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Abstract

Surgical Site Infection (SSI) is a national priority in healthcare research. Much research
attention has been attracted to develop better SSI risk prediction models. However, most of
the existing SSI risk prediction models are built on static risk factors such as comorbidities
and operative factors. In this paper, we investigate the use of the dynamic wound data
for SSI risk prediction. There have been emerging mobile health (mHealth) tools that can
closely monitor the patients and generate continuous measurements of many wound-related
variables and other evolving clinical variables. Since existing prediction models of SSI have
quite limited capacity to utilize the evolving clinical data, we develop the corresponding
solution to equip these mHealth tools with decision-making capabilities for SSI prediction
with a seamless assembly of several machine learning models to tackle the analytic challenges
arising from the spatial-temporal data. The basic idea is to exploit the low-rank property of
the spatial-temporal data via the bilinear formulation, and further enhance it with automatic
missing data imputation by the matrix completion technique. We derive efficient optimization
algorithms to implement these models and demonstrate the superior performances of our
new predictive model on a real-world dataset of SSI, compared to a range of state-of-the-art
methods.
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1. Introduction

Surgical Site Infection (SSI) is a national priority in healthcare research @, E, ] It occurs
in 3-5% of all surgical patients, and up to 33% of patients undergoing abdominal surgery M, B]
More than 500,000 cases are estimated to occur in the US annually, resulting in additional
costs of up to $20,000 per infection. It also results in worse health outcomes for patients, such
as prolonged length of hospital stay, increased mortality, and compromised health-related
quality of life ﬂa, EL ] SSI is overall the most costly healthcare-associated infection, yet
many of its associated costs are non-reimbursable. Surveillance methods have been invented
since the early 1980s to provide appropriate data (such as risk indicators, clinical prediction
rules) to surgeons to monitor how changes in practice can impact SSI occurrence E, @, H]
Many of these surveillance systems follow the standard guidelines established in 1992 by
the American Centers for Disease Control and Prevention (CDC)’s National Nosocomial
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Figure 1: An illustration of the dynamic data from a subject as a spatial-temporal data
matrix

Infections Surveillance (NNIS) system, and rely on volunteer surgical wards from public or
private hospitals that routinely collect nosocomial infection data. Although these surveillance
systems are continuously updated with successive risk indicators being included, they are
mainly based on individual or very few risk factors. Furthermore, the quality of post-discharge
data is poor, as active surveillance is costly and rarely performed prospectively, relying on
retrospective review of clinical documentation. Recently, with the rapid advances of sensing
and information technologies, new tools have been developed to provide patients the means
to monitor their conditions and share this data with their providers. One example is the
mobile health (mHealth) tool that we have developed to enable patient-initiated monitoring
of surgical wounds and improve patient-provider communication after hospital discharge.
Self-reported symptoms of pain, body temperature, and wound features, as well as patient-
or caregiver-generated images of the wound may be acquired to assess the evolving condition
of the wound and the likelihood of SSI.

While these emerging mHealth tools have provided unprecedented capacity to closely
monitor patients for signs and symptoms of SSI and measure the evolution of the wound-
related variables and other clinical factors, existing prognostic models of SSI have not been
able to take advantage of this rich and accumulating information for SSI prediction. Prog-
nostic models of SSI (ﬂﬂ, , @, , @]) in the literature have three main limitations. First,
many of these models were based on medical knowledge or heuristics, not data-driven by
nature. Thus, their utility is limited on some specific phenotypes or particular time windows
of the SSI progression process. Second, these models only predict whether or not the patient
will develop SSI, but do not predict when. Third, most existing models only incorporate
static variables known as of the end of the operation, e.g., demographics, pre-operative lab-
oratory results, comorbidities, and operative factors. These models do not incorporate the
continuous observations of the patients and their wound.

To overcome the limitations of existing SSI prediction models, especially when utilizing
the dynamic data collected by mHealth tools (e.g., an illustration of such dynamic data as
a spatial-temporal data matrix is shown in Figure [I]), we develop a solution that is specifi-
cally designed to address the unique analytic challenges from dynamic mHealth data. The
collected dynamic data includes continuous measurements on a range of wound variables
and clinical factors, for which we form a spatial-temporal data matrix for each individual
(Figure [1). Rather than predicting the development of SSI based on a snapshot of these
factors or the static variables known as of the end of the surgical operation, we propose a
learning formulation to predict the time to the development of SSI directly based on these



spatial-temporal matrices. In our experience with real-world applications, one common data
challenge is that there are many patients who do not develop SSI during observational period
(in this paper we name them as “censored samples”). What is worse is that, the number
of censored samples is usually greater than the number of samples that have observed out-
comes (in this paper we name them as “complete samples”). Thus, a learning formulation
that can fuse both types of samples is needed. Another data challenge is, as a well-known
phenomenon in many healthcare applications, we encounter many missing values that result
in a challenge for the learning formulation. We therefore propose a matrix completion ap-
proach to overcome this challenge and derive a convex optimization formulation to solve it.
Further, with the spatial-temporal matrix representation for the dynamic mHealth data as
the input of the prediction model, we investigate the use of a bilinear formalism to reduce
the dimensionality of the prediction model. Our main contributions include:

e Developed a flexible learning formulation that can convert the dynamic clinical signals
of an individual (represented as the “spatial-temporal matrix”) into accurate prognos-
tics of SSI onset, even when some data have censored outcome;

e Proposed the use of matrix completion to mitigate the missing data problem that has
been found ubiquitous in many healthcare applications;

e Developed efficient algorithms to implement the machine learning models; specific op-
timization strategies were developed to ensure the feasibility and robustness of the
algorithms;

e Conducted extensive numerical studies on a real-world dataset (that includes 860 pa-
tients observed in a time window ranging from 2 to 21 days while 167 developed SSI),
which generated real-world experience and empirical evidence for using the proposed
method with dynamic mHealth data.

