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Abstract

Objective—Data in electronic health records (EHRs) is being increasingly leveraged for 

secondary uses, ranging from biomedical association studies to comparative effectiveness. To 

perform studies at scale and transfer knowledge from one institution to another in a meaningful 

way, we need to harmonize the phenotypes in such systems. Traditionally, this has been 

accomplished through expert specification of phenotypes via standardized terminologies, such as 

billing codes. However, this approach may be biased by the experience and expectations of the 

experts, as well as the vocabulary used to describe such patients. The goal of this work is to 

develop a data-driven strategy to 1) infer phenotypic topics within patient populations and 2) 

assess the degree to which such topics facilitate a mapping across populations in disparate 

healthcare systems.
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Methods—We adapt a generative topic modeling strategy, based on latent Dirichlet allocation, to 

infer phenotypic topics. We utilize a variance analysis to assess the projection of a patient 

population from one healthcare system onto the topics learned from another system. The 

consistency of learned phenotypic topics was evaluated using 1) the similarity of topics, 2) the 

stability of a patient population across topics, and 3) the transferability of a topic across sites. We 

evaluated our approaches using four months of inpatient data from two geographically distinct 

healthcare systems: 1) Northwestern Memorial Hospital (NMH) and 2) Vanderbilt University 

Medical Center (VUMC).

Results—The method learned 25 phenotypic topics from each healthcare system. The average 

cosine similarity between matched topics across the two sites was 0.39, a remarkably high value 

given the very high dimensionality of the feature space. The average stability of VUMC and NMH 

patients across the topics of two sites was 0.988 and 0.812, respectively, as measured by the 

Pearson correlation coefficient. Also the VUMC and NMH topics have smaller variance of 

characterizing patient population of two sites than standard clinical terminologies (e.g., ICD9), 

suggesting they may be more reliably transferred across hospital systems.

Conclusions—Phenotypic topics learned from EHR data can be more stable and transferable 

than billing codes for characterizing the general status of a patient population. This suggests that 

EHR-based research may be able to leverage such phenotypic topics as variables when pooling 

patient populations in predictive models.
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1. Introduction

There is mounting evidence to suggest that data derived from electronic health records 

(EHRs) can be applied in a secondary fashion to support a wide range of activities. There are 

indications, for instance, that EHR data can facilitate novel clinical decision support [1–2], 

conduct biomedical association studies [3–9], improve auditing and EHR security [10–12], 

and assess the cost effectiveness of treatments [13]. It is further anticipated that EHR data 

can be utilized to efficiently support a learning healthcare system, where information about 

care and operations is translated into knowledge for evidence-based clinical practice and 

positive change [14–15]. At the same time, there are significant challenges to reusing EHR 
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data, including a lack of common standards to merge clinical data and translate clinical 

concepts between disparate healthcare systems [1, 15–16]. As such, it is critical to develop 

scalable methods to learn clinical concepts (or phenotypes) that can be translated across 

disparate healthcare systems.

In recognition of such a challenge, the past several years have witnessed a movement 

towards strategies to engineer and implement processes that standardize EHRs and derived 

concepts [17–22]. These strategies are driven both by rule-based models that are specified 

by experts, as well as data-driven methods that attempt to learn patterns from the 

information within EHRs. With respect to rule-based models, researchers often rely upon 

billing codes (e.g., International Classification of Diseases, or ICD) or modified versions of 

such vocabularies (e.g., Phenome-Wide Association Study, or PheWAS, codes [23–24]) to 

characterize the diagnoses of patients in disparate healthcare systems (e.g., [19–20, 22]). 

Since billing codes can be inaccurate, often other EHR data, such as medication and 

laboratory data, often are combined with billing data to form more accurate phenotypes [25]. 

However, these rule-based methods are limited by the significant amount of manual effort 

(e.g., physician chart reviews) required to implement them. Furthermore, these types of 

studies are only appropriate for known phenotypes. As a result, the process of investigating 

phenotypes across disparate healthcare systems is often quite slow and hampered in the 

discovery of new phenotypes. By contrast, data-driven methods rely upon techniques to 

learn phenotypic patterns from databases of EHRs (e.g., [17–18]). Yet these methods are 

also limited in that they learn patterns from healthcare systems independently.

This paper introduces a method to automatically learn phenotypic topics and evaluate their 

consistency across disparate healthcare systems. For this study, we limit our analysis to 

billing code data as a demonstration project to investigate the method, recognizing that if 

successful, the method could be applied to other discrete EHR data. Such topics can be 

leveraged as control variables to align patient populations across multiple systems. After 

validation by knowledgeable domain experts, such topics may become novel phenotypes 

that are worthy of further investigation.

The proposed method is composed of two primary steps. First, it infers phenotypic topics 

from the EHRs of each healthcare system through a generative model. Second, it measures 

the consistency of the learned topics for characterizing the patient populations across 

disparate systems. To the best of our knowledge, this is the first approach to automatically 

infer and test the alignment of phenotypic topics from the EHR data of multiple healthcare 

systems. To demonstrate feasibility, we perform an analysis on four months of inpatient 

billing data from two geographically distinct systems: i) the Northwestern Memorial 

Hospital (NMH) and ii) Vanderbilt University Medical Center (VUMC). The results 

demonstrate that learned phenotypic topics that appear to have a high degree of similarity 

can be found in two different healthcare systems.

