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Cost-benefit analysis is a prerequisite for making good business decisions. In the business environment,
companies intend to make profit from maximizing information utility of published data while having an
obligation to protect individual privacy. In this paper, we quantify the trade-off between privacy and data
utility in health data publishing in terms of monetary value. We propose an analytical cost model that can
help health information custodians (HICs) make better decisions about sharing person-specific health
data with other parties. We examine relevant cost factors associated with the value of anonymized data
and the possible damage cost due to potential privacy breaches. Our model guides an HIC to find the opti-
mal value of publishing health data and could be utilized for both perturbative and non-perturbative
anonymization techniques. We show that our approach can identify the optimal value for different pri-
vacy models, including K-anonymity, LKC-privacy, and �-differential privacy, under various anonymization
algorithms and privacy parameters through extensive experiments on real-life data.
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1. Introduction

Electronic Health Record (EHR) systems have been widely
deployed in recent years [1]. Typically, an EHR system provides
stable and secure storage for large volumes of health data, includ-
ing patient medical histories, laboratory test results, demographics
and billing records. Centralized storage facilitates daily operations
of different health service providers and provides an ideal environ-
ment for supporting effective health data mining. The goal of
health data mining is to efficiently and effectively extract hidden
knowledge from a large volume of health data with the goal of
improving the operations of health service providers or supporting
medical research. Data mining on EHRs has been proven to be ben-
eficial to health service providers, researchers, patients, and health
insurers [2].

To achieve effective health data mining, the prerequisite is to
gain access to high-quality health data. Yet, health data by default
is sensitive, and health information custodians (HICs) have the
obligation to preserve patients’ privacy [3–5] in order to minimize
potential risks. The current practice of health data sharing is pri-
marily based on obtaining consent from patients; however, HICs
have faced increasing privacy breaches of different natures [6,7]
due to either the negligence of administrative staff or the employ-
ment of weak de-identification methods.

In the past decade, many new privacy-enhancing techniques
have been proposed to thwart different types of privacy attacks
[8]. New privacy models and data anonymization methods have
been iteratively proposed, broken, and patched with the discovery
of new types of privacy attacks [9–11]. Thus, it is very difficult, if
not impossible, to claim that the published data is bulletproof for
all privacy attacks. Consequently, when an HIC shares patient-
specific data with another party, he/she would like to know the
answers to the following questions:

� Which privacy model and anonymization algorithm should be
employed?
� Given an anonymization algorithm, how do we choose the

parameters to provide adequate privacy protection to the
patients?
� How useful is the data after anonymization?
� What is the probability of a privacy breach on the released

data?
� What are the costs in case of a patient privacy breach?
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A practical approach is to identify, minimize, and accept the
risks by studying the trade-off between privacy protection and
information utility. The recent study [12] shows that the number
of health service providers reporting cases of data privacy breaches
is increasing every year. The data loss includes patients’ sensitive
information, medical files, billing information, and insurance
records. The average economic impact of data breaches over the
last two years is $2:4 million. These data loss incidents have nega-
tive impacts on the public’s perception of HICs and can result in
potential civil lawsuits from patients’ compensation claims
[13,14]. Measuring the economic consequence of a privacy breach
is beneficial, but also challenging. In this paper, we model the asso-
ciated costs and benefits of sharing person-specific health informa-
tion under different data anonymization methods at different
privacy protection levels in terms of monetary value.

The contributions of this paper are summarized as follows. We
study the challenges of sharing patient-specific health data (e.g.,
EHRs) faced by HICs. Different privacy models, such as K-anonymity
[6], LKC-privacy [15] and �-differential privacy [16], have been pro-
posed to thwart potential privacy attacks on released data at the
cost of degradation of data utility. We develop an analytical cost
model to search for the optimal trade-off between privacy and data
utility in terms of monetary value. To make our proposed model
practical, we take into consideration many possible factors, such
as the cost of data distortion, the likelihood of a privacy breach,
the expected cost of lawsuits and compensation costs, so that HICs
can measure the costs and benefits of releasing health data for sec-
ondary and commercial uses. Our model is suitable for both non-
perturbative and perturbative anonymization techniques. Finally,
we demonstrate the effectiveness of our proposed model by per-
forming an extensive experimental evaluation on real-life data.
Nevertheless, we would like to point out that the cost model pro-
posed in this paper is by no means the only feasible model. In fact,
there might exist many other reasonable models that may yield
different monetary values for anonymized health data. This fact
does not undermine our contributions as our goal is to provide a
practical basis for HICs to make prudent decisions.

The rest of the paper is organized as follows. In Section 2, we
review the related work. In Section 3, we present several ways of
quantifying the degree of privacy protection and information util-
ity, followed by an overview of two anonymization algorithms and
a problem statement. In Section 4, we provide details of our pro-
posed analytical cost model. In Section 5, we evaluate our proposed
model by extensive experiments on real-life person-specific data.
In Section 6, we discuss the criteria and the integration of cost fac-
tors in our model. Finally, we conclude the paper and discuss pos-
sible future work in Section 7.
2. Related work

The research topic of privacy-preserving data publishing has
received enormous attention from different research communities.
In this section, we review the state-of-the-arts with an emphasis
on assessing the trade-off between privacy and data utility.

Yassine and Shirmohammadi [17] propose a negotiation pro-
cess between online consumers and sellers in which consumers
can capitalize on their personal information. Danthine and Donald-
son [18] employ a risk-based premium method to determine con-
sumers’ payoff. The quantified privacy risk is context-dependent
for each consumer. Similar to other business risks, the privacy risk
could significantly affect the revenue of a company. Jentzsch et al.
[19] analyze the monetization of privacy and find that many con-
sumers prefer service providers with lower prices, even if they
are more privacy invasive. If the products and prices are similar,
then the service provider that collects less personal information
gets a significant share of the market by offering privacy-friendly
online services. A duopoly model is used to allow consumers to
select a service provider depending on privacy concerns and the
offers made by providers.

Zielinski and Olivier [20] study the optimum trade-off between
privacy and data utility from the perspective of Economic Price
Theory. They model the problem as an optimization problem and
solve it by using the Lagrange multipliers method. They quantify
information utility and privacy based on the preferences of data
users and data owners on each identifying variable. Our problem
is different from theirs. We propose an analytical cost model that
provides a basis to aid in decision making by analyzing different
cost factors associated with the value of anonymized data and
the potential damage cost. We employ a top-down specialization
(TDS) algorithm that uses heuristic search techniques to find the
best possible trade-off between information utility and privacy.
Furthermore, Zielinski and Olivier’s work is limited to non-pertur-
bative microdata anonymization and is only applicable when global
recoding is used as the anonymization technique. In contrast, our
proposed method is applicable to both perturbative and non-
perturbative anonymization.

A family of previous works [21–24] discusses the trade-off
between privacy and utility, but not in terms of monetary value.
Loukides and Shao [21] present a distance-based quality measure
that handles both quasi-identifiers (QIDs) and sensitive attributes
on equal terms by optimizing the weighted sum of the amount
of generalization of QIDs and the amount of protection of sensitive
attributes for K-anonymous data. Li and Li [22] suggest that it is
inappropriate to directly compare privacy with utility. They
observe that the trade-off between privacy and utility in data pub-
lication is similar to the risk-return trade-off in financial invest-
ment, where the aim is to determine the appropriate level of
risk. They measure privacy by JS-divergence of the distribution of
the sensitive attribute and utility by utility loss against the original
data.

There are also some works [25–27] studying the trade-off
between disclosure risk and data utility under the confidentiality
map, where R denotes disclosure risk and U denotes data utility.
The R–U confidentiality map is introduced by Duncan et al. [25].
They quantify disclosure risk and data utility under three different
background knowledge states and visualize them on the R–U map
in order to determine the parameter values of a disclosure limita-
tion procedure and compare different disclosure limitation proce-
dures. Shlomo and Young [26] further explore the risk-utility
trade-off of different statistical disclosure control (SDC) methods
and aim to identify the optimal SDC method which reduces the dis-
closure risk to tolerable risk thresholds while ensuring high quality
data that is fit for purpose. Loukides et al. [27] assess the disclosure
risk and data utility trade-off offered by several popular transac-
tion data anonymization algorithms using the R–U confidentiality
map. Though very relevant to our paper, these works do not aim
to derive a cost model that monetizes the costs and benefits of
anonymizing health data.

