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Statistical File Matching of

Flow Cytometry Data
Gyemin Lee, William Finn, and Clayton Scott

Abstract

Flow cytometry is a technology that rapidly measures antigen-based markers associated to cells in a

cell population. Although analysis of flow cytometry data has traditionally considered one or two markers

at a time, there has been increasing interest in multidimensional analysis. However, flow cytometers are

limited in the number of markers they can jointly observe, which is typically a fraction of the number

of markers of interest. For this reason, practitioners often perform multiple assays based on different,

overlapping combinations of markers. In this paper, we address the challenge of imputing the high

dimensional jointly distributed values of marker attributes based on overlapping marginal observations.

We show that simple nearest neighbor based imputation can lead to spurious subpopulations in the

imputed data, and introduce an alternative approach based on nearest neighbor imputation restricted to

a cell’s subpopulation. This requires us to perform clustering with missing data, which we address with

a mixture model approach and novel EM algorithm. Since mixture model fitting may be ill-posed, we

also develop techniques to initialize the EM algorithm using domain knowledge. We demonstrate our

approach on real flow cytometry data.

Index Terms

statistical file matching, flow cytometry, mixture model, probabilistic PCA, EM algorithm, imputation,

incomplete data, clustering

I. INTRODUCTION

Flow cytometry is a technique for quantitative cell analysis [1]. It provides simultaneous measurements

of multiple characteristics of individual cells. Typically, a large number of cells are analyzed in a short
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period of time – up to thousands of cells per second. Since its development in the late 1960s, flow

cytometry has become an essential tool in various biological and medical laboratories. Major applications

of flow cytometry include hematological immunophenotyping and diagnosis of diseases such as acute

leukemias, chronic lymphoproliferative disorders, and malignant lymphomas [2].

Flow cytometry data has traditionally been analyzed by visual inspection of one-dimensional histograms

or two-dimensional scatter plots. Clinicians will visually inspect a sequence of scatter plots based on

different pairwise marker combinations, and perform gating, the manual selection of marker thresholds,

to eliminate certain subpopulations of cells. They identify various pathologies based on the shape of cell

subpopulations in these scatter plots. There has been recent work, reviewed below, on automatic cell

gating or classification of pathologies based on multidimensional analysis of flow cytometry data.

Despite the promise of multidimensional analysis, this direction is limited by the number of markers that

can be simultaneously measured, which is typically a fraction of the number of markers of interest. It is

therefore common in practice to perform multiple assays based on different, overlapping combinations of

markers. We may view these combinations as different marginals of the joint distribution of all observed

markers. However, even when analysis is based on visual inspection of scatter plots, problems arise

when the desired marker pair was not jointly measured. This situation arises frequently in the analysis

of historical data.

To address these issues and to facilitate higher dimensional analysis, we present a statistical method for

file matching, which imputes higher dimensional flow cytometry data from multiple lower dimensional

data files. While [3] proposed a simple approach based on Nearest Neighbor (NN) imputation, this method

is prone to induce spurious clusters, as we demonstrate below. Our method can improve the file matching

of flow cytometry and is less likely to generate false clusters.

In the following, we explain the principles of flow cytometry and introduce the file matching problem

in the context of flow cytometry data. We then present an approach to file matching which imputes a

cell’s missing marker values with the values of the nearest neighbor among cells of the same type. To

implement this approach we develop a method for clustering with missing data. We model flow cytometry

data with a latent variable Gaussian mixture model, where each Gaussian corresponds to a cell type, and

develop an expectation-maximization (EM) algorithm to fit the model. Since a large majority of all

values are unobserved, most covariances cannot be estimated from the data. However, domain experts

possess considerable knowledge about the characteristics of different cell types, and we incorporate

this knowledge into the initialization of the EM algorithm. We compare our method with simple nearest

neighbor imputation on real flow cytometry data, and show that our method offers improved performance.

October 29, 2018 DRAFT



3

Fig. 1. A flow cytometer system. As a stream of cells passes through a laser beam, the photo-detectors detect forward

angle light scatter, side angle light scatter, and light emissions from fluorochromes. Then the digitized signals are analyzed in

a computer.

II. BACKGROUND AND MOTIVATION

In this section, we explain the principles of flow cytometry. We also define the statistical file matching

problem in the context of flow cytometry data, and motivate the need for an improved solution.

A. Flow Cytometry

In flow cytometry analysis, a cell suspension is first prepared from peripheral blood, bone marrow, or

lymph node. The suspension of cells is then mixed with a solution of fluorochrome-labeled antibodies.

Typically, each antibody is labeled with a different fluorochrome. As the stream of suspended cells

passes through a focused laser beam, they either scatter or absorb the light. If the labeled antibodies are

attached to proteins of a cell, the associated fluorescent markers absorb the laser and emit light with

the corresponding wavelength (color). Then a set of photo-detectors in the line of the light beam and

perpendicular to the light capture the scattered and emitted light. The signals from the detectors are

digitized and stored in a computer system. Forward scatter (FS) and side scatter (SS) signals as well as

various fluorescence signals are collected for each cell (see Fig. 1).