The remainder of this paper is structured as follows. Section 2 introduces data-driven and 

expert-based phenotypic topic learning algorithms. Models of phenotypic topic learning and 

evaluation criteria for their consistency across multiple systems are introduced in Section 3. 

The design of the experimental environment is described in Section 4, while Section 5 
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reports on the corresponding results. A discussion of the findings, as well as limitations is 

provided in Section 6 and Section 7 provides a conclusion and next steps.

2. Background

Methods for modeling phenotypic topics through EHR data can roughly be categorized into 

1) expert- and 2) data-driven. The former is based on the experience of clinically-

knowledgeable individuals. As such, the process is often limited to known phenotypes and 

can be slow, particularly when validating the specification of a phenotype across disparate 

systems. The latter incorporates automation, which leads to significant gains in efficiency 

and strives to minimize manual attention. However, to date, phenotypic topics have been 

learned from healthcare systems independently, such that their ability to serve as common 

variables across healthcare systems is unknown.

2.1. Expert-based Phenotypes

A significant number of healthcare organizations have implemented commercial EHR 

systems [26]. At times, systems are implemented, or adapted, in multiple sites according to 

standardized policies [27]. However, EHR systems remain highly diverse due to the fact that 

EHR (and terminology) utilization, as well business processes, is often site-specific [28–29]. 

As a result, it is difficult to perform investigations across sites [28–33]. Challenges remain 

in reusing such data for research, such as the mapping of the data to a common standard that 

can enable research across one large cohort [1, 28]. As such, the research community is only 

beginning to use phenotypic concepts to merge patients with similar conditions (or specific 

diseases) from disparate systems [19, 21–22, 29–33].

Here, we consider several representative works for illustration. First, Tanpowpong and 

colleagues [31] evaluated the value of ICD-9 codes for identifying a specific phenotype in 

the form of celiac disease. To do so, they identified all adults with an ICD-9 code of 579.0 at 

three hospitals and stratified the cohort according to the presence/absence of relevant 

serology and endoscopy codes into four groups. Columa and colleagues [32] moved beyond 

billing codes and demonstrated the potential for the integration of information from clinical 

narratives. Using the phenotype of acute myocardial infarction in EHR data from three 

European countries, it was shown that an approach using the combination of billing codes 

and free text yielded a better positive predictive value than an approach using codes alone.

Beyond identifying specific diseases, EHR-based phenotyping algorithms have been utilized 

to measure the similarity of patients from different sites. Schildcrout and colleagues [20] 

quantified the variability in comorbid ICD9 codes for six phenotypes across five sites, 

including type 2 diabetes and peripheral arterial disease. They found that patients with the 

same phenotype at disparate institutions appeared to exhibit more similar comorbidity 

profiles than those representing different phenotypes; however, there was still variability 

within the same phenotype at different institutions.

While a phenotyping algorithm can be specified using various terminologies, the application 

of an algorithm on patient cohorts in disparate settings can often yield differing results. In an 

attempt to address this challenge, it was indicated that standardized information modeling 
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and meaningful use standards could be leveraged for the presentation of a phenotyping 

algorithm across institutions [29–30]. It was shown that a consensus model can be more 

effective than a single site’s specification for phenotype discovery across sites.

While these studies illustrate the potential for data derived from EHRs and the need for 

harmonization of phenotype definitions, they have several limitations. First, all of these 

studies require significant manual effort. This indicates that the speed of learning phenotypic 

topics across sites can be slow, lacking scalability to a large number of phenotypes. Second, 

such expert-based methods are restricted to known phenotypes, which limit their utility in 

discovery-based research.

2.2. Data-driven Phenotypes

By contrast, data-driven methods aim to automate the mining of phenotypic topics from 

EHR data. There has been a flurry of activity in various automated learning methods for 

high-throughput phenotyping over the past several years.

First, it was recently shown that inductive logic programming (ILP) can be applied to EHR 

data to learn ICD-9 code based phenotypes [34]. However, in preparation for ILP, which 

was applied to identify phenotype features, the investigators needed to review and assign 

labels to a set of patient records that were representative of a larger corpus.

While the previous work relies upon supervised learning, more recent methods have focused 

on the unsupervised setting. Lasko et al. [17], for instance, introduced an unsupervised 

algorithm, based on deep learning methods, to discover phenotypic features from EHR data. 

This method relies upon Gaussian process regression, followed by a feature discovery step 

based on deep learning, to learn phenotypic features from sequences of serum uric acid 

measurements. It was shown that the learned features could accurately distinguish between 

the uric-acid signatures of gout and acute leukemia. Other approaches have applied matrix 

(or, more generally, tensor) factorization methods to derive phenotypic topics in temporal 

settings [35]. With respect to the latter, variations of unsupervised nonnegative tensor 

factorization methods have been introduced to decompose combinations of diagnoses, 

medications, and procedures [18, 36]. This approach was applied, for instance, on a cohort 

of approximately 30,000 heart failure patients and illustrated that the top 40 phenotypic 

topics could outperform the original 640 features (which consisted of 169 diagnosis 

categories and 471 medication types) in learning patient clusters.

