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Madhumita Sushila,b,∗, Simon Šusterb, Kim Luyckxa, Walter Daelemansb

aAntwerp University Hospital, ICT department, Wilrijkstraat 10, Edegem, 2650 Belgium
bComputational Linguistics and Psycholinguistics (CLiPS) research center, University of Antwerp, Prinsstraat 13, Antwerp,

2000 Belgium

Abstract

We have three contributions in this work: 1. We explore the utility of a stacked denoising autoencoder and a
paragraph vector model to learn task-independent dense patient representations directly from clinical notes.
To analyze if these representations are transferable across tasks, we evaluate them in multiple supervised
setups to predict patient mortality, primary diagnostic and procedural category, and gender. We compare
their performance with sparse representations obtained from a bag-of-words model. We observe that the
learned generalized representations significantly outperform the sparse representations when we have few
positive instances to learn from, and there is an absence of strong lexical features. 2. We compare the model
performance of the feature set constructed from a bag of words to that obtained from medical concepts. In the
latter case, concepts represent problems, treatments, and tests. We find that concept identification does not
improve the classification performance. 3. We propose novel techniques to facilitate model interpretability.
To understand and interpret the representations, we explore the best encoded features within the patient
representations obtained from the autoencoder model. Further, we calculate feature sensitivity across two
networks to identify the most significant input features for different classification tasks when we use these
pretrained representations as the supervised input. We successfully extract the most influential features for
the pipeline using this technique.

Keywords: Representation Learning, Patient Representations, Model Interpretability, Natural Language
Processing, Unsupervised Learning

1. Introduction

Representation learning refers to learning features of data that can be used by machine learning algo-
rithms for different tasks. Sparse representations, such as a bag of words from textual documents, treat
every dimension independently. For example, in one-hot sparse representations, the terms ‘pain’ and ‘ache’
correspond to separate dimensions despite being synonyms of each other. Several techniques exist to model
such dependence and reduce sparsity. The generalized or distributed representations learned using these
techniques are referred to as low dimensional, or dense data representations. Unsupervised techniques
for representation learning have become popular due to their ability to transfer the knowledge from large
unlabeled corpora to the tasks with smaller labeled datasets, which can help circumvent the problem of
overfitting [1].

Representation learning techniques have been used extensively within and outside the clinical domain to
learn the semantics of words, phrases, and documents [2, 3]. We apply such techniques to create a patient
semantic space by learning dense vector representations at the patient level. In a patient semantic space,
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“similar” patients should have similar vectors. Patient similarity metrics are widely used in several applica-
tions to assist clinical staff. Some examples are finding similar patients for rare diseases [4], identification of
patient cohorts for disease subgroups [5], providing personalized treatments [6, 7], and predictive modeling
tasks such as patient prognosis [8, 9] and risk factor identification [10]. The notion of patient similarity
is defined differently for different use cases. When it is defined as an ontology-guided distance between
specific structured properties of patients such as diseases and treatments, it represents patient relationships
corresponding to those properties. For example, if patient similarity is calculated as a hierarchical distance
between the primary diagnostic codes of patients in the UMLS R© metathesaurus [11], the value represents
a diagnostic similarity. When it is defined as an intersection between the sets of blood tests performed on
patients, patient similarity maps to blood test similarity. If patient similarity value is 1 for the patients of the
same gender and 0 otherwise, groups of similar patients are gender-specific patient cohorts. However, when
we calculate similarity between distributed patient representations, the different properties that influence
the similarity value are unknown. Within the learned patient representations, we aim to capture similarity
on multiple dimensions, such as complaints, diagnoses, procedures performed, etc., which would encapsulate
a holistic view of the patients.

In this work, we create unsupervised dense patient representations from clinical notes in the freely
available MIMIC-III database [12]. We aim to learn patient representations that can later be used to
identify sets of similar patients based on representation similarity. We focus on different techniques to
learn patient representations using only textual data. We explore the usage of two neural representation
learning architectures—a stacked denoising autoencoder [13], and a paragraph vector architecture [14]—for
unsupervised learning. We then transfer the representations learned from the complete patient space to
different supervised tasks, with an aim to generalize better on the tasks for which we have limited labeled
data.

Dense representations can capture semantics, but at a loss of interpretability. Yet, it is critical to
understand model behavior when statistical outputs influence clinical decisions [15]. We take a step towards
bridging this gap by proposing different techniques to interpret the information encoded in the patient
vectors, and to extract the features that most influence the classification output when these representations
are used as the input.

