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Abstract

Capturing the vast amount of meaningful information encoded in the human genome is a fascinating research prob-
lem. The outcome of these researches have significant influences in a number of health related fields — personalized
medicine, paternity testing and disease susceptibility testing are a few to be named. To facilitate these types of large
scale biomedical research projects, it oftentimes requires to share genomic and clinical data collected by disparate or-
ganizations among themselves. In that case, it is of utmost importance to ensure that sharing, managing and analyzing
the data does not reveal the identity of the individuals who contribute their genomic samples. The task of storage and
computation on the shared data can be delegated to third party cloud infrastructures, equipped with large storage and
high performance computation resources. Outsourcing these sensitive genomic data to the third party cloud storage
is associated with the challenges of the potential loss, theft or misuse of the data as the server administrator cannot
be completely trusted as well as there is no guarantee that the security of the server will not be breached. In this
paper, we provide a model for secure sharing and computation on genomic data in a semi-honest third party cloud
server. The security of the shared data is guaranteed through encryption while making the overall computation fast
and scalable enough for real-life large-scale biomedical applications. We evaluated the efficiency of our proposed
model on a database of Single-Nucleotide Polymorphism (SNP) sequences and experimental results demonstrate that
a query of 50 SNPs in a database of 50000 records, where each record contains 300 SNPs, takes approximately 6
seconds.

1 Introduction

Analysis of human genome can reveal many essential information about an individual, like predisposition to a specific
disease such as breast cancer, diabetes and Alzheimer1. This analysis is usually done by querying an individual’s
genome against a list of known variations and then calculating the susceptibility1. To guarantee significant accuracy
in this type of analysis, a large number of genomic sequences are required, the collection of which are sometimes
beyond the capability of a sole organization2. Allowing the access of the genomic data surpassing the premise of the
organization responsible for initial collection is a viable solution. But, handovering the access of the data, be it owned
by a government organization or a private research institution, is not always very straightforward because of the nature
of the genomic data.

Genomic data cannot be treated as any other data; it has some distinctive features. Naveed et al.3 identified six special
features of genomic data. Genomic data does not change considerably over time and it is unique – two individuals
can easily be distinguished from their data. Furthermore, information about an individuals genotype, phenotype and
blood relatives can also be inferred from his genomic data. Due to this sensitive nature, disclosure of this data has
significant privacy risks. For example, a person carrying the mutation of a specific gene which increases the likelihood
of developing a specific disease might be denied by an insurance company for his health coverage. Hence, while
sharing these genomic data among multiple institutions, safety measures should be taken to uphold the privacy of the
individuals who contributes the data. For this purpose, different privacy policies have been developed, thus facilitating
the task of analysis to be done in a broader range.

Genome-wide association study (GWAS) helps to understand and identify the generic variations that are associated
with a particular disease. There are several type of variations that occur in human population, such as single-nucleotide
polymorphism (SNP), copy-number variations (CNVs), rearrangement etc. GWAS produces aggregate statistics by
examining these variations, typically SNPs from thousands of individuals which are used to determine the association
between a SNP and a disease4. Ensuring the security of the SNPs in this association studies is very important which
has been clearly demonstrated by the work of Lin et al.5 who showed that only 75 SNPs are enough to uniquely
identify an individual. Besides, sensitive personal information can also be inferred from the aggregate statistics in
GWAS6,7,8.
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The volume of the aggregated shared data is enormous and requires vast amount of storage space. Due to the quality
of services offered by the cloud infrastructures at considerably lower rate, especially having the characteristics of
high availability and scalability, cloud computing services can be adopted for this purpose. But, cloud services are
vulnerable to security threat and an adversary capable of breaching the security would be able to access the data
residing into that server. One published news clearly demonstrates that privacy should not be expected to be preserved
from cloud service providers9.

In this paper, we aim at solving the security issues related to sharing and computation on outsourced genomic data. In
particular, we address three potential security challenges. The first challenge is to guarantee data privacy. The data
stored in the cloud server, as well as the computation carried throughout the entire analysis process should be secured.
Even if the cloud server gets compromised, the attacker should not learn anything about the data stored in the cloud.
The second challenge is to provide query privacy. The institutions contributing the data, the cloud service provider or
an adversary should learn nothing about a query executed by a researcher or an institution. The third challenge is to
achieve output privacy. The result of the query should not be disclosed to anybody except the researcher who initiated
the query.

Anonymization methods have been proved ineffective for protecting the genomic data10,11,12 as these techniques incur
high utility loss. Cryptographic techniques can compute a predefined function on encrypted dataset from multiple
parties and returns the function’s result without revealing any information about the data from different parties13. For
this reason, a number of privacy preserving techniques using cryptography have been developed to achieve the goal
of sharing and computation on encrypted genomic data. However, none of these techniques can overcome the three
challenges mentioned above simultaneously or scalable for real-life applications (see Section 2 for more discussion).

Contributions. In this paper, our goal is to design a framework for secure outsourcing of genomic data and securely
computing count query on the outsourced data. Count query determines the number of matched records for a query
predicate and it is very useful for genetic association studies to compute several statistical algorithms.

