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Abstract
In this paper we utilize methods of hyperdimensional computing to mediate the identification of
therapeutically useful connections for the purpose of literature-based discovery. Our approach,
named Predication-based Semantic Indexing, is utilized to identify empirically sequences of
relationships known as “discovery patterns”, such as “drug x INHIBITS substance y, substance y
CAUSES disease z” that link pharmaceutical substances to diseases they are known to treat. These
sequences are derived from semantic predications extracted from the biomedical literature by the
SemRep system, and subsequently utilized to direct the search for known treatments for a held out
set of diseases. Rapid and efficient inference is accomplished through the application of geometric
operators in PSI space, allowing for both the derivation of discovery patterns from a large set of
known TREATS relationships, and the application of these discovered patterns to constrain search
for therapeutic relationships at scale. Our results include the rediscovery of discovery patterns that
have been constructed manually by other authors in previous research, as well as the discovery of
a set of previously unrecognized patterns. The application of these patterns to direct search
through PSI space results in better recovery of therapeutic relationships than is accomplished with
models based on distributional statistics alone. These results demonstrate the utility of efficient
approximate inference in geometric space as a means to identify therapeutic relationships,
suggesting a role of these methods in drug repurposing efforts. In addition, the results provide
strong support for the utility of the discovery pattern approach pioneered by Hristovski and his
colleagues.
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1. Introduction
This paper addresses the role of representation in the repurposing of pre-existing biomedical
knowledge to identify novel therapeutic strategies. On account of the large number of
possibly useful undiscovered connections between drugs and the diseases they treat, some
work in literature-based discovery (LBD) has emphasized scalable methods based on the
distributional statistics of terms or concepts in the literature. An advantage of many of these
methods is the facility for efficient search to identify associations between terms and/or
concepts that do not co-occur with one another in the literature, based on similarity between
their vector representations, which are derived from their distributional statistics. However,
as economic constraints limit the number of potential therapies that can be advanced for
further testing, more stringent constraints based on the nature of the relationships between
concepts are desirable. Recent work in LBD has introduced the notion of a discovery pattern
[1–4], a pathway of logical connections between concepts that suggests a potentially
therapeutic relationship. Up to this point, researchers have designed discovery patterns
manually, by composing sequences of relationship types, such as “drug x INHIBITS
substance y, substance y CAUSES disease z”, that suggest therapeutic potential. In addition,
as these patterns are represented computationally as sequences of symbols, it is necessary to
explore possible pathways in a stepwise manner, in contrast to the efficient search facilitated
by the representation of terms or concepts in a vector space. In this paper we address these
issues by representing both concepts and the relationships between them as vectors in
hyperdimensional space, using the Predication-based Semantic Indexing (PSI) approach [5].

The paper proceeds as follows. First we discuss LBD research, with an emphasis on recent
approaches that have been facilitated by advances in biomedical language processing, and
introduce SemRep [6], the language processing system we have utilized for this research.
We then introduce PSI [5], a representational approach we have developed that facilitates
approximate inference across large volumes of knowledge extracted by SemRep, using a
geometric approach. This background material is followed by a discussion of the
mathematics underlying our approach, including our approach to inference in PSI space. We
then proceed to a study, in which we identify discovery patterns from a set of known
TREATS relationships, and an experiment in which we apply these “discovered” discovery
patterns to a held out set of diseases. The aim of this experiment is to evaluate our
hypothesis that directing search using the identified discovery patterns will improve the
recovery of treatments for members of this held out disease set, when compared with a co-
occurrence based approach. The results and implications of this empirical work are
subsequently discussed.

2. Background
2.1. Literature-based discovery

The field of literature-based discovery traces its origins to a serendipitous discovery of a
therapeutically useful [7] connection between fish oils and Raynaud’s disease by
information scientist Don Swanson [8]. This discovery was made by finding points of
intersection between two bodies of literature that were disconnected from one another with
respect to authorship and readership. Swanson identified bridging concepts such as blood
viscosity that could be used to connect Raynaud’s to concepts that had not occurred with it
in the literature previously. This approach has been generalized and applied to a number of
other problems (for recent reviews see [9–11]). The general idea is to use a bridging, or B
concept, to link two other concepts, usually referred to as A and C, that have not co-occurred
in the literature previously. This scheme allows for two modes of discovery, termed open
and closed (5). Open discovery has two steps. Starting with a disease C, a set of intermediate
B concepts is identified in literature related to this disease. The literature on these B (or
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“bridging”) concepts is then explored to seek out A concepts, potential treatments. In closed
discovery, the starting point is the hypothesis, or observation, of a therapeutic relationship
between treatment A and disease C (AC), and an explanation (AB, BC) for this observation
or hypothesis is sought by exploring the literature for concepts related to both A and C.
Swanson’s approach has also been incorporated into a number of automated systems that
aim to promote discovery by encouraging scientists to search beyond the limits of their usual
literature review (for example [12–16], and for a review see [17]).

Swanson’s initial work was motivated primarily by the increasingly disjointed nature of the
scientific literature that is an inevitable consequence of increased specialization. As noted by
Swanson [18], the rapid increase in the volume of the biomedical literature is accompanied
by a combinatorial explosion in the number of implicit connections between entities
described in this literature [19]. Consequently, a scalable alternative to stepwise exploration
of every possible pathway from disease to discovery is desirable.

To this end, several LBD researchers have investigated the use of methods of distributional
semantics [20] as a means to identify directly associations between terms or concepts that do
not co-occur with one another in the biomedical literature [21–23]. Methods of distributional
semantics learn measures of relatedness between terms or concepts from their distribution
across large volumes of electronic text. With some distributional approaches, terms or
concepts that occur in similar contexts will be strongly associated, even if they do not appear
together directly. Therefore, search can proceed directly from A to C, without the need to
explicitly identify a B concept. This, and the reduced-dimensional nature of the
representations employed in distributional models, allow for efficient search for previously
unrecognized meaningful relations. In our previous work we have shown that distributional
approaches can be used to simulate historical literature-based discoveries, and predict terms
that will co-occur with one another in the future from a time-delimited training set [23].
However, as they are based on occurrence in the context of similar surrounding words or
concepts, the associations learned by these models tend to be general in nature. Given the
vastness of the search space for possible discoveries, further representational richness is
required to identify selectively candidates for discovery in which the nature of the
relationships between concepts suggest a plausible therapeutic hypothesis. It is possible to
extract this additional information from the biomedical literature using specialized natural
language processing systems such as SemRep [6].

2.2. SemRep
SemRep is a symbolic natural language processing system that identifies semantic
predications in biomedical text. For example, SemRep extracts “Acetylcholine
STIMULATES Nitric Oxide” from the sentence “In humans, ACh evoked a dose-dependent
increase of NO levels in exhaled air”. SemRep is linguistically based and intensively
depends on structured biomedical domain knowledge in the Unified Medical Language
System (UMLS SPECIALIST Lexicon, Metathesaurus, Semantic Network [24]). At the core
of SemRep processing is a partial syntactic analysis in which simple noun phrases are
enhanced with Metathesaurus concepts. Rules first link syntactic elements (such as verbs
and nominalizations) to ontological predicates in the Semantic Network and then find
syntactically allowable noun phrases to serve as arguments. A metarule relies on semantic
classes associated with Metathesaurus concepts to ensure that constraints enforced by the
Semantic Network are satisfied.

SemRep provides underspecified interpretation for a range of syntactic structures rather than
detailed representation for a limited number of phenomena. Thirty core predications in
clinical medicine, genetic etiology of disease, pharmacogenomics, and molecular biology
are retrieved. Quantification, tense and modality, and predicates taking predicational
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arguments are not addressed. The application has been used to extract 23,751,028
predication tokens from 6,964,326 MEDLINE citations (with dates between 01/10/1999 and
03/31/2010). Several evaluations of SemRep are reported in the literature. For example, in
[25] .73 precision and .55 recall (.63 f-score) resulted from a reference standard of 850
predications in 300 sentences randomly selected from MEDLINE citations. Kilicoglu et al.
report .75 precision and .64 recall (.69 f-score) based on 569 predications annotated in 300
sentences from 239 MEDLINE citations [26]. Recent research in literature-based discovery
[1–4] has exploited the additional information provided by specialized language processing
systems such as SemRep by developing the idea of a discovery pattern.

