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Abstract

Models for predicting the probability of experiencing various health outcomes or adverse events 

over a certain time frame (e.g., having a heart attack in the next 5 years) based on individual 

patient characteristics are important tools for managing patient care. Electronic health data (EHD) 

are appealing sources of training data because they provide access to large amounts of rich 

individual-level data from present-day patient populations. However, because EHD are derived by 

extracting information from administrative and clinical databases, some fraction of subjects will 

not be under observation for the entire time frame over which one wants to make predictions; this 

loss to follow-up is often due to disenrollment from the health system. For subjects without 

complete follow-up, whether or not they experienced the adverse event is unknown, and in 

statistical terms the event time is said to be right-censored. Most machine learning approaches to 

the problem have been relatively ad hoc; for example, common approaches for handling 

observations in which the event status is unknown include 1) discarding those observations, 2) 

treating them as non-events, 3) splitting those observations into two observations: one where the 

event occurs and one where the event does not. In this paper, we present a general-purpose 

approach to account for right-censored outcomes using inverse probability of censoring weighting 

(IPCW). We illustrate how IPCW can easily be incorporated into a number of existing machine 

learning algorithms used to mine big health care data including Bayesian networks, k-nearest 

neighbors, decision trees, and generalized additive models. We then show that our approach leads 

to better calibrated predictions than the three ad hoc approaches when applied to predicting the 5-
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year risk of experiencing a cardiovascular adverse event, using EHD from a large U.S. Midwestern 

healthcare system.
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1. Introduction

Predictions of the risk (i.e., probability) of a patient experiencing various health outcomes or 

adverse events (e.g., heart attack, stroke, diabetes, etc.) are critical tools in clinical practice. 

Risk prediction and classification help clinicians to optimize resource allocation, to develop 

appropriate intervention strategies for those at high risk of an adverse health outcome, and to 

motivate patients to remain adherent to these strategies. Given the importance of risk 

prediction, there is currently great interest in developing machine learning methods to 

estimate flexibly the personalized risk of a patient experiencing various adverse health 

outcomes. However, a challenge of developing clinical risk prediction models is that the 

length of time a subject is followed may be highly variable.

1.1. Potential of predictive models trained using electronic health data

As an example, consider risk prediction models for cardiovascular disease and related 

outcomes (e.g., heart attack, stroke). Recent systematic reviews have described over 100 risk 

models produced between 1999 and 2009 [1, 2], including the well-known Framingham 

Risk Score [3], Reynolds Risk Score [4, 5], and the recent American Heart Association/

American College of Cardiology pooled cohort equations [6]. Most risk prediction models 

have been estimated using data from homogenous and carefully selected epidemiological 

cohorts. These models often perform poorly when applied to diverse, present-day 

populations [7].

The increasing availability of electronic health data (EHD) and other sources of big 

biomedical data represents a key opportunity to improve risk prediction models. EHD, 

which consist of electronic medical records (EMRs), insurance claims data, and mortality 

data obtained from governmental vital records, are increasingly available within the context 

of large healthcare systems and capture the characteristics of heterogeneous populations 
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receiving care in a current clinical setting. EHD databases typically include data on hundreds 

of thousands to millions of patients with information on millions of procedures, diagnoses, 

and laboratory measurement. The scale and complexity of EHD provide an excellent 

opportunity to develop more accurate risk models using modern machine learning 

techniques [8, 9, 10, 11, 12].

1.2. Challenge of right-censored data

EHD and other sources of big data in health care are not collected to answer a specific 

research question. In many datasets derived from EHD, the length of time that we are able to 

collect information on a particular subject is highly variable among subjects. Therefore, a 

large fraction of subjects do not have enough follow-up data available to ascertain whether 

or not they experienced the health outcome or adverse event of interest within a given time 

period (which we henceforth refer to as the event status). In the language of statistical 

survival analysis, the time of the adverse event (referred to as the event time) is said to be 

right-censored if the follow-up ends on a subject prior to her/him experiencing an event [13]. 

Unfortunately, fully supervised machine learning and classification methods typically 

assume that the event status is known for all subjects while in our setting the event status is 

undetermined for subjects whose event time is censored and who are not followed for the 

full time period over which one wants to make predictions (e.g., 5 years).

1.3. Existing techniques for right-censored data

To handle event statuses that are unknown due to right censoring, previous work has either 

proposed using preprocessing steps to “fill-in” or exclude observations with unknown event 

statuses or adapting specific machine learning tools to censored, time-to-event data.

In the later category, several authors including Hothorn et al. [14], Ishwaran et al. [15], and 

Ibrahim et al. [16] describe versions of classification trees and random forests to estimate the 

survival distribution. Lucas et al. [17] and Bandyopadhyay et al. [18] discuss the application 

of Bayesian networks to right-censored data. A few authors have considered applying neural 

networks to survival data but typically assume that the possible censoring and event times 

are few in number [19, 20]. Additionally, several have considered adapting support vector 

machines to censored outcomes by altering the loss function to account for censoring [21, 
22]. These approaches are all based on modifying specific machine learning techniques to 

handle censoring, which limits the generalizability of the approach used to handle right-

censored outcomes. For example, to adapt decision trees and random forests to right-

censored outcomes, the authors cited above modify the splitting criterion to accommodate 

censoring. Instead of splitting the data to minimize the node impurity, they choose the split 

which maximizes the log-rank statistic, a statistic to compare the difference in the survival 

curves between two groups (in this case between two child nodes). However, the recursive 

partitioning approach of decision trees is fundamentally different than, e.g., the approach of 

Bayesian networks or generalized additive models, so the idea of altering the splitting 

criterion in a tree to accommodate censoring does not apply to these other approaches.

Alternatively, several general-purpose ad hoc techniques have been proposed for handing 

observations with unknown event status including 1) discarding those observations [23, 24], 
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2) treating them as non-events [25, 26], or 3) repeating those observations twice in the 

dataset, one as experiencing the event and one event-free. Each of these observations is 

assigned a weight based on the marginal probability of experiencing an event between the 

censoring time and the time the event status will be assessed [27]. These simple approaches 

are known to induce bias in the estimation of risk (i.e., class probabilities) because, as we 

discuss later, discarding observations with unknown event status or treating them as non-

events necessarily over- and under-estimates the risk [25, 26]. Even the third approach, 

although more sophisticated, produces poorly calibrated risk estimates because these 

weights attenuate the relationship between the features and outcome.

In summary, previous approaches for handling right-censored time-to-event data are specific 

to a single machine learning technique or are generally applicable but produce poorly 

calibrated risk estimates.

1.4. Our approach

The goal of this paper is to propose a general-purpose technique for mining right-censored 

time-to-event data which has improved calibration compared to the ad hoc techniques 

previously proposed. Specifically, we introduce a simple, pre-processing step which re-

weights the data using inverse probability of censoring (IPC) weights. The IPC-weighted 

data can then be analyzed using any machine learning technique which can incorporate 

observation weights. Briefly, subjects with unknown event status are given zero weight; 

subjects with a known event status are given weights to account for subjects who would have 

had the same event time but were censored. Subjects with larger event times are assigned 

higher weights to account for the fact that they are more likely to be censored prior to 

experiencing the event of interest. This heuristic explanation is made mathematically precise 

later.