The remainder of the paper is organized as follows: In Section 2, a brief review of related
work will be provided. In Section 3, our method will be presented with detailed explanations
of the formulation, together with the computational algorithm for solving the proposed
formulation. The real-world implementation of this method will be presented and discussed
in Section 4. Conclusions will be drawn in Section 5.

2. Related Work

Our work is closely related to the following two areas: prediction models of SSI risk and
machine learning methods that are related to the analysis of spatial-temporal data.

Risk prediction models of SSI: Many current risk prediction models for SSI are built
upon expert opinions. For instance, the Ventral Hernia Working Group (VHWG) has cate-
gorized patients into 4 grades: low risk, comorbid, potentially contaminated, and infected.
A grading system has thereafter been developed to predict the risk of SSI, based on expert
opinions but not directly on patient data. This model has later been modified by researchers,
including the 3-tier system developed in [17], which are still knowledge-driven rather than
being data-driven. On the other hand, many data-driven risk scores for SSI have been devel-
oped over the years, such as the ones in @, , , , ] Among these models, the National

3



Nosocomial Infection Surveillance (NNIS) Risk Index is a well-accepted risk-assessment tool,
but it only includes three predictors. Thus, it has limited capacity to utilize the much more
information that we could collect nowadays for SSI prediction. For more complex models,
such as the model developed in ﬂﬂ], a hierarchical multivariate logistic regression model was
used to discriminate SSI from non-SSI patients based on risk factors such as some opera-
tive variables, preoperative clinical severity, risk factors, comorbidities, and other variables
related to the hospitalization procedure. However, these existing models build on the static
measurements of some selected risk factors rather than the dynamic post-operative symp-
tom and wound observations. Recently, B] investigated the use of the data of “last five days”
(defined as the last 5 days prior to SSI onset for SSI patients or the last 5 days for non-SSI
patients) for predicting SSI onset, which showed better performance than using only cross-
sectional measurements. Comparing with E], our study focuses more on the methodological
issues of how to mitigate the statistical challenges in order to automate the process of using
the incomplete dynamic data to build and select the best prediction model. More related
works that could be applied on a range of disease contexts can be found in ﬂﬁ], which has
covered a wide range of prognostic models.

Machine learning methods: Matrix completion @, , , , ] is an important
approach to estimate missing elements in a data matrix, without making strong assumptions
on data missing mechanisms. The authors in ﬂﬁ] proved that the low-rank matrix comple-
tion technique only needs O(mrlog®m) to exactly recover the missing values for a m x n
matrix with rank r, assuming m > n. A related formalism that can be used for building
prediction models using spatial-temporal data could be the bilinear models. The bilinear
model is a popular approach to capture information in two different dimensions, for example
in text mining ﬂﬂ], computer vision ], and image processing @] A specific example is,
for classification using brain image data or EEG signals, the input data for classification are
represented as matrices with columns representing space indices and rows representing time
indices. It is always possible to apply linear models by creating data vectors as stacking of the
elements of the data matrix; however, such stacking approaches can not exploit the spatial
and temporal structure in the data matrix and will inevitably lead to a high-dimensional
weight vector in the linear model. Thus, we adopt the bilinear formulation to better exploit
the data matrix structure to obtain a more parsimonious representation of the weight vector.
For instance, Singular Value Decomposition (SVD) is a typical bilinear model that identifies
representative vectors (characterized as eigenvectors) in both dimensions to span the data
space. A general framework was presented in ﬂﬂ] for solving two-factor tasks using bilinear
models, which can characterize factor interactions and employ efficient algorithms based on
the singular value decomposition and expectation-maximization. Although not directly ap-
plicable here, existing matrix completion formulations and bilinear models provide a great
resource for us to develop a systematic data analytic pipeline by building on these models
and tackle the data challenges with the dynamic mHealth data for SSI prediction.

3. Approach

3.1. An Owverview of the Proposed Machine Learning System

The overall goal of the proposed machine learning system is to predict the time to SSI on-
set using the spatial-temporal matrix data. There are several major data challenges that need
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to be overcome, such as the fusion of both complete samples and censored samples, missing
values in the spatial-temporal matrices, and the complex two-way interaction structure of
the spatial-temporal matrices.

To mitigate these challenges, Figure [2] illustrates an overall scheme of the proposed ma-
chine learning system. It consists of a novel modeling formulation to fuse both complete
samples and censored samples, in which bounded matrix completion is used to mitigate the
missing data problem. The learning formulation is further equipped with model regulariza-
tion techniques such as the bilinear formalism and sparse learning to mitigate the challenges
from the high dimensionality of the spatial-temporal matrix and to exploit its inherent spa-
tial and temporal structure. In the following subsections, each of the main machine learning
algorithms will be described in details.

