
Identification of immune correlates of protection in Shigella 
infection by application of machine learning

Jorge M Arevalilloa,*, Marcelo B Szteinb, Karen L Kotloffb, Myron M Levineb, and Jakub K 
Simonc

aDepartment of Statistics and Operational Research, University Nacional Educación a Distancia, 
Paseo Senda del Rey 9, 28040 Madrid, Spain

bCenter for Vaccine Development, Departments of Pediatrics and Medicine, University of 
Maryland School of Medicine, Baltimore, MD 21201-1509 USA

cMerck & Co., Inc., Kenilworth, New Jersey USA

Abstract

Background—Immunologic correlates of protection are important in vaccine development 

because they give insight into mechanisms of protection, assist in the identification of promising 

vaccine candidates, and serve as endpoints in bridging clinical vaccine studies. Our goal is the 

development of a methodology to identify immunologic correlates of protection using the Shigella 
challenge as a model.

Methods—The proposed methodology utilizes the Random Forests (RF) machine learning 

algorithm as well as Classification and Regression Trees (CART) to detect immune markers that 

predict protection, identify interactions between variables, and define optimal cutoffs. Logistic 

regression modeling is applied to estimate the probability of protection and the confidence interval 

(CI) for such a probability is computed by bootstrapping the logistic regression models.

Results—The results demonstrate that the combination of Classification and Regression Trees 

and Random Forests complements the standard logistic regression and uncovers subtle immune 

interactions. Specific levels of immunoglobulin IgG antibody in blood on the day of challenge 

predicted protection in 75% (95% CI 67–86). Of those subjects that did not have blood IgG at or 

above a defined threshold, 100% were protected if they had IgA antibody secreting cells above a 

defined threshold. Comparison with the results obtained by applying only logistic regression 

modeling with standard Akaike Information Criterion for model selection shows the usefulness of 

the proposed method.
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Conclusion—Given the complexity of the immune system, the use of machine learning methods 

may enhance traditional statistical approaches. When applied together, they offer a novel way to 

quantify important immune correlates of protection that may help the development of vaccines.
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1. Introduction

Immunologic correlates of protection are important in vaccine development for 1) providing 

insight into mechanisms of protection, 2) assisting in identifying promising vaccine 

candidates, and 3) providing endpoints in bridging clinical vaccine studies [1–3]. 

Identification of immune correlates in humans can only be accomplished through clinical 

studies that measure immunologic predictive variables as well as clinical efficacy outcomes. 

These include large efficacy trials that assess naturally occurring disease outcomes after 

vaccination, challenge studies that expose the vaccinees to disease-causing pathogens, and 

carefully designed case-control studies that compare immune responses in naturally infected 

subjects and uninfected control subjects (or subjects with infection who do not have 

disease). Establishing immune correlates of protection early in the clinical development 

process is expected to expedite the selection and development of promising vaccine 

candidates.

Our objective is to develop a methodology for the identification of immune correlates of 

protection in early clinical studies, using the center for vaccine development (CVD) Shigella 
challenge dataset as a proof of principle.

Prior related work uses classical statistical modeling by fitting logistic regression (LR) or 

scaled logit models to the clinical outcome [4–11]. This enables the estimation of the 

probability of protection for given immune responses by inverting the logit transform. One 

of its drawbacks is that predictors enter into the model in an additive way and, as a result, 

the model cannot handle interactions that might be playing an important role in protection 

unless they are incorporated into model equation manually on the basis of prior knowledge. 

Another shortcoming is that it doesn’t generate cutoff values which define the correlates of 

protection. The aforementioned drawbacks can be overcome by looking for multiple 
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immune markers simultaneously using a data driven approach based on machine learning 

procedures, which are well suited to predict outcomes from complex sets of variables and 

outperform standard models [12–14].

In this paper we propose a new method for defining immune correlates of protection and 

apply it to Shigella infection. The method combines Classification and Regression Trees 

(CART) and Random Forests (RF) with the simplicity of the standard linear LR model to 

obtain immune variables or combinations of them, as well as optimal cutoffs that 

differentiate who is likely to be protected upon exposure to an infectious agent and who is 

not.

