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Abstract

Objectives—To automatically identify and cluster clinical trials with similar eligibility features.

Methods—Using the public repository ClinicalTrials.gov as the data source, we extracted 

semantic features from the eligibility criteria text of all clinical trials and constructed a trial-

feature matrix. We calculated the pairwise similarities for all clinical trials based on their 

eligibility features. For all trials, by selecting one trial as the center each time, we identified trials 

whose similarities to the central trial were greater than or equal to a predefined threshold and 

constructed center-based clusters. Then we identified unique trial sets with distinctive trial 

membership compositions from center-based clusters by disregarding their structural information.

Results—From the 145,745 clinical trials on ClinicalTrials.gov, we extracted 5,508,491 semantic 

features. Of these, 459,936 were unique and 160,951 were shared by at least one pair of trials. 

Crowdsourcing the cluster evaluation using Amazon Mechanical Turk (MTurk), we identified the 

optimal similarity threshold, 0.9. Using this threshold, we generated 8,806 center-based clusters. 

Evaluation of a sample of the clusters by MTurk resulted in a mean score 4.331±0.796 on a scale 

of 1–5 (5 indicating “strongly agree that the trials in the cluster are similar”).

Conclusions—We contribute an automated approach to clustering clinical trials with similar 

eligibility features. This approach can be potentially useful for investigating knowledge reuse 

patterns in clinical trial eligibility criteria designs and for improving clinical trial recruitment. We 

also contribute an effective crowdsourcing method for evaluating informatics interventions.

Keywords

Medical Informatics; Clinical trial; Cluster Analysis

© 2014 Elsevier Inc. All rights reserved.

Corresponding Author: Chunhua Weng, Ph.D., Assistant Professor, Department of Biomedical Informatics, Columbia University, 622 
W 168th Street, VC-5, New York, NY 10032, cw2384@columbia.edu. 

7. Author Contributions
TH designed and implemented the method, performed evaluations, data analysis, and results interpretation, and led the writing of the 
manuscript. AR participated in the evaluation design, performed data analysis and interpretation, wrote the manuscript with other 
authors. MRB participated in the evaluation design, results analysis, and paper drafting. CW conceptualized the idea, supervised its 
design, implementation, and evaluation, and wrote the manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Biomed Inform. Author manuscript; available in PMC 2015 December 01.

Published in final edited form as:
J Biomed Inform. 2014 December ; 52: 112–120. doi:10.1016/j.jbi.2014.01.009.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Introduction

The past few decades have witnessed heightened expectations for transparency in scientific 

research. Vast troves of clinical and research data have been digitized and made publicly 

available by governmental agencies, corporations, and private organizations. The 

availability of these data has generated a great need for innovative methods that leverage 

such Big Data to improve healthcare delivery and to accelerate clinical research [1]. 

However, gaining meaningful insights from this Big Data is full of challenges.

For example, in one of the largest clinical trial repositories, ClinicalTrials.gov1, there are 

more than 145,745 clinical trials as of May 2013. Information overload is an unsolved 

problem when searching for relevant clinical trials in this repository. Methods have been 

developed to address this problem [2–8], such as web-based EmergingMed2, 

SearchClinicalTrials.org3, and the UK Clinical Trials Gateway4, and mobile device-based 

NCITrials@NIH5, ClinicalTrials Mobile6, and ClinicalTrials.app7. Although these methods 

are helpful in narrowing the search for trials, they require users to come up with effective 

queries, which can be a difficult task given the complexity of eligibility criteria [9] and of 

medical terminologies.

One alternative to clinical trial search based on a user query is case-based search, which 

identifies trials similar to an example trial. Such an approach can remove the burden for 

query formulation from the user and is deemed to be useful in multiple usage scenarios. For 

clinical trial volunteers, a trial for which they qualify but cannot join due to closed 

enrollment, geographic distance from the recruitment site, or other practical reasons, can 

serve as a starting point in the search for trials recruiting similar patients. For clinical trial 

investigators, case-based search might help identify colleagues recruiting similar patients for 

related diseases and inform the eligibility criteria design of a new trial. For meta-analysis 

researchers, this method can identify studies with similar eligibility features and help 

uncover knowledge reuse patterns among related studies or improve the efficiency of 

systematic reviews.