2.3. Discovery patterns
Swanson’s description of his own approach presupposes the representation of the nature of
the relationships that occur between concepts (emphasis added):

Suppose that one literature reports that, under certain circumstances, A causes B
(e.g., drug A alters blood levels of hormone B). Such a causal statement is denoted
by “AB.” Assume that a second literature reports a similar causal connection, BC
(e.g., hormone B influences the course of disease (C). Presumably, then, anyone
aware of the two premises AB and BC would notice that A might influence C
(denoted “AC”)

– Swanson 1990

However, approaches based on co-occurrence alone do not offer the representational
richness required to populate a syllogistic construction of this nature. In recognition of the
limitations of co-occurrence based approaches, Hristovski and his colleagues introduced the
notion of a “discovery pattern”, a set of predications (object-relation-object triplets) that
might suggest plausible therapeutic hypotheses [1–4]. The extraction of predications from
the biomedical literature is accomplished through the application of natural language
processing technology, specifically the SemRep [6] and MedLEE [27] systems for
biomedical language processing.

As an example of a discovery pattern, consider the “may_disrupt” pattern, as defined by
Ahlers and her colleagues [4]:

Substance X <inhibits> Substance Y;

Substance Y <causes|predisposes|associated_with> Pathology Z;

Substance X <may_disrupt> Pathology Z

This pattern is represented using the following set of relationship types (or predicates)
extracted by SemRep: {INHIBITS, CAUSES, PREDISPOSES, ASSOCIATED_WITH},
with the aim to identify explanatory hypotheses for the observation that schizophrenic
patients, who are often treated with anti-psychotic agents, have lower incidences of cancer
than the general population [4]. Other discovery patterns have been used to simulate
Swanson’s original discovery [1], and to suggest therapeutic hypotheses for Parkinson’s
disease by combining predications derived from the literature with others derived from DNA
micro-array results [3]. Up to this point, researchers, based on their domain knowledge and
their interpretation of what might construe a meaningful explanatory pathway, have
constructed discovery patterns manually, and applied them by traversing the network of
concepts and relations on a node-by-node basis.

Consider the “may_disrupt” pattern from the perspective of a researcher searching for a
novel treatment for a particular pathology. Exhaustive exploration of all possible therapies
for this pathology according to this pattern requires retrieving all concepts that occur as the
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subjects of a CAUSES, ASSOCIATED WITH or PREDISPOSES relationship with it, or
any variant forms of interest (for example, Ahlers and her colleagues took any concept of
the UMLS type “neop” or neoplastic process as their set of “Z” pathologies). Subsequently,
any concept occurring as the subject of an INHIBITS relationship with any of these
retrieved concepts must be explored. Therefore, the size of the search space in this case is
the product of the number of concepts describing the disease in question, all of which must
be explored to seek relevant predicates, multiplied by the number of unique predications
involving any of these concepts and the predicates CAUSES, ASSOCIATED_WITH or
PREDISPOSES, multiplied in turn by the number of the subjects of these predications that
occur in predications with the predicate INHIBITS. As anticipated by Swanson, a
combinatorial explosion in the size of this search space would occur if more than one
bridging term were considered.

In practice, Ahlers and her colleagues took a closed discovery approach, enabling them to
triangulate from starting points including both neoplastic processes and a number of selected
antipsychotic agents. The number of predications in the search space was also limited to
those extracted from related PubMed queries, as was the case in other LBD work in which
discovery patterns were utilized [1,2]. However, as anticipated by Swanson, the ever-
increasing numbers of logical connections between biomedical concepts limit the
computational tractability of exhaustive search across the breadth of the biomedical
literature for the purpose of either open or closed discovery.

2.4. Predication-based Semantic Indexing
The extent to which inference can be accomplished is constrained by the way in which
knowledge is represented. A common strategy for re-use of the biomedical literature is to
draw associations between concepts (or terms) occurring in similar contexts [21–23]. This
leads to a measure of general relatedness that is convenient to derive, but limited in its
specificity. Another strategy involves representation of concepts, and the relations between
them, as symbols [1,2]. This allows search to be directed precisely, but requires node-by-
node exploration of the network of concepts and relations. Our approach, which is based on
the hyperdimensional computing paradigm [28], combines the strengths of both of these
strategies. Both concepts and the relationships between them are represented as vectors in
hyperdimensional space. Inference occurs as a function of the geometry of this space,
mediated by reversible vector transformations. This approach, which we have named
Predication-based Semantic Indexing [5] (PSI), integrates algebraic and geometric models of
intelligence to support scalable search [29] and efficient inference [30] across large volumes
of computable knowledge, providing a computationally tractable means to generate
therapeutic hypotheses.

2.5. Mathematical structure and methods
2.5.1. Vector symbolic architectures—PSI adopts the Random Indexing approach as
described in [23], in which a semantic vector for a concept is generated by superposing
randomly constructed elemental vectors representing the contexts in which this concept
occurs. These vectors may be binary, real or complex in nature. However, regardless of this
representational choice, it is important that elemental vectors be constructed such that they
are unlikely to be similar to one another. This constraint is important, as it ensures that an
elemental vector provides a unique signature for the entity it is encoding, so that this entity
can be correctly re-identified despite any distortions of the original elemental vector that
may occur during the learning process. Vectors utilized in this approach are of high
dimensionality (in the thousands or tens of thousands), and the combination of this high
dimensionality and the construction of dissimilar elemental vectors makes the representation
robust.
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Semantic vectors can be thought of as containers for knowledge encoded by elemental
vectors. Throughout this paper we will write E(X) and S(X) for the elemental and semantic
vectors associated with the concept X. In addition, we introduce elemental vectors for
relations, such that E(R) denotes the elemental vector for the relation R. As many relations
are directional, we will use RINV to denote the inverse of R, such that A R B (e.g.
thalidomide TREATS multiple myeloma) and B RINV A (e.g. multiple myeloma
“TREATSINV” = “IS TREATED BY” thalidomide) carry the same meaning, though they
may be encoded by different vector representations.

To encode relations, PSI utilizes the hyperdimensional computing paradigm [28]
exemplified by the models of Kanerva [31] and others [32–34] that are collectively known
as Vector Symbolic Architectures (VSAs) [33]. VSAs are descendants of Smolensky’s
tensor-product based connectionist approach [35] to encoding symbolic knowledge and
nested compositional structure. Relations are encoded in these models using reversible
vector transformations, a process referred to as binding.

Binding is a multiplication-like operator through which two vectors are combined to form a
third vector C that is maximally dissimilar from either of its component vectors, A and B.
We will use the symbol “⊗” for binding, and the symbol “⊘” for the inverse of binding
throughout this paper. It is important that this operator be invertible, in order to facilitate the
recovery (or release) of information encoded into a bound product. Consequently, if C = A
⊗ B, then A ⊘ C = A ⊘ (A ⊗ B) = B. Under some circumstances this ⊗ recovery will be
approximate, but the robust nature of the underlying hyperdimensional vector representation
ensures that A ⊘ C will be sufficiently similar to B that the original vector for B can be
recognized as the best matching candidate for A ⊘ C in the original set of concepts.

Note that binding is implemented differently in different VSAs, and that the symbol “⊗”
should not be identified with the tensor product. For example, Plate’s Holographic Reduced
Representations use circular convolution of real or complex vectors [32], while Kanerva’s
Binary Spatter Code (BSC) [31], which we utilize in our experiments, uses bitwise exclusive
or (XOR) and binary vectors. In this case, the binding operator is its own inverse (⊗ and ⊘
are the same operator, namely XOR), but we will nonetheless ⊗ use different symbols to
represent these operators to maintain consistency with VSAs in general. In addition to being
invertible, the binding operators used in VSAs all produce a bound product of the same
dimensionality as the component vectors from which it was derived. This distinguishes
VSAs from earlier models using tensor products, which resulted in a bound product with the
dimensionality of its components vectors squared. Of note, using bitwise XOR to implement
binding for binary vectors implies that in this case, binding commutes: A ⊗ B = B ⊗ A.

Bundling is an addition-like operator, through which superposition of vectors is achieved.
Unlike binding, bundling produces a vector that is maximally similar to the component
vectors from which it was derived. One example of a bundling operator is the use of vector
addition and subsequent normalization. Another is the majority rule used in the BSC, where
each dimension of the vector resulting from the superposition is assigned either “1” or “0” in
accordance with the most popular value in this dimension in the component vectors, with
ties broken at random. We will use the symbol “+” to denote bundling, and the computer
science “+=” for “bundle the left hand side with the right hand side, and assign the outcome
to the symbol on the left hand side”. So, for example S(A) + = E(B) denotes the addition of
the elemental vector for B to the semantic vector representing A, a common operation in
training.