There has been some prior work which used inverse probability of censoring weighting 

(IPCW) in machine learning methods. For example, Bandyopadhyay et al. [18] discuss how 

to use IPCW specifically in the context of estimating Bayesian networks with right-censored 

outcomes. However, to the best of our knowledge, this paper is the first to propose the use of 

IPCW as a general-purpose technique that may be used in conjunction with many machine 

learning methods. IPCW properly accounts for censoring and can be easily integrated into 

many existing machine learning techniques for class probability estimation, allowing new 

machine learning tools for censored data to be created.

2. Inverse probability of censoring weighting

We begin by introducing the IPCW technique, including the relevant statistical notation, the 

steps used to compute it, a heuristic justification of its correctness, and a small example 

illustrating its application. The formal justification of IPCW has been presented elsewhere 

[28, 29], and we relegate mathematical and statistical derivations to the Supplementary 

Materials.
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2.1. Notation and terminology

Let E be the indicator that a health outcome or adverse event occurs within τ years of a pre-

defined timepoint. Throughout the paper, we refer to E as the τ -year event status. In our 

setting, for example, we are interested in whether or not a major CV adverse event (hereafter 

referred to as a CV event) occurs within 5 years of an “index” clinic visit where risk factor 

data are available. Binary classification methods typically assume that E is fully observed for 

all patients, but this is unlikely to be true when using current EHD. When a patient leaves 

the health system or the study ends before τ years of follow-up and before the subject 

experiences the event of interest, the subject’s event status at τ is unknown. For example, 

assume a subject is enrolled in the health system for only 3 years and does not experience a 

CV event. We do not know if this subject would have experienced a CV event within 5 years 

as we do not get to observe any health outcomes between 3 and 5 years. For this subject E 
would be unknown.

For individual i define Ti as the time between baseline and the event of interest, and define 

Ci as the time between baseline and when the patient is lost to follow-up (e.g., in our 

context, disenrolls from the health plan or reaches the end of the data capture period without 

experiencing an event). We observe Vi = min(Ti, Ci) and δi = Ti < Ci), the indicator for 

whether or not an event occurred during the follow-up period. If δi = 0, the ith subject’s event 

time is said to be right-censored. The value of Ei is unknown if subject i is censored prior to 

τ, or equivalently if min(Ti, τ) ≥ Ci. Continuing the example described above we have Vi = 

3, δi = 0, and since this subject is censored prior to 5 years, Ei is unknown. We will denote 

the set of features available on individual i by Xi; it is assumed that these features are fully 

observed at the beginning of the follow-up period and, hence, are not subject to censoring 

and do not vary over time. The target of prediction is π(Xi) = P(Ei = 1|Xi) ≡ P (Ti ≤ τ |Xi), 

and predictions are denoted by .

2.2. The IPCW method

We propose to use an inverse probability of censoring weighting (IPCW) approach for 

censored event times which is well-established in the statistical literature but has not been 

broadly applied for machine learning. Intuitively, excluding subjects for whom E is unknown 

leads to poor risk prediction because subjects with small event times are less likely to be 

censored than those with event times beyond τ. Therefore, we oversample subjects with E = 

1 if we exclude patients for whom E is unknown. In IPCW, only those subjects for whom E 
is known contribute directly to the analysis, but they are reweighted to accurately 

“represent” the subjects with unknown E.

The advantage of IPCW to account for censoring is that it is a general-purpose approach that 

may be applied to any machine learning method. The analyst can then apply several different 

machine learning methods for risk prediction and select the optimal one based on censoring-

adjusted criteria discussed in Section 4. The general-purpose IPCW method proceeds as 

follows:

1. Using the training data, estimate the function G(t) = P(Ci > t), the probability that 

the censoring time is greater than t, using the Kaplan-Meier estimator of the 
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survival distribution (i.e., 1 minus the cumulative distribution function) of the 

censoring times [13],

where  is the number of subjects who were censored at time Vj, and nj is the 

number of subjects “at risk” for censoring (i.e., not yet censored or experienced the 

event) at time Vj. We note that, for IPCW, Kaplan-Meier is applied to estimate the 

distribution of censoring times, whereas it is much more commonly used to 

estimate the distribution of event times.

2. For each patient i in the training set, define an inverse probability of censoring 

weight,

(1)

Patients whose event status is unknown at τ (i.e., are censored prior to τ and 

therefore have Ci ≤ min(Ti, τ)) are assigned weight ωi = 0, and hence are excluded 

from the analysis. The remaining patients are assigned weights inversely 

proportional to the estimated probability of being censored after their observed 

follow-up time.

3. Apply an existing prediction method to a weighted version of the training set where 

each member i of the training set is weighted by a factor of ωi. In other words, if ωi 

= 3, it is as if the observation appeared three times in the data set.

Step 3 is left purposefully vague, as the specific manner in which IPC weights are 

incorporated will vary across machine learning techniques. Off-the-shelf implementations of 

some techniques allow for the direct specification of observation weights, in which case 

little additional work is needed to get risk estimates. More generally, most machine learning 

techniques involve estimation (typically using maximum likelihood estimators) and 

assessing model fit/purity and incorporating weights in both steps is straightforward. Section 

3 illustrates how a variety of machine learning algorithms can be adapted to handle weighted 

observations and hence be “adapted” for censoring using IPCW.

2.3. Intuition of IPCW and a toy example

We briefly argue heuristically why inverse probability of censoring weighting appropriately 

handles censoring and leads to accurate risk prediction across a variety of machine learning 

techniques. Suppose we estimate that 1/3 of subjects have censoring times greater than 2.5 

years (i.e., (2.5) = 1/3), and that the ith subject is observed in our study to experience an 

event at t = 2.5 years (i.e., δi = 1 and Vi = 2.5). For this subject, the event status is known (E 
= 1) and her/his IPC weight is ωi = 3. This subject is weighted by a factor of 3 because 

she/he can be thought of as representing 3 individuals: 2 similar or “shadow” subjects 
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censored prior to their event time at t = 2.5 for whom E is unknown, plus themselves (recall 

that on average 2/3 of subjects in this example with event times equal to 2.5 are censored 

prior to experiencing the event). Thus, subjects with known event status E and a longer time-

to-event receive larger weights as they represent a greater number of “shadow” subjects 

whose event status is unknown due to censoring. IPCW is conceptually equivalent to 

creating a new dataset where each subject is replicated ωi times. However, creating such an 

expanded dataset is often not advisable, both for reasons of practicality (memory/storage 

limitations) and mathematical precision (ωi may not be an integer or simple fraction). A full 

justification of the use of IPCW can be found in Tsiatis [29]. We provide the main 

mathematical details in the Supplementary Material.

