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Abstract
Feedback control is an important regulatory process in biological systems, which confers
robustness against external and internal disturbances. Genes involved in feedback structures are
therefore likely to have a major role in regulating cellular processes.

Here we rely on a dynamic Bayesian network approach to identify feedback loops in cell cycle
regulation. We analyzed the transcriptional profile of the cell cycle in HeLa cancer cells and
identified a feedback loop structure composed of 10 genes. In silico analyses showed that these
genes hold important roles in system's dynamics. The results of published experimental assays
confirmed the central role of 8 of the identified feedback loop genes in cell cycle regulation. In
conclusion, we provide a novel approach to identify critical genes for the dynamics of biological
processes. This may lead to the identification of therapeutic targets in diseases that involve
perturbations of these dynamics.
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1. Introduction
Feedback control is ubiquitous in biomedical systems [1-3]. Biological regulation is
achieved by a complex set of networks that include several intertwined feedback loops,
sometimes hierarchically related [4]. At the molecular level, with the emergence of high-

© 2011 Elsevier Inc. All rights reserved.
§Corresponding author: Fulvia Ferrazzi, PhD, Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, Via Ferrata
1, 27100 Pavia, Italy, Tel.: + 39 0382 985720; Fax: + 39 0382 985373, fulvia.ferrazzi@unipv.it.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Biomed Inform. Author manuscript; available in PMC 2012 August 1.

Published in final edited form as:
J Biomed Inform. 2011 August ; 44(4): 565–575. doi:10.1016/j.jbi.2011.02.002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



throughput technologies, it became clear that genes are involved in a large number of
feedback regulation processes [5, 6].

Feedback control systems possess a number of very important properties, including
robustness to disturbances and the capability of generating state trajectories known as limit
cycles, i.e. periodic oscillations, which are commonly present in cell dynamics such as the
cell cycle [7]. Thus, there is an increasing interest in analyzing the role and nature of
feedback loops, in particular to understand cell fate specification and commitment during
development [8, 9] and in cancer [10, 11]. A thorough study of the nature of feedback loops
can lead not only to a better understanding of basic molecular mechanisms of cells and
tissues, but also to the identification of therapeutic targets and the design of new drug
compounds. Genes involved in feedback regulatory structures are indeed likely to have a
key role in the regulation of cellular processes.

The understanding of the role and implications of feedback loops on cell dynamics requires
techniques able to deal with partial knowledge and non linear behaviours [12-18]. The most
interesting approaches proposed in the literature are those that derive networks of causally
interconnected genes [19], as they provide two different kinds of information: first, they give
a representation of the structure of gene relationships, expressed in terms of networks;
second, they usually provide a mathematical model of gene expression dynamics.

In this paper we propose a dynamic Bayesian network approach to the identification of
feedback loops and the generation of hypotheses on key regulatory genes in cell cycle
expression control. Bayesian networks (BNs) and their dynamic counterpart dynamic
Bayesian networks (DBNs) are flexible and easily interpretable models that allow the
representation of multivariate probabilistic relationships both at qualitative and quantitative
level. Compared to other methodologies for reverse engineering gene networks, such as
approaches based on mutual information [20] or differential equations [21], the use of a
probabilistic approach offers the advantage of taking into account the uncertainty about gene
relationships inferred from experimental data. For this reason BNs and DBNs have been
applied in the literature to analyze gene expression data [22]. As the structure of a BN is by
definition acyclic, BNs do not allow the direct representation and learning of feedback loop
structures. To capture these structures, it is necessary to use DBNs [23-31].

Our novel hypothesis is that the genes involved in feedback loop structures are key
regulatory genes of the analyzed biological process. To prove our hypothesis we applied
DBNs to the analysis of temporal expression data measured during the cell cycle of a human
cancer cell line (HeLa cells) for about 1000 cDNA probes [32] and identified a complex
feedback loop structure involving 10 genes. An extensive validation based on literature
analysis and comparison with a list of genes experimentally verified to be involved in
regulating the cell cycle in cancer cells [33] showed that the proposed approach was able to
highlight core cell cycle genes.