2.5.2. Predication-based Semantic Indexing—PSI combines the binding and
bundling operators to encode predications during the training process. For example, the
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predication “thalidomide INHIBITS cyclooxygenase 2” is encoded by the following
sequence of steps:

Similarly, the predication “cyclooxygenase 2 ASSOCIATED WITH multiple myeloma is
encoded as follows:

Note that in the case of ASSOCIATED_WITH, we have not used an inverse, as this
relationship is not directional. In practice, statistical weighting and frequency thresholds are
used to limit the influence of uninformative predications, as will be discussed further in the
methods section. The net result is a hyperdimensional vector space, with dimensionality
predetermined by the size of the pre-assigned elemental vectors. A vector that captures,
albeit approximately, the predications this concept has occurred in, represents each concept.

2.5.3. Statistical properties of hyperdimensional binary space—While we have
presented the operations underlying our approach such that they will be compatible with
VSAs in general, for the research described in this paper we utilized Kanerva’s Binary
Spatter Code[31] (BSC). The BSC uses hyperdimensional (e.g. dimensionality ≥ 10,000)
binary vectors as a representation for concepts and relations (or variables). Elemental
vectors are randomly generated such that every dimension in the vector has an equal
probability of being one or zero, and there are an equal number of ones and zeros in each
vector. As noted by Kanerva [36], this leads to some useful statistical properties.

As there is a 50% probability of a one or zero occurring in each dimension, the mean
Hamming distance between any two randomly constructed vectors will be a half of the
dimensionality of the vectors. For example, in a 10,000 dimensional space we would
anticipate elemental vectors being 5000 bits apart from one another on average. In
hyperdimensional binary space, this distance is referred to as the indifference distance, and
two points at this distance from one another are considered to be orthogonal to one another
[36]. Secondly, the standard deviation of this distribution of Hamming distances is a half of
the square root of the dimensionality of the vectors. To continue our example, we would
anticipate a standard deviation of 50 in a 10,000-dimensional space. A consequence of this
distribution is that an elemental vector has a high probability of being far apart from every
other elemental vector. This sparseness of the space confers robustness, as it implies that it is
possible to distort an elemental vector considerably, while retaining confidence that it will
be closer to its original form than to any other elemental vector in the space.

2.5.4. Inference in PSI space
2.5.4.1. Inferring predicate pathways: PSI provides the means to facilitate two sorts of
inference. Firstly, it is possible to infer from two semantic vectors the dual-predicate
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pathway through which they are connected. Consider the following steps that occurred
during the training process:

As both S(thalidomide) and S(multiple_myeloma) now contain E(cox_2) (cyclooxygenase 2
is abbreviated as cox_2), applying the inverse of the binding operator, ⊘, will result in this
common concept cancelling out, such that:

The resulting vector will be a noisy approximation of the elemental vectors concerned, but
in hyperdimensional space it is highly probable that this approximation will be significantly
closer to these elemental vectors than to any other vector in the space [28]. In some cases,
the resulting predicate pathway provides a plausible explanatory hypothesis. For example, it
is plausible that thalidomide’s therapeutic effect in multiple myeloma may be related to
inhibition of cox-2. As further examples, in one of the PSI spaces utilized for our
experiments, the three closest bound pairs of predicate vectors to the vector produced by this
operation are shown in Table 1.

Note that the relatedness between these pathways and the vector
S(thalidomide)⊘S(multiple_myeloma was significantly higher than that of the next-nearest
neighboring) vector, which was only 3.31 SD above the mean anticipated between random
vectors.

2.5.4.2. Generalizing to new diseases: As we have shown previously [30], an inferred
predicate pathway can be applied to other semantic vectors to direct search across predicate
paths of interest. For example, either the vector representing E(INHIBITS ⊘
E(ASSOCIATED_WITH) or the approximation of this vector inferred from S(thalidomide)
⊘ S(multiple_myeloma), can be used to direct search through PSI space for concepts that
relate to some other concept in the same manner as the first two concepts were related to one
another. For example, consider the following composite cue vectors:
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Either of these composite cue vectors can be used to direct search toward semantic vectors
representing concepts that relate to malignant mesothelioma in the same manner that
thalidomide is related to multiple myeloma, effectively solving the proportional analogy
problem “what is to malignant mesothelioma as thalidomide is to multiple myeloma?” When
the second approach is used, accuracy depends on the contribution that the relevant
predicate pathways make to the vector representations of the component semantic vectors,
which are likely to also encode other, unrelated, predicate-argument pairs.

These approaches provide the means to implement discovery patterns at scale, as novel
relationships between A and C concepts are identified directly, without the need to explicitly
traverse bridging B concepts. In the section that follows, we present an evaluation of the
utility of this approach as a means to identify therapeutic relationships. We do so using the
sequence of inference procedures we have just described: first we infer explanatory
pathways from pharmaceutical agents to diseases they are known to treat, and then we
generalize to another held out set of diseases, to attempt to identify pharmaceutical agents
that treat them.

3. Evaluation
3.1. Overview

Fig. 1 provides an overview of the research described in this paper. To evaluate the ability of
our methods to support discovery, we conduct a study (Fig. 1, left, described in Section 3.2)
followed by an experiment (Fig. 1, right, described in Section 3.3). In the first of these, we
generate a PSI space (PSI space 1) without encoding any TREATS relationships, and infer
the most strongly associated dual-predicate path between all pharmaceutical substances
(UMLS semantic type “phsu”) and diseases or syndromes (UMLS semantic type “dsyn”)
that occur together in a TREATS relationship (n = 48,204) in the SemRep database. In the
second, we utilize the 5-to-10 most popular inferred paths to direct search through
predication space. This search occurs in the context of a PSI space (PSI space 2) in which no
direct relationships of any kind between pharmaceutical substances and neoplastic processes
(UMLS semantic type “neop”) are encoded. We evaluate the extent to which the discovered
discovery patterns can be used to “rediscover” TREATS relationships involving
pharmaceutical substances and neoplastic processes in the SemRep database, and compare
this to the performance of a distributional approach, Reflective Random Indexing [23], that
derives an estimate of the relatedness between concepts from their distributional statistics in
a corpus of documents.

Our hypothesis is that directed search using the discovery patterns identified during the
initial study (using PSI) will be more productive than search using general association
between concepts, without considering the nature of the relationships concerned (using
RRI).

3.2. Generating explanatory hypotheses
In this study, we infer the most popular dual-predicate paths between diseases or syndromes
and pharmaceutical substances that occur together in TREATS relationships in the SemRep
database (n = 48,204). The study is conducted in the context of a PSI space that is ignorant
of all TREATS relations so as to eliminate the possibility of indirect treats relationships
being inferred from direct treats relationships (for example, it may be inferred that one drug
that has been compared with another that is known to treat diabetes, would also treat
diabetes).
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3.2.1. Methods—An overview of the study is presented in Fig. 2. The predications
extracted by SemRep from a set of 8,182,882 MEDLINE citations dated between 1999 and
2011 (n = 21,720,623) were divided into TREATS predications (n = 1,592,143), and other
predications (n = 20,128,480). The TREATS pairs were kept aside, and from these a set of
unique predications of the form “phsu TREATS dsyn” where phsu represents the UMLS
semantic type “pharmaceutical substance”, and dsyn represents the UMLS semantic type
“disease or syndrome” were extracted (n = 48,204). All other predications of the permitted
predicate types, defined by the set {ASSOCIATED_WITH; COEXISTS_WITH; AFFECTS;
AUGMENTS; CAUSES; DISRUPTS; INHIBITS; INTERACTS_WITH; PREDISPOSES;
STIMULATES} were used to generate a PSI space. All concepts occurring 100,000 times or
more were excluded from the space, to eliminate frequently occurring concepts that carry
little information content. Only those dsyn-phsu pairs in which both elements were
represented in the PSI space were retained (n = 43,954).

