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Abstract

Objective—Hepatorenal Syndrome (HRS) is a devastating form of acute kidney injury (AKI) in 

advanced liver disease patients with high morbidity and mortality, but phenotyping algorithms 

have not yet been developed using large electronic health record (EHR) databases. We evaluated 

Reprints & Correspondence: Jejo Koola, 9500 Gilman Dr, MC 0881, La Jolla, CA 92093, Tel: 858-246-2563, Fax: 858-246-2329, 
jkoola@ucsd.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2019 April 01.

Published in final edited form as:
J Biomed Inform. 2018 April ; 80: 87–95. doi:10.1016/j.jbi.2018.03.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and compared multiple phenotyping methods to achieve an accurate algorithm for HRS 

identification.

Materials and Methods—A national retrospective cohort of patients with cirrhosis and AKI 

admitted to 124 Veterans Affairs hospitals was assembled from electronic health record data 

collected from 2005 to 2013. AKI was defined by the Kidney Disease: Improving Global 

Outcomes criteria. Five hundred and four hospitalizations were selected for manual chart review 

and served as the gold standard. Electronic Health Record based predictors were identified using 

structured and free text clinical data, subjected through NLP from the clinical Text Analysis 

Knowledge Extraction System. We explored several dimension reduction techniques for the NLP 

data, including newer high-throughput phenotyping and word embedding methods, and 

ascertained their effectiveness in identifying the phenotype without structured predictor variables. 

With the combined structured and NLP variables, we analyzed five phenotyping algorithms: 

penalized logistic regression, naïve Bayes, support vector machines, random forest, and gradient 

boosting. Calibration and discrimination metrics were calculated using 100 bootstrap iterations. In 

the final model, we report odds ratios and 95% confidence intervals.

Results—The area under the receiver operating characteristic curve (AUC) for the different 

models ranged from 0.73 to 0.93; with penalized logistic regression having the best discriminatory 

performance. Calibration for logistic regression was modest, but gradient boosting and support 

vector machines were superior. NLP identified 6985 variables; a priori variable selection 

performed similarly to dimensionality reduction using high-throughput phenotyping and semantic 

similarity informed clustering (AUC of 0.81 – 0.82).

Conclusion—This study demonstrated improved phenotyping of a challenging AKI etiology, 

HRS, over ICD-9 coding. We also compared performance among multiple approaches to EHR-

derived phenotyping, and found similar results between methods. Lastly, we showed that 

automated NLP dimension reduction is viable for acute illness.
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1. Introduction

Electronic health record (EHR) phenotyping helps identify sufficiently large cohorts to 

perform observational studies that inform clinical care in a wide variety of domains; refer to 

Shivade et al. and Xu et al. for a review.1,2 Phenotyping is especially important as larger 

Koola et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observational cohort datasets have been generated due to collaboration from multiple 

institutions.3,4 Phenotyping has traditionally been a time intensive process, often requiring 

the assistance of domain experts. As a result, increasing emphasis has recently been placed 

on automated methods, termed high throughput phenotyping, requiring less domain 

knowledge.5–7 These high throughput methods have focused on using natural language 

processing (NLP) to augment the phenotyping process.8–10 To date, however, they have only 

been validated on chronic medical conditions. Performance may be biased due to the much 

higher data density for chronic conditions, particularly in terms of clinical text.

Phenotyping has not been applied to acute kidney injury (AKI), a common acute 

complication sometimes necessitating hospitalization and a challenging problem because of 

the close overlap between multiple causes of kidney injury. There are more than ten causes 

of AKI;11 and in observational cohort studies, though laboratory markers can be used for 

some etiologies, the majority of etiologies are represented by the International Classification 

of Diseases (ICD) code. Using ICD-9 codes alone is well known to have limited sensitivity 

and sub-optimal specificity.12 Hepatorenal syndrome (HRS) is a serious form of AKI that 

can occur among patients with cirrhosis, and stands as an archetype of multi-organ failure.
13–15

Cirrhosis, a late stage of chronic liver damage, results in scarring replaces hepatic tissue and 

this functional tissue loss reduces the body’s capacity to filter toxins and produce a number 

of important factors. Cirrhosis causes significant morbidity and mortality due to decreased 

mental, physical, and biochemical function. The prevalence is estimated between 400,000 

and 3,000,000 persons in the United States, and the disease causes 44,000 deaths annually.
16–20 More than fifteen etiologies exist, but the most common causes are alcohol, viral 

hepatitis, and nonalcoholic fatty liver disease.21–23 Over a five year span, 39% of cirrhotic 

patients with ascites will develop HRS.24 HRS results in kidney dysfunction due to intense 

constriction of renal blood vessels with concomitant dilation of abdominal visceral vessels. 