In a flow cytometer that is capable of measuring d attributes, called markers, the measurements of

each cell can be represented with a d-dimensional vector x = (x(1), x(2), · · · , x(d)) where x(1) is FS,

x(2) is SS, and x(3), · · · , x(d) are the fluorescent markers. Thus, the accumulation of N cells forms a

N × d matrix.

October 29, 2018 DRAFT



4

The detected signals provide information about the physical and chemical properties of each cell

analyzed. FS is related to the relative size of the cell and SS is related to its internal granularity or

complexity. The fluorescence signals reflect the abundance of expressed antigens on the cell surface.

These various attributes are used for identification and quantification of cell populations. FS and SS are

always measured, while the marker combination is a part of the experimental design.

Flow cytometry data is usually analyzed using a sequence of one dimensional histograms and two or

three dimensional scatter plots by choosing a subset of one, two or three markers. The analysis typically

involves manually selecting and excluding cell subpopulations, called gating, by thresholding and drawing

boundaries on the scatter plots. Clinicians routinely diagnose by visualizing the scatter plots.

Recently, some attempts have been made to analyze directly in high dimensional spaces by mathemat-

ically modeling flow cytometry data. In [4], [5], a mixture of Gaussian distributions is used to model cell

populations, while a mixture of t-distributions with a Box-Cox transformation is used in [6]. A mixture

of skew t-distributions is studied in [7]. The knowledge of experts is sometimes incorporated as prior

information [8]. Instead of using finite mixture models, some recent approaches proposed information

preserving dimension reduction to analyze high dimensional flow cytometry data [9], [10]. However,

standard techniques for multi-dimensional flow cytometry analysis are not yet established.

B. Statistical File Matching

The number of dimensions in flow cytometry is limited by the number of light sources and detectable

fluorochrome markers, and available reagent combinations. Even though recent innovations have enabled

measuring near 20 cellular attributes, there are typically dozens or hundreds of markers of interest in

a given flow cytometry experiment. Furthermore, instruments deployed in clinical laboratories still only

measure 5-7 markers simultaneously [11].

Being unable to simultaneously measure all markers of interest, it is common to divide a sample into

several “tubes” and stain each tube separately with a different set of markers [12]. In practice, partially

overlapping marker combinations are used to help identify cell populations (see Fig. 2). The marker

combinations are designed based on which markers need to be observed together. However, it is not

always possible to anticipate all marker combinations of potential interest.

In the sequel, we present a method that generates flow cytometry data in which all the markers of

interest are available for the union of cells. Thus, we obtain a single higher dimensional dataset beyond

the current limits of instrumentation. Then pairs of markers that are not measured together can still be

visualized through scatter plots, and methods of multidimensional analysis may be applied to the full

October 29, 2018 DRAFT



5

Fig. 2. Flow cytometry analysis on a large number of antibody reagents within a limited capacity of a flow cytometer. A

sample from a patient is separated into multiple tubes with which different combinations of fluorochrome labeled antibodies are

stained. Each output file contains at least two variables, FS and SS, in common as well as some variables that are specific to

the file.

common specific1 specific2

c s1 s2

file 1 (N1)

X1

file 2 (N2)

X2

Fig. 3. Data structure of two incomplete data files. Two files have some overlapping variables c, and some variables s1 and

s2 that are never jointly observed. File matching combines the two files by completing the missing blocks of variables.

dataset.

This technique, called file matching, merges two nor more datasets that have some commonly observed

variables as well as some variables unique to each dataset. An exemplary two file case is drawn in Fig.

3. Each unit (cell) xn is a vector in Rd and belongs to one of the data files (tubes) X1 or X2, where each

file has N1 and N2 units, respectively. While variables c are observed in all the units, units in X1 have

variables s2 missing and units in X2 have variables s1 missing, where s1, s2, and c represent specific and

common variable sets. If the observed and missing components of a unit xn are denoted by on and mn,

then on = c ∪ s1 and mn = s2 for xn ∈ X1, and on = c ∪ s2 and mn = s1 for xn ∈ X2.

The file matching problem is a missing data problem where blocks of missing data need to be imputed.

Among imputation methods, algorithms using conditional mean or regression are most common. As shown
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in Fig. 4, however, these imputation algorithms tend to shrink the variance of data. Thus, these approaches

are inappropriate in flow cytometry where the shapes of cell populations are important in analysis, and

the preservation of variability after file matching is highly desired. More discussions on missing data

analysis and file matching can be found in [13] and [14].

Fig. 4. Examples of imputation methods: NN, conditional mean, and regression. The NN method relatively well preserves the

distribution of imputed data, while other imputation methods such as conditional mean and regression significantly reduce the

variability of data.