As an example, consider the following toy dataset given in Table S1 (see Supplementary 

Materials) with only 50 observations and a single binary covariate. Suppose that we wish to 

estimate the probability of having an adverse event within 5 years within each level of the 

covariate (i.e., τ = 5). If we knew Ei for all subjects, we would just take the average of Ei 

within each level of the covariate. However, because some subjects do not have 5 years of 

data and did not experience an adverse event during their follow-up, Ei is unknown for them 

(which is indicated by a question mark in the table).

Instead, to implement IPCW, we estimate the censoring distribution G(t) using a Kaplan-

Meier estimator and compute {min(Vi, τ)}. The weight, ωi for each subject is given by 

Equation 1. Now to estimate probability of having an adverse event within 5 years within 

each level of the covariate we take a weighted average of Ei within each level of the 

covariate; i.e.  and similarly 

. Subjects for whom Ei is unknown 

have weight equal to 0 so Eiωi = 0. Of course, many machine learning methods are more 

sophisticated but the basic idea presented here is still applicable.

3. Applying IPCW with existing machine learning techniques: 4 illustrations

In each of the following scenarios we review the particular learning technique assuming that 

the event status Ei is known on all subjects. Then we describe how IPC weights can be 

incorporated when Ei is unknown due to right censoring. While the exact mathematical 

details vary, the basic ideas are shared across scenarios: define and minimize a weighted loss 

function (e.g., weighted Gini index) or maximize a weighted likelihood, and select tuning 

parameters via a weighted criterion function.

3.1. Logistic regression and generalized additive logistic regression

Logistic regression is a simple and popular technique for modeling binary outcome data. 

The goal is to find a linear combination of features to approximate the log-odds, i.e.,
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where π(x) = P(E = 1|X = x) for the vector of features X. In risk prediction, the model often 

only includes the main effects of each risk factor, i.e., the value of the risk factor itself. 

Given features X and a corresponding vector of event indicators E, the logistic regression 

log-likelihood takes the form

(2)

where n is the number of observations in the training set and β = (β0, …, βp)T. This log-

likelihood can be maximized using a variety of techniques to find the maximum likelihood 

estimates.

In the case that Ei is unknown due to right censoring, IPC-weighted logistic regression 

simply maximizes the weighted log-likelihood

(3)

where contribution of the ith subject to the likelihood in (2) is weighted by ωi given in (1).

Logistic regression with only the main effects of various risk factors is unlikely to produce a 

well-fitting model when the log odds of experiencing the event has a non-linear relationship 

with the features. Enlarging the feature set by considering a basis expansion of the 

continuous features may improve prediction. If zj is the basis expansion of the jth feature and 

βj is vector of the same dimension as zj, then the generalized additive logistic model (GAM) 

assumes that

Restricted cubic smoothing splines, B-splines, or thin-plate regression splines are frequently 

used as the basis expansion in practice. Since expanding the feature space involves 

estimating many more parameters, it is common to penalize the roughness of the linear 

predictor , and estimate the regression parameters by maximizing the resulting 

penalized log-likelihood
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(4)

where , Sj, j = 1, …, p, are appropriately chosen smoothing 

matrices, and λj, j = 1, …, p are tuning parameters which control the degree of penalization/

smoothness. λj are typically selected to minimize the unbiased risk estimator (UBRE), which 

in the case of logistic regression is proportional to the Akaike Information Criterion given by 

AIC = 2k − 2ℓ, where ℓ is the (log-)likelihood given in (2) and k is the total number of free 

parameters.

Similarly, the IPC-weighted generalized additive logistic regression maximizes the following 

weighted version of the penalized log-likelihood given in (4):

(5)

The scores used to select the tuning parameters in the generalized additive model are also 

easily modified using IPC-weights to account for right censoring. In particular, the weighted 

AIC becomes AICω = 2k−2ℓω, with ℓω given in (3).

3.2. Bayesian networks

Bayesian networks have been used extensively in biomedical applications to aid in 

understanding of disease prognosis and clinical prediction [30, 31] and guide the selection of 

the appropriate treatment [32, 33] in clinical decision support systems. Lucas et al. [17] 

provide a comprehensive review of Bayesian networks in medical applications.

The key to Bayesian network techniques is that using Bayes theorem one can rewrite π(x) as

so that focus is now shifted to estimation of the conditional density/probability PX|E(x|e) and 

the probability PE(e) for e = 0, 1. When E is observed on all subjects (i.e., there is no 

censoring), the maximum likelihood estimate of PE(e) is given by the sample mean of the 

event indicators. To simplify the task of modeling PX|E, one can represent the joint 

distributions of X|E using a directed acyclic graph (DAG), i.e., a Bayesian network. One 

advantage of the Bayesian network approach is that clinical knowledge and data can be 

combined to suggest and refine DAG structures. The DAG encodes conditional 

independence relationships between variables, allowing the joint distribution to be 

decomposed into a product of individual terms conditioned on their parent variables [34]:
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where Pa(Xj) are the parents of Xj. Several approaches have been proposed to modeling the 

terms PXj|Pa(Xj),E{xj |Pa(xj), e}. In many applications, continuous covariates are discretized 

to allow learning of the joint density of PX|E(x|e) nonparametrically. In the application 

considered in this paper, all parent nodes are discrete (or have been discretized) which 

simplifies the modeling considerably. If the jth feature Xj is discrete, then PXj|Pa(Xj),E{xj|

Pa(xj), e} is estimated by computing the proportion of observations in each unique state of 

Xj separately for each level of Pa(Xj) and each level of E via

(6)

which is the non-parametric maximum likelihood estimator.

To fit the Bayesian network using IPCW, we make the following modifications as discussed 

in Bandyopadhyay et al. [18]. We can obtain the IPCW maximum likelihood estimator of 

PE(e) using the weighted mean . We note that this is 

equivalent to the Kaplan-Meier estimator of PE (e). Similarly, we can then obtain an IPCW 

maximum likelihood estimator of the distribution for the discrete variables Xj separately for 

each level of Pa(Xj) and each level of E so that (6) becomes:

(7)

A number of parametric and semi-parametric approaches to modeling the covariate 

distributions of continuous features are possible and have been described elsewhere [35, 36], 

and we discuss in the Supplementary Material how to adapt these approaches for censored 

outcomes.

We note that tuning a Bayesian network for optimal performance may involve determining 

the network structure and/or controlling model complexity for a given structure. In the 

Bayesian network implementation for our data application, we consider only a single 

network structure which is informed by discussions with our clinical colleagues (see Figure 

3); however, a set of feasible structures could easily be compared on a test set or via cross-

validation using the calibration and reclassification metrics described in Section 4.
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3.3. Decision trees

Recursive partitioning is a powerful and flexible way to build predictive models for both 

discrete and continuous outcomes, and decision tree algorithms are widely applied in 

biomedicine [see 37, 38, and references therein]. Decision trees aim to partition training data 

into subgroups with homogeneous outcomes, with subgroups defined by a set of binary 

splits of the features. The prediction for a given test instance is made by identifying the 

partition or node it belongs to, then computing a summary statistic (e.g., the sample average) 

for training instances in that partition or node.