Renal biopsy often does not show sufficient intrinsic disease to explain the amount of 

dysfunction. HRS is broadly divided into two types: Type 1 has a rapid onset with a 

doubling of serum creatinine >2.5 mg/dl in two weeks, and Type 2 has a delayed onset with 

a survival of approximately 6 months.14,25,26 Median survival in Type 1 and Type 2 HRS is 

two weeks and six months, respectively.

The ICD versions 9 and 10 have codes for HRS; however, their accuracy has not been 

studied. HRS is commonly one of several competing diagnoses, which often require clinical 

interpretation as opposed to strict laboratory tests, when diagnosing the etiology of AKI in 

cirrhosis. Studies on HRS have been limited by small sample sizes and have focused on 

targeted evaluations of clinical management, such as the use of vasopressors and predicting 

outcomes.24,27–31 Clinical research investigating therapies such as Transjugular Intrahepatic 

Portosystemic Shunts (TIPS)32–35 and continuation of beta-blockers36–38 have been limited 

by small sample sizes, as well as challenges in establishing a reliable phenotype definition 

for these patients in the absence of prospective clinical trials.

Due to the lack of biomarkers, identifying HRS characteristics from clinical note free text 

may be important. Multiple information sources from the EHR have been used in 
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phenotyping applications, with natural language processing (NLP) of clinical text playing a 

crucial role.39–41 Popular clinical NLP systems can generate hundreds to thousands of 

features from reviewed documents.42–45 Often, dimensionality reduction is necessary to 

either make the classification task more tractable or improve performance.46,47 A relatively 

recent dimensionality reduction technique involves a distributed vector representation of 

words, or word embeddings, that has shown good performance in many NLP tasks.48,49 

Google’s word2vec, an increasingly popular embedding algorithm,50 has been generalized 

to vector representations of an entire document (termed doc2vec).51 Although word 

embeddings have been used to improve classification in healthcare tasks,52–54 it is still 

relatively new to assess improvement in phenotyping. Zhang et al. assessed word 

embedding’s benefit in identifying phrases suggestive of psychiatric illness,55 and Turner et 
al used word embedding to identify an overall phenotype for Systemic Lupus 

Erythematosus.56 However, they applied it to chronic conditions and used raw text. Natural 

language processing has increasingly turned to replacing raw text with standardized 

concepts from ontologies such as the Unified Medical Language System (UMLS).57 Natural 

Language Processing pipelines from cTAKES,44 MedLEE,42 and MetaMap43 allow for 

replacing free text concepts with UMLS concept unique identifiers (CUIs).

In this study, we sought first to assess the performance characteristics of ICD-9 codes for 

determining HRS occurring during a patient hospitalization. We then evaluated commonly 

used machine learning methods and dimensionality reduction techniques among a large 

number of variables. We constructed models derived from EHR structured data and NLP 

processed outputs in order to develop probabilistic predictions for phenotyping HRS among 

hospitalized cirrhotic patients with AKI. We report the performance of these methods by 

comparing each of the HRS predictors to a reference standard of clinical patient chart 

reviews.

2. Materials and Methods

2.1 Study Population

We analyzed a retrospective cohort of patients hospitalized from among 124 medical centers 

in the Department of Veterans Affairs (VA) between January 1, 2005 and December 31, 

2013. The VA is an integrated care network that includes acute inpatient hospitals, outpatient 

primary care and sub-specialist clinics, outpatient pharmacies, rehabilitation facilities, long-

term care facilities and domiciliaries. All VA personnel use the same EHR, Veterans 

Information Systems and Technology Architecture/Computerized Patient Record System 

(ViSTa/CPRS), for documentation and administration of clinical care.58 The institutional 

review board and research and development committees of the Tennessee Valley Health Care 

System VA Medical Center, Nashville, TN, approved this study.

2.2 Data Collection

All data were collected from the EHR and accessed via the national Corporate Data 

Warehouse. The clinical data included vital signs, laboratory data, inpatient and outpatient 

medication data, narrative text notes, ICD-9 codes for diagnoses, and Current Procedural 

Terminology (CPT) codes for procedures.
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2.3 Cohort Selection

We examined a cohort of patients hospitalized at a VA facility during the study years. We 

included all hospitalizations for patients who had a cirrhosis diagnosis (based on a history of 

two outpatient or one inpatient) ICD-9 code (571.2 or 571.5) and had AKI during their 

hospitalization with a maximum inpatient creatinine of at least 1.5 mg/dl. The maximum 

inpatient creatinine cutoff was used to be compliant with International Ascites Club criteria 

for HRS (Refer to Table 1).13 We excluded hospitalizations where the patient was on dialysis 

prior to admission, did not have at least one serum creatinine value within the year prior to 

admission or during the inpatient stay, who had a diagnosis of HRS prior to the 

hospitalization, who had a prior hospitalization with AKI, or who were discharged in less 

than forty eight hours.