Dwork et al. [16] discuss the differential privacy model, which
ensures that the addition or removal of a single database record
does not significantly affect any computation outcome over a data-
base. It provides privacy protection that is independent of an
adversary’s background knowledge. Ghosh et al. [23] propose
mechanisms that guarantee near-optimal utility to every potential
user, independent of side information and preferences. They model
the side information as a prior probability distribution over query
results, and preferences as a loss function. Alvim et al. [24] model
the database query system as an information-theoretic channel
and measure the information that an attacker can learn by posting
queries on a database and analyzing the response. They prove that
differential privacy provides protection by imposing the bound on



Table 1
Raw patient data.

Rec# Quasi-identifier (QID) Sensitive Class

Age Gender Occupation Disease Blood transfusion

1 29 M Doctor Migraine N
2 38 F Cleaner HIV Y
3 64 M Welder Asthma Y
4 38 F Painter HIV Y
5 56 M Painter Migraine N
6 24 F Lawyer Migraine Y
7 36 F Cleaner HIV Y
8 61 M Lawyer Asthma Y
9 39 F Painter HIV Y

10 24 M Technician Asthma N
11 52 M Painter HIV Y
12 41 F Lawyer Asthma N
13 28 M Lawyer Migraine Y
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information leakage and utility. This bound is strong enough to
prevent attacks using prior distributions. They use the binary gain
function to measure the utility of a query result.

Recently, substantial research has been conducted to study
privacy and utility trade-off for other types of data, such as
transaction data [21,28], trajectory data [29,30], and network data
[31–33].

In this paper, we consider several state-of-the-art anonymiza-
tion algorithms to achieve some commonly employed privacy
models, namely K-anonymity, LKC-privacy, and �-differential pri-
vacy. We evaluate the risks, costs and benefits of releasing the
anonymized data with respect to different degrees of privacy pro-
tection, and then perform a net cost-benefit analysis with the goal
of finding the optimal trade-off between privacy protection and
information utility.
14 37 M Cleaner HIV Y
15 66 M Welder Asthma N
16 36 F Painter HIV Y
17 44 M Painter HIV Y
3. Preliminaries

In this section, we present some measures to quantify the
degree of privacy protection and information utility, followed by
an overview of two commonly used anonymization algorithms
and our problem statement.

3.1. Quantifying privacy

An HIC wants to share a person-specific data table with a health
data miner (e.g., a medical practitioner or a health insurance com-
pany) for research purposes. A data table for classification analysis
typically contains four types of attributes: explicit identifiers,
quasi-identifiers ðQIDsÞ, sensitive attributes and class attributes.
Explicit identifiers, such as name and social security number
(SSN), are the attributes that contain explicit personally identifi-
able information. QID, such as date of birth, sex and race, is a set
of attributes whose values may not be unique, but whose combina-
tion may reveal the identity of an individual. Sensitive attributes,
such as disease, salary and marital status, contain an individual’s
sensitive information. A class attribute is the attribute that con-
tains class values for classification analysis.

Without loss of generality, a data table for classification analysis
(after removing explicit identifiers) can be defined as DðA1; . . . ;An;

Sens;ClassÞ, where fA1; . . . ;Ang are quasi-identifiers that can be
either categorical or numerical, Sens is a sensitive attribute, and
Class is a class attribute. A record in D has the form hv1;v2; . . . ;

vn; s; clsi, where v i is a value of Ai; s is a sensitive value of Sens,
and cls is a class value of Class.

3.1.1. Privacy threats
We introduce two most common types of privacy attacks,

record linkage and attribute linkage [8], in the following example.

Example 1. Consider the raw patient data in Table 1, where each
record corresponds to the personal and health information of a
patient, QID = {Age;Gender;Occupation}, Sens = {Disease}, and
Class = {Blood transfusion}. An HIC wants to release Table 1 to a
researcher for the purpose of classification analysis on the class
attribute Blood transfusion, which has two values, Y and N,
indicating whether or not the patient needs a blood transfusion.

In a record linkage attack [8], an adversary attempts to link a
real-life patient to a data record in the released data table. In other
words, the adversary wants to identify the record of a target victim
in the table. Suppose an adversary has gathered some background
knowledge about the target victim who is a female painter,
denoted by qid ¼ hF; Painteri. The adversary searches for the
records in the table that are consistent with the background
knowledge qid. The group of records matching a qid is denoted by
D½qid�. If the group size jD½qid�j is small, the adversary may identify
the victim’s record and his/her sensitive value. The probability of a
successful record linkage is 1=jD½qid�j. In this example, D½qid� ¼
fRec#4;9;16g.

In an attribute linkage attack [8], an adversary may not be able
to identify the exact record of a target victim, but could infer his/
her sensitive value with high confidence from the released table.
With the background knowledge qid on a target victim, an
adversary can identify D½qid� and infer that the victim has sensitive

value s with confidence PðsjqidÞ ¼ jD½qid^s�j
jD½qid�j , where D½qid ^ s� denotes

the set of records matching both qid and s. PðsjqidÞ is the
percentage of the records in D½qid� containing s. The privacy of
the target victim is at risk if PðsjqidÞ is high. For example,
given qid ¼ hM; Painteri, in Table 1, D½qid ^ HIV � ¼ fRec#11;17g;
D½qid� ¼ fRec#5;11;17g, and PðHIV jqidÞ ¼ 2=3 ¼ 66:67%.
3.1.2. Privacy models
Various privacy models have been proposed to protect against

the aforementioned linkage attacks. In this subsection, we discuss
the most widely adopted models in the literature, namely
K-anonymity, ‘-diversity, LKC-privacy, and �-differential privacy.

Definition 3.1 (K-anonymity [6]). Let DðA1; . . . ;AnÞ be a table and
QID be its quasi-identifier. D satisfies K-anonymity if and only if
each QID group in D appears in at least K records.

K-anonymity does not provide adequate privacy protection if the
sensitive values in an equivalence class (i.e., the group of records
matching a QID value) lack diversity, that is, it is subject to attribute
linkage attacks.

Machanavajjhala et al. [34,35] proposed a privacy model called
‘-diversity to thwart attribute linkage attacks. The principle of
‘-diversity is to require every QID group contains at least ‘ ‘‘well-
represented’’ sensitive values. There are several instantiations of
how to ensure the diversity within each QID group. A relatively
simple instantiation is to ensure that every QID group contains at
least ‘ distinct sensitive value [34–36]. An alternative diversity
privacy model is entropy ‘-diversity.

Definition 3.2 (Entropy ‘-diversity [35]). A table is entropy
‘-diverse if every QID group satisfies �

P
s2S Pðqid; sÞ logðPðqid; sÞÞ

P logð‘Þ, where S is a sensitive attribute and PðQID; sÞ is the
percentage of records in QID group containing the sensitive value s.
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LeFevre et al. [37,38] proposed a suite of workload-ware
anonymization algorithms to identify a minimally anonymous
table satisfying k-anonymity and/or entropy ‘-diversity with the
consideration of releasing the table for classification analysis and
answering queries. Due to the curse of high dimensionality [39],
enforcing K-anonymity on high-dimensional data would result in
significant information loss. To overcome this bottleneck, Moham-
med et al. [15] pointed out that, in a real-life privacy attack, it is
very difficult for an adversary to acquire the values of all QID attri-
butes of a target victim, leading to the LKC-privacy model. In this
model, an adversary’s background knowledge is bounded by at
most L QID attributes.

Definition 3.3 (LKC-privacy [15]). Let L be the maximum number
of QID attributes possessed by an adversary on a target victim and
S # Sens be a set of sensitive values. A data table D satisfies LKC-
privacy if and only if, for any qid with 0 < jqidj 6 L,
1. jD½qid�jP K , where K > 0 is an integer anonymity threshold,
and

2. for any s 2 S; PðsjqidÞ 6 C, where 0 < C 6 1 is a real number con-
fidence threshold.