To support the aforementioned use cases, in this paper we present an automated approach to 

identifying clinical trials with similar eligibility criteria, across and within diseases, based on 

the similarity in semantic eligibility features. In the context here, a semantic feature is a 

clinically meaningful patient characteristic, such as a demographic characteristic, a 

symptom, a medication, or a diagnostic procedure, used to determine a volunteer’s eligibility 

for a trial. It contains either one word, (e.g., “cardiomyopathy”) or multiple words (e.g., 

“biopsy-proven invasive breast carcinoma”) [8]. We focused on similarity measures at the 

concept level because as noted by Korkontzelos et al. [10], decreasing the length of lexical 

units, from sentences to phrases or tokens, can solve the sparsity problem in identifying 

1http://clinicaltrials.gov/
2http://www.emergingmed.com
3http://searchclinicaltrials.org/
4http://www.ukctg.nihr.ac.uk
5http://bethesdatrials.cancer.gov/app/
6http://www.clinicaltrials.com/industry/clinicaltrials_mobile.htm
7http://www.iphoneclinicaltrials.com/
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eligibility criteria that are important for a particular study, though a potential tradeoff of this 

method is that unimportant functional words and phrases are more frequent than meaningful 

ones in the biomedical domain.

An important premise of our proposed approach is that numerical values in eligibility 

criteria, such as constants in expressions for age and laboratory results, are not necessary 

considerations for determining eligibility criteria similarity at the concept level. For 

example, our method does not differentiate “Age: 50–65” from “Ages: 10–17”, or 

differentiate “HbA1C >6.5” from “HbA1C <6.5”. For clinical trials with a small number of 

eligibility criteria features, this limitation might result in incorrect clustering of trials with 

semantically different eligibility criteria. However, eligibility criteria are rich in features, 

with an average of 38.5 features per trial on ClinicalTrials.gov. When two trials are deemed 

similar using our method, a majority of eligibility features must match; therefore, the 

differences in the attributes associated with any feature have minimal influence on overall 

trial similarity. In other words, it is unlikely that a trial recruiting patients aged 50–65 would 

match a trial recruiting patients aged 10–17 in all other eligibility features. The presence of 

many features helps our method distinguish trials recruiting different target populations 

despite the disregard for numerical values in any given feature.

The rest of this paper is organized as follows. We first describe our processes for semantic 

feature extraction and trial clustering based on feature similarities. Then we introduce a 

crowdsourcing method for evaluating the similarities of the resulting clusters using 

Amazon’s Mechanical Turk. On this basis, we present the performance metrics for this 

method.

2. Materials and Methods

Fig. 1 illustrates the methodology framework. We obtained the free-text eligibility criteria 

for all registered trials (N=145,745 as of September 2013) listed on ClinicalTrials.gov. We 

then used the Unified Medical Language System (UMLS) Metathesaurus to recognize all 

biomedical concepts, which serve as the semantic features, and assigned a suitable UMLS 

semantic type for each of them. On this basis, we constructed a trial-feature matrix to cluster 

trials using pairwise similarity. Our design rationale and implementation details are further 

provided below.

2.1. Extracting semantic features

Although UMLS’s parser, MetaMap, is the mostly widely used parser for biomedical 

concept recognition, we chose to develop our own concept recognition algorithm to avoid 

the limitations in MetaMap output as identified by Luo et al. [11]. For example, the criterion 

“Patients with complications such as serious cardiac, renal and hepatic disorders” was 

parsed by MetaMap Transfer (MMTx) as {Patients |Patient or Disabled Group} {with 

complications |Pathologic Function} {such as serious cardiac, renal |Idea or Concept} {and|} 

{hepatic disorders |Disease or Syndrome}. These results were not granular enough. 

Additionally, MMTx returned the phrase “such as serious cardiac, renal” as a single 

constituent, which was problematic.
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Excluding trials with no or non-informative text, such as “please contact site for 

information” (e.g., NCT00000221), for each remaining trial listed on ClinicalTrials.gov, we 

extracted its eligibility criteria text and preprocessed it by removing white spaces. We then 

performed sentence boundary detection for feature extraction. We first tried commonly used 

sentence boundary detectors such as the NLTK sent_tokenize function [12] but they alone 

were ineffective due to the variability in the formatting of the criteria text, e.g., some 

sentences lacked boundary identifiers or used different bullet symbols as separators. 