We performed stratified sampling based on presence/absence of an ICD-9 code for HRS, 

level of kidney injury, and level of liver disease. Acute Kidney Injury was defined by the 

Kidney Disease: Improving Global Outcomes (KDIGO) guidelines: with Stage I being a 

defined as a rise in creatinine of ≥0.3 mg/dl from baseline; Stage II being defined as a 

doubling of serum creatinine from baseline; and Stage III being defined as a tripling of 

serum creatinine or initiation of dialysis. Severity of liver disease was defined by the Model 

for End Stage Liver Disease (MELD) score: a combination of three laboratory values: the 

serum creatinine, international normalized ratio, and platelet count. We sampled in blocks of 

twelve: six patients were selected if they had an ICD-9 code for HRS (572.4) anytime during 

their hospitalization; six patients (without an HRS ICD-9 code) were selected based on two 

levels of kidney injury (KDIGO Stage I versus KDIGO Stages II and III) and three levels of 

MELD (< 20, >= 20, and unable to calculate). We randomly selected a total of 42 blocks 

(504 inpatient admissions) to serve as the gold standard cohort.

2.4 Outcome

Two physician annotators reviewed the 504 hospitalizations reviewing all clinical notes, 

relevant laboratory values, medications, and radiology reports to assign each hospitalization 

into one of five categories: HRS Type I, HRS Type II, HRS Type Indeterminate, Maybe 

HRS, and Not HRS. Reviewers were instructed to differentiate Type I, Type II, and Not HRS 

based on International Ascites Club criteria.13 Type Indeterminate was reserved for cases 

where the reviewer felt the patient had enough evidence for HRS, but could not differentiate 

between Type I and II; whereas, Maybe HRS was reserved for cases of clinical uncertainty. 

We employed a practice phase where the two annotators worked in blocks of twelve patients 

until the inter-annotator agreement was ≥ 0.8. Disagreements on the 504 patient set were 

adjudicated by a board certified nephrologist. We report the inter-annotator agreement for 

the 504 charts that were reviewed. To reduce the problem to a two-class classification 

measure, we combined HRS Type I, Type II, Type Indeterminate, and Maybe HRS into a 

“Yes HRS” category. We performed a sensitivity analysis to examine classification 

performance after excluding “Maybe HRS” from model building and validation.

2.5 Predictor Variables

We included 649 variables from the structured data in the EHR, including demographics (3), 

laboratory values (92), vital signs (21), home medications (99), inpatient medications (116), 
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medical history (129), inpatient diagnoses and procedures (176), and four other 

miscellaneous variables. To the structured data we added nine engineered variables 

comprised of the patient’s creatinine response to various events during hospitalization. 

Variable engineering was performed using the training set and validated on the test set prior 

to inclusion. A detailed summary of these variables and associated definitions are included 

in Online Appendix A.1 and A.2. To the structured variables, we added variables from 

natural language processing of the clinical notes as outlined in the next section.

With the exception of cirrhosis-related or nephrotoxic medications (e.g., lactulose, rifaximin, 

albumin, norepinephrine, cyclosporine), which were coded as separate variables, all 

medications were represented by their corresponding VA drug class code (e.g., 

“cephalosporin 3rd generation”). The VA drug class codes are available publicly through the 

VA National Drug File.59 With the exception of three prehospitalization laboratory variables, 

the inpatient laboratory values and vital signs were summarized by their maximum, 

minimum, and mean or median. Missing values for laboratory test results were filled in 

using Markov Chain Monte Carlo multiple imputation using a subset of co-morbid 

conditions, medications, and procedures (See Online Appendix A.3).60

2.6 Natural Language Processing

We filtered all available clinical notes based on authorship by first including only physicians 

and advanced practice providers, and then excluding specialties unlikely to address hepatic 

pathology (podiatry, ophthalmology, and dentistry). We converted the documents into a 

string of CUIs mapped to the UMLS (version 2013AB)57 using the clinical Text Analysis 

Knowledge Extraction System (cTAKES) version 3.2.44 To manage the large number of 

unique CUIs and data sparsity, based on inspection and evaluation of instability of modeling 

within the training data, we first filtered the output by removing CUIs with a less than 2% or 

greater than 90% prevalence among documents. All CUI counts were log transformed. From 

this data, we evaluated nine different dimensionality reduction techniques: (1) using the full 

set of CUIs; (2) CUIs limited by semantic type; (3) CUIs aggregated by semantic similarity; 

(4) document embedding using the raw text; (5) document embedding using CUIs; (6) an a 
priori selection of CUIs based on domain knowledge; (7) Yu’s Automated Feature 

Extraction for Phenotyping (AFEP);10 (8) Yu’s Surrogate-Assisted Feature Extraction 

(SAFE);9 and (9) principal component analysis (PCA). We refer the reader to Online 

Appendix Tables A.4, A.5, and A.8 for the list of semantic type filters, a priori selected 

CUIs, and AFEP/SAFE selected CUIs, respectively.