[3] proposed to use Nearest Neighbor (NN) imputation to match flow cytometry data files. In their

approach, missing variables of one unit, called the recipient, are imputed with observed variables from

a unit in the other file, called the donor, that is most similar. If xi is a unit in X1, the missing variables

are set as follows

xs2
i = x∗ s2j where x∗j = argmin

xj∈X2

‖xc
i − xc

j‖2.

Note that the similarity is based on the distance in the projected space of jointly observed variables. This

algorithm is advantageous over other imputation algorithms, based on conditional mean or regression,

as displayed in Fig. 4. It generally preserves the distribution of cells, while the other methods cause the

variance structure to shrink toward zero.
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Fig. 5. Comparison of results for two imputations methods to the ground truth cell distribution. Figures show scatter plots

on pairs of markers that are not jointly observed. The middle row and the bottom row shows the imputation results from the

NN and Cluster-based NN, respectively. The results from the NN method show spurious clusters conspicuously in the right two

panels. The false clusters are indicated by dotted circles in CD3 vs. CD8 and CD3 vs. CD4 scatter plots. On the other hand,

the results from our proposed approach better resemble the true distribution on the top row.

However, the NN method sometimes introduces spurious clusters into the imputed results and fails

to replicate the true distribution of cell populations. Fig. 5 shows an example of false clusters from the

NN imputation algorithm (for detailed experimental setup, see Section V). We present a toy example to

explain why the NN imputation can fail, and to motivate our approach.
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C. Motivating Toy Example

Fig. 6 shows a toy example dataset in R3. In the two data files, two of three features of these points

are observed: c and s1 in file 1, and c and s2 in file 2. Each data point belongs to one of two clusters,

but its label is unavailable.

When imputing feature s1 of units in file 2, the NN algorithm produces four clusters whereas there

should be two, as shown in Fig. 6 (d). This is because the NN method uses only one feature, and fails

to leverage the information about the joint distribution of variables that are not observed together. On

the other hand, if we can infer the cluster membership of data points, the NN imputation can be applied

within the same cluster. Hence, we search a donor from the subgroup (1) for the data points in (3), and

likewise we search a donor from (2) for the points in (4) in the example. Then the file matching result

greatly improves and better replicates the true distribution as in Fig. 6 (e).

Fig. 6. Toy example of file matching. Two files (b) and (c) provide partial information of data points (a) in R3. The variable

c is observed in both files while s1 and s2 are specific to each file. The NN method creates false dot populations in the s1 vs.

s2 scatter plot in (d). On the other hand, the NN applied within the same cluster successfully replicated the true distribution. If

the cluster are incorrectly paired, however, the Cluster-NN approach fails, as in (f).

In this example, as in real flow cytometry data, there is no way to infer cluster membership from the
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Input: two files X1 and X2 to be matched

1. Cluster the units in X1 and X2.

2. Perform NN imputation within the same cluster.

Output: statistically matched complete files X̂1 and X̂2

Fig. 7. The description of the Cluster-based NN algorithm for two files. For two input flow cytometry data files X1 and X2,

specific variables are imputed using NN method after clustering each cell into one of K clusters.

data alone, and incorrect labeling can lead to poor results (Fig. 6 (f)). Fortunately, in flow cytometry we

can incorporate prior knowledge to achieve an accurate clustering.

III. CLUSTER-BASED IMPUTATION OF MISSING VARIABLES

We first focus on the case of matching two files. The case of more than two files is discussed in Section

VI. For the present section, we assume that X1 and X2 have both been partitioned into K clusters. Let

X k
1 and X k

2 denote the cells in X1 and X2 from the kth cluster, respectively.

Suppose that the data is configured as in Fig. 3. In order to impute the missing variables of a unit in

file 1, we locate a donor among the data points in file 2 that have the same cluster label as the recipient.

When imputing incomplete units in file 2, the roles change. The similarity between two units is evaluated

on the projected space of jointly observed variables, while constraining both units to belong to the same

cluster. Then we impute the missing variables of the recipient by patching the corresponding variables

from the donor. More specifically, for xi ∈ X k
1 , we impute the missing variables by

xmi

i = x∗mi

j where x∗j = argmin
xj∈X k

2

‖xc
i − xc

j‖2

The proposed Cluster-based NN imputation algorithm is summarized in Fig. 7.

In social applications such as survey completion, file matching is often performed on the same class

such as gender, age, or county of residence. However, this information that is used to label each unit is

available in data, and the inference as in our algorithm is not necessary [14].

IV. CLUSTERING WITH MISSING DATA

To implement the above approach, we view X1 and X2 as a single data set and cluster its elements. We

propose a method for clustering with missing data based on a finite Gaussian mixture model. Mixture

models are common models for flow cytometry where each component corresponds to a cell type.
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While non-Gaussian models might provide a better fit, there is a trade-off between estimation error

and approximation error. More complicated models tend to be more challenging to fit. Furthermore, even

with an imperfect data model, we may still achieve an improved file matching.