Therefore, we first applied bullet symbols or numbers as splitting identifiers and then 

applied NLTK on the remaining text chunks. For example, the eligibility criteria text of trial 

NCT00401219 contained both bullet symbols and a sentence boundary identifier. Therefore, 

the text was first split using the bullet symbols and then chunked using the identifiers. We 

improved the NLTK function to handle words like “e.g.” and “etc.”, which were incorrectly 

separated by the period symbol.

We identified terms using a syntactic-tree analysis after part-of-speech (POS) tagging. This 

method was better than an n-gram-based method for pair-wise similarity calculation because 

the latter generated overlapping terms, which could lead to overestimation of similarity, or 

omitted candidate features that were not sufficiently frequent, which could cause 

underestimation of similarity. After testing several parsers, we utilized an open library8 to 

generate syntactic trees based on POS tags labeled by NLTK. Using predefined parsing 

rules, we traversed the syntactic trees and extracted phrases using NLTK WordNet 

lemmatizer and stemming modules. For example, from the sentence “a multi-center study of 

the validity” the algorithm would generate the following syntactic tree: {(S a/DT (NP 

(NBAR multi-/NN center/NN study/NN)) of/IN the/DT (NP (NBAR validity/NN)))}. From 

the tree, two noun phrases were extracted using NBAR tag (one predefined rule): “multi-

center study” and “validity”.

Being candidate semantic features, all terms were looked up in the UMLS using normalized 

substring matching rather than exact string matching. The advantage of this fuzzy term 

mapping strategy is that partial or complete term could be mapped to a UMLS concept. For 

example, we can extract a semantic feature “serious hypertensive disease”, where 

“hypertensive disease” is a UMLS concept, from term “serious systemic arterial 

hypertension” even if the latter as a whole does not exist in UMLS. For a term p, each word 

w was assigned as a start point for substring generation after checking with a list of English 

stop words, a list of non-preferred POS tags, and a list of non-preferred semantic types. For 

a start point wi, substring from wi to an end point word wj (i< j<length(p), wj∈p) was 

generated as sij with j from reverse direction (largest substring first). sij was then processed 

through UTF decoding, word normalization (by NLTK WordNet Lemmatizer and word case 

modifier), word checking (on punctuations, numeric, English stop words, and medical 

related stop words), and acronym checking to match with UMLS concepts. If there was no 

match, it moved to substring si(j−1) for next matching until j=i+1. Once there was a match, 

the start point wi was set to point wj (skip the start points between wi and wj); otherwise, i 

was set to i+1 for next round of matching until i equals length(p)−1.

8https://gist.github.com/alexbowe/879414
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A term can be associated with multiple UMLS concepts with different semantic types. We 

performed concept disambiguation using a set of predefined semantic preference rules [13]. 

For example, a term “pregnancy test negative” was associated with two UMLS concepts, 

one being “pregnancy test negative” of the semantic type “Laboratory or Test Result” and 

the other being “reported negative home pregnancy test” of the semantic type “Finding”. In 

the UMLS Semantic Network, “Laboratory or Test Result” is a subtype of “Finding”. 

Hence, the more specific concept “pregnancy test negative” was assigned to this term.

We did not distinguish between inclusion and exclusion criteria for semantic feature 

extraction because not all trials, such as trial NCT00000114, had separate inclusion and 

exclusion criteria sections. The extracted unique semantic features were used for generating 

a trial-feature matrix and for calculating trial similarity. In the trial-feature matrix, each row 

corresponds to a set of semantic features from a certain trial and each column shows a 

certain feature existing in different trials. If a trial ti contains semantic feature sfm, row i and 

column m was recorded as 1, otherwise as 0.