To aggregate CUIs by semantic similarity we first limited by semantic type and then 

constructed a pairwise similarity matrix using the Information Content based on the Leacock 

and Chodorow distance measure, which has been shown to exhibit good performance when 

compared against other semantic similarity measures.61 We subsequently performed k-

medoids clustering to find groups of similar CUIs. Seventy clusters were chosen using the 

gap statistic and the “1-standard-error” rule.62 For models (4) and (5) we used the 

Distributed Memory Model of Paragraph Vectors (doc2vec)51 as implemented by the python 

gensim package.63 We utilize the term “document embedding,” as opposed to “word 

embedding,” signifying doc2vec’s ability to consume variable length text, and therefore 

Koola et al. Page 6

J Biomed Inform. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obviate the need to combine word vectors. Similar to Turner et al.56 we pre-processed raw 

text by removing non-alpha numeric characters and eliminating stopwords before using the 

doc2vec algorithm to generate vectors. No processing of the CUIs was performed other than 

the default parameters within cTAKES. For PCA, we kept sufficient components (395) to 

explain 95% of the variance. Refer to Figure 1 for the workflow.

2.7 Final Phenotyping Model Development

We tested five different classification models: logistic regression (LR), support vector 

machines (SVM), gradient boosting (GBM), random forest, and naïve Bayes. For LR and 

naïve Bayes we first performed variable selection using penalized LR, using the L1 penalty 

(Least Absolute Shrinkage and Selection Operator—LASSO), to select a subset of the 

predictor variables.42 For the remainder of the models we used the full set of predictor 

variables. The hyperparameters for SVM, GBM, and random forest were optimized using 

five-fold cross validation on the training set. A Gaussian distribution was assumed for naïve 

Bayes.

2.8 NLP Dimensionality Reduction and Phenotyping Model Assessment

We assessed the NLP dimensionality reduction techniques by constructing an SVM model 

using only the NLP variables with HRS as the outcome measure. The Radial Basis Function 

served as the SVM kernel and hyperparameters, C and γ, were optimized using grid search 

and 5-fold cross validation. While it is possible that the dimensionality reduction techniques 

may perform differently using an alternative model assessment method, we elected to test 

NLP variables with an SVM model because we wanted to utilize a method that had a low 

bias and few assumptions about the model parameter development, to allow for complex 

interactions to be discoverable in the CUI data. While this can result in high variance, we 

limited the values of C in the grid search to prevent very small C values that would increase 

the variance and over-fitting to observed data. In addition, this machine learning framework 

has been shown to work well with NLP variables.1,65,66

Performance of the NLP dimension reduction technique and the final phenotyping algorithm 

were calculated using bootstrapping (100 bootstrap samples) to estimate discrimination (area 

under the receiver operating characteristic [ROC] curve [AUC], F1-measure, precision, 

recall) and calibration (slope and intercept of the best fit line through the observed to 

predicted probability plot and Brier score) metrics.67,68 We defined statistical significance as 

non-crossing of the 95% bootstrapped confidence intervals. We compared the discriminatory 

performance of the machine learning algorithms to the ICD-9 code.

We conducted an error analysis using the best machine learning method and studied the false 

positives and false negatives. We looked at false positives and false negatives at three cut-

points for the probabilistic phenotype: the optimal sensitivity and specificity based on 

Youden’s index, sensitivity of 0.95, and specificity of 0.95. For each of these scenarios, we 

examined the annotators’ notes on the gold standard to understand why the errors occurred.
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3. Results

Based on manual annotation there were 87 cases with Type I HRS, 19 with Type II HRS, 16 

with Type Indeterminate, 88 with Maybe HRS, and 294 without HRS. Table 2 shows a 

summary of the cohort after the case annotations were dichotomized as noted in the 

methods, resulting in a total of 210 (41.7%) hospitalizations with HRS. Eighty cases were 

adjudicated, yielding a weighted Cohen’s kappa of 0.83. Males represented 98.2% of the 

total admissions, with a median age of 61. White patients accounted for the majority of 

hospital admissions (71.1%). The sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV) of a discharge ICD-9 code for HRS were 57.6%, 88.8%, 

78.6%, and 74.6%, respectively. The sensitivity, specificity, PPV, and NPV of an HRS ICD-9 

code at any time during hospitalization were 87.1%, 76.5%, 72.6%, and 89.3%, respectively.