The main contributions of this paper are summarized below:

• We present a privacy preserving framework for secure count query operation. Genomic data is outsourced after
encryption to a third party cloud server. Execution of a query is done by traversing an encrypted tree, where
the decision of traversing each node is made by checking whether a query predicate matches with a particular
branch of the tree. This checking is done through an interactive protocol using Yao’s garbled circuit14 between
the query initiator (i.e., researcher) and the cloud server. Depending upon the query, branch(es) of the tree are
traversed and the query result is calculated from the values stored in the nodes which match the query predicate.
To determine the final output from the encrypted node values, we use Paillier cyptosystem15.

• Our proposed model addresses all of the aforementioned three challenges, it provides – data privacy, query
privacy and output privacy (the query result is only disclosed to the query initiator). Query is securely executed
through an interactive protocol between the query initiator and the cloud server. The proposed method does not
require an active participation of a trusted entity (i.e., proxy) for secure evaluation of the query or decryption of
the result of the query.

• We incorporate a tree-based indexing technique in our proposed model which not only provides an effective
storage solution for large genomic datasets, but also queries can be executed efficiently by traversing the nodes
of the tree. In addition, it facilitates an easy update operation.

• Through experiment and evaluation, we demonstrate the effectiveness of our approach. Experimental results
clearly exhibit significant improvement in terms of time requirement for query evaluation in comparison with
the previous approaches. For a count query operation over 40 SNPs in a database of 5000 records, it took
approximately 30 min and 80 seconds for the methods proposed by Kantarcioglu et al.16 and Canim et al.17,
respectively. The proposed approach significantly improves the runtime and it takes only 1.7 seconds to execute
similar queries.
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Table 1: Different properties of existing techniques for count query

Algorithms Method Trusted Entity Privacy
Data Query Output

Kantarcioglu et al.16 HE Online X
Canim et al.17 Cryptographic Hardware, HE N/A X X
Our method Pailler, GC Offline X X X

2 Related work

Secure count query: One of the earlier attempts that addressed the problem of secure outsourcing of genomic data
for count query operation was a cryptographic model proposed by Kantarcioglu et al.16. They proposed a framework
which involves two different parties. One is responsible for integrating encrypted data coming from different data
sources and then execute queries on behalf of a researcher on those encrypted data. Then the result of the query is
sent to another party, a key holder site who is responsible for managing keys used for encryption and decryption. This
key holder site decrypts the result and send the decrypted final result to the researcher. Their method does not provide
query privacy; the cloud server receives the query in plaintext. Their method also does not provide output privacy as it
is revealed to the key holder site. The main limitation of this work is efficiency. As mentioned earlier, it takes around
30 mins to execute a count query operation over 40 SNPs in a database of 5000 records.

Canim et al.17 proposed a method using tamper-resistant cryptographic hardware to enable secure genomic data stor-
age and processing at a single third party. The central server stores the encrypted genomic data coming from different
sources and can compute over this data using the secure coprocessor (SCP) located at the server. Using SCP as cryp-
tographic hardware and performing computation within the coprocessor is a secure approach for sharing biomedical
data. However, it does not ensure query privacy; the query is issued in plaintext. On the other hand, it provides output
privacy. The final output can be returned to the researcher by the SCP using a secure channel (e.g., SSL protocol).
Hence, the cloud server can not see the output. The limitation of this approach is the cryptographic hardware itself.
In partice, it is not always possible to ensure the availability of a secure coprocessor. In addition, coprocessor has a
relatively small memory capacity and computational power3. So, it is not clear whether the method is scalable for big
datasets1.

To the best of our knowledge these are the only two works that have addressed the problem of secure count query
operation. The comparison of our method with these two works is summarized in Table 1. The table summarizes
different aspects of solving count query problem such as cryptographic methodology, involvement of trusted entity
during query execution and different types of privacy offered by those methods. There are several other solutions
that have been proposed to protect the privacy of both the outsourced data and the analysis. Although these works
do not address the problem of secure count query operation, they target closely related problems and use different
cryptographic techniques to ensure the security of the genomic data. Next we mention some of these works.

Other relevant works: To protect the privacy of the genome database, Lauter et al.18 proposed a method where all
the data are encrypted using fully homomorphic encryption and then stored it in a single cloud server. They mainly
focused on computing several statistical algorithms (e.g. Pearson Goodness-of-Fit or Chi-Squared Test, Linkage Dise-
quilibrium, Estimation Maximization (EM) and Cochran-Armitage Test for Trend (CATT)) commonly used in genetic
association studies. Kamm et al.19 employed secret sharing technique to guarantee the security of shared data and
used secure multi-party computation to compute the value of different tests like χ2 test, Cochran-Armitage Test for
Trend and Transmission Disequilibrium Test. Zhang et al.20 used homomorphic encryption to compute Chi-Squared
Test in untrusted public cloud.

Cheon et al.21 adopted somewhat homomorphic encryption scheme to ensure the security of the shared data in the
cloud server. They only focused on computing the edit distance. Zhang et al.22 used secret sharing and secure multi-
party computation for computing edit distance between two sequences. Wang et al.23 also used the secure multi-party
computation scheme to compute edit distance to find similar patients based on the input from two different parties.
Jha et al.24 proposed a method to compute the similarity of DNA sequences using garbled circuits.
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Figure 1: Proposed architecture of the system.