Many techniques have been proposed to grow decision trees, mostly differing in the criteria 

used to decide how/if to split a node and to prevent overfitting. One popular technique, 

CART [39], uses the decrease in Gini impurity to determine which feature and at what level 

to split a node. The change in Gini impurity for a possible splitting rule is given by

where ,  and  are respectively the sample proportion of outcomes in a node s, 

the node’s left-hand children sl, and the node’s right-hand children sr for the particular 

splitting rule; Nsl and Nsr are the number of instances in each child; and Ns = Nsl + Nsr. 

Alternatively, the C4.5 and C5.0 decision trees [40] use the information gain metric instead 

of the Gini impurity to make decisions on how to split each node.

In the unweighted case, the sample proportions  for node s are computed as the average 

of the event indicators E for subjects in node s. For a test instance with features x falling in 

terminal tree node sT, we can estimate the risk π(x) as the proportion of training instances in 

that node with Ei = 1.

It is straightforward to extend decision trees to incorporate IPCW: individual cases in the 

training set are assigned weights ωi as described above, and the ωi are used as “case 

weights” in the decision tree algorithm. With IPCW, we calculate a weighted decrease in 

Gini impurity,

where

and
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A similar approach could be applied to estimate a weighted version of the information gain 

metric.

Once the structure of the tree has been determined, the predicted risk of a test instance with 

features x falling in terminal node sT is estimated using the weighted mean:

(8)

where ωi is the IPC weight given in (1) and .

Because of their flexibility, classification trees often overfit training data. Many overfitting 

avoidance techniques have been proposed, with most involving a tuning parameter which 

restricts the complexity of the tree. One strategy consists of setting a lower limit m on the 

number of individuals assigned to a terminal node; in our notation above, the node S would 

not be split according to a given rule unless min(Nsl, Nsr) ≥ m. This strategy is easily 

generalized to the case with censoring by requiring that min( , ) ≥ m. However we 

note that Nsl ≈  and Nsr ≈  as the expected value of ωi is one, so in practice setting a 

lower bound for min(Nsl, Nsr) is usually sufficient. Another approach only pursues splits 

where the change in Gini impurity exceeds a certain threshold θ, e.g., ΔIG(s) ≥ θ. 

Substituting Δ (s) for ΔIG(s) allows the same rule to be used in the censored data setting. 

Final tuning parameter values may be chosen by cross-validation, where the cross-validated 

criterion to optimize could involve a measure of calibration, discrimination, or a 

combination of both as discussed in Section 4.

3.4. k-nearest neighbors

The k-nearest neighbors classifier is widely used in biomedical applications and provides a 

flexible, powerful, and intuitive method for risk prediction [as examples, see 41, 42, 43, and 

references therein]. Define d(Xi, Xj) to be a distance metric between two vectors of features 

Xi and Xj. To estimate the event probability for an instance in the test set with features X = 

x, define Ri(x) to be the rank of the distance between x and Xi, i.e., d(x, Xi), among all n 
observations in the training data set. When the event status is known on all subjects in the 

training dataset, in the most straightforward application of k-nearest neighbors, π(x) is 

simply the proportion of the training instances experiencing the event among those with Ri ≤ 

k, the non-parametric maximum likelihood estimator.

The key choice for implementing a k-nearest neighbor classifier is to select an appropriate 

distance metric and the number of neighbors to consider. The number of neighbors may be 
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treated as a tuning parameter and chosen using cross-validated estimates of some appropriate 

criterion discussed in Section 4.

To adapt a k-nearest neighbor classifier to the situation when Ei may not be known for all 

subjects, we note that the distance between the vector of features is not affected by 

censoring. Therefore, to predict the probability of an event for an instance in the test set, we 

can identify the k closest neighbors in the training set just as we did before. However, we 

now replace the simple average with a weighted one:

(9)

In this extension of the k-nearest neighbor classifier, we choose the k neighbors regardless of 

the value of the IPC weights, ωi, for those neighbors in the training set. Therefore, the total 

sum of the weights for the k neighbors  may be different and the 

number of training instances with non-zero weight among those k neighbors may vary 

depending on the features of the test instance. But since the expected value of the IPC 

weight is equal to one, independent of the features Xi of the training instance, 

 should be approximately equal across different values of x, and we 

do not have to worry about adjusting the number of neighbors across the feature space.

3.5. Other machine learning techniques

We note that the manner in which the IPC-weights are incorporated in the estimation 

procedures (e.g., maximizing a weighted objective function) and the calculation of measures 

of model fit (e.g., weighted Gini impurity) in these four illustrative examples may be easily 

applied to other machine learning techniques. For instance, given an implementation of 

IPCW decision trees, constructing an IPCW random forest is straightforward. Furthermore, 

IPCW can also easily be incorporated into other, distinct machine learning methods such as 

support vector machines (SVMs) [44] and multivariate adaptive regression splines (MARS) 

[45] using the framework and implementation developed in Sections 3.1 – 3.4.

For example, SVMs seek to find the hyperplane in the feature space (possibly including 

basis transformations) that separate those that experience the event and those that do not by 

the largest distance while bounding the proportional amount by which some predictions are 

on the “wrong-side” of the margin. When Ei is known on all subjects, the SVM solution can 

be found from regularization function estimation [46], i.e., given by the solution to

(10)
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where [x]+ is 0 if x < 0 and equal to x if x > 0, λ is a tuning parameter that could be selected 

using cross-validation, zi is the feature vector for the ith subject including any basis 

transformations, and Ei is coded as +1 and −1 for subjects experiencing and not experiencing 

the event, respectively. The SVM classifier is given by sign .

When Ei is possibly unknown due to right censoring, we can easily solve an IPC-weighted 

version of Equation 11 just as we used an IPC-weighted objective function (i.e., the IPC-

weighted log likelihood) in Section 3.1. That is, to obtain  and  using IPCW we could 

solve

(11)

Similarly, the framework discussed in Section 3.1 for generalized additive models could be 

used to adapt MARS when the event status may be unknown due to right censoring. 

Specifically, MARS uses pairs of expansions in piecewise linear basis functions which take 

the form [xij − t]+ and [t − xij]+ where the possible knots t are the observed values of the jth 

covariate across all subjects in the training set. When the outcome is binary, a linear 

regression model fit using least squares is used to select the basis functions for inclusion in 

the model. Typically, a forward stepwise feature selection procedure is used in which the 

basis function pair (or product of a basis function pair with another term already included in 

the model) is selected to minimize the residual squared error. Once the basis functions have 

been selected, a logistic regression model is fit with those covariates [47].

Again, when Ei is unknown due to right censoring, each step of the process can be altered to 

incorporate IPC-weighting. Specifically, the linear regression model can be fit using IPC-

weighted least squares; the basis function pair is selected to minimize the IPC-weighted 

residual squared error, and then an IPC-weighted logistic regression model is fit with the 

selected covariates (similar to Equation 3).

4. Risk prediction evaluation metrics for censored data

An additional challenge of working with data in which E may be unknown due to censoring 

is that traditional measures of predictive performance using a test set or cross-validation 

must be modified as well. Here, we discuss modifications of standard calibration (goodness-

of-fit test statistic) and discrimination (concordance index and net reclassification 

improvement) metrics which properly account for censored data and allow model 

performance to be assessed more accurately.