2. Related Work

Dense representations of words [16, 17, 18, 19] and documents [14, 20] have become popular because they
are learned using unsupervised techniques, they capture the semantics in the content, and they generalize
well across multiple tasks and domains. An autoencoder learns the data distribution and the corresponding
dense representations in the process of first encoding data into an intermediate form and then decoding it.
Miotto et al. [21] first proposed the use of a stacked denoising autoencoder to learn patient representations.
They have shown promising results when patient vectors are first learned by a stacked denoising autoencoder
from structured data combined with 300 topics from unstructured data, and are then used with Random
Forests classifiers to identify future disease categories of patients. Following their work, Dubois et al. [22]
have proposed two techniques to obtain patient representations from clinical notes. The first technique is
unsupervised and performs an aggregation of concept embeddings into note and patient level representations,
known as ‘embed-and-aggregate’. The second technique uses a recurrent neural network (RNN) with a bag-
of-concepts representation of patient notes as time steps. The RNN is trained to predict disease categories of
patients. The representations learned in this supervised setup are then transferred to other tasks. Apart from
these works, Suresh et al. [23] have performed a preliminary exploration of the use of sequence-to-sequence
autoencoders to induce patient phenotypes using structured time-series data. They have compared different
autoencoder architectures based on their reconstruction error when they are trained to encode patient
phenotypes. An application of these phenotypes to different clinical prediction tasks has been reserved for
future work. In the same vein as these previous works, we investigate the applicability of a stacked denoising
autoencoder to learn patient representations directly from unstructured data, and analyze the tasks that these
representations can be successfully applied to.

2



Figure 1: An overview of the patient representation pipeline. The dashed lines indicate one of several operations, and are not
performed in parallel.

One of the evaluation tasks for us is patient mortality prediction. Johnson et al. [24] provide a good
overview of the previous approaches for mortality prediction on the MIMIC datasets with an aim of repli-
cating the experiments. Following the work by Ghassemi et al. [25], Grnarova et al. [26] have shown
significant improvements for mortality prediction tasks on using a two-level convolutional neural network
(CNN) architecture, as compared to the use of topic models and doc2vec representations as inputs to linear
support vector machines (SVMs). Besides these works, Jo et al. [27] have recently used long short term
memory networks (LSTMs) and topic modeling for mortality prediction. They treat topics for patient notes
as time steps for LSTMs. These topics are learned jointly using an encoder network. They have shown
performance gains when the topics are jointly learned, compared to those pretrained using LDA [28].

3. Methods

3.1. Learning Patient Representations

In this section, we describe a stacked denoising autoencoder and a paragraph vector architecture doc2vec,
in the context of learning task-independent dense patient representations in an unsupervised manner. The
corresponding methodology for learning these dense representations is illustrated in Figure 1.

3.1.1. Stacked denoising autoencoder

Given the previous success of autoencoders for representation learning using structured data with or
without topic models learned from unstructured data, we explore the use of a stacked denoising autoencoder
(SDAE) [13] to learn task-independent patient representations from raw clinical text, forgoing the use of
intermediate techniques like topic modeling. Although the premise of learning patient representations using
an SDAE is not novel in itself, our contribution lies in analyzing if such a model is also successful when
used only with clinical notes, and if the learned representations can be successfully applied for a range of
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tasks that are different from patient prognosis. This analysis gives us insight into successful and transferable
patient representation architectures for unstructured data.

During the pretraining phase, every layer of an SDAE is sequentially trained as an independent denois-
ing autoencoder. An autoencoder learns to first encode the input data I into an intermediate representation
R, and then decode R into I. Denoising refers to the process of first adding noise to corrupt the input I into
Ĩ, and then training an autoencoder to reconstruct I using Ĩ as the input. We use the dropout noise [29],
where a random proportion of the input nodes are set to 0. In the process of denoising, the model also
learns the data distribution. In an SDAE, the intermediate representations obtained from the autoencoder
at layer n − 1 are used as the uncorrupted input to the autoencoder at layer n, for all the layers in the
SDAE. To pretrain patient representations using an SDAE, high-dimensional (sparse) patient data are used
as the input to the autoencoder at the first layer of the SDAE. The intermediate representations obtained
from the autoencoder at the final layer are treated as the low-dimensional (dense) representations R(p) for a
patient p. The number of layers is determined through a random search [30] based on the results for primary
diagnostic category prediction using a perceptron.