Training occurred as follows. Every concept Cn was assigned a semantic vector S(Cn).
Every concept Cn was also assigned an elemental vector E(Cn). Elemental vectors for this
study were 32,000-dimensional binary vectors, with 16,000 1s and 16,000 0s distributed at
random across the vector. To maintain consistency across experiments, we seeded our
random number generator with a hash function derived from the name of the concept-to-be-
represented, as described in [37]. Therefore, the “random” vectors in this case are in fact
deterministic, so the incidental overlap between vectors was consistent across experiments.
Each predicate, Pm, is also assigned an elemental vector, E(Pm). For each unique predication
that a given concept Ca occurred in, training for this concept occurred as follows:

where Cb and Pc are the other concept and the predicate in the predication respectively, and
lw and gw are local and global weighting metrics respectively, defined as follows:

Consequently the weight of the contribution of a predicate-argument pair is equal to the log
of one plus the frequency with which this predication occurs, multiplied by the sum of
inverse document frequencies (idf) of the concept and the relation concerned. These
statistical weighting metrics were utilized to enhance the influence of infrequently occurring
concepts and relations. As we were generating semantic vector representations for both
concepts, the complementary encoding also occurred:

In this instance we have used the inverse of the predicate Pc, PcINV, to encode the direction
of the relationship concerned. However, in some cases, such as the predicate
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“COEXISTS_WITH”, the relationship is not directed, and so a single predicate vector is
used (Pc = PcINV). Once training was complete, a search space of possible dual-predicate
paths was constructed by combining the elemental vectors for each permitted predicate type
(n = 17, when allowing for inverse relations with some predicate types) using the following
procedure:

For each predicate p1
For every other predicate p2
S(predicate path) = E(p1) ⊘ E(p2)

Once this search space of predicate paths was constructed, inference was performed by
generating a composite cue vector from the semantic vectors of each of the 43,954 phsu–
dsyn pairs. This was accomplished using the following procedure:

This search was performed for all of the phsu–dsyn pairs, and in each case the most strongly
associated dual-predicate pathway was retained. Each of the possible pathways was ranked
according to the number of times it was most strongly associated with an example. Inference
is computationally efficient (scaling at a rate linear to the number of predicate pathways, or
quadratic to the number of permitted predicates). In our experiments, the 43,954 example
pairs were processed in around 5 min.

3.2.2. Results and discussion—The results of this study are shown in Table 2, which
shows the number of times each of the 10 most popular predicate-pathways were most
strongly associated with one of the 43,954 example pairs. In addition, an illustrative
example of each of the predicate pathways is provided. Examples were selected on the basis
of our ability to interpret them, and represent one possible application of the predication
pathway concerned only. In some cases, such as when the “COEXISTS_WITH” predicate is
involved, patterns are quite flexible, as this predicate is extracted from sentences with a
broad range of meanings, including statements that drugs were used together in
combination, descriptions of commonly comorbid conditions and structural similarity
between entities. In each instance, we retrieved a bridging or “B” term from the SemRep
database. Having identified the concepts and predicates involved, this can be accomplished
efficiently by triangulating the search.

Five of the “discovered” discovery patterns can be interpreted as generalizations of the
may_disrupt pattern designed by Ahlers and her colleagues. In most cases, generalization
occurs by relaxing the constraint that the predicate linking the pharmaceutical substance to
the bridging concept must be “INHIBITS”, allowing “INTERACTS_WITH” and
“STIMULATES” as alternatives. In addition four of the other discovery patterns involve the
predicate “COEXISTS_WITH”. In some cases, these involve linking a drug to a disease via
a side effect of this drug. While this may be a reasonable thing to do in the case that these
side effects are produced by an excessive action on the same pathway involved in the
therapeutic effects concerned, at times this inference may indicate that many patients on the
drug experience side effects of the drug. This latter case is unlikely to lead to discovery.
However, in general, the most popular predicate pathways are readily interpretable, and their
application for the purpose of literature-based discovery seems intuitive.

Fig. 3 provides an overview of the popularity of the 100 most popular pathways. As is
evident from the graph, a relatively small number of the 272 possible dual-predicate
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pathways are most strongly associated with most of the TREATS relationships in our data
set. As it is probable that TREATS relationships occur for which no dual-predicate pathway
exists that leads from the pharmaceutical substance to the disease or syndrome concerned,
we should not assume that an accurate mapping was obtained in all cases. The most strongly
associated predicate path in such cases would be an artifact of random overlap between
random vectors. However, random overlap alone would result in an equal distribution of
popularity across dual-predicate pathways, while it is clear from the figure that certain
pathways are strongly associated with far greater frequency than others. As illustrated on the
figure, amongst the thirty most popular pathways are the pathways “drug x INHIBITS
substance y; substance y ASSOCIATED with disease Z”; “drug x INHIBITS substance y;
substance y CAUSES disease z” and “drug x INHIBITS substance y”; “substance y
PREDISPOSES disease z”. These are the predicate pathways that make up that
“may_disrupt” discovery pattern designed by Ahlers and her colleagues [4].

In the experiment that follows we attempt to apply the 10 most popular predicate pathways
to the problem of identifying agents that treat cancers of various sorts.

3.3. Generalizing explanatory hypotheses
In this experiment we evaluate the extent to which the discovery patterns identified during
our previous study can mediate the identification of “TREATS” relations between
pharmaceutical substances (UMLS type “phsu”) and neoplastic processes (UMLS type
“neop”). In order to accomplish this we created a PSI space ignorant of any direct relations
between concepts of these semantic types. We then constructed a test set of neoplastic
processes, and used the “discovered” discovery patterns to guide search through these spaces
using two different approaches that will be described in the sections that follow. To provide
a baseline, in addition to comparing PSI-based models to random selection of
pharmaceutical agents, we created a space capturing general relatedness between concepts
from the same set of titles and abstracts using Reflective Random Indexing (RRI), a
technique that we have used effectively to simulate aspects of literature-based discovery in
previous research [23], [15].

3.3.1. Methods
3.3.1.1. Model construction and test set: Fig. 4 provides an overview of the methods and
experimental design. A PSI space with the same parameters as those employed in the
previous study was created from SemRep predications that met the following constraints:

1. Does not involve a pharmaceutical substance (UMLS type “phsu”) and a neoplastic
process (UMLS type “neop”).

2. Both concepts involved have a global frequency <100,000

3. Predicate is part of the set {ASSOCIATED_WITH; COEXISTS_WITH;
AFFECTS; AUGMENTS; CAUSES; DISRUPTS; INHIBITS;
INTERACTS_WITH; PREDISPOSES; STIMULATES}.

3.3.1.2. Reflective random indexing: Reflective Random Indexing is an iterative approach
that is able to derive meaningful indirect associations between terms or concepts from their
distributional statistics, without the scalability constraints imposed by computationally
demanding alternatives [23]. One RRI space was created from all documents in the set of
citations (titles and abstracts) from which the predication database was derived (n =
8,182,882) that did not include both a “phsu” and a “neop” concept. Another, which we will
refer to as RRI_ALL, was derived from all documents in this set without this constraint.
Both were derived from the MetaMap [38] output for these documents, which consists of the
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unique concepts extracted by MetaMap from the citation text. This output is embedded
within the output of the SemRep system, which draws on these concepts to extract
predications. Consequently, the RRI model had access to the collocated concepts from
which the predication database was derived, as well as those concepts extracted by
MetaMap that were not a part of predications extracted by SemRep. Documents that
contained a UMLS concept of both the semantic type “phsu” and the semantic type “neop”
were excluded, to ensure that the RRI model, like the PSI model, is ignorant of any direct
connections between concepts falling into this category.

To ensure that differences observed occur on account of the introduction of typed relations
in PSI, we used a binary vector implementation of RRI. Each represented concept was
assigned two binary vectors, an elemental vector and a semantic vector, each of 32,000
dimensions. As was the case with our PSI implementation, elemental vectors were
constructed by randomly assigning 1s and 0s such that there was approximately a 0.5
probability of each occurring in any given dimension, and the random number generator was
seeded deterministically as described previously to ensure that incidental overlap between
elemental vectors was consistent across models. Elemental vectors were superposed using
the majority rule to obtain semantic vectors, with training occurring in the following
sequence of steps:

In order to ensure fair comparison between the two models, a test set was constructed. This
included all of the concepts categorized as neoplastic processes (UMLS semantic type
“neop”) that were represented in both models, which would require the concept concerned
meeting the global frequency threshold of <100,000 in both spaces, and occurring in a
predication that met the constraints of the PSI space detailed in the prior paragraph. In
addition, only neoplastic processes that occurred in at least one TREATS relationship with a
pharmaceutical substance represented in both spaces were included. The resulting test set
consisted of 1,145 UMLS concepts categorized as neoplastic processes. Similarly, the set of
pharmaceutical substances in which treatments were sought was constrained to concepts
represented in both models, resulting in a set of 16,269 pharmaceutical substances in which
to attempt to rediscover TREATS relationships extracted by SemRep from the biomedical
literature. We also retained the randomly constructed elemental vectors used to generate the
RRI space, to approximate the random selection of pharmaceutical substances as an
additional control.