There were a total of 23,415 distinct CUIs within the entire document corpus, and a total of 

6,985 distinct CUIs after initial frequency filtering. Limiting based on semantic type reduced 

the total number of distinct CUIs to 2082. The median number of CUIs per cluster was 12 

(IQR: 5 – 18). AFEP and SAFE selected thirty-six and three CUIs, respectively. Table 3 

presents the total number of variables and evaluation results for each of the nine NLP 

strategies. Document embedding using CUIs (AUC of 0.79, 95% CI: 0.79 – 0.80) 

significantly improved performance compared to embedding using raw text (AUC of 0.66, 

95% CI 0.66 – 0.67). The a priori CUI selection, semantically informed clustering, and the 

high-throughput phenotyping methods (SAFE and AFEP) had statistically similar 

performance (AUC of 0.81 – 0.82). The a priori CUI set was selected for further analysis 

due to their clinical relevance and ease of interpretation.

Combining the structured and NLP variables, there were a total of 701 candidate predictors. 

LASSO selected 21 variables. The results of the model comparisons are shown in Table 4. 

Logistic regression had the best performance in terms of AUC, though modest performance 

in terms of calibration. Figure 2 shows the ROC curves with 95% confidence intervals for 

the 5 methods. The sensitivity and specificity are also plotted for the HRS ICD-9 code (both 

for a discharge ICD-9 code and any ICD-9 code during the inpatient stay). Logistic 

regression dominated the other methods and was superior to using just the ICD-9 code. 

Figure 3 shows the smoothed calibration curves for the different methods based on Van 

Hoorde et al.68 Though calibration appears relatively uniform for regression, GBM, SVM, 

and random forest based on the Brier score; the calibration curve shows GBM and SVM had 

superior performance. As part of our sensitivity analysis, appendix Table A.6 shows the 

classifier performance after building the five classifiers after excluding “Maybe HRS” from 

the model building and validation. We note slight improvement for regression (AUC of 

0.94); however, we elected to maintain “Maybe HRS” within the model to account for edge 

cases. By varying the probability threshold, the user may include/exclude clinically 

uncertain cases. Appendix Table A.7 shows model performance using the SAFE CUIs for 

comparison. Overall model performance for logistic regression is largely unchanged, though 

the individual variables selected by LASSO identify more structured variables to make up 

for the fewer NLP variables.

Koola et al. Page 8

J Biomed Inform. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 5 reports the odds ratios for the variables used in the LR model. Significant variables 

predictive of HRS include an ICD-9 code for HRS, NLP mention of HRS, inpatient use of 

midodrine, the peak serum creatinine after the first 48 hours of admission, and the average 

mean corpuscular hemoglobin concentration (MCHC). Variables predictive of other causes 

of renal failure include an ICD-9 code for acute tubular necrosis (ATN), NLP mention of 

shock, high urine sodium, a significant difference between the maximum inpatient serum 

creatinine versus at discharge, and higher serum sodium.

Table 6 reports our error analysis at three levels of cut-offs: optimal using Youden’s index, 

high sensitivity, and high specificity. As expected, false positives versus false negatives 

dominate at higher sensitivity and higher specificity, respectively. False positives at high 

sensitivity are primarily caused by the algorithm’s inability to detect improvement with fluid 

administration, separating chronic kidney disease from HRS, and other causes of AKI in 

cirrhotics. At higher specificity, false negatives are caused by high urine sodium, chronic 

kidney disease, and competing diagnoses. At an optimal threshold, the majority of errors 

stemmed from an inability to identify improvement with fluid administration. Insufficient 

information caused errors at all cut-points, though a relatively small percentage of errors.

4. Discussion

This research demonstrates that it is possible to create a high performance probabilistic 

phenotyping algorithm to detect cases of HRS. This is one of the first efforts to phenotype 

AKI etiology, a condition that effects up to 2% of hospitalized patients.69 Penalized LR 

achieved the best performance with an AUC of 0.93 (95% CI: 0.92–0.93). NLP significantly 

boosted the performance of the model from an AUC of 0.82 (95% CI: 0.81–0.83). The 

sensitivity and specificity of an ICD-9 code anytime during the hospitalization were 87.1% 

and 76.5%, respectively; whereas, a discharge ICD-9 code had a sensitivity and specificity 

of 57.6% and 88.8%, respectively. At Youden’s index, the LR algorithm would have a 

sensitivity of 85.4% and a specificity of 84.0%. The probabilistic phenotyping algorithm 

allows one to alter the thresholds for varying levels of sensitivity and specificity depending 

on the needs of the user.