Beyond its application for mining phenotypic topics from EHR data, data-driven methods on 

EHR data have also been leveraged to mine communities of care providers [10–11], 

semantic concepts of patients [37] and clinical pathway patterns through the activity logs of 

healthcare systems [38–40]. For example, Huang and colleagues [39] used an altered latent 

Dirichlet allocation (LDA) model to infer patterns of clinical pathways from EHR activity 

logs. Specifically, they applied an altered LDA model on two cohorts: 1) patients treated for 

unstable angina and 2) patients treated in an oncological setting. The model inferred five 

clinical pathways for each of the two settings. Though a pilot study, it was demonstrated that 

learned pathway patterns can enable decision support and greater efficiency in coordinated 

clinical treatments. Bouarfa and Dankelman [38] derived a workflow consensus from 
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clinical activity logs to detect outlying workflows without prior knowledge from experts. 

They adopted a tree-guided multiple sequence alignment approach to model the consensus 

of workflows. This strategy was validated over the workflow processes associated with 

laparoscopic cholecystectomy, where the results indicated the derived consensus conforms 

to the main steps of the surgical procedure as described in best practice guidelines.

The above data-driven research indicates the automated learning of concepts in the clinical 

domain can be efficient and scalable. However, the existing methods are limited in that they 

only learn phenotypic topics from the EHR of a single institution.

3. Methods

The general framework for the proposed method is depicted in Figure 1. The framework is 

composed of two parts: 1) a Topic Learning Model, which extracts phenotypic topics for 

each site (as depicted in the top part of the figure) and 2) three Topic consistency 

Measurements, which evaluate the consistency of phenotypic topics across disparate sites 

(as depicted in the bottom part of the figure).

We now provide a high-level overview of the models and then proceed with a deeper dive 

into each component. For reference, a legend of the notation used throughout this paper is 

provided in Table 1.

For illustration, we assume there are two healthcare systems, A and B. We let PA represent 

the set of patients from site A, where each patient is defined over a set of clinical terms in 

CA. A clinical term corresponds to a phenomenon associated with the patient in the clinical 

domain. For instance, a clinical term could be a diagnostic billing code, a medication, a 

diagnosis extracted from natural language processing, or the finding of a laboratory test. The 

set of phenotypic topics TA are learned in this space, and are characterized as a probability 

matrix of topics over clinical terms. Specifically, a topic corresponds to a pattern of co-

occurring clinical terms, defined by their probability distribution given (or “conditioned on”) 

that topic. A topic may or may not have an obviously clinical basis, but nevertheless can be 

useful for characterizing patients. We use ψA,A and ψB,A to represent matrices of 

probabilities that specify the likelihood that the patients in PA are characterized by the topics 

in TA and TB, respectively. The terms PB, CB, TB, ψA,B and ψB,B are defined similarly.

As mentioned earlier, there are numerous ways to learn from EHR data. In this work, we 

rely upon a general topic modeling strategy because it has a natural probabilistic 

interpretation. Once the phenotypic topics have been learned from each site, we evaluate 

their consistency from three perspectives: 1) similarity of topics of disparate sites, 2) 

stability of a population in the topics of disparate sites, and 3) transferability of a topic 

between disparate populations.

3.1. Topic Learning Model

We assume a patient is characterized by various clinical terms, such as diagnostic billing 

codes, and invoke an LDA model [41] to infer phenotypic topics. LDA is a probabilistic 

graphical model that was first developed to discover topics in natural language documents. It 
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is a generative model that explains observations with hidden, or latent, patterns. 

Conceptually, patients can be thought of as documents, where the clinical terms constitute 

the vocabulary and the specific terms assigned to a patient’s record are the “words”. As 

such, given PA characterized by clinical terms, we apply an LDA model to infer latent 

phenotypic topics TA, each of which is composed of a probability distribution over the set of 

clinical terms.

The set of topics TX is inferred from a matrix MX (of size m × n), where m is the number of 

patients in PX and n is the number of distinct clinical terms in CX. Here, MX(i, j) corresponds 

to the number of times clinical term cX,j in CX was assigned to a patient pX,i in PX.

LDA is applied to learn k latent topics TX = {tX,1, tX,2, …, tX,k}. It is often the case that 

perplexity [42], an information theoretic measure, is applied to assess the fitness of an LDA 

model and set k. However, low perplexity is insufficient to indicate if the learned LDA 

model is a good fit [41–42]. In our situation, we aim to determine the k value that determines 

the best separation between the phenotypic topics. To do so, we calculate the average 

similarity of the topics:

(1)

where cos(tX,i, tX,j) is the cosine similarity [43] of topics tX,i and tX,j.1

3.2. Measures of Topic consistency

We evaluated the consistency of the inferred topics using three quantitative measures: 1) 

similarity of topics, 2) stability of patient cohorts across topics, and 3) transferability of 

topics across sites.