Raw Training Data i Completed Extracting Spatial-
9 Bﬂé‘;?ﬂiﬁg’:’i‘;ﬁ”x Sata pM i »  temporal Data
Matrices Spatial-temporal
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. Vectorized Model Training and
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Figure 2: Algorithm flow

3.2. Learning Formulation for Data Fusion

Denote the i-th spatial-temporal data sample in the training data as x; € R7*" where
T denotes the length of observations and P denotes the number of dynamic variables (such
as those wound-related variables) that are collected. Note that here, the optimal length of
observations 7T is not a known parameter. Rather, it should be decided using data-driven
methods, which will be discussed in Section 4. As we have mentioned, our training data
consists of both complete samples and censored samples. We use €2 to denote the index set
of complete samples, and use €2 to denote the index set of censored samples. Missing data is
referred to the missing elements in the matrix x;. Further, we use y; to denote the time to
develop SSI for sample ¢ if this sample is in €2, or the duration of observations if the sample
i is in Q. For example, suppose that the sample i is the subject i’s day 1 through day 5’s
measurements. If the subject ¢ developed SSI on day 7, which means i € ), y; =7 —5 = 2.
Otherwise, if the subject ¢ did not develop SSI in the observational period of 21 days (i ¢ ),
y; = 21 —5 = 16. Then, the following learning formulation is proposed to learn the prediction
model based on both the complete and censored samples, under the assumption that there
is no missing data in x; and the prediction model is linear:



min f(w,b) :ZZ%(@Q, w) +b—y;)?
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(1)

Here, (x;,w) denotes the the sum of entry-wise products of two matrices. Note that, the
formulation consists of two components in the objective function. The first component,
>ica s((xi, W) +b—y;)? is the least-square loss function that penalizes the difference
between the predicted values, i.e., (x;, w) + b, with the real outcome data, i.e., y;, from the
complete samples. This is the same with classic linear regression models. The second com-
ponent evaluates the squared hinge loss ﬂﬁ which corresponds to the loss function for the
censored samples. The rationale for the use of the squared hinge loss is that, if the predicted
time to SSI onset is larger than the censored time y;, we should not penalize the model;
otherwise, we penalize the model. In this way, the censored samples can contribute to the
learning of the prediction model in an unbiased way. To balance the contributions of these
two types of samples, we further use a parameter, A, in the formulation, i.e., larger A will
allow the censored samples to give more influence on the model estimation. In practice, this
parameter can be selected by model selection methods such as cross-validation to enable
data-driven optimal model selection.

3.8. Bilinear Formulation for Spatial-Temporal Matrix

Note that the model proposed above imposes no structure on the model parameters
w, ignoring the fact that the input data is a spatial-temporal matrix that has an inherent
correlation structure in both dimensions. Here, we propose to adopt a bilinear formulation
to capture the correlation structure within the spatial-temporal matrix. This is inspired by
the success of the bilinear models in a range of applications such as ﬂﬂ, ] Specifically,
here, by using the bilinear formulation, the prediction model can be rewritten as

R
(x;, W>+b—yi:Zquvr+b—yi, (2)
r=1

where u € R™*% and v € RP*® with u, and v, denoting their corresponding rth column.

Actually, the bilinear formulation can be interpreted from another point of view for dimension
reduction by noting that Y ulxv, = (uv',x). In other words, to learn the bilinear
prediction model characterized by u € R™# and v € RP*E it is equivalent to learn the
optimal solution of w if we restrict w’s rank by R in the formulation (II). This leads to the

following transformed learning formulation:

min f(w,b) :ZZ%(@Q, w) + b —y;)?
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s.t. rank(w) <r.



Hence, besides the bilinear formalism, we note that this formulation can also be inter-
preted as a rank-regularized formulation. The low-rank constraint of w is a reasonable treat-
ment here, since due to the potential spatial correlations (i.e., correlations between the vari-
ables) and temporal correlations (correlations between the time points), the spatial-temporal
data inherently lie on a low-dimensional manifold. Therefore, w has the corresponding low
rank. Thus, the bilinear formulation induces the rank-regularized formulation of w.

3.4. Preconditioning Reformulation and Optimization

To solve the formulation in (3]), first, we rewrite the formulation by vectorizing w and each
spatial-temporal data x;. Particularly, we concatenate the rows of the matrix to convert the
matrix to be a vector. Similarly, to generate the corresponding design matrices Xq and Xg for
the complete samples and censored samples respectively, a column vector can be constructed
by concatenating the rows of a spatial-temporal matrix x;. A graphical illustration of this
concatenation process will be presented in Figure Bl Also, y. denotes the corresponding vector
of outcomes or censored outcomes. Then, we can rewrite () as the following vectorized form:

: 1 2
w3 [ Xaveelw) =10 = yal

+% |min (0, XJ vec(w) — 16 — ygq) H2 (4)
s.t. rank(w) <r,

where 1 denotes the vector whose entries are all one. The objective function in () is convex,
and the projection onto the rank constraint has a closed form. It is tempting to apply the
projected gradient descent (PGD) approach (@]) to solve this convex formulation. However,
it would be inefficient if one directly applies PGD. The reason is that, due to the large spatial
and temporal correlations in the spatial-temporal matrix, the optimization problem could
be ill conditioned (recall the way by which we generated the matrix Xq and Xg). Thus, we
propose the following preconditioning reformulation to enable the application of the PGD
on solving for ().