2. Material and methods
2.1 Data

Whitfield et al. analyzed gene expression during cell cycle progression in HeLa cells [32]. In
order to detect periodic activity in cell cultures it is necessary to synchronize cells, i.e. to
force them to stop in a certain cell cycle phase. Subsequently, cells are released from the
block and they progress synchronously through cell cycle. Whitfield et al. synchronized
cells with three different methods (double thymidine block, thymidine/nocodazole block and
mitotic shake-off) and performed five independent experiments, each time using one of
these synchronization methods and microarrays containing either 20000 or 40000 features.
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RNA was isolated from HeLa cells at various time points (1–2 hrs spaced) after release from
a synchronous arrest and reverse transcribed into Cy5-labeled cDNA. Reference RNA was
prepared from asynchronously growing HeLa cells and reverse transcribed into Cy3-labeled
cDNA. Cy5- and Cy3-labeled cDNA were hybridized to cDNA microarrays, manufactured
at the Stanford Microarray Facility. The whole database is available on the web [34]. Each
probe represented on the microarrays is identified by an IMAGE clone number (a cDNA
clone produced by the Integrated Molecular Analysis of Genomes and their Expression
Consortium [35]).

To infer the DBN model we used gene expression data of the experiment denoted by
Whitfield et al. as “Thy-Thy 3”, in which cell synchronization was achieved through a
double-thymidine block, which arrests cells at the start of the cell cycle, i.e. at the G1/S
boundary. Gene expression values were measured every hour, from time 0 to 46 hours, with
cDNA microarrays containing about 40000 probes. As the estimated cell cycle length in
HeLa cells is about 15 hours, the available measurements span three cell cycles [32]. Among
the three experiments performed with the 40000 probe arrays this is the one with the highest
number of time points. We concentrated our analysis on a subset of about 1000 probes
identified by Whitfield et al. as cell cycle regulated (periodically expressed). Our dataset is
made up of 1099 variables measured at 47 time points. The measurements we analyzed are
log ratios of the expression in synchronized cells (Cy5-labeled) versus the expression in the
reference asynchronous population (Cy3-labeled). We annotated the IMAGE clones,
retrieving the corresponding Unigene cluster and GeneID, by means of the tool SOURCE
[36], developed at Stanford University and available on the web [37]. According to an
annotation performed in April 2009, 798 out of 1099 clones have a GeneID identifier. They
correspond to 647 different genes: the majority of genes (81.6%) are represented by only 1
clone, 14.8% is represented by 2 clones and the remaining genes (3.6%) are represented by a
maximum of 6 clones. We decided to perform analysis at single-probe level, in order to
avoid the possible loss of information associated with the choice of a single probe to
represent a gene, or alternatively the averaging over the probes mapping to the same gene.
Other reasons for preferring a probe-based approach are that the annotation of probes can
change when information about a gene's transcripts is refined and the fact that annotation is
not available for all probes.

To evaluate our inferred DBN model, we employed expression data of the experiment “Thy-
Noc”, in which synchronization was achieved through a thymidine/nocodazole block, which
arrests cells during mitosis, i.e. at M phase. In this experiment expression values were
measured every 2 hours, from 0 to 36 hours. Compared to the only other available
experiment that employed a synchronization method different from double-thymidine, “Thy-
Noc” was preferred for the validation as it had a lower number of missing values.

2.2 Dynamic Bayesian network inference
Bayesian networks are probabilistic graphical models formed by two components, a directed
acyclic graph (DAG) and a joint probability distribution. Nodes in the DAG represent
random variables, while arcs represent probabilistic dependencies. A conditional probability
distribution is associated with each node and its parents (the variables with arcs pointing to
it) and the overall joint distribution is given by the product of these conditional distributions.

A dynamic Bayesian network is a Bayesian network that models the evolution of random
variables (in our case: probe expression values) over time. Under appropriate assumptions,
this temporal evolution can be entirely represented by a network of dependencies between
variables at time t and time t+1 [38]. Thus, in our case nodes in the DAG represent probe
expression values at time t and time t+1 and arcs are always directed from nodes at time t to
nodes at t+1 (Figure 1).
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We assume that variables Y1… Yv are continuous and that the conditional distribution of
each variable Yi with respect to its parents is Gaussian, with mean μi and variance 
[39]. The parameter τ i is called precision. The conditional mean μi of variable Yi at time t+1
is assumed to be a linear combination of the values of the p(i) parents at time t:

(1)

where yij are the parent values and (βi0, βi1,…,βip(i)) are the regression parameters.

Learning a DBN requires learning both the structure of the DAG and the parameters of the
conditional probability distributions. The learning task can be approached by choosing a
suitable score and a search strategy. In a fully Bayesian framework the score is the posterior
probability p(M∣D) of a network model M with respect to the available data D. By Bayes'
theorem, it is possible to write:

(2)

where p(D∣M) is the marginal likelihood, which expresses the likelihood of the model
irrespective of the specific parameters' values, and p(M) is the model's prior probability.
Assuming all models are a priori equally probable, the posterior is directly proportional to
the marginal likelihood, which can thus be employed as score to rank the alternative models.

