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Abstract
We introduce a novel method for annotating protein function that combines Naïve Bayes and
association rules, and takes advantage of the underlying topology in protein interaction networks
and the structure of graphs in the Gene Ontology. We apply our method to proteins from the
Human Protein Reference Database (HPRD) and show that, in comparison with other approaches,
it predicts protein functions with significantly higher recall with no loss of precision. Specifically,
it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for
χ2–Statistics, respectively.
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1. Introduction
Understanding protein function is one of the most challenging problems in biology. While
many genome sequences have been generated, a large fraction of the newly discovered
genes lack functional characterization. This is particularly true for higher eukaryotes. While
many experimental approaches, including both individual protein or gene-specific efforts
and large scale, whole-genome projects, are used successfully, these are time consuming and
expensive. Large scale, computational methods to predict protein function, therefore, can
potentially play important roles.

Early computational methods inferred functions of novel proteins from their amino acid
sequence similarity to proteins of known function [1] or from observations of pairs of
interacting proteins that had orthologs in another organism fused into a single protein chain
[2]. Correlated evolution, correlated RNA expression patterns, plus patterns of domain
fusion, have also been used to predict similarities in protein functions [3,4]. Several other
approaches have annotated proteins based on phylogenetic profiles of orthologous proteins
[5–9]. Bayesian reasoning was used to combine large-scale yeast two-hybrid (Y2H) screens
and multiple microarray analyses [10] and Support Vector Machines were used to combine
protein sequence and structure data [11] to produce functional predictions. Other methods
related features extracted from protein 3D structures to function [12,13]. Recently, a
consensus method, GOPred [14] predicted protein function by combining three different
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classifiers, namely, BLAST k-nearest neighbor, Subsequence Profile Map and Peptide
statistics combined with support vector machine. While each of these approaches has had
some success, generally they produce high false positive rates because their underlying
principles/assumptions are valid for only a small number of proteins [15,19]. In addition,
many methods were appropriate largely for prokaryotic sequences [15].

Protein-protein interaction (PPI) data have proven valuable for inferring protein function
from functions of interaction partners. Facilitating this work, whole genome interaction data
have been and/or are being generated for E. coli, yeast, worm, fly and human [16–24]. The
curated databases consolidate these datasets [25–29] that have been used by several
methods. The Majority method annotated yeast proteins based on the most frequent
functional properties of nearest neighbors [19]. However, because the whole network was
not considered, a function that occurred at a very high frequency was not annotated when it
did not occur in the nearest neighbor set. In an approach that extended the Majority method,
functions were annotated by exploiting indirect neighbors and using a topological weight
[30], and χ2–statistics were used to look at all proteins within a particular radius, although it
did not consider any aspect of the underlying topology of the PPI network [31].
FunctionalFlow considered each protein as a source of functional flow for its associated
function, which spread through the neighborhoods of the source [35]. Proteins receiving the
highest amount of flow of a function were assigned that function. This algorithm did not
take into account the indirect flow of functions to other proteins after labeling them. Markov
random fields (MRF) and belief propagation in PPI networks were combined to assign
protein functions based on a probabilistic analysis of graph neighborhoods [32–34]. This
assumed that the probability distribution for the annotation of any node was conditionally
independent of all other nodes, given its neighbors. These methods were sensitive to the
neighborhood size and the parameters of the prior distribution. The MRF methods were later
extended by combining PPI data, with gene expression data, protein motif information,
mutant phenotype data, and protein localization data to specify which proteins might be
active in a given biological process [36,37]. Other global approaches integrated PPI network
with more heterogeneous data sources (such as large-scale two-hybrid screens and multiple
microarray analyses) [10,38]. Our algorithm ClusFCM [39] assigned biological homology
scores to interacting proteins and performed agglomerative clustering on the weighted
network to cluster the proteins by known functions and cellular location; functions then were
assigned to proteins by a Fuzzy Cognitive Map. PRODISTIN formulated a distance function
(the Czekanowski-Dice distance) that uses information on shared interactome to mirror a
functional distance between proteins [15]. Other approaches predicted protein functions via
the patterns found among neighbors of proteins within a network [40,41]. Recently, a
network-based method combined the likelihood scores of local classifiers with a relaxation
labeling technique [42]. Several approaches applied clustering algorithms to PPI networks to
predict functional modules, protein complexes and protein functions, however, the
performance of these algorithms differs substantially when run on the same network which
leads to uncertainties regarding the reliability of their results [43].