4.1. Calibration

In standard risk prediction settings, calibration is commonly assessed by ranking the 

predicted risks , partitioning the ranked predictions into bins B1, B2, …, Bm (e.g., by 

decile or clinically relevant cut points), and comparing the average predicted risk in each bin 

to an empirical estimate of the risk within that bin. When Ei is known for all subjects, the 
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empirical risk estimate for bin Bk is simply given by ∑i∈Bk Ei/|Bk|, where |Bk| is the number 

of instances in bin Bk. However, when the outcome Ei is unknown for some subjects within 

a bin, an alternative estimator of the empirical risk is needed. One option estimates the 

probability of experiencing an event prior to time τ within each bin using the Kaplan-Meier 

estimator, yielding a calibration statistic of the form:

(12)

where  is the average of predicted probabilities in bin k,  is the Kaplan-Meier 

estimate of experiencing an event before τ among test subjects in bin k, and  is 

the sampling variance of the Kaplan-Meier estimator calculated. K is analogous to the χ2 

statistic with m − 2 degrees of freedom for assessing the calibration of logistic models [48].

4.2. Concordance index

The area under the ROC curve (AUC) is a widely used summary measure of predictive 

model performance. When the outcome is fully observed on all subjects, it is equivalent to 

the concordance index (C-index), the probability of correctly ordering the outcomes for a 

randomly chosen pair of subjects whose predicted risks are different. As described in Harrell 

[49], the C-index can be adapted for censoring by considering the concordance of survival 

outcomes versus predicted survival probability among pairs of subjects whose survival 

outcomes can be ordered, i.e., among pairs where both subjects are observed to experience 

an event, or one subject is observed to experience an event before the other subject is 

censored. The C-index adapted for censoring is given by

(13)

where ·) is the indicator function.

4.2.1. Net reclassification improvement—The C-index often fails to distinguish 

between models that differ in modest but clinically important ways. One proposed 

alternative is the Net Reclassification Improvement (NRI) [50]. The NRI compares the 

number of “wins” for each of two competing models among discordant predictions. The 

NRI is computed by cross-tabulating predictions from two different models with table cells 

defined by clinically meaningful risk categories or bins, then comparing the agreement of 

discordant predictions (i.e., assigned different risk categories) with the actual event status.

To evaluate risk reclassification on test data which are subject to censoring, a “censoring-

adjusted” NRI (cNRI) due to Pencina et al. [51] takes the form:
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(14)

where  (and ) is the expected number of individuals in the test set who experienced 

events and were placed in a higher risk category by model M1 compared to M2 (and placed 

in a higher risk category by model M2, respectively) with the expectations computed using 

the Kaplan-Meier estimator to account for censoring. Similarly,  and  are the 

expected number of individuals who did not experience an event and were “down-classified” 

by M1 and M2, respectively.  and  are the expected number of subjects with events and 

non-events, with, again, the expectations computed using the Kaplan-Meier estimator to 

account for censoring.

5. Materials and methods

In this section we describe the prediction problem and data source, the techniques we 

compared to handle observations for whom the event status is unknown due to right-

censoring, and the machine learning methods we considered.

5.1. Example dataset: Predicting cardiovascular risk using electronic health data

We illustrate the application of IPC-weighted risk prediction methods to the problem of 

predicting the risk of a cardiovascular event from electronic health data. The data come from 

a healthcare system in the Midwestern United States and were extracted from the HMO 

Research Network Virtual Data Warehouse (HMORN VDW) associated with that system 

[52]. The VDW stores data including insurance enrollment, demographics, pharmaceutical 

dispensing, utilization, vital signs, laboratory, census, and death records. This healthcare 

system includes both an insurance plan and a medical care network in an open system which 

is partially overlapping. That is, patients of the insurance plan may be served by either the 

internal medical care network and or by external healthcare providers, and the medical care 

network serves patients within and outside of the insurance plan. Patient-members who do 

not visit any of the clinics and hospitals in-network do not have any medical information 

(e.g., blood pressure information) included in the electronic medical record (EMR) of this 

system. Furthermore, once the patient-member disenrolls from the insurance plan, the 

patient is right-censored as there is no longer any information on risk factors or outcomes 

(i.e., CV events) recorded in the EMR or insurance claims data.

This study and the use of these data were approved by the Institutional Review Boards of 

both the University of Minnesota and HealthPartners Institute for Education and Research.
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5.2. Defining the study population

The study population was initially selected from those enrolled in the insurance plan 

between 1999 and 2011 with at least one year of continuous insurance enrollment and 

prescription drug coverage.

We included only patients with at least two medical encounters in the in-network ambulatory 

clinics (excluding urgent care) which had blood pressure recorded and were at least 30 days 

but at most 1.5 years apart. Patients who are only treated in the emergency room or urgent 

care clinics (i.e., settings where patients are unlikely to be counseled about their CV risk) 

were excluded in this analysis. As is typical in other CV risk prediction models [3], patients 

under the age of 40 and with pre-existing serious comorbidities other than diabetes (e.g., 

prior CV event, chronic kidney disease, etc.) were also excluded. After applying the above 

criteria, our final analysis dataset contained 87,363 individuals.

The available longitudinal data on each patient-member was divided into: (i) a baseline 
period, where the risk factors were ascertained, and (ii) a follow-up period, where we 

assessed whether a patient experienced a CV event (and, if so, when). The baseline period 

consisted of the time between the first blood pressure reading during the enrollment period 

and the date of the final blood pressure reading at most 1.5 years from the first measurement. 

Although some clinics in this health system adopted the electronic medical record as early as 

1999, most clinics transitioned to the electronic system between 2001 and 2002, so the 

earliest blood pressure readings recorded in the medical record are typically between 2001 

and 2002. The follow-up period for a patient begins at the end of the baseline period, 

referred to as the index date, and continues until either the patient experiences a CV event 

(defined below), the patient disenrolls from the insurance plan, or the data capture period 

ends (in 2011), whichever comes first. The distribution of the follow-up periods for the 

resulting analysis cohort is shown in Figure 1, which illustrates that a large proportion of 

subjects’ CV event times are censored prior to the end of follow-up. Figure 2 shows that, 

unless we consider a very short time horizon τ, the τ -year event status will be unknown for 

a substantial proportion of subjects in this cohort. In particular, for τ = 5 years, the 

proportion of subjects for whom the τ -year event status is known is only 47.8%.

5.3. Risk factor ascertainment

Risk factors used as features in the machine learning models included age, gender, systolic 

blood pressure (SBP), use of blood pressure medications, cholesterol markers (HDL and 

total cholesterol), body mass index (BMI), smoking status, and presence/absence of 

diabetes. These risk factors were chosen because they have been consistently used in 

prediction of adverse cardiovascular outcomes in the work cited in Section 1.1. Summary 

statistics and brief descriptions for the risk factors are given in Table 1. Missing risk factor 

values were filled in prior to model fitting using multiple imputation by chained equations 

[53].