3.3.1.3. Approach to search across pathways: In addition to comparing PSI and RRI, we
compared two different approaches to searching across the predicate pathways identified in
the study, using either the five or the 10 most popular predicate pathways. In the first of
these, which we will denote “MAX”, pharmaceutical substances are scored according to the
strongest association to the disease in question across any single pathway. So, for example,
if we were considering only the pathways “INHIBITS:ASSOCIATED_WITH” and
“INHIBITS:CAUSES”, the score of a pharmaceutical substance (phsu) for a neoplastic
process in question (neop) would be:
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where SIM = 1-normalized Hamming Distance.

That is to say, the score is the maximum score across any of the predicate pathways. A
disadvantage of this approach is that it considers individual predicate pathways only
(although these may involve a number of different middle terms). However, one might
anticipate a pharmaceutical substance being meaningfully connected to a disease that it
treats through multiple predicate pathways. Therefore, rather than considering the maximum
similarity, it would seem pertinent to consider a measure of similarity that considers the set
of popular predicate pathways as a whole. We use for this purpose an approximation of the
span of vectors, described as the quantum disjunction operator by Birkhoff and von
Neumann [39], and applied to information retrieval by Widdows and Peters [40]. This
operator measures the proportion of a vector that can be projected onto a subspace derived
from a set of component vectors. The continuous implementation of this operator is applied
as follows:

1. 1. An orthonormal subspace is constructed from the individual vectors using the
Gram-Schmidt orthogonalization procedure [41]. That is to say, each vector in the
set is rendered orthogonal to every other vector in the set, such that no information
is represented redundantly, and each vector is normalized to unit length.

2. The individual vector v is projected into this subspace, to generate .

3. The cosine metric is used to calculate the similarity between the vector v, and ,
it’s projection in the subspace.

This procedure can be interpreted as measuring the proportion of the vector v that can be
represented in the subspace, and will return a value of close to one if v is either similar to
any individual vector from which the subspace was derived, or partially similar to several of
the vectors from which this space was derived. For our research, as our underlying
representation is a hyperdimensional binary vector rather than a real or complex vector, we
developed a binary approximation of the quantum disjunction operator we have just
described [42].

The intuition underlying this operator is that maximal dissimilarity between a pair of vectors
in the binary space will result in a Hamming distance of half of the dimensionality of the
vectors concerned. Therefore, the extent to which the Hamming distance between two
vectors is less than d/2 is analogous to the proportion of one vector that could be projected
onto another in continuous (real or complex) vector space. We utilize a binary
approximation of the Gram–Schmidt procedure, through which binary vectors are rendered
mutually orthogonal (i.e. Hamming distance = d/2) by introducing or eliminating identical
dimensions at random. We then calculate the similarity between an individual binary vector
and the set of (mutually orthogonal) vectors representing the popular predicate pathways to a
neoplastic process (neop) by taking the sum of 2 × (0.5 – the normalized Hamming distance)
between the vector representing the pharmaceutical substance (phsu) and each of these
pathway vectors. So our approximation of the subspace-based metric, which we will denote
SUB, considering only the pathways “INHIBITS:ASSOCIATED_WITH” and
“INHIBITS:CAUSES”, would be calculated as follows:
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where HD = the normalized Hamming Distance.

For each of the 1145 neoplastic processes, the PSI representations of the 16,269
pharmaceutical substances were searched using both of these approaches, with either the 5
or the 10-most popular predicate pathways identified during our previous studies. In
addition, the RRI representations of the pharmaceutical substances were searched using the
RRI representation of the neoplastic process concerned as a cue. Finally, elemental vectors
for the pharmaceutical substances were searched using the elemental vectors of the
neoplastic processes as cues. This last step simulates random selection of drugs for each
disease, allowing for associations introduced by incidental overlap between elemental
vectors.

In all cases, the experiment was repeated at different statistical thresholds, which were
defined in terms of the mean and standard deviation of the anticipated Hamming distance
between randomly constructed elemental vectors. The thresholds used varied some from
model to model, as they were adjusted such that models were compared according to the
number of TREATS relationships “rediscovered” when comparable quantities of
pharmaceutical substances were suggested.

3.3.2. Results and discussion—The results of this experiment are shown in Fig. 5,
which plots the number of rediscovered treatments (left axis) and proportion of the total
TREATS relationships rediscovered (or recall, right axis) for each model against mean
number of pharmaceutical substances retrieved at different statistical thresholds.

The random model does not “rediscover” many therapeutic relationships unless a large
number of pharmaceutical agents are retrieved. In contrast, the RRI-based model, here
denoted “RRI” is far more productive, recovering around two thousand TREATS
relationships with a recall of around 0.17 at frequency thresholds that return approximately
100 pharmaceutical substances on average. The results for two RRI-based models are
shown. In the first, documents that included both a pharmaceutical substance (“phsu”) and a
neoplastic process (“neop”) were excluded from the training process, as described
previously. The second model, RRI_ALL differs from the RRI model in that the entire
corpus was utilized, including those citations from which the test set was derived. The
results for SUB10 (not pictured) were close to, but below those obtained with SUB5, which
was the most productive of all the models tested, recovering around 4500 TREATS
relationships with a recall of around 0.37 at a frequency threshold returning approximately
100 pharmaceutical substances on average. Interestingly, the SUB models also outperformed
RRI_ALL across all but the most stringent thresholds. That is to say, the SUB models
showed an advantage over RRI trained on the entire set of documents processed by SemRep,
including those containing the statements from which the TREATS relationships in the test
set were derived. This was not the case with the MAX models with more stringent
thresholds, which serves as further evidence of the benefit of the subspace-based approach.
The MAX models, based on the single most strongly associated predicate pathway,
generally outperform the RRI model, except at the most stringent statistical thresholds. A
small advantage over the MAX10 model (not pictured) occurs when only the five most
popular predicate pathways are utilized (MAX5, pictured). The SUB models perform best of
all, recovering thousands of TREATS relationships even at the most stringent statistical
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thresholds utilized. The model generally performs best when the five most popular predicate
paths are utilized (SUB5), except at most stringent thresholds where using the 10 most
popular predicate paths appears to confer a slight advantage. With respect to precision (Fig.
6), the subspace-based approaches again outperformed RRI-based and MAX approaches at
most frequency thresholds, although RRI_ALL and RRI had highest precision at the most
stringent thresholds, where the MAX models performed relatively poorly. At the point at
which one hundred treatments on average are retrieved, the precision of the SUB5 model is
around 0.038, suggesting that we might anticipate rediscovering approximately four known
treatments per one hundred drugs retrieved. This number of agents is of interest as it could
feasibly be tested against cancer cell lines using contemporary high-throughput screening
methods, and the successful repurposing of four therapeutically active compounds in a
hundred would be an excellent result.

When interpreting these results one should bear in mind: (a) the fact that a drug does not
occur in a TREATS relationship with a particular condition in the SemRep database does
not preclude its being a plausible treatment; (b) a few TREATS relationship may be SemRep
errors; and (c) some TREATS relationships may refer to activity against cell lines or animal
models relevant to a particular cancer rather than proven therapeutic activity in the context
of a clinical trial. Nonetheless, evaluations have shown that around 75% of the predications
extracted by SemRep are accurate so the results show that the incorporation of discovery
patterns enhances the recovery of drugs with possible therapeutic activity against the cancers
concerned.

The results presented above report the overall recall and precision across the entire test set.
The use of a global statistical threshold allows for each model to suggest a different number
of treatments for each cancer, based on the strength of association between this cancer type
and each of the pharmaceutical substances in the search space. As the number of TREATS
relationships for each cancer in the set varies considerably (mean = 10.46, std = 24.12, min
= 1, max = 289, median = 3), there is an advantage for methods that retrieve results
selectively where treatments are likely to occur, as would be expected from the predication-
based approaches in which treatments that are linked across one of the predicate pathways
would be more strongly associated. In order to evaluate this hypothesis, we calculated the
average precision for each model for each cancer in the test set. The Average Precision (AP)
[43] is a widely used summary statistic in information retrieval, and measures the precision
at each point at which each correct result is retrieved. This can be calculated by adding the
precision at the point of each discovery (which is equal to the known TREATS relations
(rediscoveries) retrieved over the number results retrieved) as follows:

Consequently the average precision provides a summary of the performance related to a
particular cancer across all of the relevant TREATS relationships in the test set. The
correlation between the average precision for each method and the number of TREATS
relationships available for discovery is shown in Table 3. As anticipated, the performance of
the PSI-based methods is better correlated with the number of treatments available for
discovery than that of the RRI-based methods.