3.2.1 Topic Similarity—The first topic consistency measure directly assesses the 

similarity of the inferred topics from disparate sites. Note, however, that TA and TB have a 

different number of rows (i.e., diagnoses). So to compare learned phenotypic topics, we 

substitute TA and TB with a vector UAB (size nU × 1) that represents the union of diagnoses, 

such that UAB = CA ∪ CB. Thus, topics TA and TB are rewritten as T′A (size nU × kA) and T′B 

(size nU × kB). Based on this representation, the similarity of two phenotypic topics is 

calculated using the cosine similarity of the vectors:

(2)

The larger the β, the stronger the similarity of the phenotypic topics.

1Kullback-Leibler divergence (KLD) is often applied to measuring the divergence between two probability distributions [44] because 
of its sound basis in information theory. However, there are several problems. First, KLD is asymmetric with respect to the 
distributions. Second, the topics should be well separated and hopefully sparse, but, unless the estimated probability distributions are 
smoothed (e.g., via Laplace smoothing), this can lead to KLD becoming unbounded. The cosine, by contrast, is not subject to these 
limitations.
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Our aim is to find the largest average cosine similarity, where each topic in TA matches a 

topic in TB and vice versa. We use the Hungarian algorithm [45] to perform such matches.2 

To do so, let Ω be a matrix (sized kA × kB) that conveys the costs of matching topics between 

sites A and B, where cell Ω(i,j) indicates the cost of matching topic tA,i and topic tB,j. We 

assume that if the cosine similarity of a pair of topics is 1, then the cost of this matching is 0, 

such that the cost of a topic matching as:

(3)

The topic similarity is thus defined as the minimum sum of costs for the maximum matching 

of topics between tA and tB. The higher the topic similarity between two sites, the smaller the 

cost.

3.2.2 Population Stability—The second consistency measure assesses the stability of a 

patient population across the topics derived from disparate sites. When the stability of a 

patient population is high, it is likely that the topics from one site will characterize the 

patients from another site.

ψY,Z is defined as a matrix of probabilities of patients in PZ characterized by topics in TY. 

ψY,Z is retrieved by an inferred LDA model, which is based on an existing LDA model of 

site Y to characterize patients of site Z. According to definition of ψY,Z, ψA,A (size kA × mA) 

and ψB,A (size kB × mA) represent the probabilities that the topics in TA and TB, respectively, 

characterize the patients in PA. Specifically, a cell ψA,A(i,j) corresponds to the probability 

that topic tA,i in TA characterizes patient pA,j in PA. When a patient in PA is characterized by 

a phenotypic topic tA,i (or tB,i) with a probability greater than a predefined threshold, we 

assign the patient to the topic. And thus, ψA,A and ψB,A can be invoked to group patients in 

PA. In doing so, each phenotypic topic has a corresponding group of patients.3

Let TAlign,A and TAlign,B be a reordering of topics in TA and TB, respectively, such that 

TAlign,A(i) most closely matches TAlign,B(i) as per the Hungarian algorithm. For example, 

imagine TA = {tA,1, tA,2, tA,3} and TB = {tB,1, tB,2, tB,3}, and the Hungarian algorithm 

matches tA,1 with tB,2, tA,2 with tB,3, and tA,3 with tB,1. Then, TAlign,A = {tA,1, tA,2, tA,3} and 

TAlign,B = {tB,2, tB,3, tB,1}.

Now, let GA,A = {g1, …, gkA} and GB,A = {g1, ⋯, gkB} be the sets of groups for the patients 

in PA associated with the topics in TAlign,A and TAlign,B, respectively. Moreover, let G′A,A = [|

g1|, …, |gkA|] and G′B,A = [|g1|, …, |gkB|] represent the vectors with the number of patients 

per group. Population stability focuses on the relationship of the set of matched proportions 

(i.e., where each point is the rate at which patients in population A are characterized by the 

matched topics of sites A and B). So, we apply the Pearson correlation coefficient [46] to G

′A,A and G′B,A:

2This algorithm is efficient when the cost matrix is small.
3The value for such a threshold is dependent on the application. A value of 0.5, which we use in this work, signifies that the majority 
of the patient’s status is captured by a single concept.
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(4)

where cov(·,·) is the covariance and σG′A,A and σG′B,A are the standard deviations of G′A,A 

and G′B,A, respectively. The correlation of G′A,B and G′B,B is defined similarly. The stability 

of a population on topics of two sites is measured via the Pearson correlation coefficient, as 

indicated by Equation 4.

3.2.3 Topic Transferability—The third consistency measure assesses how phenotypic 

topics transfer from one site to another. We aim to learn topics that characterize patients at a 

similar rate across the sites. This is because similar rates suggest that the sites manage 

similar populations.