2.2. Determining pairwise similarity

There are plenty of measures of semantic similarity between concepts used in Natural 

Language Processing [14–18]. Pedersen et al. [19] presented the adaptation of six domain-

independent measures and showed that an ontology-independent measure was most 

effective. Particularly for text clustering, Huang [20] compared 5 widely used similarity 

measures on 7 datasets and showed that the Jaccard similarity coefficient achieved best 

score on a well-studied dataset containing scientific papers from four sources. We adopted 

the Jaccard similarity coefficient for calculating pairwise similarity as it can assess both 

similarity and diversity [21]. For a collection of trials T = {t1, ti,…tj, ..tk} containing k trials, 

the pairwise similarity Simi of any two trials ti and tj was calculated as follows:

SF(ti) and SF(tj) are two sets of semantic features corresponding to ti and ti, respectively. If 

either SF(ti) or SF(tj) contains no semantic features, then the similarity is recorded as 0. 

Otherwise, it is calculated as the number of shared features (SF(ti) ∩ SF(tj)) divided by the 

number of features in the union (SF(ti) ∪ SF(tj)).

Due to the large number of trials and the large volume of semantic features, calculating the 

similarity between every possible pair of trials would be computationally intensive. To 

improve efficiency, we first ranked all trials by their counts of semantic features. Trial pairs 

with a large difference in their feature counts were discarded, since the large count gap 

would lead to a low similarity as the shared features were too few compared to the union 

features. We defined two rules to select similar trial pairs: |SF(ti)|>2*|SF(tj)| and |SF(ti)|<|

SF(tj)|/2, indicating that trial pairs with similarity below 0.5 were considered to have 

unsatisfactory similarity and discarded.
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2.3. Clustering trials

There are many clustering models based on connectivity, centroid, distribution, and so on 

[22–26]. Methods such as K-means and hierarchical clustering were also assessed. Inspired 

by the known algorithm Nearest Neighbor Search (NNS) [27], for each unique trial, we 

constructed a cluster by using this trial as the center and by identifying all its near neighbors. 

To measure nearness, we calculated the distance between each neighbor and the central trial 

using the following formula: distance=1 − similarity, where the similarity was the 

previously calculated pairwise similarity between the trial pair. For any central trial x, only 

trials whose similarities to the trial were greater than or equal to a predefined similarity 

threshold δ were included in the cluster centered on x. Therefore, we refer to these clusters 

as center-based clusters. Connected center-based clusters were merged to form similarity-

based clinical trial network using the DBScan algorithm [28]. In order to facilitate 

visualization and statistical analyses of clusters, we removed structural information (i.e., 

center vs. neighbor) and identified trial sets with distinctive membership compositions from 

all center-based clusters and named these sets as unique clusters. Fig. 2 illustrates the center-

based and unique clusters for example trials.

2.4. Evaluation design

The Amazon Mechanical Turk (MTurk9) is an online crowdsourcing platform that enables 

human workers to perform human intelligence task (HIT) [29]. It has been shown to be 

effective for similarity evaluation. For example, Snow et al. [30] reported high agreement 

between MTurk non-expert annotations and existing gold standards provided by experts on 

five natural language tasks including a word-similarity evaluation task. MTurk has also been 

used for evaluating biomedical informatics research. For instance, Maclean and Heer [31] 

presented crowdsourcing patient-authored text medical word identification tasks to MTurk 

non-experts and achieved results that were comparable in quality to those achieved by 

medical experts. Therefore, we used MTurk for evaluating the similarity within our clusters.

Regarding the limitations of using MTurk, Mason and Suri [32] pointed out some of these in 

their systematic review of MTurk with respect to efficiency improvement, quality assurance, 

security, ethics and privacy. They also suggested possible techniques to control submission 

quality, which were partially applied in our evaluation. Lee [33] summarized the 9 benefits 

and 4 limitations of using MTurk, including “instructions needed clarification over several 

tests”. Following these suggestions, we designed a two-phase evaluation and defined answer 

rejection rules to ensure data quality from MTurk. In the first phase, we determined the 

optimal similarity threshold. In the second phase, we evaluated the clusters generated using 

the optimal threshold.

Phase I – threshold determination—Based on empirical results we selected three 

candidate thresholds for optimization: i.e., 0.7, 0.8 and 0.9. We generated trial pairs having a 

similarity equal to each threshold. To obtain a representative sample, we plotted the 

distribution of average word counts per pair of texts as a box-plot. We then selected a total 

9https://www.mturk.com/
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of 20 pairs of texts, 5 from each quartile, from this distribution curve for each of the three 

thresholds. In total we generated 60 pairs of texts for evaluation.