Optimizing the algorithm required handling the large number of NLP variables. Automated 

dimensionality reduction in NLP based classification has been shown to improve 

performance in multiple studies.70–72 Increasing effort has been placed on high-throughput 

phenotyping to perform automated feature selection/dimension reduction, though to date 

they have been primarily tested in chronic conditions where the data density is much higher. 

In our study, manual NLP variable selection using domain knowledge performed similarly to 

dimensionality reduction using SAFE, AFEP, and semantic similarity informed clustering. 

Manual variable selection has been shown to perform favorably in other studies.73,74 For 

instance, Chen et. al. showed that a feature set selected by domain experts outperformed a 

data driven approach in phenotyping algorithms for Rheumatoid Arthritis, Colorectal 

Cancer, and Venous Thromboembolism.75

Although embeddings have been used for phenotyping tasks, we demonstrate its 

performance in acute illness and using CUIs instead of raw text.55,56 Turner et al. showed 
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their word embedding task using raw text outperformed bag-of-words models but did not 

outperform machine learning models using CUIs. We show that CUI based models 

(including embedding) outperform embedding models using free text. Increasing effort is 

being applied to mapping free text to a domain ontology for purposes of improving a wide 

variety of NLP tasks70,76 and constructing shareable, computable clinical data warehouses.77

Though machine learning algorithms are increasingly popular for cohort identification,1 our 

study showed superior performance with penalized LR. Regression has been used for 

phenotyping efforts78 and, in at least one risk prediction study comparing regression to 

machine learning models, regression performed better.79 Machine learning methods such as 

support vector machines and random forests tend to perform well on classification tasks 

where multiple interactions exist between the predictor variables, which suggests that 

complex interactions may not have been highly prevalent in these data. Additionally, despite 

the better discriminatory power of the logistic regression model, calibration was better with 

gradient boosting and support vector machines, which suggests that for some cut-points 

performance may still favor the machine learning methods.

The most important variable based on odds ratio was the HRS ICD-9 code. Inpatient codes 

for ascites also significantly increased the probability of HRS. This makes pathophysiologic 

sense because development of ascites and HRS are tightly related, particularly in HRS Type 

II. Inpatient administration of midodrine, a medication that increases the blood pressure, was 

significantly predictive of HRS. This is also a logical finding because midodrine is used in 

only a few contexts in medicine and one of them is treatment of HRS. NLP variables that 

were predictive of HRS include mention of HRS and mention of paracentesis (removal of 

accumulated fluid in the abdomen), which is indicative of the presence of clinically 

significant ascites. Predictors with good negative predictive value for HRS include variables 

that indicate less severe portal hypertension (increased blood pressure in the abdominal 

blood vessels), other causes of acute kidney injury (ATN and shock), and significant 

improvement in creatinine levels at time of discharge.

To better understand failure points and edge cases, we performed an error analysis, revealing 

three common themes. First, errors were made in the system assessing response to fluid 

administration. In essence, this is a temporal pattern recognition problem. Though some 

temporal type variables were included in the model, they were insufficient to capture the full 

variation of response waveforms. Second, there were challenges differentiating HRS from 

other causes of kidney failure in cirrhotics. HRS is commonly one of several competing 

diagnoses in clinical practice when diagnosing the etiology of AKI in cirrhosis. The 

phenotyping system performed well in most cases. Finally, insufficient information caused a 

low level of persistent error across all cut-points. While this is unavoidable when using 

retrospective data, it may be mitigated when using the system prospectively. Importantly, our 

probabilistic phenotyping model allows the user to tailor the cutoff to the intended use: 

higher sensitivity for clinical decision support and higher specificity for defining cohorts in 

secondary data use analyses.
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4.1 Limitations

There are some limitations to this research that are worth highlighting for refinement and 

extension of this investigation. First, this is a retrospective observational cohort and there 

were gaps in documentation that likely lowered ascertainment from chart review for the 

phenotype. Second, the VA data may not be representative of other clinical environments 

due to the slightly older average age and predominance of men. The other clinical variables, 

however, are not significantly different than other studies published regarding HRS.30,80,81 

We only performed internal validation; however, we aimed to increase generalizability by 

sampling across a broad range of kidney injury and liver disease. Moreover, all variables are 

common to other electronic health records, and the selected variables make pathophysiologic 

sense. Third, several significant predictors were ICD-9 codes, but with the transition to 

ICD-10 in the US, the algorithm’s performance cannot be assured. At the same time, it is 

worth noting that there are one-to-one mappings for two of the important ICD-9 codes (ATN 

and HRS) based on the General Equivalent Maps (GEMs) framework.82 The code sets 

defining non-alcoholic fatty liver disease and ascites would require additional validation.