Thus, clustering amounts to fitting the parameters of the mixture model. In general, fitting such a model

is ill-posed. For example, in the toy example, there is no way to know the correct cluster inference based

solely on the data. However, we can leverage domain knowledge to select the number of components

and initialize model parameters.

A. Mixture of PPCA

In a mixture model framework, the probability distribution of a d-dimensional data vector x takes the

form

p(x) =

K∑
k=1

πkpk(x)

where K is the number of components in the mixture and πk is a mixing weight.

In flow cytometry, mixture models are common models of cell subpopulations. Mixture models with

Gaussian components are common [4], [5], [8], although distributions with more parameters, such as

t-distributions or skew t-distributions, have been proposed [6], [7]. However, these models require

estimating a large number of parameters, and it becomes difficult to obtain reliable estimates when

the number of components or the dimensions of the data increase. In this application, the model needs

not be perfect to get improved imputation. We adopt a probabilistic principal component analysis (PPCA)

mixture model as a way to model cell populations with fewer parameters. Without PPCA, our experience

has revealed that even a Gaussian mixture model may have too many parameters to be accurately fit.

PPCA was proposed by [15] as a probabilistic interpretation of PCA. While conventional PCA lacks

a probabilistic formulation, PPCA specifies a generative model. It is a latent variable model, in which a

data vector is linearly related to a latent variable. The latent variable space is generally lower dimensional

than the ambient variable space, so the latent variable provides an economical representation of the data.

The PPCA model is built by specifying a conditional distribution of a data vector x in Rd, given a

latent variable t in Rq:

p(x|t) = N (Wt+ µ, σ2I)

where µ is a d-dimensional vector and W is a d× q linear transform matrix. The latent variable is also
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assumed to be Gaussian with p(t) = N (0, I). Then the marginal distribution of x is also Gaussian:

p(x) = N (µ,C)

with a covariance matrix C = WWT + σ2I. The posterior distribution can be shown to be Gaussian as

well:

p(t|x) = N (M−1WT (x− µ), σ2M−1)

where M = WTW + σ2I is a q × q matrix.

The PPCA mixture model is a combination of multiple PPCAs. Each PPCA component explains local

data structure or cell subpopulation. The model is defined by the collection of each component parameters

θk = {πk,µk,Wk, σ
2
k}. From a flow cytometry dataset X = {x1, · · · ,xN}, an EM algorithm can learn

the mixture model by iteratively computing these parameters. More details on the PPCA mixture and the

EM algorithm are explained in [16]

The mixture of PPCA offers a way of controlling the number of parameters to be estimated without

completely sacrificing the flexibility of model. In mixture model framework, a more common choice is

the standard Gaussian mixture model. In the Gaussian mixture model, however, each Gaussian component

requires d(d + 1)/2 covariance parameters to be estimated if a full covariance matrix is used. Thus, as

the data dimension increases, more data points are needed for reliable estimation of those parameters.

The number of parameters can be reduced by constraining the covariance matrix to be isotropic or

diagonal. These are too restrictive, however, since an isotropic or diagonal covariance makes the Gaussian

component spherical or, respectively, elliptical aligned along the data axes; hence, the correlation structure

between variables cannot be captured. On the other hand, the PPCA mixture model lies between those

two extremes, and allows to control the number of parameters by specifying q, the dimension of the

latent variable.

B. Mixture of PPCA with Missing Data

Even though our file matching problem has a particular pattern of missing variables, we develop a

more general algorithm that allows for an arbitrary pattern of missing variables. Our development assumes

values are “missing at random,” meaning that whether a variable is missing or not, is independent of

its value [13]. Our algorithm may be viewed as an extension of the algorithm of [17] to PPCA, or the

algorithm of [16] to data with missing values.

Denoting the observed and missing components by on and mn, each data point can be divided xn =

(xon
n ,x

mn
n ). In a missing data problem, a set of partial observations {xo1

1 , · · · ,x
oN
N } is given. Similar
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to EM algorithms for Gaussian mixture models, we introduce indicator variables zn. One and only one

entry of zn is nonzero, and znk = 1 indicates that the kth component is responsible for generating xn.

We also include the missing components xmn
n and the set of latent variables tnk for each component to

form the complete data (xo
n,x

m
n , tnk, zn) for n = 1, · · · , N and k = 1, · · · ,K.

We derive an iterative EM algorithm for the PPCA mixture model with missing data. The key difference

from the EM algorithm for completely observed data is that the conditional expectation is taken with

respect to xo as opposed to x in the expectation steps.

To develop an EM algorithm, we employ and extend the two step procedure as described in [16]. In

the first stage of the algorithm, the component weights πk and the component center µk are updated:

π̂k =
1

N

∑
n

〈znk〉, (1)

µ̂k =

∑
n〈znk〉

[ xon
n

〈xmn
n 〉

]
∑

n〈znk〉
(2)

where 〈znk〉 = P (znk = 1|xon
n ) is the responsibility of mixture component k for generating the unit

xn, and 〈xmn
n 〉 = E[xmn

n |znk = 1,xon
n ] is the conditional expectation. Note that we are not assuming

the vectors in the bracket are stackable. This notation can be replaced by the true component ordering

without difficulty.