The evaluation set was published as a HIT on the MTurk website with a reward of $1.20 

offered for completion of the entire HIT. For each pair of texts, workers were asked whether 

they agreed with the statement “The texts in the pair are similar.” Workers were instructed 

to avoid differences in actual numbers (e.g., age, cutoffs for laboratory values, etc.) and to 

focus only on broad criteria concepts when calculating similarity. Available answer choices 

were “Strongly agree”, “Agree”, “Neither agree nor disagree”, “Disagree”, and “Strongly 

disagree”. To quantify the mean and standard deviation (SD) of the answers for each 

candidate threshold, we mapped each of the above choices to numbers 5, 4, 3, 2, and 1, 

respectively. The optimal similarity threshold was selected by comparing the means and SDs 

of the three candidate thresholds.

To assure that workers were paying attention and not just randomly selecting answers, and 

to filter out “spammers” or “bots” [32], we inserted the hidden phrase “Waldo is hiding 

here” into one of the comparison text pairs. In the instructions, workers were informed that 

this phrase would appear in some of their eligibility criteria texts. They were instructed to 

select the answer choice “Found Waldo” upon seeing the phrase in the text rather than any 

of the choices pertaining to similarity. The instructions also explained that workers who 

failed to discriminate between pairs with or without the hidden phrase would result in 

rejection, without payment, of their work and a negative review of their performance posted 

to their profile. The entire HIT for any worker who failed the hidden phrase identification 

was deemed invalid and excluded. We continued recruiting workers until we got a total of 

10 valid, completed HITs. This resulted in 10 evaluations by unique workers of the entire 

60-pair set.

Phase II - cluster evaluation—Using the optimal threshold from Phase I, we generated 

unique clusters. To ensure a fair sampling of cluster sizes, the distribution of cluster sizes, 

measured in the number of nodes, was presented as a box plot. An evaluation set of 40 

clusters, 10 selected from each quartile, was then generated. The evaluation set was 

published as a HIT on the MTurk website with a reward of $1.20 offered for completion of 

the entire HIT. For each cluster, workers were asked to rate if every cluster contained similar 

texts using a 5-Likert scale. As in Phase I, workers were instructed to ignore the differences 

in attribute values, e.g., age, cutoffs for laboratory values, and to focus only on inclusion 

eligibility concepts when determining similarity for each trial pair.

The user interface design for the HIT is shown in Fig. 3. Clicking “click to view cluster” 

opens a page (Fig. 4) containing eligibility criteria texts from ClinicalTrials.gov for 

comparison.

We employed the same hidden phrase identification method for quality control as described 

in Phase I. Additionally, by performing the HIT ourselves, we estimated that it would be 

difficult to perform an accurate assessment of 40 clusters in less than 20 minutes. 

Accordingly we excluded the entire HIT if it was completed in less than 20 minutes. We 

continued recruiting workers until we got a total of 20 (double the number in Phase I) valid 
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and complete HITs. This resulted in 20 evaluations by unique workers for the entire 40 

cluster set.

3. Results

3.1. Semantic features and clusters

We extracted all 145,745 clinical trials present on ClinicalTrials.gov as of 05/17/2013. After 

excluding the trials whose eligibility criteria text section were missing or contained only the 

phrase “Please contact site for information”, 142,948 remained and were used as our dataset. 

We identified 2,770,746 sentences, from which 5,508,491 semantic features (459,936 

unique) were extracted, with 38.5 features per trial on average. Of the unique features, 

160,951 (34.99%) were shared by at least two trials. For instance, Table 1 aligns part of the 

semantic features extracted from trials “NCT00822978” and “NCT01034774”. The two 

trials shared 30 features (marked as “Y” in “Shared” column) and had 3 different features: 

“iodine”, “excessive alcohol consumption”, and “illegal substance”. As a result, their 

pairwise similarity is 0.91.