Intuitively, LKC-privacy prevents both record and attribute link-
age attacks by ensuring that every qid value with maximum length
L in D is shared by at least K records and that the confidence of
inferring any sensitive values in S is not greater than C, where
L;K;C are thresholds and S is a set of sensitive values specified
by the HIC. LKC-privacy bounds the probability of a successful
record linkage to be 6 1=K and the probability of a successful attri-
bute linkage to be 6 C, provided that the adversary’s background
knowledge qid does not exceed L attributes. In general, LKC-privacy
is more flexible than K-anonymity in adjusting the trade-off
between privacy and utility.

Dwork et al. [16] propose differential privacy that provides
strong privacy guarantees independent of an adversary’s back-
ground knowledge and computational power.

Definition 3.4 (�-differential privacy [16]). A sanitization mecha-
nism Mr provides �-differential privacy, if for any two databases D1

and D2 that differ on at most one record, and for any possible
sanitized database D� 2 RangeðMrÞ,

Pr½MrðD1Þ ¼ D�� 6 e� � Pr½MrðD2Þ ¼ D��;

where the probabilities are taken over the randomness of Mr .
Differential privacy originates in the field of statistical dis-

closure control. It ensures that the addition or removal of a
single database record does not significantly affect the outcome
of any computation over a database. It follows that almost no
risk will be incurred by joining a statistical database. � is a
user-specified privacy parameter. A smaller � implies more
stringent privacy protection. Recently, Mohammed et al. [40]
present a sanitization method to achieve differential privacy
on heterogenous data that is a combination of relational data
and transaction data, in which the relational data contains
raw patient data and the transaction data contains the diag-
nostic codes.

3.2. Quantifying utility

When an HIC shares health data with a data recipient, he/she
may not know the intended use of the published data. Indeed,
there are many data analysis/mining tasks that can be performed
on the released data. Precise calculation of utility depends on the
requirement of the data recipient for which the HIC needs to
customize the anonymization process. For this reason, we consider
two utility measures in this paper.

The first measure, discernibility ratio (DR), aims at quantifying
the impact of anonymization on the overall data distortion for gen-
eral data analysis tasks. Discernibility ratio is suitable for the cases
where the analysis task is not known at the time of data publica-
tion. Formally, it is defined as:

DR ¼
P

qidjD½qid�j2

jDj2
ð1Þ

DR is the normalized discernibility cost with the range of
0 < DR 6 1. A lower value of DR represents higher data quality.

The second measure, classification accuracy (CA), aims at quanti-
fying utility for classification analysis, a specific data analysis task.
To determine the impact of anonymization on data utility for clas-
sification analysis, we can build a classifier on part of the anony-
mized records as the training set and measure the classification
error (CE) on the rest anonymized records as the testing set. CA is
calculated by 1� CE. In this paper, we use the well-known C4:5
classifier [41] for classification analysis. Baseline accuracy (BA) is
the accuracy measured on the raw data without anonymization.
BA� CA represents the cost of anonymization in terms of classifica-
tion accuracy.

Many other utility metrics have been introduced in the litera-
ture. Xu et al. [42] present the concept of certainty penalty for util-
ity measure. For a data table D consisting of both numerical and
categorical attributes, the total weighted normalized certainty pen-
alty (NCP) is the sum of the weighted normalized certainty penalty
of all records:

NCPðDÞ ¼
X
r2D

Xn

i¼1

ðwi � NCPAi
ðrÞÞ ð2Þ

where r denotes a record in the data table D;wi is the weight asso-
ciated with an attribute Ai;NCPAi

ðrÞ is defined as zi�yi
jAi j

for numerical

attributes, and NCPAi
ðrÞ is defined as sizeðuÞ

jAi j
for categorical attributes.

zi � yi is the difference between maximum and minimum values of
an equivalence class and sizeðuÞ is the number of leaf nodes that are
descendants of u in the hierarchy.

Aggregate query answering approach has been extensively used
in previous works [22,28,43] to quantify data utility or information
loss. The accuracy of a counting query Q is measured by the relative
error Rer:

RerðQÞ ¼
jQact � Q estj

Q act
ð3Þ

where Qact denotes the accurate answer for query Q when applied
to the original data D;Qest denotes the estimated answer when
applied to the anonymized data D0. To better estimate the utility
of an anonymized dataset, the one can compute average relative
error (ARE) on a set of queries. Our proposed model can adopt all
these models as utility metrics. To demonstrate a concrete instanti-
ation of our model, we focus on discernibility ratio DR and classifi-
cation accuracy (CA) in the rest of the paper.

3.3. Data anonymization algorithm

Data anonymization algorithms have to be carefully designed to
balance the trade-off between privacy and data utility. In this sub-
section, we discuss two state-of-the-art anonymization algorithms,
Top-Down Specialization (TDS) [15,44] and Differentially private
anonymization based on Generalization (DiffGen) [9], under differ-
ent privacy models.



Table 2
Anonymous data (L ¼ 2; K ¼ 2; C ¼ 0:5).

Rec# Quasi-identifier (QID) Sensitive Class

Age Gender Occupation Disease Blood transfusion

1 [1–99] M Professional Migraine N
2 [1–99] F Non-Technical HIV Y
3 [1–99] M Technical Asthma Y
4 [1–99] F Non-Technical HIV Y
5 [1–99] M Non-Technical Migraine N
6 [1–99] F Professional Migraine Y
7 [1–99] F Non-Technical HIV Y
8 [1–99] M Professional Asthma Y
9 [1–99] F Non-Technical HIV Y
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Algorithm 1. Top-Down Specialization (TDS) Algorithm [44]

1: Initialize every value in D to the topmost value.
2: Initialize Marki to include the topmost value.
3: while some x 2 [Marki is valid do
4: Find the Best specialization from [Marki.
5: Perform Best on D and update [Marki.
6: Update ScoreðxÞ and validity for x 2 [Marki.
7: end while;
8: Output D and [Marki.
10 [1–99] M Technical Asthma N
11 [1–99] M Non-Technical HIV Y
12 [1–99] F Professional Asthma N
13 [1–99] M Professional Migraine Y
14 [1–99] M Non-Technical HIV Y
15 [1–99] M Technical Asthma N
16 [1–99] F Non-Technical HIV Y
17 [1–99] M Non-Technical HIV Y
3.3.1. Top-down specialization algorithm

Algorithm 1 presents an overview of the Top-Down Specializa-
tion (TDS) algorithm [44] for achieving K-anonymity. Mohammed
et al. [15] present a variant of TDS that achieves LKC-privacy on
high-dimensional data.

Initially, all values in QID are generalized to the topmost value
in their taxonomy tree, as illustrated in Fig. 1. A taxonomy tree is
specified for each categorical attribute in QID. For each continuous
attribute in QID, a taxonomy tree can be dynamically grown at run-
time, forming a binary tree structure in which each non-leaf node
has exactly two child nodes that represent a split of the parent
interval. Marki initially contains the topmost value for each attri-
bute Ai in a taxonomy tree. At each iteration, the TDS algorithm
performs the Best specialization, which has the highest Score
among the candidates that are valid specializations in [Marki (Line
4). Then, Best is applied to D and [Marki is updated (Line 5). Finally,
it updates the Score and validity of the candidates in [Marki (Line
6).

The algorithm is efficient in updating Score and maintaining the
statistics for candidates in [Marki by directly accessing the data
records. It terminates if any further specialization would lead to
a violation of the privacy requirement. The specialization process
can be viewed as pushing the ‘‘mark’’ of each taxonomy tree down-
wards, which increases utility and decreases anonymity as the val-
ues of the records become more distinguishable. Fig. 1 illustrate a
solution mark indicated by the dotted lines which leads to the
anonymous Table 2.

We discuss the details of the score function for general and clas-
sification analysis below.