In the second stage, we update Wk and σ2k:

Ŵk =SkWk(σ
2
kI+M−1k WT

k SkWk)
−1, (3)

σ̂2k =
1

d
tr
(
Sk − SkWkM

−1
k ŴT

k

)
(4)

from local covariance matrix Sk:

Sk =
1

Nπ̂k

∑
n

〈znk〉〈(xn − µ̂k)(xn − µ̂k)
T 〉.

These update rules boil down to the update rules for completely observed data when there are no missing

variables. We derive the EM algorithm in detail in Appendix A.

After model parameters are estimated, the observations are divided into groups according to their

posterior distribution:

argmax
k=1,···K

p (znk = 1|xon
n ),

so each unit (cell) is classified into one of K cell populations. Note that this posterior probability is

computed in the E-step.
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Cell Type CD markers

granulocyte CD45+, CD15+

monocyte CD45+, CD14+

lymphocyte

helper T cell CD45+, CD3+

cytotoxic T cell CD45+, CD3+, CD8+

B cell CD45+, CD19+ or CD45+, CD20+

NK cell CD16+, CD56+, CD3-

Fig. 8. Types of white blood cells. Each cell type is characterized by a set of expressed CD markers. The cluster of differentiation

(CD) markers are commonly used to identify cell surface molecules on white blood cells. The ‘+/−’ signs indicate whether a

certain cell type has corresponding antigens on the cell surface.

C. Domain Knowledge and Initialization of EM algorithm

In file matching of flow cytometry data, domain knowledge is critical. First, as explained above, the

incompletely observed data is insufficient to determine the correct cluster labeling. Second, the initial

conditions of the EM algorithm affect its performance and convergence rate. Domain knowledge allows

us to choose the number of components, and to initialize the algorithm so that it converges to the best

local maximum.

In flow cytometry, from the design of fluorochrome marker combinations and the knowledge about

the blood sample composition, we can anticipate certain properties of cell subpopulations. For example,

Fig. 8 summarizes white blood cell types and their characteristic cluster of differentiation (CD) marker

expressions. That these are six cell types suggests choosing K = 6 when analyzing white blood cells.

The CD markers indicated are commonly used in flow cytometry to identify cell surface molecules on

leukocytes [18]. However, this information is qualitative, and needs to be quantified.

To achieve this, we use one dimensional histograms. In a histogram, two large peaks are generally

expected depending on the expression level of the corresponding CD marker. If a cell subpopulation

expresses a CD marker, denoted by ‘+’, then it forms a peak on the right side of the histogram. On the

other hand, if a cell population does not express the marker, denoted by ‘−’, then a peak can be found

on the left side of the histogram. We use the locations of the peaks to quantify the expression levels.

These quantified values can be combined with the CD marker expression levels of each cell type to

specify the initial cluster centers. Thus, each component of µk of a certain cell type is initialized by

either the positive quantity or the negative quantity from the histogram. In our implementation, these are

set manually based on visual inspection of histograms. Then we initialize the mixture model parameters

{πk,µk,Wk, σ
2
k} as described in Fig. 9.
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Input: X1, X2 data files ; K the number of components ; q the dimension of latent variable space ; µk

for initial component mean.

for k = 1 to K do

1. using distance ‖xon
n −µon

k ‖, find the set of data points X k whose nearest component mean is µk

2. initialize a covariance matrix Ck with random entries

3. replace submatrices of Ck with sample covariance of data points in X k

4. make Ck positive definite by enforcing the eigenvalues to be positive

5. set πk = |X k|
N1+N2

6. set Wk with the q principal eigenvectors of Ck

7. set σ2k with the average of remaining eigenvalues of Ck

end for

Output: {πk, µk, Wk, σ2k} for k = 1, · · · ,K

Fig. 9. Parameter initialization of an EM algorithm for missing data. Cell populations are partitioned into K groups based

on the distance to each component center. The component weight πk is initialized according to the size of each partition. From

the covariance matrix estimate bCk, parameters bWk and σ2
k are initialized by taking eigen-decomposition.

c s1 s2

c

s1

s2

Fig. 10. Structure of covariance matrix C. The sub-matrices Cs1,s2
k and Cs2,s1

k cannot be estimated from a sample covariance

matrix because these variables are never jointly observed.

An important issue in file matching arises from the covariance matrix. When data is completely

observed, a common way of initialization of a covariance matrix is using a sample covariance matrix. In

the case of file matching, however, it cannot be evaluated since some sets of variables are never jointly

observed (see Fig. 10). We chose to build a covariance matrix Ck from variable to variable with sample

covariances. For example, we can set Cc,s1
k with the sample covariance for variables c and s1 based on

cases for which both variables c and s1 are present. On the other hand, the submatrix Cs1,s2
k cannot

be built based on the observation. In our implementation, we set the submatrix Cs1,s2
k with arbitrary
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ID N1 N2 Ne

Patient1 10000 10000 5223

Patient2 7000 7000 4408

Patient3 3000 3000 3190

Fig. 11. Three flow cytometry datasets from three different patients. Each dataset is divided into two data files and an evaluation

set. N1 and N2 denote the size of two data files and Ne is the size of evaluation set.