The percentage of unique features that are shared by at least two trials varies by the total 

number of trials used for feature extraction, as shown in Fig 5. With a sample of 40,000 

trials, the percentage of shared features is 31.34%. Beyond this point, increasing the number 

of trials only slightly affects this percentage. In our dataset, 34.99% of unique features are 

shared across all trials. Therefore, these shared features could be used to aid standardization 

efforts for clinical trials eligibility criteria. The remaining 65.01% of features are unique to a 

given trial. These features could be useful for distinguishing trials but not useful for 

clustering similar trials.

After discarding trial pairs with similarity less than 0.5, a total of 386,992 pairs remained 

and were used for clustering. Using the optimal similarity threshold (δ =0.9), as determined 

by the MTurk evaluation, 8,806 center-based and 3,614 unique clusters were generated. 

Cluster sizes ranged from 2 to 734 members. Table 2 shows the statistics for the first 9 sizes 

(2–10). Of the center-based clusters, most contained 2 (5,680 clusters, 64.5%) or 3 (969 

clusters, 11.0%) trials. Overall, the average center-based cluster size and unique cluster size 

are 65.34 and 2.85, respectively. There were 2,157 (24.5%) center-based clusters and 314 

unique clusters (8.69%) containing more than 3 trials, with the largest cluster containing 734 

trials.

3.2. Evaluation results using MTurk

In Phase I of the MTurk based evaluation, 20 pairs of eligibility criteria texts were selected 

from each of three similarity thresholds: 0.7, 0.8, and 0.9. Distributions of text length 

(measured as average number words per pair) for each threshold (Table 3) were used to 

select a representative sample of text lengths. Five pairs of texts were randomly selected 

from each quartile range. For example, for threshold of 0.7, the minimum, 1st quartile, 

median, 3rd quartile, and maximum are 26, 69, 108, 294.5, and 845, respectively, with the 

corresponding ranges being 26–69, 69–108, 108–294.5, 294.5–845. As a result, a total of 20 

pairs of texts for the threshold were selected. Of note, even though it appears that there is a 

correlation between threshold and text length based on the three thresholds presented here, 
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such a correlation was not observed on a bigger dataset of ten thresholds and their 

corresponding mean text lengths.

Of the 13 submissions received from 13 unique workers, three were rejected because the 

workers failed to identify the text containing “waldo”. We accepted the remaining 10 

submissions for a total expense of $13.20 ($1.20/submission × 10 submissions + $1.20 

commission fee). The mean and standard deviation (SD) of the scores for each threshold are 

shown in Table 4. The average of mean and standard deviation for all the thresholds are 3.72 

and 1.08, respectively. We selected 0.9 as the optimum similarity threshold because this was 

the only threshold where the mean score was > 4, which corresponds to the “Agree” choice.

In the Phase II of the evaluation, 20 unique workers evaluated 40 unique clusters. Ten 

clusters were randomly selected from each quartile range of the distribution of cluster sizes 

(measured as the number of trials in the cluster). The minimum, 1st quartile, median, 3rd 

quartile, and maximum cluster sizes were 2, 2, 2, 2, and 734, respectively. A total of 23 

submissions were received, 20 of which were accepted. Three submissions were rejected 

either for failing to identify the text containing “waldo” or for completing the evaluation too 

quickly, a sign of lack of careful consideration. The average time spent by workers on this 

task was 29 minutes.

One of the accepted submissions was originally rejected due to failure to correctly identify 

the text containing “waldo” but, after review by the authors, was later accepted after this 

worker explained that he tried but failed to find the “waldo” text. As for the evaluation, the 

total cost for Phase II was $24 (=$1.20/submission × 20 submissions + $2.40 commission). 

The inter-rater reliability was calculated as 0.92, using Cronbach’s Alpha10. The mean 

cluster quality score was 4.331±0.796; i.e., the overall response to the statement “This is a 

good cluster” was between “Agree” (4) and “Strongly agree” (5).

3.3. Disease-specific network visualization

Our method can visualize results as trial networks. For example, by limiting our dataset to 

“Breast Cancer”, we extracted 5,309 trials present on ClinicalTrials.gov as of 05/20/2013. A 

total of 4,844 trials were obtained after initial eligibility criteria filtering and 117,388 

sentences were acquired after sentence boundary identification. From these, we extracted 

255,614 semantic features and 98 center-based clusters (2.55 trials per cluster on average) 

using a similarity threshold of 0.9. A network diagram containing the clusters and unique 

features was automatically generated for visualization of the relatedness of the clusters (Fig. 