Finetuning can be performed in multiple ways [1]. In one approach, all the encoder layers can be
stacked on top of each other, and a logistic regression layer can be added on the top to finetune the entire
pretrained network for an end task as a feedforward neural network. In such a setup, the input features in
the finetuning phase are the same as the input features during the pretraining phase. In another approach,
instead of the entire network, only the preliminary task-independent representations R can be finetuned for
an end task. In this approach, R is used as the input to a separate classifier. In our experiments, we train
separate classifiers for different tasks using R as the input features.

We use the sigmoid activation function for the encoding layers, and the linear activation function to
decode real values. During the pretraining phase, we train each layer of the SDAE to minimize the mean
squared reconstruction error using the RMSProp optimizer [31]. During the finetuning phase, we train
the classifiers to minimize the categorical cross-entropy error using the same optimizer. We determine the
number of layers, the dimensionality, and the dropout proportion also using a randomized hyperparameter
search. These values are dependent on the feature sets and the finetuning process, and can be found in
Table A.1 in the Appendix.

3.1.2. Paragraph vector

Doc2vec, or ‘Paragraph Vector’ [14], learns dense fixed-length representations of variable length texts
such as paragraphs and documents. It supports two algorithms—a distributed bag-of-words (DBOW) algo-
rithm, and a distributed memory (DM) algorithm. For both the algorithms, word representations are shared
among all the occurrences of a word across all the paragraphs, and paragraph vectors are shared among
all the contexts that occur in a given paragraph. In the DBOW algorithm, word and paragraph vectors
are jointly trained when the paragraph vectors are used to predict the context words for all the contexts in
the paragraph. In the DM algorithm, these vectors are jointly trained by predicting the next word from a
concatenation of the paragraph vectors and the vectors of the context words. During the inference phase of
both the algorithms, word vectors are fixed, and paragraph vectors are trained until convergence.

We use the DBOW algorithm for 5 iterations, with a window size of 3, a minimum frequency threshold
of 10, and 5 negative samples per positive sample to train 300-dimensional patient vectors. We determined
these settings also using randomized hyperparameter search.

3.2. Feature extraction

When statistical models are deployed for clinical decision support, it is crucial to understand the features
that influence the model output [15]. A ranked list of the most influential features can assist such under-
standing, while facilitating error analysis; it can also enable exploratory analysis when unexpected features
are ranked high. However, neural networks are notorious for being black boxes due to their complex archi-
tectures. Given the impact of automated decisions, there has been a recent surge of interest to make neural
architectures interpretable. Different techniques include visualization of weights and embeddings [32, 33],
representation erasure and feature occlusion [34, 35], input perturbation [36], and visualization of attention
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weights in recurrent neural networks [37, 38, 39, 40]. The technique of visualizing hidden weights and em-
beddings is a qualitative approach to interpretability. Furthermore, techniques like input feature erasure
train a new model in absence of a given feature. When retrained, these models can learn to rely on a com-
pletely different set of features. Moreover, the attention mechanism is not applicable to feedforward neural
networks. Within the scope of our work, we propose two techniques to bridge the existing gap in model
interpretability when we train unsupervised dense representations, and when we use these representations
to get classification decisions using feedforward neural networks. To the best of our knowledge, we are the
first to propose these techniques to make dense representations interpretable.

3.2.1. Average feature reconstruction error: pretraining phase

We calculate the squared reconstruction error of all the input features in the first layer of the
pretrained autoencoder, averaged across all the training instances. The value of the reconstruction error
of the individual features gives us an estimate of the features that are encoded the best and the worst in
the patient vectors learned through the SDAE. This knowledge facilitates an analysis of model behavior to
make the vectors more interpretable.

3.2.2. Input significance calculation using sensitivity analysis: classification phase

Sensitivity analysis, or gradient-based analysis, is often used to identify the most influential features
of a trained model [41, 42, 43]. For a given model and a given instance, the sensitivity of an output node
with respect to an input node refers to the observed variation in the output on varying the input. This is
equivalent to the gradient of the output with respect to the input. The inputs that cause larger variations
in the output are more significant for the model.