To assess the transferability of topics in TA, we define the following regression model:

(5)

where RA,A (RA,B) is a vector of the rates at which patients from PA (PB) are characterized by 

the learned phenotypic topics in TA, α is the slope of the regression and I is the intercept.4

Transferability of topics within a site is defined as the mean and standard deviation of 

distances for all of its phenotypic topics to the regressed line. To illustrate, consider a topic 

tA,i in TA. The distance of this topic to the line is:

(6)

where ri,A and ri,B are the rates at which a learned topic tA,i is expressed by patients at site A 

and B respectively. (ri,B, 10I × ri,B
α) is the corresponding point on the regressed line for 

(ri,B, ri,A). The term  is a scaling factor that magnifies the effect of 

outliers on the transferability of phenotypic topics, the justification for which is in the 

Appendix A1. A logarithmic transformation is applied for normalization and ensures that the 

distance of a point that falls on the regressed line is equal to zero.

4This model builds on the observation in [20] that the rate of occurrence for billing codes in disparate sites is distributed around a 
centered line in the log scale.
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4. Experimental Design

4.1. Datasets

We evaluate the reliability of phenotypic topics on de-identified data from the EHRs of two 

distinct healthcare systems. The first dataset corresponds to four months of inpatient records 

from the StarPanel EHR system of the Vanderbilt University Medical Center (VUMC) [47]. 

The second dataset corresponds to four months of inpatient records from the EHR system of 

Northwestern Memorial Hospital (NMH) [37]. There are 14,606 and 17,947 inpatients at 

NMH and VUMC, respectively. Additional summary information about the datasets are 

provided in Table 2.

While we recognize that the clinical status of a patient is complex, this work focuses on a 

proof of concept and relies upon the billing codes to learn phenotypic topics. Such codes do 

not provide a complete picture of the status of a patient, but they are common in biomedical 

research and can provide insight into the capability of such a strategy. Nonetheless, multiple 

billing codes can be used to describe the same clinical disease [48–49], such that various 

EHR-driven phenotyping investigations (e.g., [19, 29–30]) have instead adopted the 

Phenome-Wide Association Study (PheWAS) vocabulary [23]. PheWAS codes correspond 

to groups of ICD-9 codes more closely match clinical or genetic understandings of diseases 

and reduce variability in identifying diseases. Based on this expectation, and to be in 

accordance with prior work in phenotyping, we translate a patient’s ICD-9 codes to 

PheWAS codes. All of the learned phenotypic topics reported in this paper are based on the 

PheWAS codes.

4.2. Setting the Number of Phenotypic Topics

We train LDA model by using Gibbs sampling which is a typical technique for parameter 

estimation and then check the negative log-likelihood at each iteration to judge when a 

model has converged upon a solution. To parameterize the number of phenotypic topics for 

the LDA model, we minimize 1) the perplexity score and 2) the average similarity of the 

topics within a site. Based on these measures, we set the number of topics to 25 for each site. 

Further details of this process can be found in Appendix A2.

4.3 Consistency of NMH and VUMC Topics

For topic similarity, we calculate the cost of matching NMH and VUMC topics using the 

Hungarian algorithm on the cost matrix defined in Equation 3. For each VUMC phenotypic 

topic, we match a NMH topic and vice versa. If each phenotypic topic in one site has a 

matching topic in another site with a low cost, it implies that the topics are common across 

the sites.

For stability, we calculate the Pearson correlation coefficient of a patient population 

characterized by NMH and VUMC topics respectively. The higher coefficient, the more 

stable for a population characterized on NMH and VUMC topics. We use the Pearson 

correlation coefficient (Equation 4) to calculate the stability.
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For transferability, we learn a regression model for the NMH and VUMC phenotypic topics, 

respectively (Equation 5). We then compute the distance of a topic to the regressed line 

(Equation 6). We use the variance of the regression line to characterize the transferability of 

the corresponding model. To demonstrate the transferability of learned topics, we also 

conduct an analysis that compares the transferability of the learned phenotypic topics with 

ICD-9 and PheWAS codes. The rate at which ICD-9 and PheWAS codes transpire in the 

patients have a wide range (as discussed below), such that we use a binning approach to 

reduce the standard error of the linear regression [50]. Specifically, we use 50 bins, where 

each bin maps the set of points in a rectangular area of the distribution to a mean value 

which is supplied to the linear regression.

5. Results

To orient the reader, this section begins with a depiction of several learned phenotypic 

topics. We then report on the similarity, stability, and transferability of the derived topics.

5.1. Learned Phenotypic Topics

To better understand our experimental results, this section exemplifies a selected set of 

phenotypic topics inferred by the LDA model from the NMH and VUMC datasets. In our 

framework, each topic is expressed as a probability distribution over approximately 1500 

PheWAS codes. To illustrate each topic in a succinct manner, we show the top five most 

probable PheWAS codes that best describe the corresponding topic. Details on topics not 

listed in this section are provided in Appendices A3 (for VUMC) and Appendices A4 (for 

NMH).

Figures 2 through 4 depict several notable groups of topics. Figure 2 shows a pair of topics 

(N13 and V7) that exhibits high similarity. Figure 3 shows three NMH topics (N2, N4 and 

N17), that are similar to the same VUMC topic (V4), and generally correspond to a 

collection of conditions associated with pregnancy and birth. Figure 4 shows four topics 

(V1, V15, V18, and N24), each of which lacks a corresponding topic at the other site.