FS SS CD56 CD16 CD3 CD8 CD4

file 1

file 2

Fig. 12. File structure used in the experiment. FS, SS, and CD56 are common in both files, and a pair of CD markers are

observed in only one of the files. The blank blocks correspond to the unobserved variables. The blocks in file 1 are matrices

with N1 rows, and the blocks in file 2 are matrices with N2 rows.

values. However, the resulting matrix may not be positive definite. Thus, Ck is made positive definite

by replacing negative eigenvalues with a small positive value. Once a covariance matrix Ck is obtained,

we can initialize Wk and σ2k by taking eigen-decomposition of Ck.

V. EXPERIMENTS AND RESULTS

We apply the proposed file matching technique to real flow cytometry datasets, and present experimental

results.

Three flow cytometry datasets are prepared from lymph node samples of three patients. These datasets

were provided by the Department of Pathology at the University of Michigan. The measurements are of

different sizes and have seven attributes: FS, SS, CD56, CD16, CD3, CD8, and CD4. Each dataset is

randomly permuted ten times and divided into two data files and a separate evaluation set. In Fig. 11, the

cell counts of the two files and the held-out set are denoted N1, N2, and Ne, respectively. Two attributes

from each file are made hidden to construct hypothetical files with missing data. Thus, CD16 and CD3

are available only in file 1, and CD8 and CD4 are available only in file 2, while FS, SS, and CD56 are

common. The pattern of the constructed data files is illustrated in Fig. 12 where the blocks of missing

variables are left blank.

For each white blood cell type, its expected marker expressions (CD markers), relative size (FS),

and relative granularity (SS) are presented in Fig. 13. Because it is from a lymph node sample, the

majority of cell population is lymphocytes, while the most common white blood cells in a human body
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Cell type FS SS CD56 CD16 CD3 CD8 CD4

granulocyte + + − + − − −

monocyte + − − + − − −

helper T cell − − − − + − +

cytotoxic T cell − − − − + + −

B lymphocyte − − − − − − −

Natural Killer cell − − + + − − −

Fig. 13. Cell types in the dataset and their corresponding marker expressions. ‘+’ or ‘-’ indicates whether a certain cell type

expresses the CD marker or not.
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Fig. 14. Histogram of each marker in the dataset. The peaks are hand-picked and are indicated in each panels.

are granulocytes. The ‘+/−’ signs indicate whether a certain cell type expresses the markers or not.

For example, helper T cells express both CD3 and CD4 but not others. This qualitative knowledge is

quantified with the help of single dimensional histograms as explained in Section IV-C. Two dominant

peaks are picked from each histogram and their corresponding measurement values are set to the positive

and negative expression levels. Fig. 14 and Fig. 15 summarize this histogram analysis.

Two incomplete data files are completed following the procedure as described in Fig. 7. A mixture

of PPCA is fitted with six components because six cell types are expected from this dataset. The latent

variable dimension of each PPCA component is fixed to two.
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Fig. 15. The positive and negative expression levels are summarized.

The synthesized data after file matching is displayed in Fig. 5. The figure shows scatter plots of specific

variables: CD16, CD3, CD4, and CD8. Note that these marker pairs are not jointly observed from the

two incomplete data files. The imputation results from the NN and the Cluster-based NN methods are

compared in the figure. For reference, scatter plots from the original complete dataset (ground truth)

are also presented. As can be seen, the results from the Cluster-based NN are far more similar to the

true distributions. On the other hand, the results from the NN method generates spurious clusters in the

CD3-CD8 and CD3-CD4 scatter plots. In Fig. 5, these false clusters are indicated.

A. Evaluation method

To quantitatively evaluate the previous results, we use Kullback-Leibler (KL) divergence. The KL

divergence between two distribution f(x) and g(x) is defined by

KL(g ‖ f) = Eg [log g − log f ] .

Let f denote a true distribution responsible for the observations, and g denote its estimate.

The KL divergence is not symmetric, so KL(f ‖ g) and KL(g ‖ f) have different meanings. For a

given distribution f , a distribution g minimizes KL(f ‖ g) when g takes nonzero values in the region

where f takes nonzero values; hence, it overestimates the support of f . On the other hand, KL(g ‖ f) is

minimized for g that is close to zero in the region where f is near zero. A distribution g that minimizes

KL(g ‖ f) tends to have smaller support. Therefore, KL(g ‖ f) is a better evaluation method for detecting

spurious clusters in an estimate.