Unlike prior approaches, the novel contribution of the proposed method is concerned with 

the use of RF for variable selection together with CART for the detection of immune 

interactions: RF ranking of variable importance identifies a subset of immune predictors that 

better predict the outcome; they are the inputs of a CART model that generates cutoffs and 

interactions from which the probability of protection is estimated using LR. Confidence 

intervals (CI) for such probability are derived accordingly by bootstrapping LR models. This 

procedure will be called the combined modeling approach.

The paper is organized as follows: Section 2 provides the background covering the machine 

learning and statistical techniques used in the paper. Section 3 is a section of methods that 

includes data collection methods and the proposed combined modeling approach. An 

application of the approach to the Shillega dataset is carried out in Section 4, which contains 

the results of the combined modeling approach as well as comparison with the output 

obtained by application of LR with standard Akaike Information Criterion for model 

selection. Finally, we provide a summarized discussion and some concluding remarks in 

Section 5.

2. Background

2.1. Classification and Regression Trees

CART is a nonparametric data driven method for classification and regression [15]. Tree 

models have been largely applied to find variable interactions having a high predictive 

strength with a clinical output [16–21].

CART generates a binary tree structure in which child nodes represent a binary partition 

obtained by splitting the parent nodes; the splits are generated by assessing the impurity of 

the outcome Y at parent and descendant nodes using measures like Gini and Entropy [15]. 

The algorithm looks for the splitting point that maximizes the impurity decrease: Δi(t) = i(t) 
− pL i(tL) − pR i(tR), with i(t), i(tL) and i(tR) the impurities at the parent node and at its left 

and right descendants, and pL and pR the proportion of cases at the descendants.

CART models are grown in a recursive way until a large tree structure is obtained. Then, an 

automated pruning of the resulting tree structure is carried out by removing uninformative 

branches in order to avoid overfitting. The resulting tree is the tradeoff between model 
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complexity and predictive accuracy. For further details about CART tuning controls and 

some other technical insights see the pioneer monograph by Breiman et al. [15].

2.2. Random Forests for classification

RF is an ensemble of trees [22]; its learning mechanism arises from the idea of aggregating 

CART predictions. The algorithm involves two sources of randomization: the bootstrap 

resampling to get the trees of the ensemble and the random selection of the eligible set of 

inputs for splitting the nodes of the trees, an idea brought from the random subspace method 

[23]. RF is a powerful classifier which has been applied within different domains, including 

studies that involve small sample high-dimensional data [24–30]. Its predictive strength 

along with some of the utilities generated by RF output [22, 31], has made RF a widely 

applied algorithm.

RF learning mechanism can be summarized as follows: ntree bootstrap samples are drawn 

from the data to grow T1, T2, …, Tntree unpruned trees. In order to find the splitting variable 

at each node, a semi-randomized variable selection is undertaken by looking for the best 

cutoff value among a subset of mtry eligible predictors selected at random. In a classification 

setting the prediction of a new instance is carried out by majority voting of the predictions 

made by all the trees in the forest. The misclassification error is estimated by RF using the 

out of bag procedure [22].

Additionally, RF assigns a score to each predictor; the score accounts for the relevance the 

predictor has for classifying the outcome, so the algorithm generates a ranking of variable 

relevance that allows to identify the most predictive variables. Since RF is built on the 

aggregation of decision trees, which can detect variable interactions, the selection method 

will rank a variable on the basis of its individual association with the outcome as well as on 

the strength of the interaction it may have with other variables to predict the outcome. This 

is one of its main advantages with respect to Correlation based Feature Selection and other 

filter methods [32], that only assess the individual effect of each predictor on the clinical 

outcome.

The main usefulness of RF variable importance ranking is that it allows to remove variables 

that do not contribute to classifying the outcome and identify variables that do. A widely 

used importance measure, implemented in randomForest R package [31], is the accuracy 
based measure of relevance (ac.rel), which essentially quantifies how much the predictor is 

missed when classifying the outcome variable [22].

Along this work we have set the following values for the previous RF controls: ntree = 1000 

and mtry = default, which is roughly the square root of the number of predictors as 

suggested by Breiman [22].