Score for general analysis. For the cases where data is released for
general data analysis or the data analysis task is unknown at the
time of data publication, we use a discernibility metric [45] as
the score function. The discernibility metric charges a cost to each
record for being identical to other records. For each record in an
equivalence group D½qid�, the penalty cost is jD½qid�j. Thus, the pen-
alty cost on the group is jD½qid�j2. To minimize the discernibility
penalty cost, we choose the specialization v ! childðvÞ that maxi-
mizes the value of all qid containing v, denoted by qidv .
Fig. 1. Taxono
ScoreðvÞ ¼ DMðvÞ ¼
X
qidv

jD½qidv �j
2 ð4Þ

Score for classification analysis. In the case of classification anal-
ysis, we use information gain, denoted by InfoGainðvÞ, to measure
the goodness of a specialization. Our selection criterion, ScoreðvÞ, is
to keep the specialization v ! childðvÞ that has the maximum
InfoGainðvÞ:

ScoreðvÞ ¼ InfoGainðvÞ: ð5Þ

InfoGain(v): Let Dx denote the set of records in D generalized to the
value x. Let freqðDx; clsÞ denote the number of records in Dx having
the class value cls. Note that jDv j ¼

P
cjDcj, where c 2 childðvÞ. So,

we have

InfoGainðvÞ ¼ HðDvÞ �
X

c

jDcj
jDv j

HðDcÞ; ð6Þ

HðDxÞ ¼ �
X

cls

freqðDx; clsÞ
jDxj

� log2
freqðDx; clsÞ
jDxj

; ð7Þ

where HðDxÞ measures the entropy of classes for the records in Dx

[41], and InfoGainðvÞmeasures the reduction of the entropy by spe-
cializing v into c 2 childðvÞ. A smaller entropy HðDxÞ implies higher
purity of the partition with respect to the class values. Example 2
shows the computation of InfoGainðvÞ.

Example 2. Consider Table 1 with L ¼ 2;K ¼ 2;C ¼ 50%, and
QID ¼ fAge;Gender;Occupationg. Initially, all data records are
generalized to h½1—99�;ANY Gender;ANY Occupationi, and [Marki

¼ f½1—99�;ANY Gen der;ANY Occupationg. To find the Best special-
ization among the candidates in [Marki, we compute
my trees.



112 R.H. Khokhar et al. / Journal of Biomedical Informatics 50 (2014) 107–121
Scoreð½1—99�Þ; ScoreðANY GenderÞ, and ScoreðANY OccupationÞ.
Below we show the computation of ScoreðANY OccupationÞ for
the specialization

ANY Occupation! fBlue� collar;White� collarg:

For general analysis:

ScoreðANY OccupationÞ ¼ 122 þ 52 ¼ 169

DR ¼ 32 þ 22 þ 52 þ 32 þ 42

172 ¼ 0:217993

For classification analysis:

HðDANY OccupationÞ ¼ �
12
17
� log2

12
17
� 5

17
� log2

5
17
¼ 0:8739

HðDBlue�collarÞ ¼ �
9

12
� log2

9
12
� 3

12
� log2

3
12
¼ 0:8112

HðDWhite�collarÞ ¼ �
3
5
� log2

3
5
� 2

5
� log2

2
5
¼ 0:9709

InfoGainðANY OccupationÞ ¼ HðDANY OccupationÞ

� 12
17
� HðDBlue�collarÞ þ

5
17
� HðDWhite�collarÞ

� �
¼ 0:0156

ScoreðANY OccupationÞ ¼ InfoGainðANY OccupationÞ ¼ 0:0156
Algorithm 2. DiffGen Algorithm [9]

1: Initialize every value in D to the topmost value;
2: Initialize Marki to include the topmost value;
3: �0  �

2ðjApr
n jþ2hÞ;

4: Determine the split value for each vn 2 [Marki with
probability / exp �0

2Du uðD;vnÞ
� �

;
5: Compute the score for 8v 2 [Marki;
6: for i = 1 to h do
7: Select v 2 [Marki with probability / exp �0

2Du uðD;vÞ
� �

;
8: Specialize v on D and update [Marki;
9: Determine the split value for each new vn 2 [Marki

with probability / exp �0
2Du uðD;vnÞ
� �

;
10: Update score for v 2 [Marki;
11: end for
12: return each group with count ðC þ Lapð2=�ÞÞ
3.3.2. Differentially private anonymization algorithm

We present the details of Differentially private anonymization
based on Generalization (DiffGen) [9] in Algorithm 2. DiffGen
achieves �-differential privacy by making two major extensions
on TDS. First, DiffGen selects the Best specialization based on the
exponential mechanism. Second, DiffGen adds Laplacian noise to
the qid counts in the generalized contingency table. The Laplacian
noise is calibrated based on the sensitivity of a function, which
quantifies the maximal impact of a single user on the function.

Initially, all values in the predictor attributes Apr (i.e., attributes
used to predict the class attribute) are generalized to the topmost
value in their taxonomy trees (Line 1), and Marki contains the top-
most value for each attribute Apr

i (Line 2). The algorithm first deter-
mines split points for all numerical candidates based on the
exponential mechanism (Line 4), and then computes the scores
for all candidates v 2 [Marki (Line 5). Different heuristics (e.g.,
information gain) can be used to calculate the scores. Based on
the scores, the algorithm probabilistically selects a candidate
v 2 [Marki to specialize (Lines 7–8). Similar specialization steps
are iteratively conducted until the given number of iterations has
been reached. Finally, the algorithm outputs the noisy count of
each group (Line 12) by using the Laplace mechanism. The privacy
parameter is carefully distributed to each operation (Line 3) so that
the algorithm satisfies �-differential privacy. The general operation
of Algorithm 2 is similar to that of Algorithm 1 except that all
decisions have to be probabilistically made in order to satisfy
differential privacy. A concrete example is available in [9].

3.4. Problem statement

This paper aims at answering the questions raised in Section 1
by proposing an analytical cost model. Let D be a raw patient-spe-
cific data table. An HIC would like to anonymize D and share the
anonymized version D0 with a third party. The HIC wants to quan-
tify the costs and benefits of publishing D0 in terms of the level of
privacy protection and information utility for future data analysis
tasks. Our goal is to propose an analytical cost model that quanti-
fies individual privacy and data utility in terms of monetary value.
This model provides guidance for HICs in finding the optimal value
based on the choices of privacy models, privacy protection levels
and anonymization algorithms. Formally, our research problem is
defined as follows.

Definition 3.5 (Problem Definition). Given an input raw patient-
specific data table D, a set of privacy models along with different
privacy parameters and a set of anonymization algorithms, the
research problem is to develop an analytical cost model that
outputs an anonymized table D0 that achieves the optimal mon-
etary value.

We note that the optimal value may change with the variations
of different qualitative and quantitative factors that influence the
outcome of a decision. To make our model practical in different
scenarios, we identify a large number of relevant factors that
may contribute to the decision-making process.

The problem we consider in this paper is different from tradi-
tional optimization problems. In our problem, we are concerned
with a small number of variables (e.g., privacy models, privacy
parameters and anonymization algorithms) with a few possible
values. This implies that it is feasible for an HIC to exhaustively
search for the optimal value. For this reason, in this paper, we
are not concerned with the approximation and computational
complexity issues, which are normally important to an optimiza-
tion problem.

4. Proposed solution

In this section, we present a solution to quantify the trade-off
between privacy and utility in data publication in terms of mone-
tary value. Our analytical cost model is applicable to both pertur-
bative and non-perturbative anonymization techniques. In the
subsequent analysis, we focus on analyzing person-specific rela-
tional data, but our model is also applicable to other types of data,
such as set-valued data and sequential data. Our proposed model
will be evaluated under several common privacy models, namely
K-anonymity, LKC-privacy, and �-differential privacy. Section 4.1
presents the analytical cost model, Section 4.2 discusses the rele-
vant factors of determining the value of anonymized data and
the factors that contribute to the potential damage cost, and
Section 4.3 introduces the attack model.

4.1. Analytical cost model

Our proposed analytical cost model is the first model that quan-
tifies costs and benefits of releasing anonymized data in terms of
monetary value. Fig. 2 gives the overview of the proposed cost
model, where nodes represent different types of factors, and



Fig. 2. Our analytical cost model.
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arrows indicate the dependencies between different factors. For
example, the arrow pointing from Size of Dataset to Monetary Value
of Raw Dataset indicates the dependency of Monetary Value of Raw
Dataset on Size of Dataset. Our model allows a user to choose pri-
vacy models along with anonymization algorithms and privacy
parameters and then analyze the impact of privacy protection on
information utility for health data mining in terms of monetary
value. It helps identify the economic consequences of sharing
patients’ health data.