Using the Gaussian probability model defined above and employing suitable prior
distributions for model parameters, the marginal likelihood can be calculated in closed form
[39]. Yet, as the number of possible models to be explored is exponential in the number of
variables, it is necessary to resort to a heuristic search strategy. We made use of a stepwise
search strategy that extends the K2 algorithm by Cooper and Herskovits [40]: the parent set
of each variable is initially assumed to be empty; then, the addition of one parent at a time is
tried and the model that most increases the marginal likelihood is chosen as the new
candidate model. The candidate model is accepted if the ratio between the new and the old
marginal likelihood (the so-called Bayes factor) is higher than a specified threshold. In order
to avoid the limitations of the greedy search, we added a backward step during forward
selection of variables [39]. The algorithm's implementation in Matlab is freely available for
academic users upon request from the authors.

2.3 Network Model Evaluation
The evaluation of the network model induced from data consists of two main tasks:
assessing its goodness of fit and assessing its predictive accuracy.

The goodness of fit refers to the ability of the model to fit the data from which the model
itself was induced. In our case this corresponds to being able to reproduce the analyzed
temporal profiles with satisfactory accuracy. In order to test the goodness of fit it is possible
to adapt the approach for static BNs proposed by Sebastiani et al., based on blanket residuals
[41]. Given the network induced from data, for each case k in the database, the fitted value
for every node Yi given all the other nodes is calculated. By the global Markov property,
only the configuration of the Markov blanket of Yi is used to compute the fitted value: for
continuous variables, the fitted value ŷik is taken equal to the expected value of Yi given its
Markov blanket.
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In the case of DBNs, the calculation is simplified by the fact that the Markov blanket of a
node at time t + 1 is given only by its parents. Therefore we have:

(3)

ŷi(t+1) is the fitted value for variable Yi at time t+1, pa(yi) are the p(i) parents inferred during
network learning, yijt are the parent values at time t and (β̂i0,…,β̂ip(i)) are the estimates of the
regression parameters. Given expression data for T time points, the one-step-ahead
prediction is repeated for t = 1,‥, T –1 and the blanket residuals are calculated as:

(4)

During the stepwise search for the parent set of a node, it is possible that no single-parent
model has a marginal likelihood higher than the one of the model with no parents. Thus, in
this case the predicted value of the node will be constant across time and equal to the
estimated parameter β̂i0.

In regression models a commonly used measure for the goodness of fit is the root mean
squared error (RMSE). In our case the global RMSE is taken equal to the average of the root
mean squared errors relative to each of the v variables (RMSEi):

(5)

(6)

As for any model inferred from data, a good fitting doesn't mean that the model performs
well when applied to new data. A useful model must be able to generalize well; thus, the
evaluation of the network model on an independent test set is very important. This
evaluation implies predicting values for variables in the test set relying on the model learned
on the training set. In our case, the “predicted values” for each variable are its expected
values (Equation (3)) calculated using the parents and the values for the regression
parameters inferred on the training set. A summary of the predictive accuracy can be given
by the RMSE calculated on the test set.

2.4 Transformation of the DBN into a regulatory network
In order to facilitate the visualization of the topological properties of the inferred network,
and in particular feedback loops, the DBN can be transformed into a regulatory network. In
this network nodes referring to the same variable at consecutive time points (e.g. A(t) and
A(t+1)) are collapsed into a single node and an arc going from variable A to variable B is
drawn when in the DBN there is an arc from A(t) to B(t+1) (see Figure 1). Given the fact
that in our DBN model variables at time t+1 can depend only on variables at the previous
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time point, there is a one-to-one correspondence between the DBN and its representation as
a regulatory network.

3. Results
3.1 Inferred network model

As described in the section 2.1, the analyzed dataset contains expression values for 1099
variables (probes) measured every hour, from 0 to 46 hours. Each probe of the array is
identified by an IMAGE clone. We applied the dynamic Bayesian network algorithm
described in section 2.2 to infer the network of dependencies between expression values of
the analyzed variables at two consecutive time points. Hyper-parameters for the prior
distributions of the precision and the regression coefficients were chosen as previously
described [39], while the threshold for the Bayes factor was set equal to 7 so that a new
network link is added only if there is substantial evidence in its favor [42].