2.3. Logistic regression modeling

LR is a standard parametric modeling approach used in biostatistics and in vaccine and 

immunologic studies [4, 6, 9, 10, 12, 33–35]. LR rests on the traditional linear model with 

the logit for the posterior probability of illness being modeled by a linear combination of the 

immune predictors:
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(1)

The coefficients in (1) are usually fitted by maximum likelihood using the iteratively 
reweighted least squares method. Upon inversion of the logit transform, one can estimate the 

posterior probability of protection for specified levels of the immune response, ensuring 

estimates in the interval [0, 1]. More important for our goals, and quite interesting from the 

immunologic standpoint, is the fact that LR can also be used to generate CIs for the 

probability of protection by bootstrapping the model in (1) applying the nonparametric 

bootstrap percentile method [36, 37].

3. Methods

3.1. Subjects

We analyzed data from clinical trials conducted at the CVD between 1992 and 1993 (Table 

1). This dataset is valuable in that it contains immunologic variables as well as clinical 

efficacy outcomes from Shigella challenge studies.

Shigella is a bacteria that causes diarrhea and dysentery after ingestion of contaminated food 

or water. Shigella flexneri 2a is an important disease-causing serotype that has been chosen 

as a target for vaccine development. Although Shigella flexneri 2a is a dangerous bacterial 

pathogen that can cause severe disease and even death if not properly treated, if properly 

treated it can be cured without sequelae. This allows for the conduct of challenge trials in 

which volunteers ingest the vaccine or placebo and subsequently ingest a disease-causing 

strain of Shigella flexneri 2a to determine if the vaccine protects from infection. EcSf2a-2 is 

a Shigella vaccine candidate composed of an Escherichia coli bacteria that expresses 

Shigella flexneri 2a antigen lipopolysaccharide (LPS).

Three trials were designed to test whether the EcSf2a-2 vaccine protects against Shigella 
challenge with a disease-causing Shigella flexneri 2a strain approximately one month after 

vaccination. In trial A [38], 29 volunteers received three doses of 2 × 109 colony forming 

units (CFU) of EcSf2a-2 (days 0, 3 and 6) prior to challenge. In trial B [39], 16 volunteers 

received four doses of 7 × 108 CFU of EcSf2a-2 (days 0, 3, 14 and 17), and along with 14 

unvaccinated control subjects were challenged. In trial C [40], five vaccinees and six placebo 

recipients who had all been challenged were brought back one month after the challenge for 

an additional challenge with the same strain. Additionally, we assessed the dose response of 

the wild type strain in unexposed, never vaccinated or challenged, volunteers.

It is important to note that assessing immunologic predictive variables in the context of two 

doses of vaccine as well as a challenge strain is experimentally comparable to assessing 

immunologic predictive variables in efficacy trials where the dose of naturally occurring 

inoculum is variable, as well as case-control studies where both the dose of the naturally 

occurring disease-causing inoculum and the dose of the naturally occurring “ vaccinating ” 

inoculum are variable. Thus, combining three clinical trials with varying inocula that 
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influence predictive as well as outcome variables is conceptually similar to naturally 

occurring infection and resultant protection.

3.2. Immune markers and clinical outcome

Anti-LPS and anti-outer membrane protein (OMP) serum IgM, IgA and IgG antibodies on 

days 0, 7, 21, 28 and peak after the first dose of vaccine and on days 0, 10, 21, 28 and peak 

after challenge, as well as IgM, IgA and IgG antibody secreting cell (ASC) responses on 

days 0, 7, 10 and peak after vaccine or challenge, were assessed as described in the original 

manuscripts [38–40] and included in the analysis. Post-vaccination immune markers were 

assessed after initial exposure to Shigella immunization, and post-challenge with wild-type 

Shigella immune markers were assessed after challenge (Table 1). A total of 108 inumune 

features were measured. The outcome “ ill ” includes fever (defined by an oral temperature > 

100°F), and diarrhea (having two or more loose stools > 200 milliliters total within 48 hours 

or one loose stool > 300 milliliters).

3.3. Combined RF + CART + LR modeling

The combined modeling approach integrates RF and CART with LR modeling to achieve 

three goals: 1) identifying immune biomarkers correlated to the clinical outcome, 2) the 

discovery of interactions among the immune predictors that better explain the clinical 

outcome as well as obtaining cutoffs that optimally define the immune correlates of 

protection and 3) the estimation of the probability of protection using LR.