5.2. Consistency of Phenotypic Topics

5.2.1 Similarity of Topics—The similarity of each phenotypic topic pair from NMH and 

VUMC is depicted in the heatmap in Figure 5(a). It can be seen that, for the majority of the 

topics, the similarity is high for the best match. To show the pairs with strong relations more 

clearly, Figure 5(b) displays a bipartite network of the similarity scores with values larger 

than 0.2. Here, it can be seen that almost every NMH phenotypic topic has at least one 

corresponding VUMC phenotypic topic. The only NMH topic that fails to have a partner is 

topic N24, which is primarily associated with thrombosis. Similarly, almost every VUMC 

topic has a corresponding NMH topic. The exceptions are V1, V15, and V18, which are most 

associated with perinatal conditions, internal injuries to organs, and burns.

The results and corresponding cost of the alignment of the topics is reported in Appendix 

A5. It was found that the total cost for a maximum matching5 of topics between NMH and 

5A maximum matching transpires when every topic in NMH has a corresponding topic in VUMC and vice versa.
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VUMC is 15.26. The average cost for each pair of phenotypic topics is 0.61, which indicates 

that the average cosine similarity for a pair of aligned phenotypic topics is 0.39 (Equation 3). 

The cost of alignment for the learned phenotypic topics is statistically significantly smaller 

than that of alignments for phenotypic topics in a random setting (details of the hypothesis 

test are in Appendix A5).

To illustrate the result of the alignment, Figure 6 compares matched phenotypic topics N13 

and V7. This relationship appears natural because both topics are primarily associated with 

“coronary atherosclerosis” and “myocardial infarction” (each exhibits a high probability 

within the topics). At the same time, it should be noted that these topics include additional 

terms, such as “chronic airway obstruction”, “pulmonary heart disease”, “hyperlipidemia” 

and “peripheral arterial disease”. Yet these terms exhibit lower probabilities, suggesting the 

topics consist of a core and ancillary set concepts, the latter of which are nuanced and may 

be driven by populationspecific issues.

5.2.2 Stability of a Patient Population Over Topics—The second consistency 

measure assesses the stability of a patient population (e.g., VUMC patient population) on 

phenotypic topics learned from the NMH and VUMC datasets. The goal of this portion of 

the investigation is to measure the relations between a patient population characterized by its 

own phenotypic topics and that characterized by the corresponding topics of the other site. 

To do so, we aligned the VUMC and NMH topics and get the corresponding clusters of 

patients from a site (e.g., VUMC). The alignment is shown in Table A1 of Appendix A5 and 

the resulting size of the clusters is shown in Figure 7.

The Pearson correlation coefficient of the VUMC and NMH populations is 0.957 and 0.649, 

respectively. This indicates there is generally high stability in the learned phenotypic topics 

across the sites. While the correlation for the NMH patients is clearly smaller than that 

which is observed for the VUMC patients, this is mainly because NMH has a higher volume 

of patients with certain conditions: 278.1 – Obesity; 649 – Mother Complicating Pregnancy; 

665 – Obstetrical/Birth Trauma; and 645 – Late Pregnancy and Failed Induction, which are 

captured by three NMH topics (N2, N4 and N17), but only one VUMC topic (V4). The 

composition of these topics is summarized in Figure 3.

Note that, as depicted in Figure 7(a), phenotypic topic V4 is expressed by over 30% of the 

NMH patients. Based on this observation, we performed a sub-analysis on the patient 

population that was not explained by {N2, N4, N17} and their corresponding aligned topics 

{V14, V4, V1} as depicted in Table A1 of Appendix A5. The correlation marginally 

increases for the VUMC patients (0.988), and substantially increases for the NMH patients 

(0.812). This suggests that a patient population on the learned phenotypic topics may be 

more stable when the sites are focused on a broad variety of patients (i.e., beyond several 

specific conditions).

To illustrate the stability of a patient population more specifically, let us consider a brief 

case study of N13 and V7. Figure 8 illustrates the intersection of NMH (a) and VUMC (b) 

patients assigned to these topics. It can be seen that both topics are expressed by most of the 

patients with a probability larger than 0.5.6
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We calculate the rate of patients in common for these two phenotypic topics using the 

Jaccard measure:

(7)

where EV7,VUMC and EN13,VUMC are the sets of VUMC patients assigned to topics V7 and 

N13, respectively. The degree of commonality for the NMH and VUMC patients is 0.35 and 

0.51, which indicates a relatively high rate of patients in common.

5.2.3 Transferability of Topics—To determine if phenotypic topics are more 

transferable than expert-derived vocabularies for characterizing patient populations, we 

compared their variance of transferability to ICD-9 and PheWAS codes. For illustration, the 

distribution of the rate at which codes from the expert-derived vocabularies are expressed by 

patients is depicted in Figure 9.

Notably, certain codes associated with common chronic diseases, such as ICD-9 401.9 and 

PheWAS 401.1 (a translation of ICD-9 401, 401.1 and 401.9), which are both associated 

with hypertension, are stable across the VUMC and NMH patient populations. However, 

there are certain instances where the codes exhibit a large variance in the population. Clear 

examples of this case are ICD-9 codes V05.3 - need for prophylactic vaccination and 

inoculation against viral hepatitis and V30.0 - Single liveborn, born in hospital, delivered 

without mention of cesarean, as well as PheWAS codes 656 - Other perinatal conditions and 

637 - Short gestation; low birth weight; and fetal growth retardation.