NLP dimension reduction was assessed with SVM, and it is possible that an alternate 

method may have ranked the methods in a different order. We did not test expectation-

maximization methods of clustering, such as Gaussian mixture modeling, for dimension 

reduction as we do not know the inherent probability distribution of the data. Lastly, a more 

thoughtful exploration of mapping temporal changes using established methods may have 

improved performance.83–85

4.2 Conclusion

This study demonstrated the utility of a probabilistic phenotype that used machine learning 

based methods to retrospectively classify patients with HRS. Though we focused on one 

form of AKI due to its high mortality, lessons learned could be applied to phenotyping other 

forms of kidney injury. Domain knowledge and several automated dimension reduction 

methods demonstrated similar performance for identifying acute illness. Penalized logistic 

regression identified a parsimonious set of features with excellent performance. Unlike the 

fixed sensitivity and specificity of the HRS ICD-9 code, this probabilistic model can be used 

at multiple set points depending on the use case (e.g., a bias towards specificity or 

sensitivity). Future directions include external validation and identifying HRS cohorts for 

predictive analytics, clinical decision making, and population management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MELD Model for End Stage Liver Disease

SVM Support Vector Machine

LR Logistic Regression

LASSO Least Absolute Shrinkage and Selection Operator

ROC Receiver Operating Characteristic
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NAFLD Non-Alcoholic Fatty Liver Disease

INR International Normalized Ratio

CKD Chronic Kidney Disease

HIVAN Human Immunodeficiency Virus Associated Nephropathy

AFEP Automated Feature Extraction for Phenotyping

SAFE Surrogate-Assisted Feature Extraction
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Highlights

• Computational phenotype for Hepatorenal Syndrome

• Performance of Natural Language Processing dimension reduction techniques

• Document embedding using Concept Unique Identifiers for phenotyping

• Assessment of high-throughput phenotyping for acute illness
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Figure 1. Workflow describing Natural Language Processing pipeline
(Note: cTAKES: clinical Text Analysis Knowledge Extraction System; CUI: Concept 

Unique Identifier; AFEP: Automated Feature Extraction for Phenotyping; SAFE: Surrogate-

Assisted Feature Extraction; PCA: Principal Component Analysis)
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Figure 2. Receiver Operating Characteristic curves for the five different various models for 
phenotyping Hepatorenal Syndrome phenotyping models
(Note: The grey square represents performance for a Hepatorenal Syndrome ICD-9 code 

anytime during the admission. The grey circle represents a Hepatorenal Syndrome ICD-9 

code as a discharge diagnosis. LR: Logistic Regression; SVM: Support Vector Machine; 

GBM: Gradient Boosting Machine; NB: Naïve Bayes; RF: Random Forest)
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Figure 3. Smoothed calibration curves for the observed-to-expected predicted probability plots 
for the five different various methods
(Note: LR: Logistic Regression; SVM: Support Vector Machine; GBM: Gradient Boosting 

Machine; NB: Naïve Bayes; RF: Random Forest)

Koola et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Koola et al. Page 21

Table 1

Diagnostic criteria for Hepatorenal Syndrome from the International Ascites Club.

Criteria

Cirrhosis with ascites

Serum creatinine > 1.5 mg/dl

No improvement of serum creatinine after at least 2 days with diuretic withdrawal and volume expansion

Absence of shock

No current treatment with nephrotoxic drugs

Absence of parenchymal kidney disease
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Table 2

Characteristics of the cohort of cirrhotic patients with and without HRS as determined by chart review.

Characteristic HRS Diagnosis (n = 210) No HRS Diagnosis (n = 294)

DEMOGRAPHICS

 Age, mean (SD) 60 (7.9) 62 (10.2)

 Gender (male), n (%) 208 (99.0%) 292 (99.3%)

 Race, n (%)

  White 154 (73.3%) 201 (68.4%)

  Black 28 (13.3%) 65 (22.1%)

  Other 28 (13.3%) 28 (9.5%)

PRE-ADMISSION CHARACTERISTICS

 Cirrhosis Etiology, n (%)1

  Alcoholic 130 (61.9%) 151 (51.4%)

  Viral (Hepatitis B and C) 112 (53.3%) 130 (44.2%)

  NAFLD 31 (14.7%) 41 (13.9%)

 Congestive Heart Failure, n (%) 19 (9.0%) 61 (20.7%)

 Diabetes Mellitus, n (%) 59 (28.1%) 122 (41.5%)