Let vec(w) = (XoXJ )2vec(w). We can substitute vec(w) by vec(w) in the objective function
in (). The challenging issue is how to substitute vec(w) by vec(w) in the rank constraint.
In fact, Lemma 1 indicates that rank(w) = rank(w) as long as (XqX7)? is invertible, i.e.,
in other words, as long as Xq has full column rank.

Lemma 1. For any matriz w, its rank remains the same after the vectorization and a full
ranked linear transformation, that is, rank(w) = rank(w), where A is any full rank square
matriz and

vec(w) = A - vec(w).

Proof. We first prove that range(w) C range(w). Note that the range of a matrix is defined
as the span (set of all possible linear combinations) of its column vectors. It is easy to see that
any column of w is the linear combination of all columns in w. So the range (or column) space
of w is a subspace of the range (or column) space of w. Next, we show range(w) C range(w).
Since A is invertible, we can write vec(w) = A™! - vec(W). For the same reason above, the
range space of matrix w is the subset of the range space of matrix w. Then, we can complete
the proof by combining both conclusions. O



Then, ignoring the constant terms, we can finalize the preconditioning reformation as
follows:

. 1 . 1 . 1
min 3 ||Vec(w)||2 — (1b+ yQ)TXg(XQXg) 2vec(W) + §||lb + yall?

WweRT*XP peR
\ 2
+ 3 Hmin <O, Xg(XQXJ)_%VeC(W) —1b— yQ) H ?
s.t. rank(w) < r.

Now we can apply PGD to solve (). As summarized in Algorithm [I], first, we run gradient
descent with a fixed step size 7 on the smooth part (objective function); and then, solve the
proximal mapping (projection) with Singular Value Decomposition (SVD) and recover w by
vec(w) = (Xo X )~2vec(w). Note that, in Algorithm [ the criterion of convergence is met
when the decrease rate of the objective function value is less than 0.0001 in an iteration.

Algorithm 1 Projected Gradient Descent
Require: Xq, Xg, A, 7 and n
Return: w, b
A= (XoX])
while not converge do
Vi = vec(W) — (1b +yo) " X3 A + AMAXgmin(0, XJ A - vec(W) — b — yq)
Vy=1(0b+1)+yo+ Amin(0, XJ A - vec(W) — b — ygq)
vec(w) = vec(w) — nVy
b=1b— T}Vb
U, %, V] = svd(w)
W = U XV,
end while
vec(w) = A - vec(Ww)

One remaining issue in the implementation of the PGD approach is the selection of the
step size 1. It can be chosen as a sufficiently small value, or the AMIGO rule @] can be
adopted to dynamically decide the value of 7. No matter which approach is used, it has
been shown in [28] that the key issue is to ensure that the objective function is decreasing
iteratively, which is not a difficult task empirically.

3.5. Bounded Matriz Completion (BMC')

In this section, we will develop a matrix completion approach to mitigate the missing data
issue in our problem. Missing data has been ubiquitous in many healthcare applications. We
found no exception in our study, since the data is collected by patients and for many reasons
the patient compliance in data collection has always been a challenge. We propose to use the
matrix completion approach to fill in the missing values, rather than using simple heuristic
approaches such as using mean values to replace the missing values. Our rationale is, again,
the correlations in the spatial-temporal matrix essentially imply that the spatial-temporal
matrix is low dimensional. For instance, some variables that are used to measure the wound
could be correlated, such as the color and temperature of the wound. Due to this reason, by



using their correlations, we could recover many missing values as long as we have observed
some values in the matrix. To exploit this idea, we assume that there exist a few basis vectors
that span the daily observation vector of each individual (i.e., in the same spirit of many
dimensionality reduction methods). Let 7, denote the ¢-th day observation vector of the
n-th individual. We assume that 7, ; can be represented as a linear combination of the basis
vectors {Uy, Us, - -+, U, }:

T
E,t% E OéZU,
i=1

Given observed measurements in 7, ;, the optimal weights {ay,as, -+, a,} can be ob-
tained by minimizing the difference between the corresponding elements in »;_, ;U; with
the observed measurements in 7, ;. In other words, we seek to identify the optimal weights
that can best match the projected vector > ., a;U; with the observed incomplete vector
7. This rationale leads to the following formulation:

: - 2
min - ||X = M|[i

)

s.t. rank(M) <r
Xij € llj u] V(7)€ ®

where M encodes the information of {Uy, Us,---,U,} and ® denotes the set of the missing
values. Note that, in this bounded low-rank matrix completion problem, we further restrict
the missing elements to be within a certain range [l;, u;] for the corresponding variable j.
This is to ensure that the missing values won’t be filled in with unreasonable values. Actually,
the lower bound and the upper bound can be decided based on the observed data to ensure
the clinical validity of the estimated values:

lj = min Xk,j;
kefi: (4,5)¢P}

= max X j-
Z‘hj

U; =
T kefis (i,))g®)

Note that these bounds are obtained from the observed data in ®¢, the complement of ®.