Broadly, Value of Anonymized Data depends upon Monetary
Value of Raw Dataset and Cost of Anonymization. On one hand, data
anonymization may impact Value of Anonymized Data by hiding
potentially relevant information that could be used for data analy-
sis; on the other hand, it may provide benefits from reducing the
risk of privacy breaches and therefore costs of potential compensa-
tion. The factor Cost of Anonymization in the model represents
either Cost of Distortion for general data analysis or Cost in terms
of Classification Quality for classification analysis. Optimal Value is
the model’s objective and evaluates the overall value or desirability
of possible outcomes. This model can help HICs make better
decisions by quantifying the value of their earnings, the impact
of a privacy breach, and possible costs of compensation when
person-specific health data is shared for secondary and commercial
purposes.

We stress that our proposed model is by no means the only rea-
sonable one. There can be other reasonable models for different
data sharing scenarios. In fact, we deem that there may not exist
a silver bullet for all data sharing scenarios. To make our model
applicable to different data sharing scenarios, we take into consid-
eration many possible factors along with their mathematical rela-
tionships. We note that, in a particular case, not all these factors
are necessary, and an HIC is free to add, delete or replace the fac-
tors as needed. We point out that there might be other reasonable
factors, nevertheless our cost model is still of significance because
it provides a basis for HICs to start with. We expect our model to be
of practical use. Moreover, one salient feature of our model is that
it guides an HIC to identify the best trade-off between privacy and
utility in terms of monetary value.
4.2. Cost factors

To build the analytical cost model in Fig. 2, we need to identify
and study the relevant quantitative and qualitative cost factors. We
learn the factors from different sources [46] and integrate them
into our analytical cost model. In general, the factors fall into
two categories: the factors determining the monetary value of
anonymized data and the factors resulting in the potential damage
cost. It is natural to observe that the net benefit of publishing
health data is the difference between these two categories of fac-
tors, or, more specifically, the difference between the value of
anonymized data and the potential damage cost.

4.2.1. Sensitivity of dataset
The sensitivity of a dataset SD is a given qualitative factor, and

its level l represents the importance of data privacy. Intuitively, a
higher sensitivity level of l implies a higher monetary value of a
raw dataset, and also a higher impact on the potential damage cost.
Data privacy risks increase with the increase of data sensitivity.

4.2.2. Size of dataset
The size of a dataset Sizeds is a quantitative factor representing

the total number of records in the dataset. Sizeds increases as the
number of records in the dataset increases. Each record has a mon-
etary value. As the number of records increases, the value of a raw
dataset also increases.

4.2.3. Price per attribute
The price per attribute Prattr is a quantitative factor and repre-

sents the cost of collecting one successful questionnaire for an
attribute.

4.2.4. Attribute count
The attribute count Countattr represents the number of attri-

butes in a single record.

4.2.5. Price per record
The price per record Prrec is a quantitative factor and represents

the unit price of a record. Naturally, it is the product of the price
per attribute Prattr and the attribute count Countattr in a single
record. That is,

Prrec ¼ Prattr � Countattr ð8Þ

The value of a raw dataset increases as the unit price per record
increases.

4.2.6. Monetary value of raw dataset
Intuitively, the monetary value of a raw dataset Costrd is the

product of the sensitivity of the dataset SD, the size of the dataset
Sizeds, and the price per record Prrec , which is formulated as follows.

Costrd ¼ SD� Sizeds � Prrec ð9Þ

In our model, the monetary value of a raw dataset roughly cor-
responds to the cost of data collection. In some scenarios, the data
collection process may not be replicable (e.g., the case of health
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data collection). We argue that, even for these scenarios, our model
is still meaningful in the sense that the derivation of the monetary
value of raw data in our model provides a critical foundation for
the negotiation between data owners and data recipients. From
the viewpoint of the data recipients, the composition of the value
of the raw data in our model adds transparency to the negotiation
process with the data owner. This is important, especially consid-
ering the fact that health data collection is not replicable by exter-
nal entities, which implies that the data recipients cannot obtain
another quote to determine whether the asked price is reasonable.
From the viewpoint of the data owners, it is indispensable to have
a way to measure the value of the raw data in order to perform
cost-benefit analysis no matter whether the data collection process
is replicable or not. This is critical for HICs to make a right decision
on whether or not to publish a dataset.

4.2.7. Cost of distortion
To determine the cost of distortion CoD for general data analy-

sis, the HIC needs to calculate the discernibility ratio (DR) of the
raw dataset before applying any anonymization process, denoted
by DRbefore, and the DR of the anonymized data, denoted by
DRafter . The information distortion (or utility loss) due to anonymi-
zation can be captured by the difference between DRbefore and
DRafter . Therefore, the cost of distortion CoD becomes:

CoD ¼ Costrd � ðDRafter � DRbeforeÞ ð10Þ

Note that DRafter is always greater than or equal to DRbefore.

4.2.8. Cost in terms of classification quality
To determine the cost in terms of classification quality CCQ, we

make use of the difference between baseline accuracy (BA) and
classification accuracy (CA). Recall that BA measures the accuracy
of classification analysis on raw data while CA measures the accu-
racy on anonymized data. BA� CA represents the cost of anonymi-
zation in terms of classification accuracy. Therefore, the cost in
terms of classification quality is defined as

CCQ ¼ Costrd � ðBA� CAÞ ð11Þ
4.2.9. Value of anonymized data
Naturally, the value of anonymized data is the difference of the

monetary value of raw data and the cost of anonymization (either
CoD or CCQ). It is the earning of an institution by selling anony-
mized data for research or commercial purposes. For general anal-
ysis tasks, the value of anonymized data ValAD is defined as:

ValAD ¼ Costrd � CoD ð12Þ

For classification analysis, the value of anonymized data ValAD is
defined as:

ValAD ¼ Costrd � CCQ ð13Þ
4.2.10. Likelihood of privacy breach
The likelihood of privacy breach Lpb measures an adversary’s

capability of inferring the sensitive attribute value of a victim, in
percentage, based on an attack model (see Section 4.3 for details)
by using his/her background knowledge. Let us assume that the
victim’s record is in the released dataset and the adversary knows
the victim’s QID. Formally, Lpb for general and classification analy-
sis cases1 is defined as:

Lpb ¼
Total records count on Senval

Total records count on class label Senattr
ð14Þ
1 We do not use separate notations of Lpb; Ecostlwst ; Probatk; PCC; PDC, or Optval for
general analysis and classification analysis cases.
where Senval denotes the value of the sensitive attribute and Senattr

denotes the sensitive attribute in the dataset.

4.2.11. Expected cost of lawsuit
The expected cost of lawsuit Ecostlwst is due to monetary fines or

penalties applicable by law in real life for data privacy breach inci-
dents. It is a qualitative factor because its monetary value may vary
depending on the nature of a privacy breach. Ecostlwst increases as
the level of data sensitivity l increases. The approximate value of
Ecostlwst

1 can be estimated based on the historical trends of privacy
breaches. For example, according to the new HITECH penalty
scheme [47], the penalty for a violation in which it is known that
the violation was due to reasonable cause and not to willful neglect
is an amount not less than $1000 or more than $50,000 for each
violation. In fact, the lawsuit cost is not fixed. It varies with the
probability of attack and affects the potential compensation cost.

The expected cost of lawsuit should not be taken directly into
the account of compensation cost. We attempt to estimate the law-
suit cost which varies depend upon the applied privacy protection
measures. An adversary may infer sensitive information from the
anonymized dataset using precision and recall measures employed
in the equation of probability of attack to exploit inherent weak-
ness of privacy protection method. An HIC may recognize the
implications of privacy breach and the associated compensation
costs prior to sharing medical dataset. Readers may refer to the
study on data privacy breach incidents [48].