 Chronic Kidney Disease, n (%) 20 (9.5%) 54 (18.4%)

 Prior Cirrhosis Complications, n (%)

  Hepatic Encephalopathy 75 (35.7%) 61 (20.7%)

  Varices 58 (27.6%) 66 (22.4%)

  SBP 30 (14.3%) 19 (6.5%)

  Ascites 122 (58.1%) 132 (44.9%)

  Hepatocellular Carcinoma 28 (13.3%) 22 (7.5%)

 Baseline Creatinine, mean (SD) 1.04 (0.42) 1.15 (0.49)

INDEX HOSPITALIZATION CHARACTERISTICS

 Maximum Creatinine, mean (SD) 4.16 (2.10) 2.75 (1.50)

 Maximum Blood Urea Nitrogen, mean (SD) 78.2 (49.0) 49.9 (26.0)

 Average Sodium, mean (SD) 132.6 (5.7) 135.8 (5.0)

 Average Bilirubin, mean (SD) 12.7 (11.5) 4.4 (6.2)

 Average Albumin, mean (SD) 2.4 (0.6) 2.6 (0.7)

 Average INR, mean (SD) 2.0 (0.7) 1.7 (0.7)

 Admission MELD, mean (SD) 26.3 (8.4) 20.5 (7.1)

 Discharge HRS ICD-9 Code, n (%) 170 (81.0%) 63 (21.4%)

1
Note: A patient may have more than one etiology of cirrhosis, hence percentages add up to greater than 100%.
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Table 4

Discrimination and calibration performance of the five models to phenotype Hepatorenal Syndrome.

Model AUC (95% CI) Slope (95% CI) Intercept (95% CI) Brier Score (95% CI)

Logistic Regression 0.93 (0.92, 0.93) 0.68 (0.65, 0.71) 0.18 (0.13, 0.24) 0.11 (0.11, 0.11)

Gradient Boosting 0.88 (0.88,0.88) 1.26 (1.21, 1.31) 0.15 (0.10, 0.20) 0.14 (0.13, 0.14)

Naïve Bayes 0.73 (0.72, 0.74) 0.04 (0.03, 0.04) −0.41 (−0.53, − 0.29) 0.32 (0.30, 0.33)

Random Forest 0.91 (0.91, 0.91) 2.01 (1.95, 2.06) 0.29 (0.24, 0.35) 0.13 (0.13, 0.13)

Support Vector Machine 0.90 (0.90, 0.91) 0.74 (0.71, 0.77) −0.12 (−0.17, − 0.07) 0.13 (0.12, 0.13)

Note: Slope and Intercept refer to the parameters of the best-fit line through the observed-to-predicted probability plot; AUC: Area Under the Curve
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Table 5

Odds ratios and confidence intervals for the logistic regression model based on 100 bootstrap samples.

Variable Odds Ratio (95% CI) Variable Odds Ratio (95% CI)

Inpatient Labs – Temporal –

 Average Serum Sodium 0.67 (0.64, 0.70)     Creatinine Diff. (max inpt. to discharge) 0.21 (0.20, 0.23)

 Average Urine Sodium 0.73 (0.70, 0.77)     Creatinine Diff. (1st 48 hours vs. rest of stay) 0.55 (0.51, 0.60)

 Average Bicarbonate 0.79 (0.76, 0.83)     Peak Creatinine After First 48h 1.78 (1.66, 1.91)

 Minimum Albumin 0.84 (0.81, 0.88)

 Average Glucose 0.94 (0.90, 0.97) ICD 9 Codes –

 Average Total Bilirubin 1.15 (1.09, 1.20)     Inpatient ATN 0.40 (0.36, 0.45)

 Minimum INR 1.16 (1.11, 1.21)     Inpatient NAFLD 1.07 (1.03, 1.11)

 Average Blood Urea Nitrogen 1.16 (1.07, 1.26)     Inpatient Ascites 1.59 (1.51, 1.67)

 Minimum Blood Urea Nitrogen 1.77 (1.63, 1.93)     Inpatient HRS 9.98 (9.12, 10.93)

 Average MCHC 1.96 (1.87, 2.05)

NLP –

Inpatient Medications – (+) Shock 0.21 (0.20, 0.23)

 Midodrine 3.24 (2.89, 3.62) (+) Paracentesis 1.37 (1.30, 1.43)

(+) HRS 1.78 (1.67, 1.90)

(Note: INR: International Normalized Ratio; MCHC: Mean Corpuscular Hemoglobin Concentration; NLP: Natural Language Processing; HRS: 
Hepatorenal Syndrome; ATN: Acute Tubular Necrosis; NAFLD: Non-alcoholic Fatty Liver Disease)
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