3.3.1. Variable selection with RF—The stability of methods for variable selection has 

become a hot topic in the literature [41–45]. Here we adopt the strategy by Boulesteix [42] 

who proposed the aggregation of ranked immune marker lists obtained from successive runs 

of RF on different resamples in order to control the instability of a single ranking. The 

procedure can be summarized as follows:

RF average variable importance score

Set the number B of bootstrap samples

Step 1. For k = 1 to B

Draw a bootstrap sample from the data, run RF and generate the ranking of variable importance.

Let ac.reli,k be the importance assigned to the ith immune predictor in the kth RF run.

Step 2. For each immune predictor, compute its average score 

Step 3. Sort the ac.relis to generate the ranking of average importance scores

Another way of constructing ac.reli measures is to get them scaled so that they range in the 

interval [0, 100]. The scaled scores are given by

(2)
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Once the ranking of scaled scores is obtained, the top ranked predictors may be determined 

with pre-set values such as for example an average score greater than 70. It is also possible 

to determine them based on the screeplot of scores that allows to visualize the steepest decay 

in the scores.

3.3.2. Variable interaction modeling with CART—RF selection provides a subset 

with the relevant predictors, , that are used as inputs to grow a CART structure 

whose terminal nodes represent a partition of the data in subsets  described by a set 

of binary rules. The partition can be mathematically described by a set of indicator 

functions: for each observation, the indicator I(ℛi) takes values 1 or 0 depending on whether 

the observations meets the the rules for ℛi or not. A large tree reveals complex interactions 

among predictors rather than individual effects. The researcher can also merge subsets from 

 to reduce its complexity.

In addition, it is well-known that trees are biased towards the generation of splits in variables 

with missing values, which is our case. To handle this issue, Salford Systems CART® 6.0 

allows penalization of the missingness of predictors [46]; the penalty is obtained multiplying 

the impurity by

(3)

with a, b > 0 controlling the amount of penalty. Note that a = 1 and b = 0 implies no penalty. 

In addition, for a given a, the closer b gets to zero the smaller the penalty becomes. In our 

data several trials showed that a = 1, b = 0.5 were good choices that maximize the 

performance of the tree.

The remaining CART controls were chosen to optimize tree performance: priors = EQUAL, 

splitting rule = GINI, and parent node minimum cases = 10, terminal node minimum cases = 

5. These settings are used to get all the trees of this paper.

3.3.3. LR estimation of the probability of protection—Suppose that M indicator 

variables I(ℛi): i = 1, 2, …, M are obtained by CART seeker stage. In the last step of the 

combined modeling approach they are taken as predictors to fit the LR model:

(4)

Once the model in (4) has been fitted, inversion of the logit transform yields an estimate  of 

the probability P (Y = 1|I(ℛ1), …, I(ℛM)). For a given confidence level, we can obtain the 

bootstrap CI for such a probability by application of the nonparametric bootstrap percentile 

method [36, 37]. The method requires to draw R bootstrap resamples from the dataset.

Fig. 1 contains a workflow diagram describing the proposed combined modeling method.
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4. Results

Commercial Salford Systems CART® 6.0, along with R 3.0.2 own code — which can be 

provided by the authors upon request—were utilized on post-vaccination and post-challenge 

responses to identify important correlates, cutoff values, and probabilities of not getting ill.

4.1. Variable selection with RF

RF selection deployed on the entire set of immune variables identified post-challenge ASC 

responses as highly predictive such that effects of the remaining predictors were 

overwhelmed. In order to avoid this masking phenomenon, RF selection is carried out 

independently in four biologically relevant blocks having their own idiosyncrasy: 1) post-

vaccination ASC, 2) post-vaccination serum, 3) post-challenge ASC and finally 4) post-

challenge serum. The barplots in Fig. 2 show the top five immune markers, given by score 

(2), for each block. Variables with score above 70% are defined as relevant (threshold 

corresponding to a decay of at least 30 points in score (2), which is the maximum decay 

observed for all the barplots of Fig. 2). The adopted criterion follows the rationale behind 

the use of the screeplot, a display of the decay of a score, which enables the visual location 

of the point where the maximum decay is attained. Hence, the following are retained: anti-

LPS IgA ASC on day 10 as well as anti-LPS IgG on day 0 and 7 from the post-vaccination 

blocks; and anti-LPS IgM and IgA ASC on day 7 as well as anti-LPS IgA peak and day 10 

from the post-challenge variables. These findings suggest that post-vaccination cells making 

IgA as well as antibodies against IgG may be the dominant predictors of protection, whereas 

post-challenge cells making IgM and IgA as well as IgA antibodies may be the dominant 

predictors of protection.