Ayday et al.25 proposed a method for storing genomic data at a storage and processing unit and then processing it
for medical tests and personalized medicine operations. The computations on this shared data are conducted using
homomorphic encryption and proxy re-encryption. Yang et al.26 proposed a hybrid method for privacy preserving
medical data sharing in cloud environment. They combined the existing privacy protecting ideas of privacy by statistics
and privacy by cryptography and provided a hybrid search method which would be conducted across plaintext and
ciphertext. Perl et al.27 proposed a method for searching on biomedical data with a combination of Bloom filter and
homomorphic encryption. They completely outsourced the task of searching in the third party cloud server.

Xie et al.28 proposed a scheme for securely performing meta-analysis for genetic association study. Instead of storing
data to multiple cloud storage (like Kamm et al. 19 and Zhang et al. 22), they kept the data in the corresponding data
owner’s premises. Wang et al.29 designed a somewhat homomorphic encryption based technique to compute exact
logistic regression to discover rare disease variants to analyze disease susceptibility in an untrusted cloud environment.

3 Preliminaries

In this section, we first present an overview of the system design and the format of the genomic dataset we consider in
this paper. We then introduce the sample county query operation and threat model of our framework.

System Design Overview

Figure 1 presents a general overview of our proposed framework. As depicted in the figure, it incorporates four main
participants: Data Owners, Certified Institution (CI), Cloud Server (CS) and Researchers. Each entity is responsible
for performing different specific tasks to make the overall system secure and functional. The roles performed by each
of the entities are discussed below –

• Data owners: Data owners consists of the institutions who agreed to share the genomic data they possess.
These institutions might be any academic institutions, non-academic research organizations, government re-
search agencies or health departments such as the main contributors of data samples to dbGap30. They send
the genomic data to the CI in plaintext. Prior to sending the data to the CI, data owners process their data in a
formerly agreed format.

• Certified Institution (CI): The data shared by different data owners reside in a database owned by a trusted
entity which we call the CI. Any trusted government institution such as National Institute of Health (NIH) in the
United States can play this role. The responsibilities performed by CI can be divided into two parts:
1) Generation of index tree: Upon receiving the data from the contributing data owners, CI builds an encrypted
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searchable version of the aggregated shared data and sends it to the CS. The search operation is basically per-
formed on an encrypted index tree. In our proposed system, the CI builds only a single index tree that contains
all the records from the aggregated shared data and sends the encrypted version of the tree to the CS. For any
addition and deletion of records, CI can update the tree accordingly in the CS.
2) Management of keys: Another responsibility of CI is to manage the keys that the researchers use to encrypt
the query and decrypt the result of the query returned by the CS. The data represented by the nodes of the index
tree are also encrypted using the same public key.

• Cloud Server (CS): CS gets the encrypted version of the index tree and all the query operations are performed
on this tree. CS is responsible for handling all the communications with the researchers. The researchers send
their encrypted query to CS, CS then executes this query and sends back the encrypted result to the researchers.

• Researchers: Researchers might be any individual or organization who is interested in performing query oper-
ations on the aggregated shared data residing in the CS. To execute query on the outsourced data, researchers
need to obtain keys (both public and secret) from the CI. Researchers use the public key to encrypt the query and
sends it to the CS. CS evaluates this query on the encrypted tree and sends back the final result to the researchers.
Upon receiving the encrypted results, the researchers use the secret key to decrypt the result.

Genomic Data Representation

Genome contains the hereditary information of an organism. The human genome is encoded in deoxyribonucleic acid
molecules which we commonly know as DNA. DNA molecules consist of two biopolymer chains each of which in
turn consists of nucleotides. These nucleotides are represented as A, C, G, T which are the acronyms of Adenine,
Cytosine, Guanine and Thymine respectively. In DNA, these nucleotides form base pairs by making bonds with each
other: A bonds with T and C bonds with G. There are approximately 3 billion base pairs in the whole human genomic
sequence and most of them (99%) are identical in two individuals. The remaining genomic variation distinguishes one
individual from another. Single Nucleotide Polymorphism (SNP) is a common DNA variation at a specific position in
the genome which represents a difference in a single nucleotide. Most of the SNPs do not have any effect on human
health. But some SNPs are directly responsible for developing a particular disease in the human body.

In this paper, we work with the databases consisting of SNP sequences. We assume that a sequence S consists of
multiple SNPs and we represent such a sequence as S = {a1, a2, ..., an}where ai represents a SNP. Table 2 represents
an example of the format of the data that data owners send to the CI. Here, each row represents genomic sequences
for one single patient. The SNPs a1, a2, ..., an are represented in each column. Each SNP can be represented by a
pair of nucleotides and this is common in genomic data analysis17,31. The last column indicates whether a genomic
sequence is associated with cancer (positive) or not (negative). The dataset might contain other information about the
phenotypes, but for keeping the structure of the data simple, we do not show those in Table 2.