The number of treatments available for discovery for a particular cancer is strongly
correlated (Pearson’s r = 0.8473) with the number of unique predications involving this
cancer in the predication database. So PSI-based methods perform better where more
knowledge is available, which is not surprising.
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Table 4 shows the mean and median rank of recovered treatments for each model across all
of the 11,972 treatments available for discovery. Higher ranks (i.e. lower numbers) are
preferable. For example a rank of one would indicate that a treatment was the first result
retrieved. Therefore, with higher average rediscovery rank as a metric, the rank order of the
performance of the models is SUB5 > SUB10 > MAX5 > MAX10 > RRI_ALL > RRI >
RAND. All differences in average rank are statistically significant as measured by the paired
t test (for the mean) and Wilcoxon’s signed rank test (for the median). As shown in the last
two rows of the table, which give the percentage of all discoveries ranked in the top 100 and
top 1000 results, the rank distributions for models other than RAND are skewed to the right,
with around 20% of the rediscoveries by the SUB models ranked in the top 100.

The enhanced performance of the SUB5 model is also evident when weighting the results
for each cancer in the test set equally, although the picture is more nuanced. Table 5 shows
the Mean and Median AP for each method, along with a rank ordering for each measure.
Note that the means and medians give different rank orderings for the methods. This
discrepancy between mean and median AP can be explained by the presence of a relatively
small number of outliers in the RRI results with AP > 0.5. On account of these outliers, the
median AP gives a more robust measure of overall performance than the mean AP.

Table 6 compares summary statistics for AP across all methods evaluated. Each cell in the
table compares the proportion of the 1145 neoplastic processes for which the method in the
row had a greater AP than the method in the column. In addition, the table indicates cases in
which the mean and/or median AP for the method in the row was significantly higher than
that of the method in the column. So, for example, the cell [SUB5, MAX5] shows that
SUB5 had a higher AP than MAX5 around 70% of the cases, that the difference between
their median AP (SUB5 = 0.0027 > MAX5 = 0.0023) is significant as measured by the
Wilcoxon signed rank test, and that the difference between their mean AP (SUB5 = 0.0255
> MAX5 = 0.0115) is significant as measured by paired t test. In contrast, the cell [MAX5,
SUB5] shows that MAX5 had a higher AP in the remaining ±30% of cases. In general the
tests using medians favor the SUB5 model, although this advantage is less pronounced than
when considering the results from a per-discovery perspective. It does not outperform RRI-
ALL in this respect, but that model enjoys access to information withheld from the other
models.

In summary, PSI-based models, in particular the SUB models, recover more total TREATS
relationships at all but the most stringent statistical thresholds applied. This corresponds to
lower average retrieval rank across all treatments available for discovery in the test set, with
statistically significant differences in performance by this metric across models such that
SUB5 > SUB10 > MAX5 > MAX10 > RRI_ALL > RRI > RAND. Analysis of average
precision on a per-disease basis reveals that the performance of PSI-based methods is
correlated with the number of TREATS relationships available for discovery, which is in
turn correlated with the amount of knowledge related to this disease in the predication
database. So the advantage in performance when weighting each disease equally is less
pronounced than when considering the results from a per-discovery perspective.

The performance of the SUB models suggests that effective therapeutic agents tend to be
connected to diseases they treat across more than one predicate pathway. This supports
recent criticism of targeted drug discovery efforts as being inappropriately unidimensional
[44]. To illustrate the encoded connections that underlie this finding, we reconstruct the
pathways between multiple myeloma and thalidomide, which account for this therapeutic
relationship (an oft-cited example of successful drug repurposing) being “rediscovered”
consistently, even at the most stringent statistical thresholds applied to the SUB models (it is
the 14th-ranked recommendation in the SUB10 model, and 38th-ranked recommendation in
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the SUB5 model). The pathways were reconstructed by searching the original predication
index for middle terms that relate to both thalidomide and multiple myeloma in accordance
with the constraints imposed by the two most popular predicate pathways from the original
study, ASSOCIATED_WITH:COEXISTS_WITH and
INTERACTS_WITH:ASSOCIATED_WITH. As the binding operator in our
implementation commutes and is its own inverse, middle terms that reverse the order of the
relationships concerned, in this case COEXISTS_WITH:ASSOCIATED_WITH, would also
contribute toward similarity to the cue vector, and consequently have also been included.
Only middle terms that were encoded in the PSI space were retrieved, and middle terms of
UMLS semantic type “phsu”1 or “neop” were excluded, as predications linking these to
multiple myeloma and thalidomide respectively would not have been encoded on account of
the constraints placed during generation of the space.

The pathways illustrated in Fig. 7 include biological entities that interact with thalidomide
and are associated with multiple myeloma, and relationships between thalidomide and
related diseases, such as consequences of the overproduction of immunoglobulins, that occur
in multiple myeloma. While uninformative high-level concepts such as “complication” and
“dna” are included in the diagram for completeness, these would have had less influence on
the relevant vector representations on account of the use of global weighting statistics.
Together, these two most popular predicate pathways account for 54 of the 143 unique
predication pathways (all predicate + middle term combinations within the constraints of the
10 most popular pathways) that were encoded linking thalidomide with multiple myeloma
during the process of model construction. With the SUB10 model, the number of unique
predication pathways relating multiple myeloma to its top 20 ranked pharmaceutical
substances was consistently on the order of 100, with a mean of 442.75 and a median of
413.5. These statistics are summarized in Fig. 8 and support the proposal that the PSI
approach provides a computationally efficient way of searching across large networks of
interconnected biological entities, as these networks are encoded into hyperdimensional
vector representations that can be compared to one another without the need to consider
their components individually.

The figure shows the top 20 results in rank order from left to right, as well as the mean
number of predication pathways in each category. In all cases, 100 or more unique
predication pathways support the prediction, and in one case this number exceeds 1000. The
figure also shows the breakdown of these unique predicate pathways in accordance with the
popular predicate pathway involved. Of interest, in this case the highest ranking results are
generally connected across all 10 of the popular predicate pathways we identified in our
study, albeit with different distributions. The four most popular predicate pathways in these
results all permitted predications of the form “drug x INTERACTS WITH biological entity
y”.

While similar numbers of predication pathways were found to support several other
predictions we examined, it was not always the case that the entire spectrum of popular
predicate paths was represented. In addition, less frequently occurring concepts that were
highly ranked were linked to the disease in question by fewer predication pathways. At
times a pharmaceutical substance that occurred infrequently in the database would obtain a
high ranking on account of a substantial proportion of the predications it occurs in in the
database being connected to the disease in question in accordance with the popular predicate
pathways. This is what we would anticipate, given that the tallying of the voting record
across superposition operations ensures that the relative contribution of predications
encoded into a semantic vector is of greater importance than the absolute number of
predications processed. However, as our inspection of our results suggests that this may lead
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to erroneous high ranking for agents about which little knowledge is available, it seems
likely that the addition of a minimum frequency threshold could improve results.

This evaluation compares the ability of these models to recover known TREATS
relationships. However, it is also probable that during the course of the evaluation the
system recovers hitherto unknown therapeutic relationships. Therefore, we evaluated a small
set of our experimental results to determine the plausibility of a set of highly ranked results,
only some of which occurred in known TREATS relationships. Author PD, who is a
pharmacologist with expertise in cancer-related drug discovery, conducted an independent
evaluation of the twenty top-ranked results produced by the SUB10 model. All of the results
with the exception of the amino acid “serine” and the biomarker “zinc” were found to have
citations that would justify their potential as treatments of either multiple myeloma, or
problems such as hypogammaglobulinemia that afflict patients with multiple myeloma. A
summary of this review with selected references is included in Table 7.

4. Implications
In the research presented in this paper, we have used an approach based on the
hyperdimensional computing paradigm[28], in which both concepts and the relations
between them are represented as vectors in hyperdimensional space. This approach is used
to implement efficient inference across tens of millions of assertions, using geometric
operators. In our experiments, conducted on a Linux workstation with 24G of RAM,
inferring the most strongly connected dual-predicate path took around 800 μs per search,
and searching across the 16,269 pharmaceutical substances took around 80 ms per search.
When examined further, highly ranked results were often linked to the disease in question by
hundreds of unique predication pathways, which would need to be explored independently
with conventional methods. The subspace approach, which rewards those pharmaceutical
agents connected to the disease in question across multiple predicate pathways, was found to
enhance the recovery of TREATS relationships.