The obtained DBN has been translated into a regulatory network as described in section 2.4.
In this network the number of parents for each variable ranges from 0 to 2; more
specifically, 638 out of the 1099 analyzed variables had no connections (they have no
children and no parents) and 4 had only a self-loop. Among the variables connected with at
least one other, a large group of 412 nodes can be found (Figure 2). The relatively large
number of nodes with no connections is due to the compromise between the model's ability
to fit the data and the model's complexity, which is ensured by setting a threshold for the
Bayes factor. Although all analyzed genes are cell-cycle related, the large group of
connected nodes reveals a set of genes highly dependent on one another, likely to contain
interesting regulatory structures. Thus we focused following analyses on this group.

By analyzing the network in Figure 2, we were indeed able to identify a group of 12 probes
that are involved in interrelated feedback loops (Figure 3). It is worth noting that the parent
variables of the probes in this group are all included in the group itself. The 12 probes map
to 10 different genes, some of which are known to be key cell cycle regulators: CDC2,
TOP2A, PLK1, AURKA, and CENPA. Table 1 shows the IMAGE clone identifiers relative to
the 12 nodes and the corresponding annotation. Please note that in order to ensure that the
obtained loop structure does not significantly change when a unique probe is used to
represent each gene, we repeated the network inference selecting, for the genes represented
by more than one probe, the probe with maximum variance. Results showed that the loop
genes and their relationships remained essentially the same.

3.2 Statistical evaluation of the network model
As assessment of the goodness of fit of the model on the training set, the root mean squared
error (RMSE) was calculated and found to be equal to 0.13. The RMSE calculated on
relative residuals (normalized, for each probe, with respect to the range of the measured
profile) is 0.14. As an example of the fitting accuracy, Figure 4 shows the measured and
fitted profiles for four loop probes.

As pointed out in the section 2.3, a better assessment of model performance is obtained
when the model is applied to an independent dataset, different from the one employed to
learn the model itself. In the independent test set we employed (see section 2.1), 1095 out of
the 1099 analyzed probes were measured and these include all the 412 probes in the
connected group. We here recall that, in the test set, the “predicted value” of a probe is equal
to its expected value calculated using the parents and the values of the regression parameters
inferred on the training set. We found that the RMSE is equal to 0.28 and the relative RMSE
equal to 0.23. Figure 5 shows the measured and predicted profiles for the same loop probes
as in Figure 4.
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3.3 Simulations
Once a DBN model has been learned it can be used to perform in silico analyses of the
system. Our goal was to prioritize network nodes on the basis of their influence on the
system's dynamics. We devised a 1-input prediction: we considered one node at a time,
initialized the system using the measured expression values at time 0 and predicted values at
the following time points (up to 46 hours) assuming the values of the considered node are
known, while those of all other nodes are not (and therefore for them predicted values
instead of measured values are employed for the one-step-ahead prediction). In this way we
were able to assign each probe h a score s(h) by calculating the corresponding prediction
error (estimated with the RMSE). Using the scores s(h), it is possible to rank the input
probes from the one with the lowest error (best predictive ability) to the one with the highest
error (worst predictive ability). We performed this 1-input prediction both on the training set
and the test set. As possible inputs we considered only the 113 probes out of the group of
412 that have at least one child (which can also be the node itself). When the 1-input
prediction was performed on the training set, the 12 loop probes were the first 12 best
predictors (Table 2); when the prediction was performed on the test set, 9 of the loop probes
were the first 9 best predictors and the other 3 were all within rank 19 (Table 3).

In order to associate a significance measure to this latter ranking, it is possible to empirically
estimate the probability of obtaining a “better” ranking. By “ranking” we mean the positions
of the 12 loop probes, and we say that a ranking is “better” than the observed one if at least
one position is lower and none of the others is higher. As our observed ranking is (1, 2, 3, 4,
5, 6, 7, 8, 9, 11, 18, 19), examples of better rankings are (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19)
or (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 19). We randomly sampled 12 positions out of the vector
z=(1, 2, 3,…,113) for 105 times and estimated the probability of obtaining a better ranking
by calculating the proportion of sampled better rankings. The estimated probability was 0. A
less restrictive criterion for judging whether a ranking is better consists in considering the
average rank of the 12. In this case the probability of obtaining a better ranking can be
estimated by the proportion of sampled rankings with lower average rank. Also in this case
the empirically estimated probability is 0.