This analysis has so far been used to identify the most influential features for a single network, such as a
single classifier. However, in our work, we are confronted with two neural networks. The first network learns
the dense patient representations, and the second network uses these dense representations as the input for
different classification tasks. We extend the work by Engelbrecht and Cloete [41] and propose a technique
to compute the significance of the original (sparse) features on the final classification decisions. We use the
chain rule across two networks to compute the sensitivity of the output node in the second network to the
input of the first network. This allows us to identify the most influential features in the entire pipeline.

We demonstrate this technique for different classification tasks when the task-independent dense patient
representations R are first induced by the SDAE from the original input z, and R is then used as the input
to the classifiers. The significance of the ith input feature (φzi) is defined as the maximum significance of
the input feature i across all the K output units (o) of the classifier with respect to the N instances:

φzi = max
k=1...K

{Sokzi}, where (1)

Sokzi =

√√√√√ N∑
j=1

[S
(j)
okzi ]

2

N
. (2)

S
(j)
okzi is the sensitivity of the kth output unit of the classifier w.r.t the ith input feature of the SDAE for an

instance j:

S
(j)
oz,ki =

∂o
(j)
k

∂z
(j)
i

=
∂o

(j)
k

∂R
(j)
i

∗ ∂R
(j)
i

∂z
(j)
i

. (3)

In (2), we thus calculate the mean squared sensitivity across different N instances and take the root. The
sensitivity for a particular instance (3) is obtained by first taking the derivative of an output node value
w.r.t. a value in a patient representation; then taking the derivative of the patient representation value
w.r.t. the original input value; and then multiplying them. This technique allows us to identify the most
significant features in a trained model for an arbitrary number of instances and output classes. It is also
transferable to the doc2vec representations, but we reserve this for future research.

5



4. Dataset construction and preprocessing

We retrieve a set of adult patients (≥18 years age) with only one hospital admission, with at least one
associated textual note (excluding discharge reports) from the MIMIC-III critical care database [12]. We
restrict to the patients with a single admission to remove ambiguity when the labels are dependent on
discharge time. We exclude discharge reports from analyses to remove the direct indication of in-hospital
death of a patient, which is one of the tasks that we are interested in. We obtain a range of 1–879 notes per
patient, with average of 29.51 notes. This corresponds to 13–789,906 tokens per patient, with an average of
13,064 tokens. We split the dataset into 80-10-10% as training, validation, and test subsets, to get a set of
24,650 patients for training, and 3,081 patients each for validation and testing. We represent patients with a
concatenation of all the notes associated with them (excluding discharge reports). We tokenize the dataset
using the Ucto tokenizer [44] and lowercase it.

To obtain patient representations using the SDAE and for the baseline experiments, we replace the
numbers, and certain token-level time and measurement matches with placeholders. We remove the punctu-
ations, and the terms with corpus frequency less than 5. We represent the out-of-vocabulary terms obtained
after the preprocessing in the test set with a common token. We use two feature sets—a bag-of-words (BoW),
and a bag-of-medical-concepts (BoCUI)—with their corresponding TF-IDF scores as feature values. We use
the TF-IDF values to give high weights to frequent features for a patient relative to all the patients in the
dataset. For the BoCUI, we use the CLAMP toolkit [45] to identify Concept Unique Identifiers (CUIs) in the
UMLS R© metathesaurus [11] corresponding to medical concept mentions of the types problems, treatments,
and tests as defined in the i2b2 annotation guidelines [46], along with their assertion labels. Here, problems
also include findings and symptoms. CUIs appended with ‘present’ and ‘absent’ assertion labels are the
vocabulary terms for this feature set. A bag-of-medical-concepts is a common featurization technique used
in clinical NLP research [21, 47]. We use a bag representation instead of a sequence model because the final
document length for different patients is highly variable, going up to very large document sizes. We obtain
a vocabulary size of 71,001 for the BoW feature set, and 83,310 for the BoCUI feature set.

To train the doc2vec models, we remove the numbers and the tokens matching certain time and mea-
surement regex patterns. We have determined these settings based on the initial results on the validation
set. We obtain a vocabulary size of 48,950 for this model. We have not trained a doc2vec model using
only the medical concepts because if we represent a document as a sequence of CUIs only, we remove the
indicators of language semantics from the context window, which the doc2vec model relies on during the
learning process. If we keep additional terms along with the concept identifiers to train a doc2vec model,
the available information is not comparable to a BoCUI feature set.