Unless otherwise noted, SBP, HDL, total cholesterol, and BMI were all considered as 

continuous features. For systolic blood pressure, we took the average of all the blood 

pressure measurements during the baseline period excluding readings obtained during 
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emergency department visits, urgent care visits, hospital admission, and during procedures 

(e.g., surgeries) because they may be influenced by acute conditions. Use of SBP medication 

during the baseline period was inferred from claims data. Diabetes was defined based on 

joint consideration of inpatient and outpatient ICD-9-CM diagnosis codes (ICD-9-CM codes 

250.xx), use of glucose-lowering medications, and glucose-related laboratory values using a 

previously validated algorithm with estimated sensitivity of 0.91 and positive predictive 

value of 0.94 [54]. Body mass index was calculated as a function of patient’s height and 

weight which are recorded in the EMR. The height of an individual is the average height 

measured at any encounter (possibly outside of the baseline period). Because all subjects in 

the analysis dataset are adults, we expect height to remain relatively constant over the 

follow-up period. The weight is calculated as an average of all weight measurements taken 

during the baseline period. In the EMR in this health system, smoking status is categorized 

as never smoked, smoking, quit smoking, and passive (i.e., second-hand) smoking. In our 

analysis, a person is considered to have never smoked only if they consistently recorded “no 

smoking” throughout the baseline period. For the purpose of constructing the model we 

combine the “passive smoking” and “no smoking” categories. Finally, the most recent 

laboratory measurements before the end of the baseline period for HDL and total cholesterol 

were used.

5.4. Cardiovascular event definition

Cardiovascular events were defined as the first recorded stroke, myocardial infarction (MI), 

or other major CV event after the baseline period, prior to 5 years of follow-up. Major CV 

events were ascertained based on the date of primary hospital discharge ICD-9-CM 

diagnosis codes from insurance claims data as follows: 1) MI or acute coronary syndrome 

(ICD-9-CM codes 410.xx, 411.1, and 411.8x); 2) ischemic and hemorrhagic stroke (430, 

431, 432.x, 433.xx, 434.xx); 3) heart failure (428.xx); or 4) peripheral artery disease (440.21 

and 443.9). Here we use the convention 410.xx to denote all codes with category 410 

regardless of subcategory and subclassification, and similarly for other categories and 

subcategories. Because we use insurance claims data, we note that we are able to infer if a 

patient had a CV event but sought care at an out-of-network hospital. In addition to using 

diagnosis codes to infer if a CV event occurred, we considered a patient to have experienced 

a CV event if the cause of death listed on the death certificate included MI or stroke.

5.5. Methods to handle observations in which event status is unknown

Subjects who experienced an event within five years were recorded as E = 1, and those with 

at least 5 years of event-free follow-up were recorded as E = 0. Subjects who were event-free 

but censored before accruing 5 years of follow-up have E unknown. We applied and 

evaluated four variants of each of the machine learning techniques described in Section 3 to 

our data. The variants differ in their handling of subjects with E unknown:

1. Set E = 0 if E is unknown. Techniques using this strategy are denoted with the suffix -
Zero.

2. Discard observations with E unknown. Techniques using this strategy are given the 

suffix - Discard.
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3. Use IPCW on observations with E known. The resulting techniques, as described in 

Section 3, have the suffix -IPCW.

4. “Split” observations with E unknown into two observations with E = 1 and E = 0 with 

weights based on marginal survival probability. The resulting techniques, as described 

subsequently, have the suffix -Split.

The final technique of splitting observations with E unknown was described by Štajduhar 

and Dalbelo-Bašić [27]. For each observation i in the training set for which Ei is unknown, 

we create two observations, one with E = 1 and the other with E = 0, but with the same 

features Xi. Let (t) be the Kaplan-Meier estimator of the survival probability at time t,

where dj is the number of subjects who are observed to experience the event at time Vj, and 

nj is the number of subjects “at risk” for the event (i.e., not yet censored or experienced an 

event) at time Vj. Then, if E is unknown for instance i in the training set, the weight for the 

imputed observation with E = 0 is (τ)/ (Vi) (an estimate of the conditional probability that 

E = 0), and the weight for the imputed observation with E = 1 is 1 − (τ)/ (Vi). The 

weights are implemented in the analysis in the same way as the IPC weights. These weights 

are advantageous because all observations receive non-zero weights and are used in the 

analysis unlike IPC weights.

5.6. Machine learning methods and implementation details

We now provide some implementation details for the various machine learning techniques. 

All models were trained on 75% of the sample observations. Code to implement these 

machine learning methods using each of the four techniques described above to handle 

observations where the event status is unknown is available as a Github repository from the 

first author (@docvock).

5.6.1. Logistic regression and generalized additive logistic regression—For the 

logistic regression models, all (unscaled) risk factors described in Section 5.3 were included 

as additive factors in the model for the log odds of having a CV event. The reported results 

are for models with a single “main effect” term for each predictor; predictive performance 

did not markedly improve when second-order interaction terms were included (data not 

shown). Models were fitted using the glm function in R; IPC weights were incorporated 

using the weights argument.

The generalized additive models included the same risk factors as those in the main-effect 

logistic regression model, but we allow the effect of the continuous covariates on the log 

odds to vary smoothly by using low rank thin plate regression splines for each covariate. The 

smoothing penalty was chosen using generalized cross-validation to minimize UBRE. 

Models were fitted using the gam function in the mgcv package in R; IPC weights were 

incorporated using the weights argument.
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5.6.2. Bayesian networks—Figure 3 displays the structure of the Bayesian network that 

we used to construct our prediction models. The structure was determined by combining 

known relationships from the medical literature with input from our clinical colleagues. As 

noted in Section 3.2, it is possible to use IPCW to account for censoring when building and 

comparing different graph structures.

Given the complex relationship between age and body mass index and other covariates, we 

discretized those covariates. In particular, we considered the age categories 40-50, 50-60, 

60-70, 70-80, and >80 and BMI categories < 25, 25-30 (overweight), 30-35 (class I obesity), 

35-40 (class II obesity), > 40 (class III obesity).

Nodes were jointly modeled as described in Section 3.2 and in the Supplementary Material. 

To model the distribution of SBP, HDL, TC, we considered linear regression models with the 

parents of those nodes as additive predictors in the model. Additionally, the model for SBP 

included an interaction between BMI category and SBP medication.

5.6.3. Classification trees—Classification trees were built using the rpart package in R, 

which implements the classification and regression trees described in Breiman et al. [39]. 

Nodes are split based on the Gini loss criterion. We considered the ratio of the loss between 

misclassifying events and non-events, the minimum number of subjects in each terminal 

node, and the cost complexity parameter as tuning parameters which were chosen using five-

fold cross-validation over a grid of values for those parameters. We selected the most 

parsimonious tree which had an average C-index in the hold-out sets within one standard 

error of the best combination of those tuning parameters. The loss matrix was constructed to 

give more loss to false negatives, to induce additional splits and improve discrimination 

among the large fraction of the population with a relatively low (e.g., < 5%) 5-year CV event 

risk. The ratio of the loss for false negatives to false positives considered in the grid search 

ranged from 2.5 to 10. The minimum number of subjects in each terminal node was also 

varied among 50, 100, and 200. Finally, in the cross-validation analysis the cost complexity 

parameter ranged across a fine grid between 10−1 and 10−4. Risk factors were not scaled 

prior to fitting the tree. IPC weights were incorporated via the weights argument in rpart.