An exploratory tree grown with the most relevant predictors shows that anti-LPS ASC IgA 

and IgM at day 7 after challenge accurately classifies the outcome (see Fig. 3). The highly 

predictive post-challenge immune responses are not practical to measure in a natural 

infection environment as they occur after the event of interest; but they may be informative. 

In order to account for their effects the best post-challenge ASC split, given by the condition 

“ Day 7 post challenge anti-LPS IgM ASC less than 2.50 ”, is replaced by the post-

vaccination variables that best predicts it. These are found using RF with the indicator I(Day 

7 post challenge anti-LPS IgM ASC ≤ 2.50), that represents the best split, as the outcome 

variable and the post-vaccination variables as predictors. Score (2) is computed and the top 

ranked variables are used in place of the best post-challenge marker.

When the post-vaccination variables are ranked in accordance to (2), we observe seven 

relevant variables with scores above 70: anti-LPS IgA ASC day 10 at the top, and also anti-

LPS IgG serum on day 0, anti-OMP IgM ASC on day 7, anti-LPS IgG and IgA ASC on day 

7, anti-OMP IgA ASC on day 7 and anti-LPS IgM serum peak. They are retained as they 

will potentially highlight the immune interactions that better explain the clinical outcome.

4.2. CART modeling stage

At this stage, a tree is grown with the most influential post-vaccination ASC and serum 

variables, and the most relevant post-vaccination variables that predict the condition “ Day 7 
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post challenge anti-LPS IgM ASC ≤ 2.50 ” (third and fourth columns of Table 2). We also 

include all the immune markers on the day of challenge (first two columns of Table 2) 

because of practical reasons, as they indicate most accurately the state of the immune 

response at the time of infection. The results are depicted by the top tree of Fig. 4: the 

performance of the tree model is carried out by the 10-fold cross validation method, which is 

a reasonable alternative to account for the bias-variance tradeoff in small data sets as ours 

[47]. The method gives an error close to 39% with terminal nodes 1, 3 and 4 capturing 

nearly 81% of the ill status and 28.5% of false positives (FP), as provided by CART® 6.0 

ROC curve. After merging terminal nodes, we get a tree with four terminal nodes, as shown 

by the bottom tree of Fig. 4, leading to a 33% error rate with terminal nodes 1 and 2 catching 

85% of the ill class and a FP rate about 36%. Hence, we get a simpler tree with a very small 

loss in the FP rate.

4.3. LR modeling stage

LR along with the bootstrap method allows to get CIs for the probability  of the status well. 
Table 3 shows the results when anti-LPS IgG serum on the day of challenge is the only 

predictor, when anti-LPS IgG serum on the day of challenge and anti-LPS IgA ASC on day 

10 enter in (1), and when the splitting variables enter as predictors through their indicators as 

in (4).

To calculate the CIs we take R = 5000 and a 95% confidence level. The estimate  is 

computed with values of the immune response set at the levels: anti-LPS IgG on the day of 

challenge at 300.1 in the models with this single predictor, and at 300 for anti-LPS IgG on 

the day of challenge and 32.51 anti-LPS IgA ASC day 10 post-vaccination in the models 

with both predictors. The results show that protection increases for tree models that generate 

cutoffs and interactions, achieving 75% and 100% protection, which demonstrates that the 

combination of immune markers outperforms single markers when looking for correlates of 

protection.

Note that the CI of the last row is not available. This happens because the 5 cases that meet 

the splitting rules are well individuals. This fact is not obvious from the bottom tree of Fig. 4 

which has ill and well individuals at internal node 3, but can be explained by the way CART 

deals with missing values (NAs): node 2 contains 35 NAs for anti-LPS IgA ASC day 10 

post-vaccination; CART internally classifies them using a surrogate split that resembles the 

primary split. In this case, the best surrogate is found for anti-LPS IgA day of challenge and 

the surrogate sends 10 cases to node number 3 (3 well and 7 ill). Unlike CART, the LR skips 

NAs using only fully informed observations, which explains the 100% protection.