PSI’s successful recovery of large numbers of TREATS relationships suggests the utility of
such geometrically supported approaches as the means to support efficient inference at scale.
The use of VSAs to accomplish reasoning that would traditionally be attempted using
symbolic approaches is not in and itself novel. In fact, the enhancement of connectionist
models of cognition to enable computation of this sort was one of the original motivations
for the development of VSAs [33]. However, while this family of representational
approaches has been adopted by the cognitive science community as a means to simulate
individual cognition (see for example [63–65]), their utility as means to support approximate
inference at scale has not been widely explored. Therefore, from our perspective perhaps the
most important implication of this research is that of the untapped potential of
representational approaches that combine the strengths of geometric and symbolic
approaches as a means to support computational intelligence at scale. In order to encourage
the further development of these approaches, we have released an implementation of PSI
[66] as a part of the open source semantic vectors package [67,68].

With respect to literature-based discovery, our findings provide strong support for the utility
of the discovery pattern approach, pioneered by Hristovski and his colleagues [2], as a
means to constrain the search space for new therapeutic approaches. On a size-able test set,
search across predicate pathways outperformed search based on co-occurrence alone in what
to the best of our knowledge is the first large-scale comparative evaluation of discovery
pattern based vs. co-occurrence based approaches. These evaluations were enabled by the
computational convenience afforded by the PSI approach. In addition, PSI provides the
means to “discover” discovery patterns, by inferring these from known TREATS
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relationships. This provides an alternative to the manual generation of discovery patterns, a
process that requires both domain expertise and detailed knowledge of the predications
extracted by SemRep.

Ultimately, our goal is to develop tools that can enhance the cognitive capacity of
biomedical scientists by enabling them to draw upon knowledge extracted from beyond the
bounds of their usual literature review in order to generate novel therapeutic hypotheses.
This represents a deliberate move on our part away from the goal of fully automated
knowledge discovery, and toward the notion of a dynamic and interactive discovery system
in which the user is free to refine the predictions made by a system in an exploratory
iterative process. Developments along these lines include Wilkowski’s discovery browsing
approach [69], and the EpiphaNet system for biomedical knowledge discovery [15]. The
methods developed in this research provide the means to support efficient yet highly
customizable searches across large volumes of extracted biomedical knowledge, and
therefore are likely to be useful as the means to facilitate dynamic and interactive
exploration of knowledge extracted from the breadth of the biomedical literature.

In addition, our approach has implications for the repurposing of existing drugs to identify
new therapeutic approaches for inadequately treated diseases. The rapidly escalating cost of
new drug development coupled with the prolonged delay in bringing new drugs to clinical
application, limits the availability of new therapies for many devastating diseases. One of
the most efficient strategies for addressing this problem is the “repurposing” of existing
drugs for novel therapeutic applications. There are currently approximately 4000 drugs
approved for use in humans and an additional 5000 investigational drugs registered for
human use but not approved by regulatory agencies. These drugs represent a rich reservoir
of potential therapeutics because much of the pharmacologic and toxicologic information
necessary for their clinical use has already been acquired. Brute force screening of all
possible combinations of approved drugs or investigational agents is logistically impossible
and needlessly inefficient. Knowledge applicable to the selection of agents, and
combinations of agents, is accessible in large biomedical literature databases, and other
repositories. While efforts have been undertaken to integrate this knowledge, and present it
in computable form, exhaustive exploration of this knowledge is not currently feasible. In
the research presented in this paper, we utilize the techniques of hyperdimensional
computing to mediate approximate reasoning across large volumes of biomedical knowledge
in a scalable and efficient manner. The improved recovery of TREATS relationships
achieved by this method, and the plausibility of the results we have evaluated to date,
suggest that this approach may provide the means to leverage existing biomedical
knowledge to support future drug repositioning efforts.

5. Limitations and future work
In this paper, we document an evaluation of the ability of different distributional models to
recover TREATS relationships extracted by SemRep from the biomedical literature, in order
to simulate discovery. Manual evaluation of a small number of our results suggests that in
many instances, predicted relationships were plausible despite their not being extracted by
SemRep previously. However, even in the cases where these relationships are new to
SemRep, they are not necessarily new to science. Without further evaluation to establish
their novelty, we would not argue that these results necessarily constitute anything more
than simulated discoveries. Our results also highlight a number of challenges that must be
addressed if we are to realize the translational potential of these methods. Our knowledge
base currently includes individual drug-treatment relations, though we know that drug
combinations best treat many illnesses. Further investigation of the nature of the TREATS
relationships extracted by SemRep reveals that the system currently does not distinguish
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between effective treatments and agents that are active against a cell line in in vitro
experiments, so the recovered TREATS relations do not necessarily represent treatments
that have advanced to clinical trials. Our knowledge base does not include knowledge
gleaned from high throughput experiments, which has been shown to be of value for drug
repositioning [44]. Also, our models account for dual predicate pathways only. While this
was a necessary step, VSAs support encoding of nested relationships, to perform inference
over longer pathways [33]. In future work, we will address these challenges by enhancing
the breadth and granularity of the knowledge utilized and developing models that
accommodate the interactions between multiple agents. In addition, we will explore the
utility of real and complex vectors as alternative representations to support inference in PSI.

6. Conclusion
In the research presented in this paper, we leveraged efficient inference mediated by
hyperdimensional representations for two purposes. Firstly, we inferred previously unknown
discovery patterns, pathways of predicates from a drug to a treated disease, from a large
number of example pairs. Secondly, we utilized these inferred patterns to guide the search
through PSI space for treatments for neoplastic processes. When compared to a co-
occurrence based approach, discovery pattern based models were better able to recover a
held-out set of “TREATS” relations for these neoplastic processes. This advantage was
further emphasized when rewarding drugs that were connected to the neoplasms in question
across several of the discovered discovery patterns. These results demonstrate the utility of
geometric representational approaches as a means to draw inferences from large volumes of
knowledge efficiently. In addition, they provide strong support for the value of discovery
patterns as a means to support literature-based discovery.
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Fig. 1.
Overview of the Evaluation.
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Fig. 2.
Generation of explanatory hypotheses.
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Fig. 3.
Popularity of dual-predicate pathways.
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Fig. 4.
Experimental design.
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Fig. 5.
Overall rediscovery/recall. The y axes show the total number of rediscovered treatments for
all test cases (left) and the global recall (right). The x axis shows the mean number of
treatments suggested per test case.
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Fig. 6.
Overall precision. The y axis shows the precision and the x axis shows the mean number of
treatments suggested per test case.
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Fig. 7.
Predicate pathways and bridging terms linking thalidomide to multiple myeloma considering
the two most popular pathways only.
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Fig. 8.
Predication pathways supporting the top twenty ranked results for multiple myeloma
(SUB10 model).

Cohen et al. Page 32

J Biomed Inform. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Cohen et al. Page 33

RRI step one: generate document vectors

  For each document:

    For each concept in document:

   S(document)+ = E(concept) × lw × gw

where:

 lw = log(1 + frequency of concept in document)

 gw = entropy(concept)

  entropy = 1 + Σ
pijlog2(pij)

log2(n)

  pij =
cfij
gfi

 cfij = frequency of concept i in document j

 gfi = frequency of concept i in corpus

  For each semantic document vector:

    Normalize (majority rule)

RRI step two: generate semantic concept vectors

  For each concept:

    For each document concept occurs:

   S(concept)+ = S(document)

  For each semantic concept vector:

    Normalize (majority rule)
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Table 1

Inferring the connections between multiple myeloma and thalidomide. 1-HD = 1-(normalized Hamming
distance); SD > random = number of Standard Deviations above mean (1-HD) between random vectors.

Paired predicate 1-HD SD > random

ASSOCIATED_WITH; COEXISTS_WITH 0.5158 5.653

INHIBITS; ASSOCIATED_WITH 0.5154 5.510

INTERACTS_WITH; ASSOCIATED_WITH 0.5123 4.401
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Table 2

Ten most popular predicate pathways. Pathways labeled “MD” generalize a component, or are a component,
of the “may_disrupt” (MD) discovery pattern.