Count Query

Our objective is to securely execute count query operation, where researchers want to know how many records in the
database match a given query predicate. The number of SNPs in the query predicate is called the query size. We can
formally define count query operation as follow:

Definition 1: Given a database D and a query q, count query can be defined as finding the number of tuples in
D which satisfies the predicate θ in q. If di denotes one database tuple, the total count can be represented as:
| {∀i, di ∈ D | di satisfies θ} |. For example, let’s consider the following query submitted by a researcher:

SELECT COUNT(*) FROM Sequences
WHERE SNP2 = ‘CC’ AND SNP3 = ‘TT’ AND

SNP5 = ‘CC’ AND Cancer = ’Positive’
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Table 2: Data representation in the Certified Institution (CI)

Sequence Phenotype
Case SNP1 SNP2 SNP3 SNP4 SNP5 Cancer

1 AG CC TT AG CT . . . Negative
2 AA CC CT AG CT . . . Negative
3 AG CT CC AA TT . . . Negative
4 AG CC TT AG CT . . . Negative
5 GG CT TT GG CC . . . Positive
6 AA CC TT GG CC . . . Positive
7 AG CT CT AG CT . . . Positive
8 AA CC TT GG CC . . . Positive
9 GG CT CT AG CT . . . Negative

10 AG CT CT AG CT . . . Positive

If we execute the above query on Table 2, researchers will receive 2 as the answer of the query because only Case # 6
and 8 match the query predicate. Determining this count value is an important step in genetic association studies. This
value helps the researchers to determine the association between genotype and phenotype. Computing the value of
several statistical algorithms actually depends on this count value. These algorithm includes Pearson Goodness-of-Fit
or Chi-Squared Test, Linkage Disequilibrium, Estimation Maximization (EM) and Cochran-Armitage Test for Trend
(CATT)18.

Threat Model

Our goal is that the CS does not learn anything about the shared genomic data and both the CI and the CS learn nothing
about the query performed by the researchers. Furthermore, we want to ensure that the researchers do not infer any
information from the data. We assume the CI to be a trusted entity as it is responsible for the generation and encryption
of the index tree. The CI can verify the identity of the individuals or organizations who apply for the access of the data
before giving them the keys. This role of verification performed by the CI can be considered as the same as the Data
Access Committee (DAC) of NIH30.

In our setting, we assume that the CS is semi-honest, also known as honest but curious32. Such an adversary follows
the protocol as specified and does not try to misrepresent any information about the contents. However, it may gather
any statistical or other information regarding input, output or the computation during or after the protocol execution.
Therefore, we require the view of each entity during protocol execution not to disclose any information. Thus, we
assume that neither the data owner, the CI, nor the CS has any motivation to behave maliciously in the desire to
generate incorrect output.

Our method is also designed based on the the following assumptions:

• We assume that the CI does not collude with the CS and CS also does not collude with the researchers. This is
an essential requirement for guaranteeing query privacy.

• We assume that the system works correctly, that is researchers receive the correct keys from the CI.

4 Cryptographic Background

In this section, we provide some relevant background information related to the cryptographic schemes we opt for our
proposed framework.
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Yao’s Garbled Circuit

Yao’s garbled circuit (Yao’s protocol14) supports secure two-party computation against semi-honest adversaries. Let,
two parties Alice (A) and Bob (B) wish to compute a function, f(x, y) where x and y denote their respective inputs.
The protocol evaluates the function f through a Boolean circuit. The total number and kind of Boolean circuits
necessary to calculate f(x, y) depends on the function f . After running the protocol, both A and B learn the output
of f(x, y) but neither of them learn about the input of the other.

The working procedure of garbled circuit goes as follows. A (known as the garbler) constructs a garbled version of the
function f(x, y) and sends it to B (known as the evaluator) along with the garbled input of A. We denote this input
as Ig . After receiving the circuit, the evaluator (B) runs a 1-out-of-2 oblivious transfer (OT) protocol33, to obliviously
get the garbled circuit input values corresponding to its private input Ie. Through OT protocol B learns only what he
needs, and A have no idea what B learned. Using Ig and Ie, the evaluator can calculate f(x, y).

Pailler Cryptosystem

We use a semantically secure additive homomorphic encryption scheme called Paillier Cryptosystem15 to encrypt the
data and utilized its homomorphic properties to execute count query. A key generation algorithm produces a pair of
keys: a secret key, sk and a public key, pk. The public key and the secret key are used for encryption and decryption
purposes respectively. Our encryption scheme is probabilistic; which means that if the same message is encrypted
twice, we get two different ciphertexts. If we encrypt a messages m twice and get two ciphertexts c1 = ξpk(m) and
c2 = ξpk(m), then c1 6= c2 and ξsk(c1) = ξsk(c2) = m.

Homomorphic Properties: Assume that two messages m1 and m2 are encrypted using the same public key pk and k
is a constant number. Then Paillier Cryptosystem15 supports following homomorphic properties:

• If we multiply two ciphertexts, after decryption we will get the sum of their corresponding plaintexts.

ξsk(ξpk(m1) · ξpk(m1)mod n
2) = m1 +m2 mod n (1)

• If we raise the power of a ciphertext to constant k, after decryption we will get the product of the corresponding
plaintext and the constant.

ξsk(ξpk(m1)
k mod n2) = km1 mod n (2)

5 Methodology

In this section, we present our proposed model. At first, CI creates an index tree from the datasets it receives from the
data owners, encrypts it and then sends it to CS. The CS uses this encrypted index tree to execute queries.