Here, we extend our previous work [44] by exploring the hierarchical structure of the Gene
Ontology database. For each of protein, a predicted function will be considered as a true
positive if the function is a parent of any function in the annotated set of the protein. Thus,
this work is a less conservative approach than our previous work. We use Naïve Bayes
combined with association rules and take into account the underlying topology of a PPI
network. Predicted functions are analyzed by association rules to discover relationships
among the assigned functions, i.e., when one set of functions occurs in a protein then the
protein may be annotated with an additional set of other specific functions at some
confidence level. We test our method on human protein data and compare its performance
with the Majority [19] and χ2 statistics [31] methods.

Nguyen et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Materials
Gene Ontology (GO) database

The Gene Ontology (GO) [45] was established to provide a common language to describe
aspects of the biology of a gene product. The use of a consistent vocabulary allows genes
from different species to be compared based on their GO annotations. GO terms are
composed of the three structured controlled vocabularies (ontologies): the molecular
function of gene products, their associated biological processes, and their physical location
as cellular components. Each ontology is constructed as a directed acyclic graph through a
parent-child “is-a” relationship (see Figure 1). We used the GO database (version 1.1.940
released 1/2010).

Human interaction dataset
The human interaction data were retrieved from HPRD [29] (release 7/2009). The entire
dataset contains 38,788 direct molecular interactions from three types of experiments (in
vivo, in vitro, and in Y2H). There are 9,630 distinct proteins annotated with 433 GO
functions in the three categories. Because some estimates suggest that more than half of all
current Y2H data are spurious [46,47], we first excluded interactions supported only by the
Y2H experiments, leaving 29,557 interactions from in vivo and in vitro experiments, and
422 GO functions annotating the 7,953 unique proteins. A more recent study showed that
Y2H data for human proteins were actually more accurate than literature-curated
interactions supported by a single publication. Therefore, we also separately analyzed the
complete HPRD PPI dataset.

Note that we use the “is-a” relationships to eliminate all parent GO terms annotated for a
protein, i.e. suppose there are two GO terms A and B annotated for a protein, and if A “is-a”
B, then B is removed from the annotated GO terms of the protein.

3. Methods
3.1 Notation

• G=(V,E): an undirected graph to define the PPI network, where V is a set of
proteins and E is a set of edges connecting proteins u and v if the corresponding
proteins interact physically;

• K: the total number proteins in the PPI network

• F: the whole GO function collection set and |F|: the cardinality of the set F

• fi: a function in the set F (i=1‥|F|)

• O(fi) is the parent ontology set of fi, that is ∀g∈O, fi “is-a” g

• Cu: the cluster coefficient of protein u

• Nu: the neighbor set of protein u (proteins interacting directly with protein u)

• : the number of proteins annotated with function fi in Nu and : the number of

proteins un-annotated with function fi in Nu where .

3.2 Posing the Problem: From Annotation to Classification
For a function of interest fi, we want to annotate the function fi to the proteins in a PPI
network. We pose the functional annotation problem as a classification problem. The
training data are in the form of observations d ∈ Rk (k dimensions) and their corresponding
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class information. For each protein u in the network, a function of interest fi is considered as
a class label 1 if the protein u is annotated with fi, and otherwise as 0. The features to deduce
class information are selected as follows. Exploiting the fact that proteins of known
functions tend to cluster together [19], the first feature we take into account, A1, is the
number of proteins annotated with the function fi in the neighborhood set of protein u (i.e.

). The second feature (A2) is the number of proteins not annotated with the function fi
in the neighborhood set of the protein u (i.e. ). Several studies indicate that other
features can be useful to predict functions and drug targets for a protein, such as the number
of functions annotated in proteins in the neighborhood set at level 2 of the protein [31], the
connectivity (the total number of incoming and outgoing arcs of a protein, which is equal to