5.6.4. k-nearest neighbors—Classification using k-nearest neighbors was done using 

the yaImpute package in R to identify efficiently the k neighbors for each instance in the test 

set. We found that computing the distance between the features in the projected canonical 

space works well in this application, and those results are reported here. The number of 

neighbors was considered as a tuning parameter and selected using five-fold cross-

validation. In particular, we selected the largest number of neighbors (more neighbors is 

equivalent to a more parsimonious model) which had an average C-index in the hold-out sets 

within one standard error of the best C-index. A maximum of 1,000 neighbors was 

considered to improve computational speed.

5.7. Risk prediction evaluation metrics

All measures of predictive performance were assessed on the hold-out test set which was 

25% of the sample. To calculate the calibration statistic, we defined five risk strata based on 

clinically relevant cutoffs for the risk of experiencing a cardiovascular event within 5 years: 
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0-5%, 5-10%, 10-15%, 15-20% and > 20% [4]. Therefore, a statistical test for the null 

hypothesis that a model is well-calibrated would reject the null at a 5% significance level if 

the statistic exceeds 7.81. To calculate the cNRI, we used the same five risk strata as for the 

calibration statistic. The C-statistic was calculated as described in Section 4.2.

6. Results

The full training dataset consists of 65,522 patients (75%) drawn at random from the 

analysis cohort. 52% were censored prior to five years; as a result -Discard models were 

trained on 31,345 subjects. The performance of all models is evaluated based on the risk 

predictions of the remaining 21,841 patients not included in any training set. The coefficient 

estimates from the logistic regression model are given in Table S2 and the final tree from the 

recursive partitioning algorithm is given in Figure S1 in the Supplementary Material for the 

interested reader.

Table 2 shows how different approaches to handling censored observations affect the 

predicted event rate, calibration statistic, and C-index of the techniques described in Section 

3. Figure 4 displays calibration plots which compare predicted CV risk to empirical (using 

the Kaplan-Meier estimator) CV risk across bins defined by the predicted risk. From Table 2 

and Figure 4, it is clear that the -Discard, -Zero, and -Split variants of each technique are 

poorly calibrated across all methods considered in this analysis. As expected, the -Discard 
approach consistently over-estimates risk. As noted previously, subjects with short event 

times are much more likely to have their event status known. For example, a subject who has 

a CV event one year after the index date must only stay enrolled in the health plan for one 

year for E to be known; those subjects for whom E = 0 must stay enrolled in the insurance 

plan for five years after baseline for the event status to be known. Also, as expected, the -
Zero approach underestimates the CV risk, both overall and within subgroups, across all the 

machine learning techniques considered here. This approach inflates the proportion of 

subjects not experiencing a CV event as some subjects whose event time was censored 

would have experienced a CV event prior to 5 years.

The effect of the -Split technique is more subtle but consistent across the methods 

considered in this analysis. For subjects in the training set with the event status unknown, the 

replicate with E set equal to 0 is assigned a weight based on the probability that E = 0 given 

that the subject was known to survive until the censoring time but not conditioned on any of 

the features. Similarly, the replicate with E set equal to 1 is assigned a weight based on the 

probability that E = 1 given the subject was known to survive until the censoring time. This 

approach necessarily attenuates the relationship between the features and the event status. 

As a result, this technique tends to over-predict the risk for subjects with low risk and under-

predict the risk for subjects at high risk which can be seen in Figure 4. Even though this 

method appears to be more refined than the -Discard and -Zero variants, the performance is 

just as poor.

The -IPCW versions were the only machine learning techniques to consistently have 

acceptable calibration. Discrimination performance was not dramatically affected by the way 

in which censoring was handled, with small gains (change in C-index of < 0.005) in most 
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techniques due to IPCW as compared to other methods for handling censoring. That is, ad 
hoc methods for handling censoring do not substantially impact the relative ordering of 

patient’s risk. But, simply put, risk predictions which are poorly calibrated are unlikely to be 

adopted in the clinical setting.

Table 3 compares the net reclassification improvement for the IPCW versions of various 

techniques. We do not consider cNRIs for the -Discard, -Zero, and -Split variants, as recent 

papers [55] have shown that the NRI can be a very misleading statistic when comparing 

poorly calibrated models. In almost all cases, reclassification performance as measured by 

cNRI is similar across the techniques, which is consistent with the C-index results in Table 

2.

7. Discussion

Previous methods to handle unknown event statuses due to censoring have largely been ad 
hoc or only applicable to a single machine learning technique. We demonstrate that a wide 

variety of flexible machine learning techniques, when properly accounting for censoring 

using IPCW, can be successfully applied to predict risk with right-censored, time-to-event 

data. The resulting techniques were far better calibrated in our real data example than 

alternative widely applicable but ad hoc approaches we considered. Since poorly calibrated 

risk predictions are unlikely to be adopted in the clinical setting, our findings suggest that 

using IPCW to handle censoring when applying machine learning methods to estimate risk 

should be explored further.

Inverse probability of censoring weighting is a general-purpose approach which can be 

straightforwardly applied to many machine learning methods. There are, of course, other 

machine learning algorithms which we did not implement, but the simplicity of the IPCW 

approach means that using the principles outlined in this paper it can be adapted to a wide 

range of existing tools. Indeed, due to IPCW’s ease of implementation and use, it would be 

possible to develop ensemble-based risk prediction tools to apply to censored data.

Finally, proper treatment of censored outcomes using IPCW forces the analyst to 

acknowledge that there is less information than if all subjects had complete follow-up. A 

good rule of thumb for evaluating if the amount of information in the sample is sufficient is 

to consider the number of subjects for whom the event status is known as the effective 

sample size.

7.1. Limitations

The statistical validity of IPCW rests on several assumptions, in particular that the censoring 

time is independent of both the event time and patient features. This is a plausible 

assumption for EHD, where censoring typically occurs for reasons unrelated to a person’s 

health status, but the assumption is much less plausible in other contexts. For example, if 

data were collected from a small regional hospital, patients with severe health problems 

might be censored because they went to a larger facility to seek care. Additionally, IPCW 

can be inefficient as those subjects for whom the event status is not known are given a 
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weight of zero and do not contribute directly to the estimation of the risk (although those 

subjects do contribute information to estimate the weights).

Additionally, the example we considered here used a relatively modest number of features to 

predict CV events as the number of covariates which are currently and consistently 

measured across all adults in the primary care clinics is relatively small. However, this may 

change as the complexity, completeness, and quality of EMR data increases.