Preprocessing

A. Building Index Tree: When the CI receives the data from the data owners, it first creates a search tree, T which
we call index tree, using the SNPs from the database D. There is only one such tree in our system. After the creation
of the tree, for the records from additional data owners, CI only needs to create or update the nodes in the T . For each
record di in the database, CI encodes each SNP as:

dji = k : 1 ≤i ≤|D|; 1 ≤j ≤|di |; 1 ≤k ≤16

Here, |D| = number of records in the database and |di| = number of columns in each record. Then, CI checks if a
node containing that SNP and SNP identifier is already in the tree or not. If not, then the CI creates a new node for
that SNP. Otherwise CI just updates the corresponding existing node. Each node of T contains:
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(a) After the insertion of the first record (b) After the insertion of the second record (c) After the insertion of the third record
Figure 2: Different states during the generation of index tree

Figure 3: Index tree for Table 2.

a) sid: the unique identifier for a SNP which occurs at a particular position in the genome.

b) val: the actual SNP , which is encoded as {1, 2, ..., 16} for each of the 16 possible sequences. In Figure 2 and
3, we have shown the actual SNP only for understanding purpose.

c) count: the number of times a SNP occur in that position.

d) list: the list of children each node contains (not shown in Figures 2 and 3).

We denote a node as σ and represent as, σ(sid, val, count, list). The tree T is generated in the following way:

At first there is only one node in the tree which is the root node. Beginning from this root node, for each of the records
in the database we start creating new nodes in T . We denote a record as dji ∈ D where i indicates the record number
and j indicates the column number. For each dji , the child of the root node is the corresponding first column d1i , the
child of the node containing d1i is the second column d2i and we continue to create the tree in this way. So, in the index
tree the data from the first column is always on level 1, data from the second column is on level 2 and so on.

Example 1: The generated tree, T after the insertion of first record d1 from Table 2 is shown in figure 2a. Here, the
first column, d11 = AG is inserted as the child of the root node. The second column, d21 = CC is inserted as the child
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Algorithm 1 Algorithm for building tree from SNP sequence
Intput: Root node and the database
Output: This algorithm will return a index tree, T

1: procedure BUILD-TREE(r,Dj
i ) . r is the root node and D is the database

2: for each Di do
3: parent ← r
4: a← π(Dj

i ) . create new node for each Di,j

5: for each n ∈ T do
6: if a.sid = n.sid and a.val = n.val then . For each node we only match the sid and val
7: n.count++
8: parent ← n
9: else

10: a.count ← 1
11: a.sid ← ρ[j] . ρ[j] is a function which returns corresponding sid
12: parent.addChildren(a)
13: parent ← a
14: end if
15: end for
16: end for
17: return T . The generated Tree
18: end procedure

of the node containing d11 and so on. Each SNP occurs only once in the first record. So, each node contains the count
value 1. We can represent node # 2 as σ2(SNP1, AG, 1, 〈CC〉).

Now while inserting the second record, d2 for each of the columns we first check whether the current column has
already been inserted into a node in the corresponding level of T . If it has been inserted, we just increment the count
value. Otherwise, we create a new node in that level to store dj2.

Example 2: Continuing from Example 1. The tree, T after the insertion of second record d2 is shown in Figure 2b.
The first column for the second node d12 is AA. We check if any existing node in T already contains this SNP at level
1. Here, the root node has only one child AG. So, we create a new node and insert AA as the child of the root node
at level 1 and the following columns are added in the above mentioned way. For the third record, the first column
d13 = AG has already been inserted at level 1. So, we increment the value of count at node 2. Now for second column,
d23 there is no child node of node # 2 which contains CT . So, we create a new child node of node # 2 at level 2 and
then add the remaining columns similarly.

Figure 3 represents the index tree containing all the records from Table 2. All the nodes belonging to the same level
represent a SNP all of which occur at a particular position of a genome which are actually represented as columns
in Table 2. Each node in the tree T except the root node contains a value from a column. If there are θn number of
columns in the database D, then the height of the index tree T will be θn.

Algorithm 1 provides pseudocode for building the index tree. The building cost of the tree is O(mn) where, m =
number of records in the database and n = number of different SNPs in the sequence. The features of this index tree
can be listed as:

• If we traverse one node at each level starting from the root node to a leaf node, we get different SNP sequences
belonging to the same record in the database. For example, if we consider first record of Table 2, the SNPs of
this record are represented in the nodes 1, 2, 3, 4, 5 and 6. At each level, along with the SNP sequence, we also
store the number of times that SNP sequence appears in that particular position of a genome. For example, in
Figure 3, for SNP1, AG occurs 5 times, AA occurs 3 times and GG occurs 2 times. Considering AG as parent
node for level 2, CC occurs 2 times — in this way all the nodes are created in T with each SNP and the number
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of their occurrence.

• We can again reconstruct the original database record by traversing the corresponding nodes of T .

• For the addition or removal of records, we do not need to regenerate the tree, we can simply update or delete the
data stored at each node.

• Unique SNP values at a particular level create new nodes and the following SNPs are added as the children of
that node.

• One noticeable characteristic of this tree is that if multiple predicates are involved, i.e. more than one SNP
sequences are present in the query, then the resulting count value is equal to the value of the count stored at the
node which matches the predicate located at the deepest level of the tree. So, if the researcher is interested in
SNP positions x, y and z, and the position of x, y and z are such that x < y < z, then the count value is the
value stored at node that represents the SNP sequence at position z. For example, consider the following query:

SELECT COUNT(*) FROM Sequences
WHERE SNP1 = ‘GG’ AND SNP1 = ‘TT’ AND

SNP5 = ‘CC’ AND Cancer = ’Positive’

Here, the value of count is 1 and it is the value that is stored at node that represents SNP5 as this node is actually
located at the deepest level of the tree among the nodes that matches the query.

