the presence of hedging in a sentence.

In the third category of errors, the model correctly identifies the sentence as a hedge
sentence, but it assigns a different boundary than that assigned in the testing data. This type
of error occurred in 450 sentences. For example, in the following sentence, the correct scope
is marked with square brackets and the scope detected by our model is marked with curly
brackets: ‘Since the IRF-1 gene is both virus and IFN inducible, an intriguing [issue is
raised as to {whether the IRF-1 gene is functioning in IFN-mediated regulation of cell
growth and differentiation}].’. In this example, ‘issue is raised’ is a hedge cue that our
system failed to identify. We found that in most cases our system assigned a smaller scope
than the scope assigned for the gold standard sentence.

Despite these errors, our system achieved a strong performance in scope detection, which
makes it suitable to be used in conjunction with other text-mining applications in both the
biological and clinical domains. We found that HedgeScope was able to identify the correct
scope in cases in which the simpler BaselineScope approach failed. Consider the following
sentences in which the correct scope is marked by square brackets in the first sentence, and
in the second sentence, in which a scope does not exist even though the sentence includes
the frequently used hedge cue ‘predicted’:

• Interestingly, [Dronc appears to have a substrate specificity that is so far unique
among caspases]: while all other known caspases have only been shown to cleave
after aspartate residues, Dronc can also cleave after glutamate residues [11].

• 29 asthma patients with forced expiratory volume in 1 s (FEV1) < 70% predicted
were studied.

For the first example, the BaselineScope system incorrectly marked the scope as “appears to
have a substrate specificity that is so far unique among caspases: while all other known
caspases have only been shown to cleave after aspartate residues” and “can also cleave
after glutamate residues [11]”, but the entire scope was correctly identified by the
HedgeScope model. In the second example, the HedgeScope system did not mark the
sentence, as there is no hedging in the sentence, but the BaselineScope system marked the
scope from “predicted” to the end of the sentence.

On evaluating the performance of our system on the test data made available by Medlock
and Briscoe [20], we noticed that the best performance (F1-score 87.61 %) was obtained by
HedgeCue when trained on biological sentences only. A better performance with models
trained on biological sentences can be expected because the test set comprises biological
sentences. This data set has been used to test other hedge status detection algorithms [20–
23]. A BEP of 85% (and hence, an F1-score of 85%), achieved by Szarvas, and Kilicoglu
and Berger, is the highest reported performance on this test data. In comparison, our system
achieved an F1-score of 87.61%.

A CRF-based approach was used by Morante and Daelemans [29] to identify hedge cues
and their scope in biomedical literature. Similar to our approach, Morante and Daelemans’
system was also trained on the BioScope data. A comparison of their reported results with
our own shows that our system had a better performance than theirs. This could be due to
the difference in the training data used; Morante and Daelemans used only the abstract sub-
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corpus for training. Surprisingly, our system’s overall performance (PCS ~81%) was also
better than the performance of Morante and Daelemans’ on the abstract sub-corpus (PCS
~66%). This could be due to the difference in the size of the training data or the features
used for selection.

Unfortunately, Morante and Daelemans’ system is not publicly available, so we were unable
to test the performance of their system on the same test sets as our system was tested on.

6. Conclusion and Future Work
We have created several CRF-based models that can automatically predict the hedge cues
and their scope in biomedical literature. These models can also be used to predict the hedge
status of a target entity in the sentence. The choice of which model to use depends on the
task at hand. For predicting the scope of hedge cues in biological sentences, we recommend
using a CRF-based model that identifies cue phrases using a CRF-based cue phrase
identifier and replaces non-cue phrase words with their parts of speech. However, to predict
the scope of hedge cues in clinical sentences, we recommend using the CRF-based model
that identifies cue phrases using a regular expression-based cue phrase identifier and
replaces non-cue phrase words with their part of speech. Although the recall of our trained
system is lower than the recall of the baseline systems, the trained systems achieve a much
higher precision than the baseline systems, resulting in a much higher F1-score. The models
we have trained perform well in detecting hedge cues and their scope in both biomedical and
clinical documents. To our knowledge, this is the first openly available system that predicts
the scope of hedge cues in both the biological and clinical domain. An online version of the
hedge scope detector is available at http://hedgescope.askhermes.org.

Any annotated corpus has size limitations, and unseen data encountered by a system trained
on such a corpus will hurt the system’s performance. In future work we may explore
methods for automatically identifying hedge cues from a large corpus, including contextual
similarity, which is commonly used for identifying semantically related words or synonyms
[35],[36]. We may also explore bootstrapping [37] or co-training approaches [38] that
partially overcome the limitations of training size.
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Figure 1.
Example of a sentence used for training after it was replaced with its part of speech tags.
The underlined word is the hedge cue in the sentence, while the words in italics represent the
scope of the hedge cue. In the first step, all words except the cue word (underlined) were
replaced with their part of speech tags. The cue word was either not replaced (bottom left) or
replaced with a custom tag “CUE” (bottom right).
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Figure 2.
An example showing the method in which BaselineScope marks the scope of a hedge cue in
the sentence. The hedge cue is first identified using BaselineCue. BaselineScope then marks
the scope of the hedge cue as the text from the hedge cue to the first comma or period (left),
or the first period (right).
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Table 1

Systems we explored for detecting hedge cues and their scope

System name Detects Features used Training/Testing algorithm

HedgeCue Hedge cues Words CRF

BaselineCue Hedge cues Words Cue phrase lookup using Regular
Expression

HedgeScope Scope of a
hedge cue

Words CRF

POS tags
Cue phrase words not
replaced with POS tags

HedgeCue (CRF) to identify cue
Phrases
CRF to mark scope

POS tags
Cue phrase words not
replaced with POS tags

BaselineCue (regular expression) to
identify cue phrases
CRF to mark scope

POS tags
Cue phrase words
replaced with custom
tag ‘CUE’

HedgeCue (CRF) to identify cue
phrases
CRF to mark scope

POS tags
Cue phrase words
replaced with custom
tag ‘CUE’

BaselineCue (regular expression) to
identify cue phrases
CRF to mark scope

BaselineScope Scope of a
hedge cue

Words BaselineCue to identify cue
phrases; scope marked till the first
occurrence of a comma or period

Words BaselineCue to identify cue
phrases; scope marked till the first
occurrence of a period
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