8. Conclusion

Electronic health data from large-health care systems contain information on a large, 

present-day population seeking care and, therefore are an appealing source of training data 

for clinical risk prediction. However, sources of big data in biomedicine are infrequently 

collected explicitly for research purposes, so many subjects may be lost to follow-up due to 

disenrollment from the health system. Most machine learning approaches which account for 

right-censored event times have been relatively ad hoc. We have proposed a general-purpose 

technique for improving the performance of machine learning methods when the binary 

class indicator is unknown for a subset of individuals due to censoring and have illustrated 

the approach within a variety of standard machine learning algorithms. Using IPC-weighted 

machine learning techniques resulted in superior calibration as compared to typical ad hoc 
techniques in our example of estimating cardiovascular risk. Because IPCW is easily 

implemented and generalizable to many machine learning techniques, IPCW should be 

considered as a tool in mining big data in biomedicine.
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Highlights

• Right-censored outcomes are common in biomedical prediction problems

• We discuss adapting machine learning (ML) algorithms to these outcomes using 

IPCW

• IPCW is a general-purpose approach which can be applied to many ML 

techniques

• ML with IPCW leads to more accurate predictive probabilities than ad hoc 

approaches
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Figure 1. 
Distribution of follow-up times, i.e., time from the end of the baseline period until the 

patient experiences a CV event, the patient disenrolls from the insurance system, or the 

study ends, in the cohort after applying inclusion/ exclusion criteria. The number of subjects 

whose follow-up ends in a CV event are shown on the right while the number whose follow-

up is censored is given on the left. The large number of subjects with between 7-9 years of 

follow-up are subjects who were part of the health system from the inception of the 

electronic medical record at their primary care clinic (typically occurring between 2001 and 

2002) and remained part of the system until 2011.
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Figure 2. 
Proportion of subjects with unknown τ -year event status as a function of τ, the time from 

index date in years.
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Figure 3. 
The graphical model for our Bayesian network for CV risk prediction. Nodes represent input 

variables and edges represent conditional dependencies between the variables. The edge 

between subgraphs indicates an edge from every node in the source subgraph to every node 

in the destination subgraph or node. That is, the outcome variable (Event) is connected to 

every node in the graph. Features in the same nodes indicate those features are modeled 

jointly. The full description of each of the features appears in Section 5.1.
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Figure 4. 
Predicted CV risk minus empirical or observed CV risk across bins defined by the predicted 

risk. The predicted risk bins were based on clinically relevant cutoffs for the risk of 

experiencing a cardiovascular event within 5 years: 0-5%, 5-10%, 10-15%, 15-20% and > 

20%.
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Table 1

Distribution of risk factors in the analysis dataset.

Feature Name
Median (IQR)

or
N (%)

% missing
(in original

data)
Description

Gender

 Female 51,530 (59.0) 0

 Male 35,833 (41.0) 0

Age (Years) 52 (46 - 60) 0 Age at the end of the baseline period

SBP (mm Hg) 123 (115 - 133) 0 Average systolic blood pressure
 during baseline period

BMI (kg/m2) 28.0 (24.7 - 32.3) 8 Body mass index

HDL (mg/dL) 48 (40 - 59) 41 Final high density lipoprotein
 cholesterol during baseline period

Total cholesterol
 (mg/dL)

196 (172 - 222) 41 Final total cholesterol during
 baseline period

Smoking Smoking status in EMR

 Never or Passive 64,335 (73.6) 0

 Quit 9,829 (11.3) 0

 Current 13,199 (15.1) 0

SBP Meds Subject is currently taking SBP
 medication during baseline period

 No 49,165 (56.3) 0

 Yes 38,198 (43.7) 0

Diabetes Subject has a current diagnosis
 of diabetes

 No 80,921 (92.6) 0

 Yes 6,442 (7.4) 0
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Table 2

Calibration statistic and C-index of different machine learning methods using different techniques to handle 

censored data evaluated on the test set.

Method
Predicted

event rate (%) Calibration C-Index

Tree

 -IPCW 5.41 12.74 0.788

 -Discard 7.13 76.92 0.784

 -Zero 4.19 125.76 0.784

 -Split 6.42 289.54 0.782

k-NN

 -IPCW 5.27 10.24 0.787

 -Discard 7.07 49.11 0.793

 -Zero 4.11 85.64 0.788

 -Split 6.37 106.60 0.787

Bayes

 -IPCW 5.62 6.18 0.802

 -Discard 7.40 76.82 0.802

 -Zero 4.26 80.16 0.800

 -Split 6.49 194.56 0.801

Logistic

 -IPCW 5.40 4.85 0.801

 -Discard 7.14 63.92 0.801

 -Zero 4.18 83.78 0.799

 -Split 6.42 150.46 0.797

GAM

 -IPCW 5.47 6.96 0.805

 -Discard 7.22 67.57 0.804

 -Zero 4.17 83.04 0.801

 -Split 6.42 233.07 0.802

Tree: Classification trees; k-NN: k-nearest neighbors; Bayes: Bayesian network models; Logistic: Logistic regression; GAM: Generalized additive 
models; Predicted event rate: Average predicted probability of experiencing a CV event within 5 years; Calibration: calibration test statistic K; C-
index: Concordance index adapted for censoring. Standard errors for the C-index were all approximately 0.01.
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Table 3

Net reclassification (cNRI) comparisons for IPC weighted versions of the machine learning techniques 

described in Section 3 evaluated on the hold-out test set.

cNRI

Events Non-Events cNRI Overall Overall Weighted

Tree

  vs. k-NN −0.003 0.048 0.045 0.045

  vs. Bayes −0.064 0.058 −0.006 0.050

  vs. Logistic −0.065 0.045 −0.020 0.038

  vs. GAM −0.056 0.030 −0.026 0.024

k-NN

  vs. Tree 0.003 −0.048 −0.045 −0.045

  vs. Bayes −0.065 0.015 −0.050 0.009

  vs. Logistic −0.108 0.009 −0.099 0.001

  vs. GAM −0.069 −0.013 −0.082 −0.016

Bayes

  vs. Tree 0.064 −0.058 0.006 −0.050

  vs. k-NN 0.065 −0.015 0.050 −0.009

  vs. Logistic −0.013 −0.017 −0.030 −0.017

  vs. GAM 0.028 −0.040 −0.012 −0.035

Logistic

  vs. Tree 0.065 −0.045 0.020 −0.038

  vs. k-NN 0.108 −0.009 0.099 −0.001

  vs. Bayes 0.013 0.017 0.030 0.017

  vs. GAM 0.037 −0.022 0.015 −0.018

GAM

  vs. Tree 0.056 −0.030 0.026 −0.024

  vs. k-NN 0.069 0.013 0.082 0.016

  vs. Bayes −0.028 0.040 0.012 0.035

  vs. Logistic −0.037 0.022 −0.015 0.018

Positive numbers indicate that the bolded technique correctly reclassifies subjects more frequently than the technique preceded by “vs”. cNRI 
(Events) and cNRI (Non-Events) give the reclassification improvement among those who did and did not experience events, and cNRI (Overall) is 
their sum. cNRI (Overall Weighted) is a weighted sum where the reclassification performance among Events and Non-Events is weighted 
according to the event and non-event probabilities, respectively. Tree: Classification trees; k-NN: k-nearest neighbors; Bayes: Bayesian network 
models; Logistic: Logistic regression; GAM: Generalized additive models.
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