The regression models for assessing transferability are summarized in Appendix A6. In 

summary, the average distance (and its corresponding standard deviation) of the ICD-9 and 

PheWAS codes to their regressed lines, are depicted in Figure 11. It can be seen that the 

ICD-9 codes (0.0109±0.2215) exhibit a larger variance than the PheWAS codes 

(0.0108±0.1299). This is due, in part, to the fact that most of the codes which are rare at one 

site (i.e., the upper left and bottom right of the plots in Figure 9) have a wider variance to the 

regressed line. By contrast, the codes that are more common (i.e., the upper right of the plots 

in Figure 9), such as essential hypertension exhibit low variance and, thus, are more stable 

for expressing the pat ient population than those locate in the left-bottom corner. The 

PheWAS codes exhibit a smaller variance than the ICD9 codes, which suggests the codes 

are consistently utilized to represent patients with a particular clinical notion across 

disparate sites.

For the learned phenotypic topics, we compute the regression models (which we refer to as 

N-Topic and V-Topic) and calculate the distance of topics to the regressed line. Figure 10 

depicts the rate at which the phenotypic topics occur in the NMH and VUMC populations. It 

can be seen that the distribution of phenotypic topics exhibits smaller variance than the 

ICD-9 and PheWAS codes. This is more formally confirmed in Figure 11, which shows that 

6Recall, a patient is considered assigned to a phenotypic concept when the probability is greater than 0.5.
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the N-Topic (0.0055 ± 0.07) and V-Topic (0.00202 ± 0.06) models have smaller standard 

deviations than those of ICD-9 (0.0109 ± 0.2215) and PheWAS codes (0.0108 ± 0.13).

However, there are three outliers in the NMH topics (Figure 10(a)) and one in the VUMC 

topics (Figure 10(b)). This is because a large proportion of the NMH patients are related 

with Obstetrical/birth trauma conditions. As alluded to earlier, these conditions are 

expressed by topics N2, N4, N17, and V4, which form a community. The proportion of 

patients characterized by these four topics is high, which will dominate the variances of 

other topics. We thus removed the outliers and remodeled the patients as N-Topic-Reduced 

(0.00087±0.0021) and V-Topic-Reduced (0.0011±0.001), the results for which are also 

shown in Figure 11. It can be seen these models exhibit the smallest variance, suggesting 

they are the most transferable for characterizing the patients across the sites.

6. Discussion

In general, the experimental results suggest that phenotypic topics, learned through a 

generative topic modeling strategy (i.e., LDA) in the inpatient populations of two distinct 

healthcare systems, exhibit high consistency. This finding has several notable implications. 

First, the learned phenotypic topics could be invoked as covariates when investigating 

expert-defined phenotypes across healthcare systems. For example, in a diabetes-related 

investigation, the phenotypic topics V11 and V22, which capture aspects of coronary heart 

disease, may serve as control variables that represent the complexity of such confounding 

clinical problems. Second, the learned topics may enable novel quality-based studies across 

systems in their own right. For instance, it would be possible to investigate how the quality 

of outcomes for phenotypes associated with a complex pregnancy (e.g., V4 integrates 

delivery, obesity, and fetal heart rate).

At the same time, there are several limitations to this investigation. First, our notion of 

transferability is based on the premise that a topic should occur at the same rate at disparate 

healthcare organizations. However, if a topic occurs at varying rates, it does not imply that 

the topic is useless. Rather, it could imply that the organizations have different types of 

populations. The topics themselves may still be notable and worthy of further investigation, 

but we stress that they limit the extent to which population-based results at each institution 

are directly relatable.

Second, we acknowledge that this is a pilot study, which only focuses on the phenotypic 

topics that can be discovered through the ICD-9 (and PheWAS) codes assigned to patients 

while they are admitted to the hospital. While diagnosis codes do not provide a complete 

view of a patient, they are common in biomedical research. However, it should be noted that 

the methodological component of this work is not dependent upon diagnoses codes, or any 

particular clinical vocabulary, such that it can readily be extended to create more complex 

and robust phenotypes. As this work is extended, it will be necessary to enhance the 

approach and account for the semantics of the patient and healthcare setting (e.g., inpatient 

vs. outpatient), where the distribution of such terms may be utilized at other rates.
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Third, while the model proposed in this paper is scalable to other types of structured data 

(e.g., medications, clinical concepts extracted from natural language notes, laboratory test 

findings), it is not trivial to combine other data types across different EHR systems. More 

work is needed to determine how such additional factors can be combined with diagnoses to 

learn more comprehensive and nuanced phenotypic topics.

Fourth, as this approach is rolled out to a larger number of healthcare systems, it will be 

critical to devise and apply reliability measures that account for more than two sites. We 

anticipate that this may be accomplished through the extension of the basic bivariate 

correlation to a multiple correlation model.