4.2.12. Probability of attack
The probability of attack Probatk is caused by the implicit weak-

ness of privacy protection methods. Probatk changes with respect to
the chosen privacy model and its level of privacy protection. It is
taken by calculating the F-measure on the sensitive attribute value
Senval. F-measure is a weighted harmonic mean of precision and
recall. Precision and recall are used to measure the quality of
results which an adversary can exploit for privacy attacks. For-
mally, Probatk

1 for general and classification analysis is defined as:

Probatk ¼
2� ðPrecision on Senval � Recall on SenvalÞ

Precision on Senval þ Recall on Senval
ð15Þ
4.2.13. Potential compensation cost
The potential compensation cost PCC indicates how the com-

pensation cost would vary in real life in the presence of an attack
and its severity level. PCC is affected by the choice of the privacy
model and its level of privacy protection. In general, more stringent
privacy parameters imply less chance of a privacy attack. We
hypothesize that privacy attacks would have an exponential
impact on the compensation cost due to costly litigation processes
[49]. There is no specific monetary value for compensation cost in
[49], but a person who suffers financial loss due to the disclosure of
his/her sensitive information may claim for compensation. As the
probability of attack Probatk increases, PCC also increases. Formally,
PCC1 for general and classification analysis case is defined as:

PCC ¼ expðProbatkÞ � Ecostlwst ð16Þ
4.2.14. Fixed operating cost
The fixed operating cost FOC is a quantitative factor, and its

value is independent of the employed anonymization process.
Fixed operating costs may include, for example, rent, utilities, pay-
ments for equipments, and system maintenance. FOC remains the
same regardless of the changes in Value of Anonymized Data ValAD.

4.2.15. Potential damage cost
The potential damage cost PDC is the cost associated with data

privacy breaches. When an adversary attempts to infer the
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sensitive value of a victim from the released anonymized dataset
using an attack model (as discussed in Section 4.3), there is a risk
of sensitive information disclosure which is measured by the like-
lihood of a privacy breach in Section 4.2.10. PDC signifies the costs
of mitigating the effects of a privacy breach. It may include signif-
icant costs incurred in sending mandatory breach notifications,
dealing with regulatory investigations, hiring external auditors,
facing class action litigation, and losing goodwill of the general
public due to decreased patient loyalty [50]. Therefore, PDC to
the HICs is determined by the likelihood of privacy breach Lpb,
the potential compensation cost PCC, and the fixed operating cost
FOC. As suggested by existing studies [14,51], we deem that Lpb

would have an exponential impact on the potential damage cost
due to the fact that a plaintiff seeks a remedy for alleged harms,
such as actual financial loss incurred from the identity theft, emo-
tional distress, or possible future losses [52]. Formally, PDC1 for
general and classification analysis is defined as:

PDC ¼ expðLpbÞ � PCC þ FOC ð17Þ
4.2.16. Net value
The net value NV shows due diligence in evaluating the cost

factors. NV is used in cost-benefit analysis to quantify the differ-
ence between the value of anonymized data and the potential
damage cost on different privacy protection levels. The net value
provides a single monetary value when the values of the previous
factors are determined. Formally, NVga for general analysis and
NVca for classification analysis are calculated respectively as
follows.

NVga ¼ ValADga � PDC ð18Þ
NVca ¼ ValADca � PDC ð19Þ
4.2.17. Optimal value
The optimal value Optval is defined to be the maximal net value

NV for general analysis or classification analysis. It can be obtained
by calculating NV under different privacy models, different anony-
mization algorithms and different privacy parameters and choos-
ing the maximal one. In this way, our model guides an HIC to
find the optimal value of publishing health data. Formally, Optval

1

is defined as:

Optval ¼maxðNVÞ ð20Þ
Table 3
Confusion matrix.

Predicted class

A B C

Actual class
HIV (A) 3 0 0
Asthma (B) 0 1 0
Migraine (C) 0 1 0
4.3. Attack model

Let D be the raw patient data as shown in Table 1, and D0 be the
anonymized version of patient data as shown in Table 2. Recall
that Disease is the sensitive attribute and Blood transfusion is the
class attribute. Assume the anonymized data table D0 is released
together with the classifier. The adversary may have some addi-
tional background knowledge about a victim. Without loss of gen-
erality, assume that he/she knows that the victim is in the table
and knows the victim’s qid. Our attack model is similar to [53] in
the sense that we are thinking from an adversary’s perspective
and predicting the sensitive attribute value of a target victim
who is a participant in the anonymized training data. An adversary
cannot link a record to an individual, although he can infer some
sensitive values with a high confidence. We set the sensitive attri-
bute Disease as the class label and then use classification algorithm
C4:5 to infer the sensitive attribute of individuals. In our attack
model we use precision and recall measures to evaluate the qual-
ity of results on the class label Disease. Below we provide the
details of these measures followed by an example of a confusion
matrix.
4.3.1. F-measure
Precision is a measure of exactness or quality that is formally

defined as the number of correctly classified positive elements
divided by the total number of elements classified as positive. Let
TP be true positive, FP be false positive, and FN be false negative.

Precision ¼ TP
TP þ FP

ð21Þ

Recall is a measure of completeness or quantity which is for-
mally defined as the number of correctly classified positive ele-
ments divided by the total number of actual positive elements.

Recall ¼ TP
TP þ FN

ð22Þ

F-measure is the harmonic mean of precision and recall and is
formally defined as:

F �measure ¼ 2� ðPrecision� RecallÞ
Precisionþ Recall

ð23Þ
4.3.2. Confusion matrix
A confusion matrix contains information about actual and pre-

dicted classifications done by a well-known classification model.
The performance of a classification model on a sensitive attribute
is evaluated using the data in the matrix.

Example 3. Consider the anonymous table D0 in Table 2. An
adversary sets the sensitive attribute Disease as a class on D0. This
results in a new data table D�. The adversary then uses the
classification model C4:5 on D� to infer sensitive attributes of
individuals. The confusion matrix for the three-class classifier is
shown in Table 3. The rows correspond to the actual classes of the
raw records, and the columns correspond to the predictions made
by the model. The values on the diagonal represent the number of
correctly classified instances; other values show the errors.

We next show the calculation of the performance measures for
the above confusion matrix on sensitive values. For the sensitive
value HIV, TP ¼ 3; FN ¼ 0, and FP ¼ 0. So we obtain
Precision ¼ 1;Recall ¼ 1, and F-measure ¼ 1. An adversary may
use these performance measures to determine the success rate of
a privacy attack. F-measure represents the probability of attack
Probatk. When its value equals 1, it means that there is a 100%
chance of a successful attack.
4.3.3. Background knowledge attack
As demonstrated by the attack model discussed in Example 3,

an adversary may apply the C4:5 classifier on data table D� to pre-
dict the sensitive value of an individual who is a part of the anon-
ymized training data. In addition, we assume that the adversary
knows that the victim is in the table and also knows the victim’s
qid (i.e., hF; Painteri). By applying this background knowledge to
the anonymized training data, the adversary finds a total of 4
records on the class attribute Disease with the sensitive value
HIV. So, the likelihood of privacy breach Lpb for this case becomes
4/4 that is calculated according to Eq. (14). This implies that the
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adversary has 100% confidence of inferring the sensitive disease
value of the victim.
Fig. 3. CA on Income and MaritalStatus for general analysis.
5. Empirical study

In this section, our objectives are to study the impact of enforc-
ing different data anonymization methods at different privacy pro-
tection levels on information utility for data mining in terms of
monetary value. More specifically, we perform experiments: (1)
to measure the classification accuracy on the class attribute and
the sensitive attribute, (2) to measure the cost of distortion, (3)
to measure the cost in terms of classification quality, (4) to esti-
mate the probability of attack by using precision and recall perfor-
mance measures, (5) to quantify the likelihood of a privacy breach
impacted by an adversary’s background knowledge about victims,
and (6) to perform net cost-benefit analysis to measure the value of
anonymized data, the potential damage cost, and the optimal value
on the released data.