5. Evaluation

5.1. Task description

We use the dense patient representations as input features to train feedforward neural network classifiers
on multiple independent tasks. We evaluate the performance on a range of tasks to gain insight into the task
independent nature of the representations, and the information encoded within the vectors. We disregard
the instances that do not have a task label. We minimize the categorical cross-entropy error using the
RMSProp optimizer, and determine the hyperparameters using randomized search, which can be found in
Table A.2 in the Appendix.

1. Patient mortality prediction: Whether a patient dies within a given time frame. This prediction
gives an estimate of the severity of a patient’s condition to decide the amount of attention required.

(a) In-hospital mortality (In hosp): Patient death during the hospital stay—13.14% of the in-
stances in the dataset.

(b) 30 days mortality (30 days): Patient death within 30 days of discharge—3.85% of the in-
stances in the dataset.

(c) 1 year mortality (1 year): Patient death within 365 days of discharge—12.19% of the instances
in the dataset. This includes the patients who died within 30 days of discharge.
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Table 1: Classification results on different tasks using the BoW features, the SDAE representations computed from the BoW
(SDAE-BoW), the doc2vec representations, the concatenated SDAE-BoW and doc2vec representations ([doc2vec, SDAE-BoW])
with Cohen’s κ score, the BoCUI features, and the SDAE vectors computed from the BoCUI (SDAE-BoCUI). AUC-ROC values
are reported for the mortality tasks, and weighted F-score for the others.

No. Approach
Mortality

Pri diag cat Pri proc cat Gender
In hosp 30 days 1 year

(1) BoW 0.9457 0.5949 0.7942 0.7016 0.7366 0.9847
(2) SDAE-BoW 0.9194 0.7965 0.7980 0.6500 0.6746 0.8775
(3) doc2vec 0.9195 0.7680 0.8134 0.6807 0.6583 0.9770

(4)
[doc2vec, SDAE-BoW]
κ score

0.9383
0.5865

0.8113
0.0000

0.8302
0.1581

0.6788
0.6438

0.7030
0.5891

0.9747
0.7200

(5) BoCUI 0.9088 0.5065 0.6993 0.7104 0.7265 0.7504
(6) SDAE-BoCUI 0.9007 0.7832 0.8016 0.6647 0.6777 0.6245

2. Primary diagnostic category prediction (Pri diag cat): Correctly diagnosing patients is es-
sential for deciding further course of action. We evaluate if the proposed technique can be used to
predict the generic category of the most relevant diagnostic code for a patient, corresponding to the 20
categories in the first volume of the 9th revision of the International Classification of Diseases, Clinical
Modification (ICD-9-CM) database [48]. A distribution of these categories in the dataset is given in
Figure 2.

3. Primary procedural category prediction (Pri proc cat): Predicting the generic category of the
most relevant procedure performed on a patient, corresponding to the 18 categories present in the
third volume of the ICD-9-CM database. A distribution of these categories in the dataset is given in
Figure 2. These procedural categories reflect different surgeries performed on patients. Prediction of
the recommended procedure would assist the medical staff, while enabling optimal resource allocation
for the same.

4. Gender: Gender of a patient—male (56.87% of the instances) or female (43.13% of the instances), as
encoded in the dataset.

We evaluate the models using the area under the ROC curve (AUC-ROC) for patient death for the
mortality tasks. The ROC curve gives us insight into the trade-off between the true positive rate and the
false positive rate at different thresholds for different models. For the other tasks, we compute the weighted
F-score to correct for class imbalance. We present the classification pipeline in Figure 3.

5.2. Results and Discussion

5.2.1. Supervised Representation Evaluation

In Table 1, we compare the classification performance when we use the dense patient representations
obtained from the SDAE-BoW (the initial SDAE input is BoW), the SDAE-BoCUI (the initial SDAE input
is BoCUI), and the doc2vec models as input features for different tasks, as opposed to using the BoW
and the BoCUI sparse features. In Figure 4, we show the ROC curves for the mortality prediction tasks.
Further, we analyze the agreement between the SDAE-BoW and the doc2vec model outputs by calculating
Cohen’s κ score [49] between them on the validation set. We find that the agreement scores are not high,
which may indicate that the models learn complimentary information. We then concatenate the two dense
representations (model ensemble) to analyze model complementarity. We calculate the statistical significance
between the 9 different feature sets for the 6 tasks using the two-tailed pairwise approximate randomization
test [50] with a significance level of 0.05 before the Bonferroni correction for 54 hypotheses1.