4.4. Comparison with LR using the AIC criterion for model selection

Akaike Information Criterion (AIC) [48] with LR is used for model selection in the same 

way RF rankings helped in the identification of relevant variables. The functions of the R 

package bestglm [49] were employed for the implementation. The analysis is carried out for 

post-vaccination ASC and serum immune predictors separately yielding the variables in 

Table 4; Post-challenge variables on the day of challenge were also incorporated to the 

selection.
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Finally, LR models with the most significant variable and with the two most significant 

immune variables are fit, and probabilities of protection and CIs are calculated accordingly 

at the median levels of the immune response (Table 5). General omparison with Table 3 

shows that lower probabilities of protection are obtained from the classical LR with AIC 

method than from LR with RF+CART variable selection. This fact demonstrates that the 

combination of machine learning with traditional methods like LR may complement the 

latter to uncover interactions in data generated by complex biological mechanisms.

5. Discussion

The combined modeling approach offers the addition of data driven machine learning 

methods and classical statistical modeling for assessing a complex dataset for predictive 

variables such as immune correlates of protection. The approach serves to identify important 

biomarkers, provide cutoffs, and highlight interactions that allow prediction of protection. 

The results demonstrate the increased predictive capacity of assessing multiple immune 

correlates rather than focusing on a single immune correlate. Comparison with the results 

obtained by classical LR with AIC highlights the usefulness of the proposed method to 

model the complexity of the immune system.

Low post-challenge IgM ASC and IgA ASCs in peripheral blood were the strongest 

predictors. Mechanistically this may be expected, as low ASCs in peripheral blood post-

challenge have been described in volunteers protected from Shigella infection [40] and 

hypothesized to be low in peripheral blood because they are present at the gut in subjects 

who are protected.

During infection, components of the pathogen such as Shigella LPS and OMP bind receptors 

of B and T cells. B cells become ASCs and make antibodies, while T helper cells assist B 

cells, and T cytotoxic cells kill infected host cells that antibodies cannot access [50]. ASCs 

initially make antibodies called immunoglobulin IgM and then switch to make antibodies 

called IgG or IgA. While IgG antibodies circulate in the blood, IgA antibodies are actively 

secreted through mucous membranes, which cover the respiratory and the gastrointestinal 

tracks where most pathogens invade [51]. High IgM ASCs and low IgA ASCs would 

therefore be expected in the blood of subjects not previously exposed (and therefore not 

protected), while low IgM ASCs and high IgA ASCs would be expected in the blood of 

subjects that were previously exposed (and are protected).

Post-vaccination, serum anti-LPS IgG on the day of challenge was identified as important, as 

was anti-LPS IgA ASC 10 days post-vaccination. This was further quantified: individuals 

who have a post-vaccination anti-LPS IgG titer > 300 were 75% (95% CI 67 – 86) likely to 

be protected, and individuals that did not have serum IgG but had an increase in ASCs that 

makes IgA accounted for the remainder needed achieve 100% protection. Our findings are 

consistent with the redundant nature of the immune response, and demonstrate that two 

immune correlates of protection predict protection better than one immune correlate.

Limitations of our approach include the need for immunological data combined with clinical 

efficacy data. This information is difficult to obtain and in our case we combined data from 

Arevalillo et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



three similar studies. Although there may be differences in ways immune or clinical 

parameters were measured as well as biases introduced in one study versus the others, the 

combination of studies resembles the variability found in natural infection. In addition, all 

estimates of protection need validation by future independent studies, which may utilize 

classification to handle a binary outcome, well versus ill, as well as regression if the 

outcome is defined as a spectrum of well versus ill. Another limitation, which also opens the 

door for future research, is concerned with the choice of RF parameters: they were set at 

their defaults as recommended by Breiman [22]; additional specific domain studies oriented 

to parameter optimization such as particle swarm optimization, genetic algorithm, and other 

stochastic optimization methods may shed light on the settings of parameters and enhance 

the performance of the proposed approach.