In our experiments, we employ the real-life dataset Adult,2

which has been widely used for different research purposes and
has been the de facto benchmark for comparing the performance of
anonymization algorithms [54,44,9]. It contains 45,222 records with
8 categorical attributes, 6 numerical attributes, and a binary Income
class attribute (records with unknown instances are removed). In
our study, we consider Income as the class attribute, denoted by
Class Income, and MaritalStatus be the sensitive attribute, denoted
by Sens MaritalStatus, and the remaining 13 attributes as QID. We
consider the values Married-civ-spouse and Divorced of MaritalStatus
as sensitive. All experiments were performed on an Intel dual core
1.8 GHz PC with 2 GB memory.
Fig. 4. CA on Income and MaritalStatus for classification analysis.
5.1. Classification accuracy on class label and sensitive attribute

Fig. 3 depicts the classification accuracy CA for general data
analysis with privacy threshold 10 6 K 6 50, background knowl-
edge L ¼ 2;4;6, and confidence threshold C ¼ 50%. We observe
that the CA on the class attribute Income generally decreases as K
or L increases, but not monotonically. For example, the CA on
Income increases slightly by 0.1% when K increases from 40 to 50
for L ¼ 2. Similarly, the CA on the sensitive attribute MaritalStatus
generally decreases as K or L increases, but with some irregulari-
ties. For example, the CA on MaritalStatus increases by 0.4% when
K increases from 10 to 20 for L ¼ 2, and it increases by 0.2% when
K increases from 30 to 40 for L ¼ 6. In these cases, the CA increases
because generalization can eliminate some noise. However, as L
increases to 6, the CA of LKC-privacy equals the CA of the traditional
K-anonymity model for both Income and MaritalStatus. This is due
to the fact that Adult does not contain any combination of 6 or more
attributes whose every subset of attributes satisfies the privacy
model. In other words, all privacy threats involving more than 6
attributes can be eliminated by removing the privacy threats
involving less than 6 attributes.

Fig. 4 presents the classification accuracy CA for classification
analysis with identical parameter settings to those of Fig. 3. We
observe the similar trend that the CA on the class attribute Income
generally decreases as L increases, but not monotonically with the
increase of K. For example, CA on Income increases by 3:1% when K
increases from 10 to 20 for L ¼ 4 and L ¼ 6. Similarly, the CA on the
sensitive attribute MaritalStatus generally decreases as L increases,
but not monotonically with the increase of K. For example, the CA
on MaritalStatus increases slightly, by 0.6%, when K increases from
30 to 50 for L ¼ 4 and L ¼ 6. The CA of LKC-privacy equals the CA of
2 Available at: http://archive.ics.uci.edu/ml/datasets/Adult.
the traditional K-anonymity for both Income and MaritalStatus
when L ¼ 4 and L ¼ 6 due to the reason explained before.

5.2. Cost of distortion

Suppose the sensitivity of the dataset SD ¼ 3, the price per attri-
bute Prattr ¼ :1, the number of attributes per record Countattr ¼ 13,
the expected cost of lawsuit Ecostlwst = $10,000, and the size of
dataset Sizeds = 45,222.

Fig. 5 depicts the cost of distortion CoD for general data analysis
with a privacy threshold 10 6 K 6 50, background knowledge
L ¼ 2;4;6, and confidence threshold C ¼ 50%. As expected, we
observe that CoD generally increases as K or L increases. The CoD
remains the same for several different parameter settings because
there is no change in DRafter . For the same reason, the CoD of LKC-
privacy equals the CoD of K-anonymity when L ¼ 6. Though not
shown in Fig. 5, CoD is insensitive to change of confidence thresh-
old 10% 6 C 6 50%.

5.3. Cost in terms of classification quality

Again suppose the sensitivity of the dataset SD ¼ 3, the price
per attribute Prattr ¼ $:1, the number of attributes per record
Countattr ¼ 13, the expected cost of lawsuit Ecostlwst = $10,000,

http://archive.ics.uci.edu/ml/datasets/Adult
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and the size of dataset Sizeds = 45,222. The baseline accuracy (BA) as
calculated on raw data is 85:3%.

Fig. 6 presents the cost in terms of classification quality CCQ for
classification analysis with privacy threshold 10 6 K 6 50, back-
ground knowledge L ¼ 2;4;6; and confidence threshold C ¼ 50%.
It can be observed that CCQ generally increases as L increases,
but does not exhibit obvious monotonicity with the increase of K.
For example, CCQ decreases by $5467:34 when K increases from
10 to 20 when L ¼ 4 and L ¼ 6. This is because the cost of anony-
mization in terms of classification accuracy ðBA� CAÞ is reduced
from 4:2% to 1:1%, and this aids in finding the sub-optimal solu-
tion. CCQ is also insensitive to the change of confidence threshold
10% 6 C 6 50%.

Fig. 7 depicts the cost in terms of classification quality CostCQ
using DiffGen for classification analysis with privacy parameters
� ¼ 0:5 and 1:0 and specialization levels 3 6 h 6 19. We use
30,162 records in Adult dataset to build the classifier and then
measure the accuracy on the remaining 15,060 records. We use
10-fold cross-validation to estimate the average accuracy. We
observe that CostCQ generally decreases as the specialization level
h increases, except when privacy budget � ¼ 0:5 and specialization
level h increases from 15 to 19. It is because when � is small, having
too many levels makes each specialization less accurate.

5.4. Probability of attack

Suppose the sensitivity of the dataset SD ¼ 2, the price per attri-
bute Prattr ¼ $:1, the number of attributes per record Countattr ¼ 13,
Fig. 6. Cost in terms of classification quality for classification analysis.
the expected cost of lawsuit Ecostlwst = $10,000, and the size of
dataset Sizeds = 45,222.

Fig. 8 presents the probability of attack Probatk and its conse-
quences in the terms of potential compensation cost PCC for the
sensitive value Married-civ-spouse in case of general data analysis,
where privacy threshold 10 6 K 6 50, background knowledge
L ¼ 2;4;6, and confidence threshold C ¼ 50%. We observe that
PCC generally decreases as Probatk decreases or L increases, but
not monotonically with the increase of K. The potential compensa-
tion cost is reduced to $40789.40, corresponding to the lowest
probability of attack 71:27% when L ¼ 6 or K P 20. This is consis-
tent with the theoretical analysis that more stringent privacy
requirements lead to lower probabilities of privacy attacks and
thus less potential compensation costs.

Fig. 9 shows the probability of attack Probatk for the sensitive
value Married-civ-spouse in the case of classification analysis with
privacy threshold 10 6 K 6 50, background knowledge L ¼ 2;4;6,
and confidence threshold C ¼ 50%. We can observe the similar
trend that Probatk generally decreases as K or L increases, which
also conforms to the theoretical analysis.

5.5. Likelihood of privacy breach

Suppose an adversary has background knowledge about a male
victim that his age is between 46 and 50, his education-num is
P 13, his native-country is Canada, and his salary is P50,000.
Fig. 8. Probability of attack and PCC for general analysis.
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Fig. 10 shows the likelihood of privacy breach Lpb when the
adversary applies her background knowledge on the sensitive
value Married-civ-spouse in the case of general data analysis, where
privacy threshold 10 6 K 6 50, adversary’s knowledge L ¼ 2;4;6,
and confidence threshold C ¼ 50%. We observe that Lpb changes
as the adversary’s knowledge L increases, but it is less sensitive
to the increase of K when K P 20. It is interesting to observe that
Lpb increases from 87:04% to 88:49%, as L increases from 2 to 4.
This seems counter-intuitive as normally a larger L value implies
a smaller likelihood of privacy breach. We believe that it is due
to the fact that the TDS algorithm only identifies sub-optimal
solutions.

Fig. 11 presents the likelihood of privacy breach Lpb for classifi-
cation analysis with the identical parameter settings to those of
Fig. 10. We observe that in general Lpb decreases as L increases,
but shows some irregularities with the increase of K. This
anti-monotonic property of the TDS algorithm helps identify the
sub-optimal solution. The Lpb of LKC-privacy equals the Lpb of
K-anonymity when L ¼ 4 and L ¼ 6 because the classification
accuracy on the sensitive MaritalStatus attribute remains unchanged
with the increase of L. Though not shown in the figure, Lpb is
insensitive to change of confidence threshold 10% 6 C 6 50%.

5.6. Net cost-benefit analysis

Suppose the price per attribute Prattr ¼ $:1, the number of attri-
butes per record Countattr ¼ 13, the expected cost of lawsuit
Fig. 10. Likelihood of privacy breach for general analysis.
Ecostlwst ¼ $10;000, the fixed operating cost FOC ¼ $100, and the
size of dataset Sizeds ¼ 45;222. Baseline accuracy (BA) calculated
on the raw data is 85:3%.