6). The large orange nodes represent individual clinical trials, while small blue nodes 

represent unique semantic features. The links between one feature node and multiple trial 

nodes denote that the semantic feature is shared by the trials. The more semantic features 

shared by trials, the closer are the trials. For a semantic feature, the more trials it is 

connected to, the closer it is located in to the center of the network (i.e., the high density 

area).

10http://en.wikipedia.org/wiki/Cronbach's_alpha
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3.4. A Cluster-based Clinical Trial Search Interface

We used the similarity-based search to enhance the ClinicalTrials.gov search interface for 

clinical trials. A demonstration system for this design is available online12. After searching 

for trials using standard search functions on ClinicalTrials.gov, users can select any trial to 

perform a cluster-based search and view trials with similar eligibility criteria features. 

Adjacent to each trial in the cluster was an indicator showing whether this trial belonged to 

another cluster. A user could choose to view that cluster. In this way, users would be able to 

explore the network of trials, whose eligibility criteria were similar to the initial trial of 

interest.

4. Discussion

We presented a method for clustering trials with similar eligibility criteria features to 

facilitate case-based clinical trial search. Nearly 35% of the features we extracted are shared 

by at least two trials. Our approach produced clusters of manageable sizes. Though more 

than 85% of the center-based clusters contained between 2 and 7 trials, the mean cluster size 

was 65.34. This effect is mostly due to the presence of one large 734-member cluster. A 

closer look at the individual trials comprising this cluster revealed that all trials had identical 

eligibility criteria texts comprised of only one sentence: “No eligibility criteria”. Further 

analysis revealed that the eligibility criteria for these trials tended to be contained in other 

sections of the trial description. For some of these trials, diseases listed in the “Conditions” 

section (NCT00005154) were the only identifiable eligibility criteria. Since search by 

condition (a list of standardized elements) is already a search function of ClinicalTrials.gov, 

we did not include the condition section in our analysis of trial similarities. For a few trials, 

eligibility criteria were contained in the “Detailed Description” section (NCT00005444). 

This, combined with the presence of vast amounts of text pertaining to aspects of the study 

unrelated to eligibility contained within the “Detailed description” section, prompted us to 

exclude this section in our analysis. Finally, some trials contained no specific eligibility 

criteria anywhere in the trial description but did contain some general requirements, such as 

age and gender (NCT00005721). Since specific criteria are required to distinguish trials, we 

chose to exclude these trials for analysis.

Most clusters were either 2-member (64.5%) or 3-member (11%) clusters due to the use of a 

high similarity threshold (0.9). The MTurk workers lacked biomedical domain knowledge, 

which could potentially explain their preference for literal similarity with such a high 

threshold, though the advantage is that there was a high inter-rater reliability.

Limitations and Future Work

A recent publication showed that the trial summaries on ClinicalTrials.gov were more 

condensed than full-text protocols for 32 studies [34]. Therefore, similarity results based on 

the eligibility criteria text on ClinicalTrials.gov may not hold when full-text clinical 

protocols are used for all studies. However, our approach can be applied to assess protocol 

similarity. Since full-text clinical-trial protocols are usually not freely available (especially 

12http://columbiaelixr.appspot.com/cluster
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for ongoing studies), the current use of ClinicalTrials.gov as the data source is the best 

solution available at present.

The clusters we generated were meaningful and contained highly similar trials, which is the 

counterpart to high precision in information retrieval, but we may not have identified all 

such clusters, which is the counterpart to low recall in information retrieval. Recall may be 

improved by lowering the similarity threshold, which could decrease the proportion of 2- 

and 3-member clusters and increase the proportion of larger clusters, decreasing the degree 

of positive skew of cluster sizes. However, this improvement would be at the expense of a 

decrease in precision (i.e. some of the clusters at the lower thresholds would not be as 

relevant with member trials not as similar to each other). Therefore, one must balance the 

tradeoff between precision and recall by optimizing similarity threshold determination. Our 

use of MTurk for threshold optimization proved to be effective, though our starting range 

included only three thresholds derived through empiric testing and we used a small subset of 

eligibility criteria texts. More candidate thresholds and larger amounts of eligibility criteria 

text could be used for threshold optimization.