In summary, immune biomarkers that predict protection are important to vaccine 

development and yet difficult to identify, especially early in the product development 

pathway. The immune system is complex and redundant and each individual may be 

protected by different means. This complexity requires multiple ways of assessing predictive 

biomarkers, one of which is offered by the proposed combined modeling approach. We have 

applied this approach to identify predictive immune correlates including post-vaccination 

serum IgG as well as IgA ASC. Future work will focus on challenge studies with other 

pathogens including cholera for which similar datasets exist, as well as efficacy trials and 

case-control designs. The application of the proposed approach may help vaccinologists 

identify promising vaccine candidates in an effort to develop new and improved vaccines.
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Highlights

• Immune correlates of protection are important to vaccine development

• CART and random forests machine learning methods are presented in a 

combined approach as complements to traditional logistic regression that may 

provide insight into mechanisms of protection

• Application to the Shigella dataset reveals interesting immune interactions 

and immune correlates

Arevalillo et al. Page 15

J Biomed Inform. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Scheme of the modeling procedure.
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Fig. 2. 
RF rankings for the average score of variable importance.
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Fig. 3. 
Exploratory CART obtained from the top ranked post-vaccination and post-challenge 

selected immune predictors.
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Fig. 4. 
Trees obtained using the post-vaccination relevant predictors and post-challenge variables on 

the day of challenge: initial tree (top) and pruned tree (bottom)
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Table 2

Immune predictors selected by RF and used to get CART model.

Post-challenge secreting cells Post-challenge serum Post-vaccination secreting cells Post-vaccination serum

Anti-LPS IgA Day 0 Anti-LPS IgA Day 0 Anti-LPS IgA Day 7

Anti-LPS IgG Day 0 Anti-LPS IgG Day 0 Anti-LPS IgA Day 10 Anti-LPS IgG Day 0

Anti-LPS IgM Day 0 Anti-LPS IgM Day 0 Anti-LPS IgG Day 7 Anti-LPS IgG Day 7

Anti-OMP IgA Day 0 Anti-OMP IgA Day 0 Anti-OMP IgA Day 7 Anti-LPS IgM Peak

Anti-OMP IgG Day 0 Anti-OMP IgG Day 0 Anti-OMP IgM Day 7

Anti-OMP IgM Day 0 Anti-OMP IgM Day 0
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Table 3

Estimates and CI for the probability of protection.

Immune marker predictors LR bootstrap CI for 
p

Anti-LPS IgG serum on the day of challenge 0.51 (0.44, 0.60)

Anti-LPS IgG serum on the day of challenge + anti-LPS IgA ASC day 10 post-vaccination 0.71 (0.60, 0.83)

Anti-LPS IgG serum on the day of challenge > 300 cutoff 0.75 (0.67, 0.86)

Interaction Anti-LPS IgG serum on the day of challenge ≤ 300 and anti-LPS IgA ASC day 10 post-
vaccination > 32.5

1.00 —
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Table 4

List of immune predictors selected by LR using AIC for model selection.

Post-cha. secreting cells Post-cha. serum Post-vac. serum LPS Post-vac. serum OMP Post-vac. secreting cells

Anti-LPS IgA Day 0

Anti-LPS IgA Day 7 Anti-OMP IgA Day 10

Anti-LPS IgA Day 0 Anti-LPS IgA Day 0 Anti-LPS IgA Peak Anti-OMP IgA Day 21

Anti-LPS IgG Day 0 Anti-LPS IgG Day 0 Anti-LPS IgG Day 7 Anti-OMP IgA Day 28

Anti-LPS IgM Day 0 Anti-LPS IgM Day 0 Anti-LPS IgG Day 21 Anti-OMP IgG Day 0 Anti-OMP IgA Day 0

Anti-OMP IgA Day 0 Anti-OMP IgA Day 0 Anti-LPS IgG Peak Anti-OMP IgG Day 10

Anti-OMP IgG Day 0 Anti-OMP IgG Day 0 Anti-LPS IgM Day 0 Anti-OMP IgG Peak

Anti-OMP IgM Day 0 Anti-OMP IgM Day 0 Anti-LPS IgM Day 21 Anti-OMP IgM Day 0

Anti-LPS IgM Day 28 Anti-OMP IgM Day 10

Anti-LPS IgM Peak
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Table 5

Estimates and CI for the probability of protection (immune predictors obtained using LR with AIC criterion).

Immune marker predictors LR bootstrap CI for p

Anti-LPS IgM Peak serum post vaccination 0.53 (0.46, 0.63)

Anti-LPS IgM Peak serum post vaccination + anti-OMP IgG serum day 0 post vaccination 0.52 (0.42, 0.62)
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