Predicate path Pairs Example and Comment

COEXISTS_WITH
ASSOCIATED_WITH
MD

7954 Heparin,_low-molecular-weight COEXISTS_WITH thrombin ASSOCIATED_WITH
antiphospholipid syndrome.
COEXISTS_WITH here indicates changes in thrombin in the presence of low molecular-
weight heparin. As such, this pattern can is a
generalization of MD

INTERACTS_WITH
ASSOCIATED_WITH
MD

6053 Pegvisomant INTERACTS_WITH somatotropin ASSOCIATED_WITH acromegaly
This pattern generalizes the
“INHIBITS:ASSOCIATED_WITH” component of the “may_disrupt” discovery pattern.
Elevated somatotropin (or growth hormone) is
a defining characteristic of acromegaly, so drugs interacting with it may be plausible
treatments

CAUSES COEXISTS_WITH 2339 Dopaminergic_agents CAUSES dyskinetic_syndrome COEXISTS_WITH
parkinsonian_disorders. This pattern relates drug
to disease via a side effect. This can occur as an epiphenomenon (many patients are treated
these drugs, so we see these side effects
in them), or on account of superfluous effects on pathophysiologically relevant systems

INHIBITS ASSOCIATED_WITH
MD

2338 Crestor INHIBITS ldl_cholesterol_lipoproteins ASSOCIATED_WITH
hypercholesterolemia,_familial. This plausible
pathway is part of the MD discovery pattern, and reveals the lipoprotein that crestor targets
in treatment of hypercholesterolemia

STIMULATESASSOCIATED_WITH
MD

1146 Isobutyramide STIMULATES gamma-globin ASSOCIATED_WITH beta_thalassemia.
Isobutyramide has been shown to
reduce transfusion requirements in patients with beta-thalassemia, and its activation of
gamma-globin transcription provides a
plausible explanatory hypothesis for this observation, as levels of this globin are reduced in
beta-thalassemia

INTERACTS_WITH CAUSES
MD

1001 Finasteride INTERACTS_WITH testosterone CAUSES prostatic_hypertrophy. This
pattern is a generalization of the MD
pattern, and here correctly suggests that finasteride’s therapeutic effect in prostatic
hypertrophy is due to interaction with
testosterone

PREDISPOSES COEXISTS_WITH 750 Proton pump inhibitors PREDISPOSES malignant neoplasm of stomach
COEXISTS_WITH hiatal hernia. This instance of
this pattern links proton pump inhibitors (PPIs) to a premalignant condition of the esophagus
via the link between extended use of
these drugs and an increased predisposition toward stomach cancer

INTERACTS_WITH PREDISPOSES
MD

653 Pravastatin INTERACTS_WITH plasminogen activator inhibitor 1 PREDISPOSES
coronary heart disease. This pattern links
drugs affecting genes to diseases predisposed to by those genes

INTERACTS_WITH
COEXISTS_WITH

650 Emollients INTERACTS_WITH psoriasis COEXISTS_WITH eczema. In this instance,
a treatment is linked to a disease via it’s
therapeutic effect on a commonly comorbid disease

COEXISTS_WITH AUGMENTS 560 Vardenafil COEXISTS_WITH cyclic_gmp AUGMENTS erectile dysfunction. In this
case COEXISTS_WITH was extracted from a
sentence indicating structural similarity between vardenafil and cyclic_gmp, and
AUGMENTS here indicates improvement
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Table 3

Pearson’s correlation between AP and existing TREATS relationships.

SUB5 SUB10 MAX5 MAX10 RRI RRI_ALL RAND

r 0.5114 0.5085 0.4994 0.5602 −0.0352 −0.0423 0.1807
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Table 4

Summary statistics for discovery rank. All differences in median rank are significant as measured by
Wilcoxon’s signed rank test. All differences in mean rank are significant as measured by paired t test.
Boldface indicates best performance.

SUB5 SUB10 MAX5 MAX10 RRI RRI_ALL RAND

Mean 2559.5 2647.4 2828.3 2897.4 4305 3497 10162.5

Median 742 915.5 1021.5 1078 2866 1838 10108.5

Rank ≤100 20.5% 19.5% 11.1% 10.8% 14.4% 19.7% 0.48%

Rank ≤1000 55% 51.34% 49.6% 48.6% 31.9% 40.7% 4.9%
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Table 5

Mean and median average precision scores. Boldface indicates best performance.

SUB5 SUB10 MAX5 MAX10 RRI RRI_ALL RAND

Mean AP 0.0255 0.0247 0.0115 0.0108 0.0845 0.1097 0.0012

Rank 3 4 5 6 2 1 7

Median AP 0.0027 0.0021 0.0023 0.0021 0.0022 0.0086 0.0003

Rank 2 4 3 4 6 1 7
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Table 6

Comparison of Average Precision (AP) scores. Proportion of Cases in which AP for Row Method was Greater
than Column Method t+ indicates a significantly greater row mean than column mean by paired t test w+
indicates a significantly greater row median than column median by Wilcoxon’s signed rank test. Boldface
indicates a greater proportion of row cases than column cases had greater AP.

SUB5 SUB 10 MAX5 MAX10 RRI RRL_ALL RANDOM

SUB5 0.5319 w+ 0.6961 w+, t+ 0.6996 w+ t+ 0.5057 w+ 0.3886 0.8480 w+, t+

SUB 10 0.4664 0.6498 t+ 0.6699 t+ 0.5074 0.3808 0.8524 w+, t+

MAX5 0.3022 0.3502 0.7817 w+, t+ 0.4376 w+ 0.3179 0.8437 w+, t+

MAX10 0.2996 0.3293 0.2017 0.4245 0.3092 0.8463 w+, t+

RRI 0.4943 t+ 0.4917 w+, t+ 0.5624 t+ 0.5747 w+, t+ 0.2419 0.8725 w+, t+

RRL_ALL 0.6105 w+, t+ 0.6183 w+, t+ 0.6821 w+, t+ 0.6908 w+, t+ 0.7354 w+, t+ 0.9188 w+, t+

RANDOM 0.1520 0.1476 0.1563 0.1537 0.1275 0.0812
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Table 7

Summary of Plausibility of Top 20 Results with Selected References.

Recommendation Interpretation

Immunoglobulins Intravenous immunoglobulins have been evaluated as prophylactic therapy in hypogammaglobulinemic
patients with
lymphoproliferative disorders such as multiple myeloma [45]

Human leukocyte interferon Human leukocyte interferon has been shown to have in vitro effects and multiple myeloma cell lines [46]
and has been proposed
as a therapeutic alternative in patients that do not tolerate therapy with other interferons

Interferon type ii This interferon, also known as interferon gamma, is known to produce Beta cell activating factor, an
important cell survival
factor expressed by haematopoeitic cells [47]

Curcumina Curcumin analogs have been shown to suppress the growth of multiple myeloma cells in vitro [48]

Dinoprostone The cyclic AMP (cAMP) pathway, which is stimulated by dinoprostone (also known as prostaglandin E2)
has been identified as a
possible therapeutic target for multiple myeloma, as elevated cAMP kills multiple myeloma cells in vitro
[49]

Adriamycin Adriamycin (doxorubicin) is a component of standard treatment regimes for multiple myeloma (e.g. [50])

Dexamethasonea Dexamethasone has been evaluated as maintenance therapy for multiple myeloma [51]

Recombinant vascular
endothelial

growth factora

Vascular endothelial growth factor is targeted by the anti-neoplastic agent Bevacizumab, which has been
shown to inhibit the
growth of multiple myeloma cells [52]

Angiotensin ii Inhibition of angiotensin ii has been shown to augment the anti-tumor activity of other drugs in
hepatocellular carcinoma.
Mechanisms of action appears to include inhibition of angiogenesis, and down-regulation vascular
endothelial growth factor
[53].

pd_98059 pd_98059 is a MAP kinase inhibitor, and the MAP kinase pathway has been identified as a new therapeutic
target for multiple
myeloma [54]

Genistein Genistein has been shown to inhibit the growth of multiple myeloma cells in vitro [55]

Serine We were unable to identify a potential therapeutic role for this amino acid

Pentoxifylline Pentoxifylline (Trental) has been shown to inhibit leukemic and lymphoma cells in vitro [56]

Thalidomidea Thalidomide has been shown to be effective in clinical trials against advanced multiple myeloma [57]

Zinc Zinc-alpha-2-glycoprotein is a biomarker that predicts responsiveness to thalidomide-based therapy in
multiple myeloma [58]

Aldosterone Suppression of aldosterone has been shown to suppress the growth of hepatocellular carcinoma. The
mechanism is related to
the inhibition of angiogenesis, which is an important therapeutic mechanism in multiple myeloma [57]

Quercetin Quercetin has been shown to induce multiple myeloma cell death at high doses [59]

Rituximaba Rituximab has been used to treat Acquired factor VIII inhibitor, a rare disorder that occurs in multiple
myeloma patients [60]

ly294002 Ly294002 is an inhibitor of phosphoinositide 3-kinases (PI3ks). These kinases have been shown to be
important for proliferation
of multiple myeloma cell lines[61]

Adenovirus vaccine Adenoviral-mediated gene transfer has been shown to cause growth suppression and cytotoxicity of
multiple myeloma cells
in vitro [62]

a
Occurrence in a TREATS relationship with multiple myeloma.
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