In Fig. 12, we conduct cost-benefit analysis for general data
analysis by giving ValADga ; PDC;NVga, and Ecostlwst with the sensitiv-
ity of the dataset 1 6 SD 6 5, privacy threshold K ¼ 30, background
knowledge L ¼ 2;4;6, and confidence threshold C ¼ 50%. It can be
observed that ValADga and PDC generally increase as the sensitivity
of the dataset SD increases, and decrease as L increases. There are
several interesting findings in Fig. 12. First, when L ¼ 2, with the
increase of SD, the NV of publishing health data becomes negative,
suggesting that insufficient privacy protection can make data own-
ers incur loss of money. Second, publishing health data with a
proper trade-off between privacy and data utility can bring in sub-
stantial earnings for data owners. For example, when SD ¼ 5,
choosing L ¼ 6 for LKC-privacy or K ¼ 30 for K-anonymity results
in a NV greater than $30,000.

In Fig. 13, we identify the optimal value under different privacy
models and different privacy parameters for classification analysis.
We show ValADca ; PDC and NVca, and Optval with the sensitivity of
the dataset SD ¼ 3, privacy threshold 10 6 K 6 50, background
knowledge L ¼ 2;4;6, and confidence threshold C ¼ 50%. We can
observe that the optimal value (the maximum NVca in all parame-
ter settings) $36316.31 is achieved when L ¼ 4 or 6 and K ¼ 20 for
LKC-privacy or when K ¼ 20 for K-anonymity. This result suggests
Fig. 12. Cost-benefit analysis for general data analysis.



Fig. 13. Optimal value for classification analysis.

Fig. 14. ValAD of DiffGen for classification analysis.
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that the optimal value is obtained by carefully balancing the trade-
off between privacy and data utility. The NV values under various
settings exhibit huge differences. When K ¼ 10, the net values
are negative, suggesting that the HIC should not publish the data
with weak privacy protection. The result confirm the benefit of
employing our proposed model in health data publishing.

Fig. 14 depicts the value of anonymized data using DiffGen for
classification analysis with privacy parameters � ¼ 0:5;1:0 and
specialization levels 3 6 h 6 19. We observe that the ValAD gener-
ally increases as the specialization level h increases, because more
specializations preserve more information utility. But when
� ¼ 0:5, having too many specializations may negatively impact
utility, since excessive noise is added to each specialization. This
explains the fall when � ¼ 0:5 and h ¼ 19. The maximum ValAD

$166312.95 is achieved when � ¼ 1:0 and h ¼ 19. Since DiffGen
prevents data breaches from adversaries with arbitrary back-
ground knowledge, we learn that applying adversary knowledge,
as mentioned in Section 5.5, on differentially private data does
not result in significant privacy breaches. Therefore, it reflects no
potential damage cost.

5.7. Summary of empirical study

We show how to use our proposed model to search for the opti-
mal value through extensive experiments on real-life data. Under
our model, an HIC can compare costs and benefits by choosing
different privacy models, different privacy parameters and differ-
ent anonymization algorithms so as to achieve the optimal value.
From the experimental results, we learn that the optimal value is
obtained by carefully balancing the trade-off between privacy
and utility. Choosing either too weak or overly strong privacy
protection often leads to less desirable net values. This fact
demonstrates the benefit of our analytical cost model for
privacy-preserving health data publishing.
6. Discussion

Proposing an analytical cost model to conduct cost-benefit anal-
ysis for privacy-preserving health data publishing is a challenging
task. In this section, we justify the design of our cost model, iden-
tify some of its limitations that are inherent known problems of
cost-benefit analysis, and finally discuss the possibility of incorpo-
rating alternative cost models.

Under the theory of cost-benefit analysis, the most important
steps of building a cost model are the selection of cost factors
and their valuations [55]. We follow the procedure used in cost-
benefit analysis to determine the factors that should be included
in our cost model.

� Identify the problem.
� Gather the stakeholders’ requirements.
� Design the scenario as per requirements.
� Study the possible factors that can be incorporated in the

scenario.
� Identify each factor’s properties in the problem domain.
� Evaluate the importance of each factor.

In our problem, patients, HICs (on behalf of data owners) and
data recipients are the most important stakeholders. For these
stakeholders, we identify the most important factors, as illustrated
in Fig. 2, to reflect patients’ requirements on privacy, data recipi-
ents’ requirements on data utility and HICs’ requirements on prop-
erly balancing privacy and utility in order to publish health data for
profit. Consequently, we identify the following relevant factors:

1. Privacy models for balancing the trade-off between data pri-
vacy and utility.

2. Anonymization methods to generalize the data (bottom-up/
top-down).

3. Cost of anonymization due to information loss.
4. Monetary value of personal data.
5. Number of records in the dataset.
6. Sensitivity level of dataset.
7. Benefit/value earned from anonymized data.
8. Monetary fines or penalties applicable by law.
9. Compensation cost caused by the weakness of the privacy

protection method.
10. Risk of privacy breach.
11. Potential damage cost due to data privacy breach.

However, due to the nature of cost-benefit analysis, there are
some inherent limitations in our model. Inaccuracies in cost-bene-
fit analysis may arise in many steps. One main source of inaccura-
cies comes from the decision of what factors count [55]. In spite of
our very best efforts, it is not possible to consider all meaningful
factors in our models. This will inevitably incur inaccuracies, which
is referred to as omission errors in cost-benefit analysis. Similarly,
for the identified factors, there are alternative ways to valuate
them, leading to valuation errors. Indeed, as pointed out by [56],
there is no common accepted methodology for estimating the
value of personal data. Fortunately, these errors do not diminish
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the value of cost-benefit analysis, and they are expected to decline
over time, for example, due to increased knowledge and subse-
quent ex post analysis [55]. Under our model, these errors will
decrease by adding/removing cost factors and adjusting their mon-
etary values according to the specific application scenario and ex
post analysis. We note that any factor that demonstrates its appli-
cability and usefulness in an application scenario could be incorpo-
rated in our model. Some possible candidates could be the cost of
data preprocessing, standard data format, service cost, hardware
and software infrastructure to adapt the change, and hiring experts
to develop anonymization methods. It is worth mentioning that
our model is open to modifications of factors, and therefore can
be tuned for different application scenarios.

In general, there may exist many reasonable alternative models.
For example, though not directly relevant to our problem, Yin [57]
discusses the costs and benefits of sharing electronic health
records. Romanosky and Acquisti [48] provide an economic cost
model based on economic theory to analyze the consumer privacy
costs. Both of them could be adapted to address our problem. How-
ever, in cost-benefit analysis, it is unrealistic (and maybe not nec-
essary) to identify all possible models. In practice, usually only one
model will be analyzed with the status quo [55]. Therefore, it is
necessary to discuss the connection between our proposed model
and other possible cost models. In essence, a cost model is com-
posed of its cost factors and their valuations. Our proposed model
can incorporate the factors and their valuations from other cost
models based on the application scenario. For example, if the data
analysis task is known to be one of those identified in [26] (e.g.,
statistical hypothesis tests), the cost of anonymization in our
model could be accordingly updated by using the corresponding
utility metric. We stress that what factors to use should be decided
based on the application scenario, and could be continuously
adjusted over time.

7. Conclusion

In this paper, we propose an analytical cost model that can ben-
efit health information custodians (HICs) from making better deci-
sions on sharing health data for secondary and commercial uses.
Our model quantifies the trade-off between individual privacy
and data utility in terms of monetary value for both general data
analysis and classification analysis. Our proposed model integrates
relevant quantitative and qualitative cost factors associated with
the value of anonymized data and the potential damage cost and
effectively guides HICs to achieve the optimal value to privacy-pre-
serving health data publishing. Our analytical cost model and the
identified factors also apply to other privacy-preserving data pub-
lishing scenarios for other types of data, such as transaction data
[28], trajectory data [29], and social network data [33]. We expect
this work to shed light on future research that studies the trade-off
between privacy protection and information utility.
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