1These hypotheses are the comparisons of the doc2vec, the SDAE-BoW, and the ensemble dense representations respectively
with the BoW model, the ensemble with the doc2vec model, the ensemble with the SDAE-BoW model, the BoCUI with the
BoW models, the SDAE-BoW model with the SDAE-BoCUI model, and the BoCUI model with the SDAE-BoCUI model for
the 6 tasks.
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Figure 2: Primary diagnostic and procedural category distribution in the data.8



Figure 3: Representation evaluation pipeline. The dashed lines indicate one of several operations, and are not performed in
parallel.

Our main finding is that all the dense representation techniques significantly outperform the BoW base-
line for 30 days mortality prediction. However, although we see a large numerical improvement over the
BoW baseline on using the dense representations for 1 year mortality prediction (where the set of instances
with the label ‘death’ is a superset of those for 30 days mortality), the differences are not statistically signif-
icant. The SDAE-BoCUI model is significantly better than the BoCUI model for both 30 days and 1 year
mortality prediction tasks. We believe that the poor performance of the sparse models for 30 days mortality
prediction may be due to the low number of positive instances. The generalization afforded by the dense
representation techniques assists feature identification in such cases. The sparse BoW inputs perform better
than the SDAE-BoW representations for all the other tasks, and better than the doc2vec representations
for in-hospital mortality and primary procedural category prediction. One probable reason is that the best
predictors for the other tasks are the direct lexical mentions in the notes, which makes the BoW model
a very strong baseline. Examples of such features obtained using the χ2 feature analysis are ‘autopsy’,
‘expired’, ‘funeral’, and ‘unresponsive’ for in-hospital mortality prediction, and ‘himself’, ‘herself’, ‘ovarian’,
and ‘testicular’ for gender prediction. It is interesting to point out that the direct mentions of in-hospital
death are present in the notes even though discharge reports have been excluded from analysis.

The agreement scores between the doc2vec and the SDAE-BoW models are not high for any task, which
may indicate that the two models are complementary to each other. The results obtained from concatenation
of the vectors learned by both models is not significantly different from the sparse representations for any task
except 30 days mortality prediction, where the concatenation is better. This ensemble model significantly
outperforms both individual models for primary procedural category prediction. For primary diagnostic
category and gender prediction, the ensemble model is significantly better than the SDAE model, but not
the doc2vec model. In these cases, there is no significant difference between the doc2vec and the BoW
models. Hence, we observe that the concatenation helps in some cases and we recommend combining the
two dense representations for unknown tasks. The doc2vec model uses a local context window in a log-linear
classifier, whereas the SDAE model uses only the global context information and non-linear encoding layers.
This may be one of the factors governing the differences between the two techniques.

Furthermore, we observe that the BoCUI sparse features perform significantly worse than the BoW
sparse features for in-hospital mortality, 1 year mortality, and gender prediction. For the other tasks, there
is no statistical difference between the performance of the BoW and the BoCUI features, although we see a
large numerical drop of about 9% with the BoCUI model for 30 days mortality prediction. Moreover, the
SDAE-BoW and SDAE-BoCUI representations are also not significantly different from each other for any of
the tasks. These results suggest that there is no advantage of using a bag-of-concepts over a bag-of-words
feature set, either as sparse inputs, or to learn dense representations. There are a few possible reasons

9



Figure 4: Receiver operating characteristic (ROC) for patient mortality prediction tasks.
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behind the observed performance drop on using the BoCUI feature set. First, these features are restricted
to the medical concepts of types ‘problem’, ‘treatment’, and ‘test’. These concepts are important features for
diagnostic and procedural category identification. However, when we remove the terms that do not belong
to these types, we also remove some useful features for other tasks, e.g., pronouns for gender prediction,
and terms like ‘expired’ and ‘post-mortem’ for in-hospital mortality prediction, which in turn affects the
classification performance. Next, when we identify medical concepts mentions with their corresponding CUIs
and assertion labels, we also propagate the errors along in the pipeline, while adding to the sparsity of the
terms. These factors additionally contribute to a difference in the classification performance.