To solve the BMC problem, we apply the coordinate descent algorithm that iteratively
solves the optimization by alternately updating X¢ or M while fixing the other one. Since the
value of the objective function decreases iteratively, this algorithm is guaranteed to converge.
It is worthy of mentioning that, there is a closed-form solution in each step to solve for M
or Xg. We summarize the BMC algorithm in Algorithm

3.6. Missing Value Estimation for the Testing Data

As shown in the previous section, the BMC formulation is used to fill in the missing
values in the training data. The rationale is to learn a few basis vectors U,’s, and then, for
each incomplete observation vector 7, ;, the algorithm seeks to identify the optimal weights
that can best match the projected vector > ., o;U; with Ty, where U = [Uy,Us, ..., U,| is
obtained by applying SVD to the learned low-rank imputation matrix: M = UXV . Then,
the missing values in 7y, can be filled in by the corresponding elements in > ., o;U;. Thus,
it is straightforward to use the results from the BMC formulation learned from the training



Algorithm 2 Bounded Matrix Completion (BMC)
Require: Xgc, r, [; and u;
Return: Xs

Initialize Xo

while not converge do
[U,%, V] =svd(X)

M = Urzrv;”
Xij = maX(lj7 min(ujv MZ)) \V/(’L,]) S
end while

data to fill in the missing values in the testing data as well. Denote the coming testing data
as z. For the new testing data z, its missing elements indexed by S can be estimated by
solving the following convex optimization problem:

min ||z — Ual)?

)

s.t. Zj S [lj,Uj] VJ es.

Then, the best estimation can be found by updating zg and « iteratively by following
the formulas shown below:

a=U"z 2z =min(U;,max(l;,U;a)), VjeS.

Note that, many of the existing missing data imputation methods have been built on dif-
ferent assumptions of the mechanism of why data is missing, such as the Missing Completely
At Random (MCAR) and the Missing At Random (MAR). While this may lead to more tai-
lored missing data imputation methods, here, we have difficult in identifying and validating
the missing data mechanism in our study. Hence, we pursue this low-rank model that places
less strict assumptions on the missing data mechanism, which leads to the development of
the low rank based estimation methods. Also, the low rank based estimation method can be
applied to scenarios where a large portion of elements (e.g., 50% elements) are missing.

4. Experiments

4.1. Study population

A prospective cohort study of 1,000 open abdominal surgery patients was conducted at a
1200-bed academic teaching hospital in the Netherlands, described previously @] Patients
who didn’t undergo surgery (n=33) or with < 2 days of wound observations (n=107) were
excluded from analysis, leaving 860 patients in total. Subjects were prospectively assessed for
CDC-defined superficial, deep and/or organ space infections ﬂ@] Superficial SSI are infections
that occur within 30 days after the operation and involve only skin or subcutaneous tissues of
the incision and at least one of the following: 1) purulent drainage from the incision, with or
without confirmation by laboratory tests; 2) organisms isolated from an aseptically obtained
culture or aspiration of the incision; 3) at least one of the following signs or symptoms: pain or
tenderness, localized swelling, redness, or heat and superficial incision opened by the surgeon;
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Table 1: Baseline data from patient cohorts with and without inpatient SSI

Without SSI With SSI
(N=684; 80.6%) (N=167; 19.4%) p-value
Patient factors
Age, mean, [CI], years 56.18 [55.09-57.27] 57.48 [55.45-59.51] 0.29
Male sex, N (%) [C1] 247 (36.1) [0.33-0.40] 62 (37.1) [0.30-0.45] 0.81
Procedure-related
Type of operation N (%) N (%) <0.001
abdominal wall 4 (6.4) 3 (1.8)
gastroduodenum 7(3.9) 4(2.4)
gall bladder /bile duct 31 (4.5) 4 (2.4)
liver 101 (14.8) 9 (11.4)
spleen/adrenal gland 29 (4.2) 4 (2.4)
small bowel 35 (5.1) 18 (10.8)
kidney 179 (26.2) 23 (13.8)
vascular 50 (7.3) 6 (3.6)
esophagus 75 (11.0) 25 (15.0)
large bowel 69 (10.1) 5 (21.0)
pancreas 44 (6.4) 6 (15.6)
Risk factors
N (%) [C1] N (%) [C1]
Smoking 287 (42.0) [0.38-0.46] 59 (35.3) [0.28-0.43] 0.12
Diabetes mellitus 83 (12.2) [0.10-0.15] 21 (12.6) [0.08-0.19] 0.88
Chronic lung disease 58 (8.5) [0.07-0.11] 22 (13.2) [0.08-0.19] 0.063
Systemic corticosteroid 79 (11.6) [0.09-0.14] 25 (15.0) [0.10-0.21] 0.23
Chemotherapy 46 (6.7) [0.05-0.09] 2 (7.2) [0.04-0.12] 0.83
Radiotherapy 2 (1.8) [0.01-0.03] (1 8) [0.00-0.05] 0.97
Ascites present 6 (2.3) [0.01-0.04] 0 (6.0) [0.03-0.11] 0.014
Infection (non-SSI) 75 (11.0) [0.09-0.14] 4 (8.4) 0.05-0.14] 0.33
Alcohol use 311 (47.1) [0.43-0.51] (45 5) [0.37-0.54] 0.71
Alcohol quantity 4.49 [3.85-5.12] .24 (3.54-6.94) 0.34
Body Mass Index 0.65
Underweight 19 (2.8) 6 (3.6)
Normal 317 (45.2) 80 (47.9)
Overweight 220 (32.2) 59 (35.3)
Class 1 obesity 80 (11.7) 20 (12.0)
Class 2 obesity 20 (2.9) 8 (4.8)
Class 3 obesity 8 (1.2) 2 (1.2)
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Figure 3: The data structure