As several research work on network analysis has focused attention on the role of highly
connected nodes, the so-called “hubs”, it is interesting to investigate also their predictive
ability. By analyzing the distribution of node outdegrees (the number of outgoing
connections from a node) in the group of 412 connected nodes, it is possible to find out that
the median outdegree is equal to 0 and the 95th percentile is equal to 6. In particular, the
number of nodes with outdegree higher than or equal to 6 is 24: we call these “hub” nodes.
By looking at the rank of the hub nodes in the 1-input prediction, it is possible to see that the
rank is not inversely proportional to the outdegree and it significantly worsens when
considering the test set (Table 4). Moreover, ten of the 12 loop nodes are hub nodes but two
are not. This analysis strengthens the hypothesis that feedback loop structures highlight key
nodes in the network that are not revealed by simply considering nodes connectivity.

Taken together, the 1-input prediction showed that, when the analyzed system is treated as
deterministic, the loop probes allow a better reconstruction of the profiles than the other
probes.

4. Discussion
4.1 Biological interpretation of results based on a large scale silencing experiment

Recently, Kittler and coworkers performed a genome-wide RNA-interference (RNAi)
analysis of HeLa cells in order to identify genes important for cell division [33]. Cells were
transfected with endoribonuclease-prepared short interfering RNAs (esiRNAs) to selectively
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knock down single genes. To determine the function of the deleted genes on cell division the
authors measured DNA content 72h after transfection. 17828 genes were targeted and 1351
genes were found to alter cell cycle progression. Using a second non-overlapping set of
esiRNAs the authors confirmed the results for 743 genes.

The study of Kittler et al. allows a quantitative evaluation of our method's efficiency in
identifying key cell cycle regulators. The 17828 targeted genes include 600 of the 647 genes
analyzed in our study. If the 1351 genes affecting the cell cycle are called “positive”, 85 of
our 600 investigated genes are positive (14.2%). Out of the 10 loop genes, 9 were tested and
4 were positive (44.4%, Table 5). Thus, the proportion of loop genes with a significant effect
on cell cycle progression is much higher than the proportion of total genes with an effect.
The statistical significance of the enrichment in the proportion can be assessed by employing
the hypergeometric distribution to calculate the probability of at least 4 genes having an
effect if 9 genes are randomly chosen out of a group of 600, 85 of which with an effect. This
probability is 0.027. Furthermore, if the genes called “positive” are instead considered to be
the 743 genes whose phenotype was confirmed using the second set of esiRNAs, 51 of the
600 tested genes have an effect, while all 4 loop genes are still positive. In this case, the p-
value is 0.0043. Taken together, the study of Kittler confirmed that our network approach
can aid in the identification of key regulators.

4.2 Biological interpretation of results based on literature analysis
Even though the study by Kittler et al. provides a great data set to evaluate our study, it
might fail in identifying all cell cycle regulators. Therefore, it is important to include
available literature into the biological interpretation process.

Out of the 10 genes that we identified as involved in interrelated feedback loops, five encode
well-characterized cell cycle regulators. CDC2 (also known as CDK1) is best known for its
role in G2/M phase. CDC2 forms with Cyclin B a complex called “mitosis-promoting
factor” that regulates the onset of mitosis [43]. The genes PLK1, AURKA, and CENPA
encode two kinases (Polo-like kinase 1 and Aurora kinase A) and the centromere protein
CENPA. These proteins are key regulators of chromosome segregation [44-48]. siRNA-
mediated knockdown of CDC2, PLK1, and AURKA, as well as functional inhibition of
CENPA results in delays of cell cycle progression and is often associated with an increase in
apoptosis [45, 46, 49, 50]. The importance of these genes for cell cycle progression is
underlined by the fact that they have been suggested as potential targets for anti-cancer
therapies [51-53]. The gene TOP2A encodes a DNA topoisomerase, an enzyme that is able
to modify the topology of DNA. Although TOP2A knockdown did not exhibit a cell cycle
phenotype in the study by Kittler et al., it has been demonstrated that this nuclear enzyme is
involved in chromosome condensation, chromatid separation, and the relief of torsional
stress during transcription and replication of DNA [54].