), the betweenness (the number of times a node appears in the shortest path between
two other nodes) and the clustering coefficient Cu (the ratio of the actual number of direct
connections between the neighbors of protein u to the maximum possible number of such
direct arcs between its neighbors) [48]. To select the best features for a robust learning
method, we use a feature selection method. First, we form a sub set, S, containing two

features: . Second, we perform a heuristic search by iteratively adding
one feature at a time to the set S (without using class information) to form a new subset, S’.
Next, we classify the HPRD data with the selected S’ features by the Radial Basis Function,
Support Vector Machine, Logistic Regression and Naïve Bayes. The feature to be added to
S’ is the feature that achieves the maximum average value of the harmonic mean of the four
classification methods. The heuristic search terminates when the average of the harmonic
mean of the four methods does not increase. At the end of this process we came up with

three selected features, namely,  and A3=Cu. We use Weka [49] to
implement the four classifiers with default parameters. Performance in terms of recall,
precision, and harmonic mean of the four classifiers on the HPRD data using the three
selected features using 10-fold cross validation is shown in Table 1. Because Naïve Bayes
performs the best in terms of the harmonic mean, we use it in our predictive modeling.

3.3 Predictive modeling
Phase I: Naïve Bayes—If d=<A1, A2, A3> is an observation for a protein u, we decide a
class membership for the observation d (corresponding to a function of interest fi) by
assigning d to the class with the maximal probability computed as follows:

(1)

Note that P(d | fi) can be ignored because it is the same for all classes:

(2)

The likelihood P(d | c, fi) is the probability of obtaining the observation d for a protein u in
class c and is calculated as:

(3)

Thus equation (2) becomes:
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(4)

Because the factorials in equation (4) are constant, we can rewrite the maximum a posteriori
class c as follows:

(5)

Two key issues arise here. First, the problem of zero counts can occur when given class and
feature values never appear together in the training data. This can be problematic because
the resulting zero probabilities will eliminate the information from all other probabilities.
We use the Laplace correction to avoid this [50]. Second, in equation (5), the conditional
probabilities are multiplied and this can result in a floating point underflow. Therefore, it is
better to perform the computations using logarithms of the probabilities. Equation (5) then
becomes:

(6)

The parameters of the model, in our case, P̂(A1 | c, fi), P̂ (A2 | c, fi), P̂ (A3 | c, fi) and P̂(c | fi)
can be estimated as follows:

(7)

(8)

(9)

(10)

where lc1=1 and lc2=2 are the Laplace corrections and the attributes A2 and A3 can be
similarly estimated.

Phase II: Association Rules—Association rules are statements of the form {fX} =>
{fY}, meaning that if we find all of {fX} in a protein, we have a good chance of finding {fY}
with some user-specified confidence (derived as an estimate of the probability P({fY} |
{fX})) and support (the fraction of proteins that contain both functions {fX} (in the
antecedent) and {fY} (in the consequent) of the rule in the entire network). With 0.1%
support and 75% confidence thresholds, we found 900 association rules in the HPRD, and
1,154 rules in the HPRD without Y2H. For example, the rule GO:0004894 → GO:0006955
was found with 100% confidence. Next, we derive new functions from the predicted
functions in Phase I by using the mined rules and the following axioms [52]:
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1. if X ⊇ Y then X → Y,

2. if X → Y then XZ → YZ for any Z, and

3. if X → Y and Y → Z then X → Z.

Below we briefly describe the Majority and χ2 statistics methods used in comparisons.

Majority: For each protein u in a PPI network, we count the number of times each function
fi ∈ F occurs in neighbors of the protein u. The functions with the highest frequencies are
assigned to the query protein u.

χ2 statistics: For each function of interest fi we derive the fraction πfi (number of proteins
annotated with function fi / K). Then, we calculate efi as the expected number for a query
protein u annotated with fi: efi = Nu πfi. The query protein u is annotated with the function
with the highest χ2 value among the functions of all proteins in its neighbors, where

.

The assessment of the proposed method, Majority and χ2 statistics, which takes into account
the many-to-many relationships of GO terms, is performed as follows. For a protein, a
predicted function will be i) a true positive if it exists in the annotated functions or the set
O(annotated functions), and ii) a false positive if it does not exists in the annotated set. A
function existing in the annotated set but not existing in the predicted set will be considered
as a false negative while functions in the entire GO set not existing in both annotated and
predicted sets will be true negatives.

4. Results and Discussions
We implement our method in Java as a combination of Naïve Bayes and the association rule
algorithm. In addition, we implement the Majority and χ2 statistics methods and test all on
the HPRD data (with and without interactions identified by Y2H). To compare the
performance of our method we use implicit thresholds, τ. We normalize the posterior
probability of a query protein u annotated with the function fi: P(c=1| d, fi) and decide the
protein u to be annotated with the function fi if the normalized P(c=1| d,fi) > τ, where τ
assumes a value between 0 and 1, in increments of 0.1.