and 4) diagnosis of superficial SSI by the surgeon or attending physician. Stitch abscesses
and infected burn wounds are excluded. Deep incisional SSIs are infections occurring within
30 days of surgery, involving the deep soft tissues (muscle and fascia) and at least one of the
following: 1) purulent drainage from the deep incision; 2) incision spontaneously dehisces or
is opened by the surgeon when the patient has at least one of the following: fever (38C),
localized pain, or tenderness; 3) an abscess or other evidence of infection involving the deep
incision is found on examination, reoperation, or histopathologic or radiology examination;
and 4) deep SSI is diagnosed by the surgeon or attending physician. Finally, an organ space
infection is an infection occurring within 30 days of surgery; the infection appears related to
the surgery and involves any part of the anatomy (organs or spaces), other than the incision
and at least one of the following: 1) purulent drainage from drain; 2) organisms isolated from
an aseptically obtained culture of fluid or tissue; 3) diagnosis by the surgeon or attending
physician; and 4) an abscess or other evidence of infection involving the organ space found
on direct examination, reoperation, or radiologic examination. Patients’ characteristics are
reported in Table [Il for both SSI and non-SSI patients, where the p-value is computed by
the t-test for comparing the two groups.

4.2. Data collection

Subjects in the dataset were examined daily, using a previously described protocol ﬂﬁ],
from post-operative day 2 until discharge or 21 days, whichever was earlier. Follow-up was
performed at 30 days through clinic visit, phone, or letter to ascertain post-discharge infec-
tions. Table [B] shows the dynamic wound data that was collected, including definitions of
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categorical wound score variables @] For analysis purposes, we defined the SSI group as
having any of the 3 types of SSI due to the small numbers of deep and organ-space infections.
In addition, though a patient may have developed multiple types of SSI during the obser-
vation period, we only include their first infection in this analysis. The non-SSI group was
defined as having not developed any kind of infection, but may have had a post-discharge
infection. For patients who didn’t develop SSI during the observational period, their days
of observation are 21. For patients who developed SSI during the observational period, the
summary statistics of their observational time is shown in Table 2

Minimum ‘ 1st Quantile ‘ Median ‘ Mean ‘ 3rd Quantile ‘ Maximum
3 5 |7 ] 8.244] 11 21

Table 2: Days of post-operative observation for patients developing in-hospital SSI

Further, Figure [Blschematically illustrates the process by which we translated the original
data into the data structure that will be used by the proposed machine learning system. The
basic idea is to use a sliding window to segment each individual’s time series measurements
into blocks of equal size T'.

Table 3: Repeated data collected

Variable Scale  Details
Primary wound variables
Induration amount (mm)

>5 mm

3-4 mm

1-2 mm

0 mm

0 mm

1-2 mm

3-5 mm

6-10 mm

11+ mm

none visible

white/grey nonviable tissue

loosely adherent yellow slough
adherent, soft, black eschar

firmly adherent, hard, black eschar
None visible

<25% of wound bed covered

25 to 50% of wound covered

>50% and <75% of wound covered
75 to 100% of wound covered

Skin intact

75 to 100% of wound filled

25 to 75% of wound filled

<25% of wound filled

no granulation or epithelialization present
none or bloody

serosanguineous: thin, watery, pale red/pink
serous: thin, watery, clear

Wound edge distance (mm)

Slough/necrosis type

Slough/necrosis amount

Granulation/epithelialization score

Exudate type

N~ Ok WO WD RO WD RO R OoOlwNn — O

Continued on next page
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Table 3 — Continued from previous page

3 purulent: thin or thick, opaque, tan/yellow
4 foul purulent: thick, opaque, yellow/green with odor
Exudate amount 0 none (tissue is dry)
1 scant (non measurable amount)
2 small (exudate spread over wound, gauzes 25% wet)
3 moderate (exudate irregularly spread over wound)
4 large (large amount, widespread, gauzes >75% wet)
Wound edge color 0 pink or normal for ethnic group
1 bright red and/or blanches to touch
2 white or gray pallor or hypopigmented
3 dark red or purple and/or nonblanchable
4 black or hyperpigmented
Temperature 10°C Wound
1 em from wound edge (left/right)
3 c¢m from wound edge (left/right)
5 ¢cm from wound edge (left/right)
Wound malodor Yes/no
Other wound variables
Hematoma* Yes/no
wound mass palpable* Yes/no
seroma™* Yes/no
wound culture* Yes/no
visual analogue pain scale 1-100  Wound pain
wound length (cm) count ...cm
Vital signs
heart rate count ...bpm
diastolic RR count ...mmHg
systolic RR count ...mmHg
tympanic temperature 10°C count ...10°C
Other observations
cough* Yes/no
productive cough* Yes/no
vomiting* Yes/no
ventilator* Yes/no
antibiotics® Yes/no
reoperation* Yes/no
nasogastric tube* Yes/no
Suspicion of ileus*® Yes/no
serial operation number count