Recently, it has been discovered that also HJURP, PSRC1 and FAM83D play important
roles in cell cycle progression. HJURP was found to be a part of the CENPA centromeric
nucleosome associated complex mediating the assembly of CENPA nucleosomes at
centromeres [55-57]. Moreover, HJURP plays a key role in the immortality of cancer cells
[58]. The gene PSRC1, also known as DDA3, encodes a proline-rich protein. DDA3 is a
regulator of spindle dynamics and is essential for mitotic progression [59]. Finally,
FAM83D, also known as C20orf129, has been identified as one of the human spindle
components [60]. The last two loop genes are poorly characterized. HSPA1L is a heat shock
protein. Heat shock proteins help to refold denatured proteins and degrade harmful proteins.
The gene EXO1 encodes a protein with exonuclease activity that is involved in processes
like DNA repair, recombination, replication, and maintenance of telomere integrity. It is
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found to be frequently mutated during oncogenesis [61, 62]. Future experiments will reveal
whether HSPA1L and EXO1 have a function during cell cycle progression.

In conclusion, our Bayesian network approach proved efficient in the identification of
important regulators of the investigated biological system, the cell cycle.

4.3 Sensitivity analysis varying the Bayes factor threshold
The search strategy employed to learn the DBN relies on the Bayes factor (BF) parameter.
The higher the value of the chosen threshold for the BF, the more evidence is needed in
order to add a new parent. It is agreed in the literature that a BF between 1 and 3 indicates
little evidence in favor of a new model versus the currently employed one, while a BF of 3
to 10 already provides substantial evidence in favor of a new model [42]. Thus, a threshold
of 7 constitutes a good compromise between the need to add connections conservatively
(and thus control the number of spurious connections) and the need to be able to discover
novel knowledge. Our choice for the BF threshold is confirmed by a sensitivity analysis on
datasets of 100 probes randomly sampled from the entire dataset “Thy-Thy 3” of 40000
probes by Whitfield et al. We indeed expect that the average number of inferred connections
in these datasets should be close to zero. We thus sampled 103 datasets and inferred
networks using different thresholds for the BF, namely: (1,3,5,7,10,20,50). Results showed
that a threshold of 1 is associated with an average 1.8 connections per node, while thresholds
greater than or equal to 3 lead to less than 0.1 connections per node.

In order to assess a posteriori the robustness of the inferred loops, it is possible to consider
the BFs relative to the local models of the genes in the loop. In the case in which a gene has

only one parent p1, the BF associated with the gene's local model is:  where ML1
is the marginal likelihood of the model in which the gene has parent p1 and ML0 is the
marginal likelihood of the model in which the gene has no parents. BF10 can thus be
associated with the link between p1 and the gene. If instead a gene has two parents p1 and
p2, two BFs can be considered, namely BF10 and BF21. BF10 is defined as before, while

BF21 is given by: . where ML2 is the marginal likelihood of the model in which
the gene has both parents p1 and p2. Thus, BF10 can be associated with the link between p1
and the gene and BF21 can be associated with the link between p2 and the gene, yet
remembering that BF21 represents the increase in the marginal likelihood when p2 is added
to the parent set that already contains p1. Figure 6 shows the links in the loops annotated
with the corresponding BF.

If we set a higher threshold for the BF, some links are going to disappear. Thus, some nodes
might not be part of the loops anymore, as there would be no feedback path going through
these nodes. In particular, by setting the threshold to 10, three genes, namely TOP2A,
CENPA and PSRC1, are no more involved in the loops while the structure involving the
other nodes remains unchanged. It is interesting to note that the loop involving CDC2-
FAM83D-AURKA-HSPA1L is maintained up to a threshold equal to 50, that is 7 times
higher than the one we employed. On the other hand, by lowering the threshold, the complex
loop structure involving the 10 genes enlarges and includes more genes.

As our hypothesis is that the feedback loop structure highlights key genes in cell cycle
regulation, it is interesting to assess the predictions obtained for different BF thresholds
employing Kittler et al. data, as discussed above for threshold=7. Table 6 reports, for BF
threshold=(3,5,10,20,50), the number of nodes involved in the feedback loop structure (and
the corresponding number of genes, evaluated on the annotated nodes), the number of loop
genes tested by Kittler et al. and those with an effect when 743 ‘positive genes’ are
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considered, with the corresponding p-value. Results show that predictions are significant for
all considered thresholds confirming that feedback loop structures are enriched in key cell
cycle genes.