Our method assumes that a newly annotated protein propagates its newly acquired
function(s) to its direct neighbors. Thus, the method is repeated in two iterations. In the
second iteration, to calculate the value  for a protein u, we count both the number of
proteins in its neighborhood annotated with fi and predicted with fi in the first iteration. In
the Majority and χ2 statistics methods top k functions having the highest scores (k ranges
from 0, 1, … 20) are selected and those functions are assigned to the query protein.

We use the leave-one-out method to evaluate the predictions. For each query protein u in a
PPI network we assume that it is not annotated. Then, we the methods described above to
predict protein functions for protein u. For each method, we choose the threshold which
yields the highest Matthews Correlation Coefficient (MCC) values. Figure 2 shows the
relationship between precision and recall using different thresholds for the normalized
probabilities of query proteins on the HPRD data sets. The threshold resulting in the highest
MCC measures for the HPRD and HPRD without Y2H data sets is 0.3. Because functional
annotations for proteins are incomplete at present, a protein may have a function that has not
yet been experimentally detected. Our goal is to decrease the number of annotated functions
that are not predicted and increase the number of predicted functions that are actually
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annotated. The fact that the values of recall are always higher than the values of precision in
all datasets increases confidence in our method.

The Figure 3 shows that, for any precision, the recall of our method outperforms Majority
and χ2 statistics. Performance measures of the three methods are shown in Table 2. Our
method performs equally well in both data sets. To gauge the robustness of the algorithms’
performance (the MCC value), we use the ANOVA one-way-test for statistical significance
from the leave one out cross validation. The ANOVA statistics shown in Table 3 confirm
that our method indeed performed better than the compared methods.

In addition to providing statistics tests to cement our method, it is worth noting that this
work takes into account the hierarchical structure of GO database for predicting functions of
a protein. If a new function of a protein exists in the set O(annotated functions) of the
protein, it will be a true positive. Thus we expect to sacrifice the cost of recall (sensitivity) to
increase precision. However, the performance (i.e. recall and precision) of our method was
not significantly changed in comparison with our previous work. The reason is probably that
in comparison with an average of 1.56 (1.77) shared functions per each interactome, there is
only an average of 0.19 (0.15) functions in the O(annotated functions) per each interactome
in the HPRD (HPRD without Y2H) dataset. Thus, those functions account for a minor
proportion of the performance measures.

Because protein functional annotation is incomplete, it is possible that novel predicted
functions that are at present false positives may eventually be discovered to be true
positives. We list in Table 4 some proteins from the HPRD without Y2H dataset that are
annotated with novel functions at very high probabilities (>.9). The full list of predicted
functions for human proteins and Java source code are shown at
http://chr21.egr.vcu.edu/bayesian

5. Conclusions
We have described a novel method for protein functional annotation that combines Naïve
Bayes and association rules. The method used global optimization that took into account the
following features of interaction networks: direct and indirect interactions, the underlying
topology (cluster coefficients), and functional protein clustering, as well as the many-to-
many relationships of the GO terms in the GO database. We have shown the robustness of
our method by testing it on two interaction data sets using the leave-one-out cross-
validation. The results showed that our method consistently outperformed the Majority and
the χ2–statistics methods in predicting protein functions. In addition, our method predicts
new relationships among the predicted functions that can provide new experimental
directions. Finally, in comparison with previous work, the results empirically showed that
our approach does not depend on the GO’s hierarchy.
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Fig. 1.
A hierarchical structure of GO terms: many-to-many parent-child relationships are allowed
in the ontologies. A gene may be annotated to any level of ontology, and to more than one
term within an ontology [45].
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Fig. 2.
Precision and recall results of our method on a) the HPRD network data and b) HPRD
without two-hybrid network data.
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Fig. 3.
Precision and recall of the three methods on a) the HPRD network data and b) HPRD
without two-hybrid network data.
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Table 1

Performance of the Radial Basic Function, Support Vector Machine, Logistic Regression and Naïve Bayes
methods on the HPRD data set using 10-fold cross validation.

Precision Recall Harmonic Mean

Radial Basis Function 0.63 0.11 0.19

Support Vector Machine 0.81 0.04 0.09

Logistic Regression 0.68 0.15 0.24

Naïve Bayes 0.53 0.27 0.36
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