Then the empirical estimate of the KL divergence is evaluated by

KL(g ‖ f) ≈ KL(ĝ ‖ f̂) ≈ 1

Ne

Ne∑
n=1

[
log ĝ (x̂n)− log f̂ (x̂n)

]
.

where the distributions f and g are replaced by their corresponding density estimates, and the expectation

is approximated by a finite sum over imputed results x̂n on the held-out validation set of size Ne.

We used kernel density estimation on the ground truth data and the imputed data for f̂ and ĝ,

respectively. The KL divergences are computed for ten random permutations, and their averages and
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ID NN (file 1) Cluster-NN (file 1) NN (file 2) Cluster-NN (file 2)

Patient1 2.90 ± 0.05 1.55 ± 0.05 2.66 ± 0.03 1.12 ± 0.04

Patient2 4.54 ± 0.07 1.22 ± 0.03 4.12 ± 0.08 0.92 ± 0.03

Patient3 4.46 ± 0.10 2.40 ± 0.11 4.18 ± 0.11 2.30 ± 0.07

Fig. 16. The KL divergences are computed for ten permutations of each flow cytometry dataset. The averages and standard

errors are reported in the table. For both the NN and Cluster-based NN algorithm, the file matching results are evaluated. The KL

divergences of Cluster-based NN are closer to zero than those of NN. Thus the results from Cluster-based NN better replicated

the true distribution.

standard errors are reported in Fig. 16. As can be seen, the KL divergences from Cluster-based NN are

substantially smaller than those from NN. Therefore, the Cluster-based NN yields a better replication of

true distribution.

VI. DISCUSSION

In this paper, we demonstrated the use of a cluster-based nearest neighbor imputation method for file

matching in flow cytometry data. We applied the proposed algorithm on real flow cytometry data to

generate a dataset of higher dimensions by merging two data files of lower dimensions. The resulting

matched file can be used for visualization and high-dimensional analysis of cellular attributes.

While the presented imputation method focused on the case of two files, it can be generalized to more

than two files. For each missing component of a recipient cell, we can find a donor cell among files that

have the component of interest. We envision two extensions of the clustering-based imputation method.

The first is training a PPCA mixture model on all the data files. This approach involves the entire data

points for model fitting. The second method considers a pair of files at a time. In this approach, we

first select a donor file in which the missing component of the recipient file is available. Then we apply

method of this paper to the pair of files. This approach involves smaller number of data points in training,

but mixture models of smaller dimensions need to be fitted multiple times. After training of a mixture

model and clustering of each cell, the similarity between cells can be computed. The Euclidean distance

on the projected space of commonly observed variables can be used to find the similarity under the

constraint that both units should have the same cluster label. The missing components are then imputed

from the donor.

Future research directions include finding ways of automatic prior information extraction. The con-

struction of covariance matrices from incomplete dataset in the initialization of the EM algorithm is also

an interesting problem. We expect that better covariance structure estimation will be helpful for better
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replication of non-symmetric and non-elliptic cell populations in the imputed results.

A limitation of this work is that it has only been validated on lymphocyte data, where, for certain

marker combinations, cell types tend to form relatively well-defined clusters. However, for other samples

and marker combinations, clusters may be more elongated or less well-defined due to cells being at

different stages of physiologic development. Future work may also consider more flexible models for

clustering such data, and associated inference algorithms.

APPENDIX

Suppose that we are given an incomplete observation set. We can divide each unit xn as xn =

 xon
n

xmn
n


by separating the observed components and the missing components. Note that we do not assume that

the observed variables are first, and the notation can be replaced by the actual ordering of components

without difficulty.

In the PPCA mixture model, the probability distribution of x is

p(x) =

K∑
k=1

πkp(x|k).

where K is the number of components in the mixture and πk is a mixing weight corresponding to the

component density p(x|k). We estimate the set of unknown parameters θ = {πk,µk,Wk, σ
2
k} using an

EM algorithm from the partial observations {xo1
1 , · · · ,x

oN
N }.

To develop an EM algorithm, we introduce indicator variables zn = (zn1, · · · , znK) for n = 1, · · · , N .

One and only one entry of zn is nonzero, and znk = 1 indicates that the kth component is responsible

for generating xn. We also include a set of the latent variables tnk for each component, and missing

variables xmn
n to form the complete data (xon

n ,x
mn
n , tnk, zn) for n = 1, · · · , N and k = 1, · · · ,K. Then

the corresponding complete data likelihood function has the form:

LC =
∑
n

∑
k

znk ln [πkp(xn, tnk)]

=
∑
n

∑
k

znk

[
lnπk −

d

2
lnσ2k −

1

2σ2k
tr
[
(xn − µk)(xn − µk)

T
]

+
1

σ2k
tr
[
(xn − µk)t

T
nkW

T
k

]
− 1

2σ2k
tr
[
WT

k Wktnkt
T
nk

] ]
where terms independent of the parameters are not included in the second equality. Instead of developing

an EM algorithm directly on this likelihood function LC , we extend the strategy in [16] and build a

two-stage EM algorithm, where each stage is a two-step process.
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In the first stage of the two stage EM algorithm, we update the component weight πk and the component

mean µk. We form a complete data log-likelihood function with the component indicator variables zn

and missing variables xm
n while ignoring the latent variables tnk. Then we have the following likelihood

function:

L1 =
N∑

n=1

K∑
k=1

znk ln[πkp(x
on
n ,x

mn
n |k)]

=
∑
n

∑
k

znk

[
lnπk −

1

2
ln |Ck| −

1

2
tr
[
C−1k (xn − µk)(xn − µk)

T
]]

where terms unrelated to the model parameters are omitted in the second line. We take the conditional

expectation with respect to p(zn,xmn
n |xon

n ). Since the conditional probability factorizes as

p(zn,x
mn
n |xon

n ) = p(zn|xon
n )p(xmn

n |zn,xon
n ),

the next conditional expectations follow

〈znk〉 =p(k|xon
n ) =

πkp(x
on
n |k)∑

k′ πk′p(x
on
n |k′)

,

〈znkxmn
n 〉 =〈znk〉〈xmn

n 〉,

〈xmn
n 〉 =µmn

k +Cmnon
k Conon−1

k (xon
n − µon

k ),

〈znkxmn
n xmn

T

n 〉 =〈znk〉〈xmn
n xmn

T

n 〉,

〈xmn
n xmn

T

n 〉 =Cmnmn

k −Cmnon
k Conon−1

k Conmn

k + 〈xmn
n 〉〈xmn

T

n 〉

where 〈·〉 denote the conditional expectation. Maximizing 〈L1〉 with respect to πk, using a Lagrange

multiplier, and with respect to µk give the parameter updates

π̂k =
1

N

∑
n

〈znk〉, (5)

µ̂k =

∑
n〈znk〉

[ xon
n

〈xmn
n 〉

]
∑

n〈znk〉
. (6)

In the second stage, we include the latent variable tnk as well to formulate the complete data log-

likelihood function. The new values of π̂k and µ̂k are used in this step to compute sufficient statistics.

Taking the conditional expectation on LC with respect to p(zn, tnk,xmn
n |xon

n ), we have

〈LC〉 =
∑
n

∑
k

〈znk〉
[
ln π̂k −

d

2
lnσ2k −

1

2σ2k
tr
[
〈(xn − µ̂k)(xn − µ̂k)

T 〉
]

+
1

σ2k
tr
[
〈(xn − µ̂k)t

T
nk〉WT

k

]
− 1

2σ2k
tr
[
WT

k Wk〈tnktTnk〉
] ]
.
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Since the the conditional probability factorizes

p(zn, tnk,x
mn
n |xon

n ) = p(zn|xon
n )p(xmn

n |zn,xon
n )p(tnk|zn,xon

n ,x
mn
n ),

we can evaluate the conditional expectations as follows :

〈(xn − µ̂k)(xn − µ̂k)
T 〉 =

 xon
n

〈xmn
n 〉

− µ̂k

 xon
n

〈xmn
n 〉

− µ̂k

T

+

 0 0

0 Qnk

 ,
Qnk =Cmnmn

k −Cmnon
k Conon−1

k Conmn

k ,

〈tnk〉 =M−1k WT
k (xn − µ̂k),

〈(xn − µ̂k)t
T
nk〉 =〈(xn − µ̂k)(xn − µ̂k)

T 〉WkM
−1
k ,

〈tnktTnk〉 =σ2kM−1k +M−1k WT
k 〈(xn − µ̂k)(xn − µ̂k)

T 〉WkM
−1
k .

Remember that the q × q matrix Mk = WT
k Wk + σ2kI. Then the maximization of 〈LC〉 with respect to

Wk and σ2k leads to the parameter updates,

Ŵk =

[∑
n

〈znk〉〈(xn − µ̂k)t
T
nk〉

][∑
n

〈znk〉〈tnktTnk〉

]−1
, (7)

σ̂2k =
1

d
∑

n〈znk〉

[∑
n

〈znk〉tr
[
〈(xn − µ̂k)(xn − µ̂k)

T 〉
]

(8)

− 2
∑
n

〈znk〉tr
[
〈(xn − µ̂k)t

T
nk〉WT

k

]
+
∑
n

〈znk〉tr
[
WT

k Wk〈tnktTnk〉
] ]
.

Substituting the conditional expectations simplifies the M-step equations

Ŵk =SkWk(σ
2
kI+M−1k WT

k SkWk)
−1, (9)

σ̂2k =
1

d
tr
(
Sk − SkWkM

−1
k ŴT

k

)
(10)

where

Sk =
1

Nπ̂k

∑
n

〈znk〉〈(xn − µ̂k)(xn − µ̂k)
T 〉.

Each iteration of the EM algorithm updates the set of old parameters {πk,µk,Wk, σ
2
k} with the set of

new parameters {π̂k, µ̂k,Ŵk, σ̂
2
k} as in (5), (6), (9), and (10). The algorithm terminates when the value

of the log-likelihood function no longer changes.
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