B. Encrypting the Index Tree: After building the index tree T from the database, CI encrypts the index tree and then
sends the encrypted version of T to the CS. The detailed process can be elaborated as:

• Generate Keys: The CI generates a key pair (pk, sk) for a semantically secure additively homomorphic encryp-
tion scheme (Paillier Cryptosystem15) which consists of the following algorithms:

– KeyGen: a key generation algorithm which generates a key pair (pk, sk) where pk is the public key and sk
is the secret key.

– Enc: an encryption algorithm which takes input a message m and encrypts it using the public key pk. This
is denoted as ξpk(m).

– Dec: a decryption algorithm which takes input a ciphertext, c and decrypts it using the secret key, sk. This
is denoted as ξsk(c). Note that these encrypted records are not used in the search operation.

• Encrypt the Index Tree: CI uses the public key, pk to encrypt all the nodes in T. To make the overall search
process fast enough while maintaining the security of the system, it only encrypts the sensitive attributes in each
node. For each node σ in T, it does ξpk(σ). After the encryption, each node is like σ(sid, ξpk(val), ξpk(count),
list). We represent the encrypted database as T̃ .

• Share: Finally, CI sends (pk, T̃ ) to the CS. CI also shares the key pair (pk, sk) with the researchers.

Encryption of Query

The researchers know about the format of the query he is allowed to perform. Once CI sends (pk, T̃ ) to the CS, the
researchers can execute his query on T̃ stored in CS. He encrypts his query q as ξpk(q). Here, for the computation
purpose, only val is encrypted and sid is kept in plaintext. So, we can represent the encrypted query as φ(sid, ξ(val)).
For example, the encrypted query is actually like:

SELECT COUNT(*) FROM Sequences
WHERE SNP2 = ‘+a=#?h’ AND SNP4 = ‘z@0ux&*’ AND

Cancer = ’#?h$ir*q!%’
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Algorithm 2 Algorithm for searching SNP sequence in the tree
Input: Root of encrypted index tree and list of SNP identifiers in query
Output: Resulting count value of the query

1: procedure SEARCH-TREE(r, s) . r is the root node and s is the sid
2: a← r.getChildren()
3: count← ξpk(0)
4: while a 6= {φ} do
5: b← a.pop()
6: if b.sid = s then
7: c ← Rand()
8: d← ξpk(c)
9: if ξsk(d) - i = c then . i is the mapped SNP sequence value

10: count← count+ b.getCount() . The equality checking is done using garbled circuit
11: end if
12: end if
13: end while
14: return count . The count value
15: end procedure

Searching on Index Tree

Our system supports the count operation. The search process starts with the researcher sending the encrypted query
φ to the CS. The CS needs to execute φ on T̃ and find the number of records which matche the SNPs in the query
predicate. For this, it requires to perform search operation on T̃ and find the intended nodes which contain the count
values for the corresponding sids.

The main idea is to match the value of val stored in the intended nodes (the sid of these nodes matches with the sid
of φ) which we denote as valn with the corresponding value of val in the researcher’s query which we denote as
valq . If they match, CS traverses the children of that node. This process continues until CS finds all the nodes for
the corresponding query or CS finishes searching all the nodes of T̃ . As both the valq and valn are encrypted and the
encryption scheme we use is probabilistic, CS cannot determine whether those values matche or not. The CS can send
the encrypted value of valn to the researcher and as they have the secret key, they can decrypt valn and check the
equality. But the problem of this approach is that the researchers would be able to determine the structure of the tree
using multiple query operations.

To enable search in this scenario while ensuring less information leakage to the researcher and the CS, we execute
an interactive protocol between them to check this equality. This equality checking is basically done using garbled
circuits. The CS and researchers compute this circuit via secure computation for each of the nodes which matches the
value of sid in the φ. Here the researcher is the garbler and CS is the evaluator. Only the evaluator will know the
output of the computation. As the valn is encrypted, this value can be decrypted into the circuit before checking the
equality, but this process is computationally expensive34.

We choose to use random mask to avoid this decryption inside the garbled circuit. The idea is to use the additive mask
to obscure the input of CS as the homomorphic property allows addition over encrypted data. We refer the additive
mask we use as noise and denote it as µ. After the addition of the noise, the encrypted masked value of valn is:

δ̃ = ξpk(valn) + ξpk(µ) (3)

Here, µ ∈ M where M is the message space and µ is random. CS then sends the resulting obscure value δ̃ to the
researcher. Researcher get the masked value after the decryption as:

δ = ξsk(δ̃) = valn + µ (4)
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Figure 4: Sequence diagram of our proposed model.

Researchers then subtract the corresponding value of valq from δ and get the noise as:

µ′ = δ − valq (5)

As µ is random, the researchers will get random values for δ after decryption from Equation 4. As a result, though µ′

is revealed to the researchers from Equation 5, they will not be able to infer useful information from it.

The researcher is the garbler of the circuit through which we check the equality. The input of the researcher is µ′. The
input from CS (evaluator) to this circuit is the actual noise it added, µ. If the output of the circuit is true, then µ′ = µ
which actually implies valn = valq . That means the SNP sequence in the researcher’s query matches with the SNP
sequence in the database. Only CS knows this output and CS then continues traversing the children of that node. This
process continues until CS finds all the matched nodes for the corresponding query or CS searched all the nodes of T̃ .