Our methodology does not take into account the attributes of eligibility features, such as the 

numerical value ranges for quantitative features, e.g, Age > 75 years old. As discussed in the 

Methods section, the effect of this disregard for numerical data is minimized by the presence 

of a large number of features (i.e., an average of 38.5) per trial, which, when considered 

together, help distinguish trials with different target populations. Yet our method may still 

mistakenly cluster trials recruiting different populations together due to this limitation. Thus, 

eligibility for one trial in a cluster does not necessarily imply qualification for all trials in the 

cluster. We are working on a method for extracting and utilizing information from numerical 

values ranges to further improve trial similarity measures in the future.

As the increase of the similarity threshold tends to decrease the proportion of larger clusters, 

high thresholds may be too restrictive for some users by displaying too few highly trials that 

are similar to the center one. One solution to this problem is to optimize threshold 

determination. Another approach is to rank trials by their similarity scores and to pick 

relative higher ones in each cluster. We intend to assess the utility of these methods in the 

future.

Network visualization enables a global view of a similarity-based clinical trial network that 

can show how trials are connected by common medical concepts and how these concepts are 

shared by different trials, across or within diseases. Another future work idea is to combine 

similarity-based trial networks with other networks such as those based on geographic 

locations for helping elucidate relationships among clinical trials from multiple perspectives.

5. Conclusions

We developed an automated approach for clustering trials of similar eligibility criteria. Our 

evaluation confirmed the similarities within clinical trial clusters, which can be valuable for 

researchers and patients alike. Our experience with the Amazon Mechanical Turk confirmed 

that with careful data quality control, crowdsourcing was an effective approach to engage 

the public to participate in evaluations of biomedical informatics interventions. We hope our 
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clinical trial search method can be integrated into clinical trial search engines to make 

clinical trial search easier for end users.
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Highlights

• A feature-based approach identifies clinical trials with similar eligibility text.

• Identified clusters are effective according to crowd-sourced evaluation.

• Trial clusters can facilitate similarity-based trial search and systematic review.
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Fig. 1. 
The framework for automatically identifying clinical trial clusters based on eligibility 

criteria similarity
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Fig. 2. 
Center-based clusters and unique clusters constructed from four example trials
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Fig. 3. 
The user interface of HIT designed for MTurks for cluster evaluation
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Fig. 4. 
The eligibility criteria of trials in an example cluster for comparison by workers
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Fig. 5. 
Percentage of unique features shared by at least two trials as a function of total number of 

trials
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Fig. 6. 
The dynamically generated network diagram of all “Breast Cancer” related trials11

11http://columbiaelixr.appspot.com/static/cluster_breast_cancer.html
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Table 1

Parts of semantic features extracted from trials NCT00822978 and NCT01034774

NCT00822978 NCT01034774 Shared

Hypertensive disease Hypertensive disease Y

Deafness Deafness Y

SGCG gene SGCG gene Y

Kidney problem Kidney problem Y

Hearing Hearing Y

Aminoglycosides Aminoglycosides Y

Family history Family history Y

Seizures Seizures Y

Asthma Asthma Y

Recent blood donor Recent blood donor Y

Ear structure Ear structure Y

Previous injury Previous injury Y

Diabetes Diabetes Y

Continue medical condition Continue medical condition Y

Smoker Smoker Y

Heart diseases Heart diseases Y

Iodine Excessive alcohol consumption N

Illegal substance N
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Table 2

The relationship between cluster size and number of clusters

Cluster size
Number of clusters

Center-based Unique

2 5,680 (64.5%) 2,910 (80.5%)

3 969 (11%) 390 (10.8%)

4 464 (5.3%) 146 (4%)

5 222 (2.5%) 61 (1.7%)

6 78 (0.9%) 22 (0.6%)

7 79 (0.9%) 16 (0.4%)

8 20 (0.2%) 6 (0.2%)

9 53 (0.6%) 13 (0.4%)

10 50 (0.6%) 11 (0.3%)
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Table 4

The mean and standard deviation of MTurk similarity ratings at different thresholds

Threshold Mean Standard deviation

0.7 3.35 1.20

0.8 3.81 0.97

0.9 4.00 1.07
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