5. Conclusions
The availability of high-throughput dynamic expression data improves our chances to
unravel cellular regulatory mechanisms. DBNs are particularly suited for analyzing these
data and infer gene network models. It is important to note that gene networks inferred from
expression data alone do not necessarily represent the biological regulation of one gene on
another, i.e. a physical/biochemical interaction between gene products. Instead, they are
abstract models of the dynamics of gene expression in the analyzed system: an arc from
gene A to gene B implies that the expression value of B depends on the expression value of
A at the previous time point, i.e. knowledge of A's expression value helps in predicting B's
expression value at the following time point. In the case of DBNs, the dependence is
probabilistic, which means that the probability of B taking a certain value at time t+1 is
conditional on the value of A at time t. At the molecular level, feedback loops identified by
DBNs may thus correspond to a variety of regulatory mechanisms. The inferred model
represents and summarizes such mechanisms by means of probabilistic relationships
between the observed variables. This provides the advantage, at a system level, to identify
feedback loops, which appear to be key regulatory elements of the observed dynamics, as
they confer systems fundamental properties such as robustness to disturbances and the
possibility to exhibit periodic behaviors.

In this paper we have applied a DBN approach to learn feedback control structures from
gene expression data measured during the cell cycle in a human cancer cell line [32]. The
analysis of the inferred network led us to concentrate our attention on a group of 10 genes
involved in various interrelated feedback loops. We refer to these genes as loop genes. We
hypothesized that the loop genes have a central role in cell cycle regulation. Simulations of
the network dynamics supported our hypothesis and a large-scale silencing assay by Kittler
et al. [33] showed that the proportion of loop genes whose silencing causes abnormal cell
cycle progression is much higher than the proportion of total analyzed genes with abnormal
phenotype. Furthermore, analysis of the current literature showed that 8 loop genes are very
important for cell cycle regulation.

Let us note that the approach described in this paper builds on a number of steps for DBN
modeling and learning that have been previously published in the literature, although not yet
applied to the discovery of feedback loops in cell cycle regulatory networks. Results show
that a set of biologically relevant loops can be found by applying a relatively simple model,
which is based on linear relationships between genes. Moreover, the model search was
performed by resorting to a stepwise modification of the well-known K2 algorithm, which
allowed obtaining the solution in a computationally efficient way, so that it was possible to
learn gene networks starting from hundreds of probes. Thus, the performed modeling
choices constitute a good compromise between the need of obtaining results by processing
large number of genes and the goal of keeping the number of false positives (i.e. spurious
feedbacks) as low as possible [63].

The cell cycle is particularly suited to apply our method as its understanding is of crucial
relevance for cancer research. The obtained results may therefore be important for defining
molecular targets of drugs and proposing new therapeutic interventions. Furthermore, the
cell cycle is a well studied biological process, for which a large amount of literature for
validating results is available. Yet the approach is applicable to other biological systems: it
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could for example be particularly interesting in the study of developmental/differentiation
processes in stem cells to prioritize genes for further biological experiments.
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Figure 1. A dynamic Bayesian network and its translation into a gene regulatory network
A) Example of a simple dynamic Bayesian network representing the probabilistic
dependencies of four variables (A-B-C-D) between two consecutive time points; B) The
network in A) translated into a gene regulatory network. This representation facilitates the
identification of the feedback loop involving variables A-C-B.
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Figure 2. Gene network inferred analyzing human cell cycle expression data
Relying on the expression values for 1099 probes measured by Whitfield et al. [32] and on
our dynamic Bayesian network inference algorithm, we inferred a gene regulatory network.
This network contains a large group of 412 connected probes, shown in the Figure.
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Figure 3. Inferred feedback loops
Twelve nodes in the network in Figure 2 are involved in interrelated feedback loops; these
probes map to ten different genes. The Figure shows the relationships between the loop
nodes.
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Figure 4. Fitting assessment
The Figure shows the measured (blue) and fitted (red dashed) profiles for four loop probes.
The data are shown starting from the second time point, as the first one is always taken
equal to the first measured value.
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Figure 5. Predictive accuracy assessment on an independent test set
The Figure shows the measured (blue) and predicted (red dashed) profiles for the same loop
probes as in Figure 4 but relative to the independent expression dataset employed to evaluate
our network model.
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Figure 6. Assessment of the robustness of the inferred feedback loops
The Figure shows the relationships between the loop nodes annotated with the
corresponding BF. In cases in which a gene has two parents, the BF of the first added parent
(BF10) is indicated with [1] and that of the second parent (BF21) with [2].
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Table 1
Feedback loop nodes and their annotation

Each row of the table contains the IMAGE clone ID of a loop probe with the respective Unigene Cluster, Gene
Name, Gene symbol, and Gene ID.