Algorithm 2 provides the pseudo code for the search operation on T . Let q be the query consisting of the SNPs the
researchers are interested in and r be the root node of T . Let sid be the SNP identifiers in q. Our search algorithm
takes r and sid as input and returns the number of SNP sequences (count) that match the records in the database.
Figure 4 summarises each of the steps of our proposed method as sequence diagram.

6 Security Analysis

To determine the security of our system, we assume that the security of the system is compromised if the SNP se-
quences are revealed to any of the participants except the CI as it is the trusted entity. We also consider the participants
abilities to infer information in different stages of the system. The leakage profiles of different participants in our
proposed model are given below –

Leakage during the tree building and tree encryption phase: CI is only responsible for the generation and encryp-
tion of the index tree and is considered as a trusted entity. So the leakage to the CI is none in this phase. The CS cannot
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infer any information during this phase as it only gets the encrypted index tree, T̃ .

Leakage to CI in each query: The CI is not involved at all during the query execution, it’s only responsibility is to
provide the key pair (pk, sk) to the researchers. The leakage to CI during the query execution is none.

Leakage to researchers in each query: The leakage to the researchers is the final output which is the result of
the query. Researchers also know the noise value, µ′ from Equation 5 but µ′ is a random number and uniformly
distributed. Hence, the researchers cannot infer anything from the value of µ′. Note that we do not consider here
any privacy leakage through the output. Such inference attack can be avoided using differential privacy and has been
studied extensively in the literature35.

Leakage to CS in each query: The CS can know the tree traversal path, that is all the nodes in T̃ which are accessed
during the query execution. Depending on the result of the query, the tree traversal pattern includes either the paths
reaching the leaves, or the paths stop at some internal nodes. CS can learn about the the SNP identifiers from a query
but not the SNP sequences, because the SNP sequences are encrypted but the SNP identifiers are not. As the output
of the circuit computation is only known to the CS, it can know which node actually contains which SNP identifier.
But as the SNP sequences and all other information stored in that node are encrypted, CS cannot learn about any other
values from that node.

7 Experimental Results

We have built a prototype of our privacy preserving system to evaluate its practicality and tested its performance on
both real and synthetic datasets. The CS and the CI run on two different machines. Both of them were Intel Core i5
3.3 GHz processors with 8 GB RAM, running Ubuntu Linux 16.04. The source code is written in JAVA programming
language. For the simulation purpose, we considered the users separately.

We consider the following aspects in order to estimate the efficiency of our proposed method:

A. Data read and tree building time: Time needed to process genomic database and build index tree.

B. Tree encryption time: Time needed to encrypt the index tree.

C. Query execution time: Time needed to execute a query submitted by the researchers.

D. Communication overhead: Bandwidth requirement between the evaluator (CS) and garbler (researchers) in
order to process a count query.

We also compare our proposed method with the methods proposed by Kantarcioglu et al.16 and Canim et al.17. Note
that we can only compare their method for query execution time as our proposed method is different from them.

We have implemented the cryptography building block that were described in Section 4. We investigated different
garbled circuit libraries such as FastGC 36, ObliVM-GC 37, JustGarble38 and used the FlexSC 39 library to implement
the garbled circuits. We also used the Paillier Cryptosystem15 to implement the homomorphic encryption.

To evaluate our system on real life dataset, we used the dataset available from the iDash competition 201540 where
there are 311 different SNP sequences from 400 different participants divided into case and control groups. As the real-
life dataset was not large enough to evaluate the scalability of our proposed model, we generated different synthetic
datasets varying the number of records (between 10K to 50K) and number of SNPs (between 60 to 300) by randomly
adding records to the iDash competition 201540 dataset. We experimented with five different query size that involve
10, 20, 30, 40 and 50 randomly selected SNP sequences. For each experiment, we executed 10 runs and averaged the
result over the runs.

We organize the experimental analysis into four following parts to evaluate various perspective of our proposed frame-
work.

A. Data Read and Tree Building Time: In order to determine the scalability of our system, we analyzed the time
required for different datasets containing different number of records. Figure 5a plots the time required for reading the
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(a) Data read and index tree building time. (b) Tree encryption time.
Figure 5: Execution time of data read, index tree building and tree encryption. Data read and index tree building
time linearly increases with the number of records. However, the tree encryption time is changes very little with the
increase of number of records. This is because, only total number of SNPs in a record affects the depth of index tree,
more SNPs implies higher depth. Hence, the tree encryption time is similar regardless of the number of records in the
dataset.

(a) Data read and index tree building time. (b) Tree encryption time.
Figure 6: Execution time of data read, index tree building and tree encryption in increasing number of SNPs per
records. Data read, index tree building time, and tree encryption time linearly increases with the number of SNPS per
records.

data from the database and building index tree using this data. Here we fixed the number of SNPs to 70 and increased
the number of records from 10K to 50K. As expected, the time increases linearly with the increase of number of
records. Thus, when we increase our number of records to 50000, the data read and index tree building time increases
to approximately 0.5 seconds and 0.6 seconds respectively.