Fifth, our work focuses on the development of a methodology to learn phenotypic topics to 

align disparate patient populations. However, we did not validate the clinical meaning of 

such topics nor the semantics of the similarity between identified groups of patients. If such 

topics are to be used in association studies, their meaning must be interpreted by clinically 

knowledgeable experts.

Finally, the case study was performed with two healthcare systems only, which themselves 

may cover different types of patients. As such, it is not clear if the phenotypic topics, or the 

transferability of the topics discovered in this study, are directly applicable to other 

healthcare systems. Moreover, the case study focused on all inpatients in the system 

simultaneously. At VUMC, this population includes patients from multiple hospitals, 

including the primary hospital, children’s hospital, as well as psychiatric and rehabilitation 

hospitals. In doing so, we incorporated neonatal, pediatric, and adult populations, which may 

confound the learning process. Furthermore, NMH does not have a focus on birth or 

children, such that the VUMC and NMH populations are not quite the same. We suspect that 

the learning process has the ability to discover phenotypic topics that are specific to certain 

demographics (age and gender), but note that this warrants further investigation.

7. Conclusions

Data derived from electronic health record (EHR) systems has the potential to enable large 

studies that incorporate disjoint healthcare providers, as well as support learning healthcare 

systems. However, it is challenging to automate learning across such systems due to a lack 

of standards in the use of clinical vocabularies. In this paper, we investigated the extent to 

which an automated learning approach, based on latent Dirichlet allocation, could be 

leveraged to infer phenotypic topics that are consistently defined across healthcare systems.

Specifically, we evaluated the approach with four months of inpatient data from two large 

geographically distinct hospital systems. The results illustrate that latent topics can reduce 

dimensionality and increase the stability and transferability of phenotypic topics studied 

across such sites. In particular, the findings suggest such an approach can enable the 

characterization of complex phenotypic topics that could be invoked as covariates in multi-

site studies or analyzed in comparative consistency assessments for healthcare systems. 

Nonetheless, we stress that there are several opportunities for enhancing the proposed 

strategy. In particular, the current study focused solely on diagnosis codes, but more 
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comprehensive and nuanced phenotypic topics should be discovered via an expansion of the 

vocabulary to contain additional phenomena, such procedures, medications, and laboratory 

tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• A topic modeling strategy to translate EHR data into phenotypic topics

• Approaches to assess consistency of phenotypic topics across healthcare 

systems

• An evaluation on over 32,000 inpatient events from two disparate environments
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Figure 1. 
A high-level overview of the architecture for extracting phenotypic topics and evaluating 

their consistency across healthcare systems.
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Figure 2. 
The top five PheWAS codes in the pair of phenotypic topics with the highest similarity (a 

score of 0.86).
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Figure 3. 
Three phenotypic topics from Northwestern that are well matched with topic 4 from 

Vanderbilt.
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Figure 4. 
Three phenotypic topics from Vanderbilt and one topic from Northwestern lack a 

corresponding topic of other site with a similarity greater than 0.2.
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Figure 5. 
Similarity of NMH and VUMC topics in (a) heatmap form and (b) network form (for scores 

≥ 0.2). Lines drawn in (b) are connections only for pairs of topics at different sites. The 

wider thickness of the line indicates tighter relations of a pair of topics.
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Figure 6. 
Comparison of the top PheWAS codes associated with topics N13 and V7.
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Figure 7. 
Pearson correlation between the rate at which (a) NMH and (b) VUMC patients are 

characterized by phenotypic topics derived from the two sites.
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Figure 8. 
Extent to which (a) NMH and (b) VUMC patients are expressed by phenotypic topics N13 

and V7. Each point corresponds to the probability a specific patient is characterized by a 

topic.
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Figure 9. 
Rate at which (a) ICD-9 and (b) PheWAS codes are expressed in the VUMC and NMH 

inpatient populations.
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Figure 10. 
Rate at which phenotypic topics learned from (a) NMH and (b) VUMC occur in the NMH 

and VUMC patient populations.
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Figure 11. 
Average distance (+/− 1 standard deviation) to the regressed line of vocabulary-based and 

learned phenotypic topic model.
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Table 1

Common notation and the corresponding definitions.

Notation Description

X A healthcare system

PX = {pX,1, …, pX,m} A set of patients from X

CX = {cX,1, …, cX,n} A set of clinical terms defining patients in PX

TX = {tX,1, …, tX,k} A set of k phenotypic topics retrieved from PX defined by n clinical terms in CX

GY,Z = {g1, …, gk} A set of patient groups in PZ clustered using k topics in TY

ψY,Z (size k × m) A probability matrix of k topics in TY to characterize m patient in PZ

RY,Z (size 1 × k) A vector of rates of patients in PZ characterized by topics in TY
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Table 2

Summary information for four months of inpatient data derived from the EHRs.

Northwestern Vanderbilt

Patients 14,606 17,947

Unique ICD-9 codes 4,543 5,176

Unique PheWAS codes 1,447 1,413

Unique 〈ICD9 code, patient〉 assignments 114,133 84,331

Unique 〈PhaWAS code, patient〉 assignments 90,732 74,192
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