* in previous 24 hours

Cross validation is adopted to tune the parameters in each model that we will build in
this study. Specifically, we randomly split the samples into multiple sets with equal size.
In our implementation, we take a training-testing ratio of 4:1. Then we choose 4 sets as
the training data, and the one left as the testing data. For each proposed model, we repeat
the training-testing procedure 5 times, to ensure that every set is used as the testing data
once. We use the mean absolute prediction error (MAE), ie., Y . Q7 (xi, W)+ b— i,
to evaluate the prediction performance of each model in predicting the onset time of the
individuals.

4.8. Parameter tuning and validation
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4.4. Comparison with other models

We will compare our proposed learning system with closely related benchmark approaches.
The first one is the classic regression model ﬂﬁ] that assumes linear and additive predictive
effects of the predictors on a continuous outcome variable. It has been used in many risk
prediction models in a wide range of applications. The second one is the Support Vector
Regression (SVR) model ﬂﬁ] It is a more robust model than the classic regression model by
using a soft margin loss function, representing the state-of-the-art performance. The perfor-
mance comparison of these models are shown in Figures M and Bl Note that, Figure @ is to
compare the methods under different values of A which essentially reflects the weight of the
censored samples in the learning formulation. Since we have an unbalanced dataset, using
weights to balance the contribution of both the complete and censored samples has been a
common approach in the use of the existing methods. From both Figures 4 and [, it can
be observed that our methods perform significantly better than both benchmark methods
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across all the comparisons. Also, it seems that with rank = 2, our method performs better
than its companion that has rank = 3, indicating that for this dataset, rank = 3 might
result in overfitting. Note that, in generating this result, we didn’t include the selection of
the rank into the cross-validation procedure. For a given rank, we adopted cross-validation
to select for the remaining parameters. Actually, later in Section 4.6, we will show that the
“full-scale” cross-validation study that includes the selection of the rank actually selected
rank = 2 as the optimal model, which indicates that the cross-validation can help control
the model complexity and reduce the risk of over-fitting.

4.5. FEvaluation of the matrix completion method for missing data imputation

We further evaluate the performance of the matrix completion method for missing data
imputation in comparison with other methods. For example, for the “column mean” method,
to fill in the missing value on feature j of individual ¢ at a certain time point, the mean
value of feature j of all the individuals across all the time points can be used based on
the observed measurements. Other methods we used for comparison include the K-Nearest-
Neighbor (KNN) method that has been widely used for missing data imputation @, @] and
a recent Bayesian approach @] We train the models using different missing data imputation
methods under different values of A\ and report the results as shown in Figure [6l It clearly
shows that our low-rank matrix completion method could lead to superior performance on
missing data imputation, providing better prediction performance of the model.

Imputation

> K-Nearest Neighbour

z;\
344 A Column Mean
4 Low-rank Approximation
= Bayesian
A

AN
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€ A A A A A A
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Figure 6: The MAE of different models that use matrix completion and other procedures
for missing data imputation, respectively

4.6. Optimal configuration of the proposed learning system

To identify the optimal configuration of the proposed learning system, we build a sequence
of models to investigate the performances of different configurations. Critical parameters
include the duration of the dynamic data we could use for building the prediction model,
the rank of the model parameters w, and the value of A\. Among these parameters, probably
the duration of the dynamic data is the most important parameter. Apparently, there is
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a trade-off between accuracy and cost. With longer duration, more information could be
accumulated which will lead to better prediction accuracy. On the other hand, it will result
in higher cost, not only in data collection, but also in the healthcare cost due to the potential
delay of identifying the patients who will develop SSI soon. Therefore, it is a practical and
important decision to find a reasonable length for observation and prediction. Here, based on
the cross validation with the training set ratio set to be 4:1, the prediction performances of
the models are shown in Table [d This demonstrates that the best model could be built if the
duration of the dynamic wound data is 5-days and the rank of w is 2. A worse performance
was generated when the length of observation is 6. This is probably because that the sample
size for training the model drops significantly when the length of observation increases. In
Figure [7, we also present the important variables of the best model in Table @l with their
coefficients in decreasing order. We further show the distribution of the predicted onset
day for both the complete and censored populations using our best model in Figure [§, and
demonstrate that our model can effectively separate the two groups.
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Figure 7: Selected important variables with their coefficients

5. Conclusions

Accurate determination of the SSI risk of a particular patient is essential for deciding
whether or not particular preventive strategies, i.e., enhanced prophylactic antibiotics, de-
colonization, or other emerging interventions should be adopted. Furthermore, uncovering
developing SSI at the earliest possible time affords the opportunity for anticipatory interven-
tion, preventing progression of infection and its morbid sequelae. It also holds great potential
to reduce the healthcare cost since delayed diagnosis of post-discharge SSIs has significant
financial and life quality costs, with more than half of patients who develop post-discharge
SSI readmitted to the hospital ﬂﬁ In this paper, we investigated the problem of predicting
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A-value