B. Tree Encryption Time: Figure 5b plots the tree encryption time for datasets with different number of records. Each
of the dataset containe 70 SNPs. Our experiments show that the increase in number of records do not significantly
impact the encryption time. This is due to the fact that the encryption time depends on the depth of index tree and
depth of the tree in turn depends on the total number of SNP sequences in the dataset, not on the number of records.
Thus, tree encryption time is almost similar regardless of the number of records in the dataset.

In the next experiment we fixed the number of records to 50K and increased the number of SNPs from 60 to 300. As
the number of SNPs increases, the total execution time also increases linearly. Figure 6 depicts the execution time of
data read, index tree building and tree encryption time for this experiment.

C. Query Execution Time: Figure 7a, 7c, and 7e plots the query execution time based on three different parameters.
These parameters are – a) number of records in the dataset, b) number of SNPs in the dataset and c) query size. In
each of the experiment we retained one parameter fixed while changing the others. We note that the size of the query,
size of the datasets or number of SNPs in the dataset do not significantly affect the query execution time. Rather, this
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Method Query size 10 Query size 20 Query size 30 Query size 40
Kantarcioglu et al.16 25 min 27 min 28 min 30 min

Canim et al.17 20 sec 40 sec 60 sec 80 sec
Our method 2.4 sec 2.7 sec 1.5 sec 1.7 sec

Table 3: Comparison of count query execution time on 5000 records with query sizes between 10 to 40 SNPs.

time directly depends on how deep the levels of the index tree need to be traversed and different traversing pattern of
the index tree depending on the query.

D. Communication Overhead: Figure 7b, 7d, and 7f plots the amount of data transferred between the researchers
and the CS during the evaluation of the garbled circuits. In these experiments again we considered three different
parameters mentioned earlier and retained one parameter fixed while changing the others. Here we also observed that
size of the datasets, number of SNPs in the dataset or the size of the query do not significantly affect the communication
overhead. It actually depends on the tree traversal pattern based on the query.

Improvements Over Prior Approaches

We compare the time required to execute a query by our proposed model with Kantarcioglu et al.16 and Canim
et al.17. Though they did not build search index like us, we make this comparison to stress the efficiency of our
proposed model in terms of query execution time. Also note that our calculated query execution time only includes
the time required to encrypt and execute the query and then decrypt the final result. For the comparison purpose, we
experimented on the datasets with similar number of records and columns used by Kantarcioglu et al.16 and Canim et
al.17. The result of the comparison is listed in Table 3. A query consisting of 40 SNPs in a dataset of 5000 records,
completed in approximately 30 minutes and 80 seconds by the models proposed by Kantarcioglu et al.16 and Canim et
al.17 respectively, whereas our proposed framework completes the similar query only in 1.7 seconds. Therefore, our
protocol is about 900 times faster than Kantarcioglu et al.16 and 40 times faster than Canim et al.17 in terms of query
execution time. We also observe that, our improvement ratio is independent of the size of the dataset.

Summary

Our experimental results on different datasets by varying the number of records, SNPs and query sizes can be summa-
rized as:

• Our method can effectively preserve both data privacy and data utility supporting large datasets by building an
index tree. We observe that the time required to read the data from the database and build index tree using this
data is linear (Figure 5a). Also the tree encryption time does not have direct impact on the number of records
(Figure 5b).

• By comparing with the existing solutions we have demonstrated that our proposed method is superior than the
others in terms of query execution time.

• Our proposed framework is highly scalable for large datasets.

These characteristics make our proposed method a promising framework for secure query search for biomedical data.

8 Conclusion

In this paper, we have presented a secure and efficient method for outsourcing genomic data. The proposed method
constructs an index tree from the aggregated genomic data and then outsources it to the third party cloud server.
By employing a secure interactive protocol, the cloud server can traverse the nodes of the tree and execute count
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query operation. We have demonstrated that our model does not reveal any sensitive genomic data during the data
processing as well as query execution phase. It is evident from our experiments on both real and synthetic datasets
that our proposed model provides better performance than the existing solutions in terms of query execution time.
However, in this research we have kept our work limited only to genotypes. We plan to extend our current method by
incorporating phenotype information as well as supporting more complex operations along with the count query.

Acknowledgments

We sincerely thank the reviewers for their insightful comments. The research is supported in part by the NSERC
Discovery Grants (RGPIN-2015-04147) and University of Manitoba Startup Grant.

References
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(a) Query execution time (number of records: 50K). (b) Communication overhead (number of records: 50K).

(c) Query execution time (number of SNPs per record: 60). (d) Communication overhead (number of SNPs per record: 60).

(e) Query execution time (query size: 30). (f) Communication overhead (query size: 30).

Figure 7: Query execution time and communication overhead for count queries on datasets with different number of
records, SNPs per record, and query sizes. In Figure 7a and 7b, we experiment with 50000 number of records while
changing SNPs per record and query size. Note that increasing the number of query size or SNPs do not significantly
affect on the query execution time or communication overhead. In Figure 7c and 7d, we change total number of records
and query size while restricting 60 SNPs per record. We observe that query time and communication overhead slightly
decreases as the query size increases. This is due to the fact that for a larger query size of an AND query, traversing
higher depth of the tree lessen the probability of getting many matches and vice versa. Figure 7e and 7f demonstrate
query time and communication overhead for the fixed query size 30, while changing total number of records and SNPs
per record. Note that query time and communication overhead do not significantly increases as the total number of
records or SNPs per record increases.
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