CloneID UGCluster Gene name Gene symbol Gene ID

IMAGE:209066 Hs.250822 Aurora kinase A AURKA 6790

IMAGE:744047 Hs.592049 Polo-like kinase 1 (Drosophila) PLK1 5347

IMAGE:447208 Hs.498248 Exonuclease 1 EXO1 9156

IMAGE:2017415 Hs.1594 Centromere protein A CENPA 1058

IMAGE:703633 Hs.405925 Proline/serine-rich coiled-coil 1 PSRC1 84722

IMAGE:712505 Hs.334562 Cell division cycle 2, G1 to S and G2 to M CDC2 983

IMAGE:200402 Hs.472716 Family with sequence similarity 83, member D FAM83D 81610

IMAGE:1540236 Hs.532968 Holliday junction recognition protein HJURP 55355

IMAGE:66406 Hs.532968 Holliday junction recognition protein HJURP 55355

IMAGE:50615 Hs.690634 Heat shock 70kDa protein 1-like HSPA1L 3305

IMAGE:129865 Hs.250822 Aurora kinase A AURKA 6790

IMAGE:825470 Hs.156346 Topoisomerase (DNA) II alpha 170kDa TOP2A 7153
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Table 2
Loop probes: results of 1-input prediction on training set

Observed ranks of the loop probes when the 1-input prediction is performed on the training set.

Rank Probe Gene symbol

1 IMAGE:200402 FAM83D

2 IMAGE:712505 CDC2

3 IMAGE:66406 HJURP

4 IMAGE:1540236 HJURP

5 IMAGE:209066 AURKA

6 IMAGE:447208 EXO1

7 IMAGE:744047 PLK1

8 IMAGE:129865 AURKA

9 IMAGE:50615 HSPA1L

10 IMAGE:2017415 CENPA

11 IMAGE:703633 PSRC1

12 IMAGE:825470 TOP2A
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Table 3
Loop probes: results of 1-input prediction on independent test set

Observed ranks of the loop probes when the 1-input prediction is performed on the test set.

Rank Probe Gene symbol

1 IMAGE:200402 FAM83D

2 IMAGE:712505 CDC2

3 IMAGE:50615 HSPA1L

4 IMAGE:744047 PLK1

5 IMAGE:1540236 HJURP

6 IMAGE:209066 AURKA

7 IMAGE:703633 PSRC1

8 IMAGE:129865 AURKA

9 IMAGE:447208 EXO1

11 IMAGE:2017415 CENPA

18 IMAGE:825470 TOP2A

19 IMAGE:66406 HJURP
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Table 4
Network hubs: results of 1-input prediction

Network hubs, their outdegree and the observed rank in the 1-input prediction performed on the training and
test sets.

Probe Gene symbol Outdegree Rank in 1-input prediction on training set Rank in 1-input prediction on test set

IMAGE:200402 FAM83D 27 1 1

IMAGE:209066 AURKA 26 5 6

IMAGE:66406 HJURP 25 3 19

IMAGE:788256 KIF23 23 13 13

IMAGE:712505 CDC2 20 2 2

IMAGE:1540236 HJURP 18 4 5

IMAGE:624627 RRM2 14 19 23

IMAGE:51532 ARL6IP1 12 15 113

IMAGE:645565 DEPDC1 10 21 15

IMAGE:129865 AURKA 10 8 8

IMAGE:281898 PSRC1 9 14 10

IMAGE:292936 CDCA8 9 22 16

IMAGE:2019372 GTSE1 9 23 21

IMAGE:126650 DTL 9 26 27

IMAGE:810600 Not available 8 28 104

IMAGE:744047 PLK1 7 7 4

IMAGE:455128 CCNF 7 17 12

IMAGE:1035796 FAM72B 7 18 17

IMAGE:825470 TOP2A 7 12 18

IMAGE:146882 UBE2C 6 20 20

IMAGE:447208 EXO1 6 6 9

IMAGE:703633 PSRC1 6 11 7

IMAGE:1486028 Not available 6 16 14

IMAGE:1564601 FAM111B 6 27 35
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Table 5
Biological interpretation of results based on a large scale silencing experiment

The table lists the silenced loop genes and their observed effect on cell cycle progression as reported in the
study by Kittler and colleagues [33].

Gene Effect reported by Kittler et al.

CDC2 G2 arrest

HSPA1L None

PLK1 Cell division defect

AURKA Cell division defect

TOP2A None

EXO1 None

HJURP G0/1 arrest

FAM83D None

PSRC1 None
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