Duration | rank(w) 0.01 0.05 0.10
3 2 3.720192 | 3.246942 | 3.206233
3 3.817237 | 3.395871 | 3.364114
4 2 3.260273 | 2.857273 | 2.863779
3 3.334785 | 2.935544 | 2.962186
5 2 2.998079 | 2.677925 | 2.718011
3 3.087649 | 2.794683 | 2.847655
6 2 3.085667 | 2.787124 | 2.779734
3 3.080365 | 2.739127 | 2.487222

Table 4: Prediction performance of different model configurations
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Figure 8: Distribution of the predicted onset day for both the complete and censored
samples

the time to the onset of SSI using the dynamic wound data collected on individuals. The
dynamic data of an individual, represented as the spatial-temporal matrix, include the con-
tinuous measurements of many wound-related variables. Many of the wound variables are
applicable in a post-discharge setting, allowing monitoring of these wounds using automated
image analysis to predict infections in real time. Thus, this study aligns well with the emerg-
ing mHealth tools that are developed to closely monitor SSI patients. While most existing
SSI prediction models only use preoperative and operative variables, @, , , , ], to
the best of our knowledge, we are the first team who developed a systematic treatment to
utilize the dynamic wound data of an individual for SSI risk prediction. This study used a
unique dataset, coming from a hospital in the Netherlands, which had a significantly longer
average length of stay than in the US, allowing us to characterize a longer spectrum of the
SSI progression process.

Our study is subject to limitations. First, we have only investigated the use of the dy-
namic wound data for SSI risk prediction. However, it has been found that many preoperative
and operative variables are important in predicting the SSI risk. Knowledge of the potential
impact of these predictors may help guide physicians with both preoperative and operative
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decision-makings, and help develop personalized post-discharge care plans and interventions
as well. For instance, previous studies have demonstrated that poor nutrition is associated
with increased rates of SSI, probably due to a depressed immune system @] Thus, these
physiologically impaired patients might benefit from timely and appropriate nutritional sup-
port. It has also been found that smokers have higher SSI risk than non-smokers, probably
due to the altered perfusion mechanics at the surgical site. There are many other preopera-
tive and operative factors such as age, surgery type, operative time, glucose, length of stay
@, @], that could significantly increase our capability to predict the SSI risk if being com-
bined with the dynamic wound data. Second, SSI was classified into 3 categories based on
the depth of infection ﬂg], which include superficial, deep, and organ space SSI. It might be
possible that different kinds of SSI would have different risk profiles. Third, many variables
that have been found predictive of SSI risk in the literature are not collected in our dataset.
For instance, specifics of the operative procedure, such as timing of antibiotics, core body
temperature, blood glucose level, are not currently available. On the other hand, we have
not included the image-based wound variables, which theoretically can be extracted from
the wound images that have been available in the dataset, into our prediction model. The
challenge to extract those image-based wound variables from the wound image data includes
the enormous variations in the parameters regarding how the images are acquired by the
individual patients, i.e., with different angles and different light conditions, etc. Thus, this is
also one of our future research directions to extract these image-based wound variables and
incorporate them into our prediction model. Finally, although our dataset has longer obser-
vation duration than many other datasets studied in the literature, it is still a short period
of time considering that the typical follow up period for SSI is thirty days after discharge.
This interval of observation is more administratively derived than biologically derived, as
SSI could potientilaly occur at longer periods after the surgical event itself.

In summary, in this study, we have developed a systematic treatment of the data chal-
lenges associated with the dynamic wound data. The model can predict not only yes-or-no,
but also when the SSI will be developed. In addition, this model has potential use in real-time
mHealth monitoring systems that can incorporate patient-reported outcomes and automate
image analysis to predict post-discharge SSI. In our future research, we will investigate how
to integrate the dynamic wound data with some static risk factors such as some preopera-
tive and operative factors to further improve the SSI risk prediction. We will also develop
robust image feature extraction method to extract SSI-related features from the wound im-
age data that is available in our dataset. Also, it is of interest to investigate the course of
SSI development and evolution for different types of SSI and surgery procedures. We notice
that previous works such as @] raised an interesting question from a conceptual point of
view, which is, whether one could generate meaningful features or episodes from variables
over time. It is a very interesting question to derive such features or patterns to better un-
derstand the characteristics of the underlying health condition. While the pathogenesis and
natural history of SSI has been largely unknown, a reasonable assumption is that there is a
progression process of SSI that leaves a trail of clinical patterns/features. Through this study,
we demonstrate that using dynamic data could improve SSI prediction. It will be our future
work to thoroughly study the dynamics of the clinical signals and its connection/implication
of the underlying disease progression process. Last but not least, note that we assumed the
prediction model is linear. Despite the appearance as a linear model, proper transformations
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could be applied to extend the proposed linear model for characterizing potential nonlinear-
ity. On the other hand, if the transformation is needed, we do need to base the linear models
on interpretable and meaningful variable transformation. Besides the methodological issues
for data fusion and predictive modeling, how to integrate the monitoring tool in real surgical
settings is definitely a very important problem. We have studied some important aspects of
this problem in our previous work ] Usability research is also part of our future research
directions, e.g., in ] we only focused on a unique post-acute surgical use case that may
not perfectly generalize to medical or chronic care settings.
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