Our work on mortality prediction is related to Grnarova et al. [26]. The closest comparison between our
results is the evaluation of the doc2vec representations. They have reported the AUC-ROC scores of 0.930,
0.831, and 0.824 for in-hospital mortality, 30 days mortality, and 1 year mortality prediction respectively,
and have shown an improvement over the LDA baseline for the latter two. These scores are higher than what
we have obtained with doc2vec. However, this may be due to different data subsets,2 different classifiers
(feedforward neural networks vs. linear SVMs), or different training schemes. They have further reported
significant improvement on all the tasks when using a CNN architecture. This setup is supervised for the
mortality tasks, and it is unclear whether supervision plays a role in the observed improvement. Similarly, Jo
et al. [27] have shown significant improvements for mortality prediction tasks on using their supervised LSTM
architecture that jointly learns topic models as opposed to using LDA with linear SVMs. Again, the results
are not directly comparable. They have predicted in-hospital, 30 days post-discharge, and 1 year post-
discharge mortality at the end of every 12 hour window during a patient stay. Instead, we predict these
mortality values using all the notes (except discharge reports) until the end of the patient stay. They have
not reported the AUC-ROC scores for patient mortality at the end of the patient stay.

Furthermore, Dubois et al. [22] have evaluated their embed-and-aggregate and RNN architectures for
patient representation learning on multiple tasks. They have found that the RNN trained in a supervised
manner for diagnostic code prediction outperforms the other architectures for predicting future diagnostic
codes. However, when these representations are transferred to other tasks, this advantage is not visible. For
mortality prediction (within the time period of the patient records) on large datasets, the bag-of-concepts
and embed-and-aggregate methods performed equally well, and outperformed the RNN architectures. The
RNN architecture performed poorly also for prediction of future patient admission, and had a comparable
performance to embed-and-aggregate method for future ER visit prediction. One explanation for better
RNN performance for future diagnostic code prediction is that the representations obtained from the RNN
encode important information about patient diagnoses due to their supervised training on a similar task.
This is not the case for the other tasks where there is no improvement.

5.2.2. Feature analysis

In Table 2, we present a list of features based on their mean squared reconstruction error when we
pretrain the patient representations using the SDAE-BoW model. We observe that infrequent terms such
as spelling errors are reconstructed very well, as opposed to the frequent features in the dataset. To check
for a correlation between the mean squared reconstruction error and the feature frequency, we calculate
the Spearman’s and the Kendall-tau rank-order correlation coefficients [51] between the two parameters,
reported in Table 3. These techniques check for a correlation between the parameters irrespective of a linear
relationship and use different algorithms to generate the ranked lists in case of a tie. Using both techniques,
we obtain very high positive correlation coefficients. We believe that this behavior may be either due to the
high entropy of the frequent terms, or because the model memorizes the infrequent terms. Jo et al. [27] also
obtain misspellings and rare words as the top features when they use recurrent neural networks for patient
mortality prediction in the MIMIC-III dataset.

In Table 4, we list the most significant features for the model output for one instance each in the test
set, when the SDAE-BoW patient representations R are used as the classification input. In italics are the

2We were unable to reconstruct exact data subsets and obtain comparable results because we did not have access to their
data processing scripts and the complete pipeline.
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Table 2: The best and the worst feature reconstructions
during unsupervised pretraining of SDAE-BoW.

Best reconstruction Worst reconstruction

stumnz picc
jajhnx woman
a-fibril osh
lsc.o fall
potentiallly man
yesh stent
forcal he
contbributing wife
hyponatremia-on repair
pre-exiusting bleed

Table 3: Correlation between the mean squared recon-
struction error of the first layer of the SDAE during
the unsupervised pretraining phase and feature frequency.
All the p-values are lower than 0.001.

Feature set Spearman Kendall-Tau

BoW 0.8738 0.7287
BoCUI 0.8836 0.7334

vocabulary terms that are not present in the notes for the patient, but are treated as the most influential
features. We find that the classifiers give high importance to sensible frequent features for most of the tasks,
although the SDAE reconstructs low frequent terms such as spelling errors better during the pretraining
phase. Several features for in-hospital mortality point towards the overall patient condition and treatments
for the patient. Terms like ‘brbpr’ (bright red blood per rectum) for primary diagnostic category prediction,
and the top features for gender prediction indicate the true class. The absence of several features is used as
an important clue to identify the right class. For example, most of the top ranking features for 30 days and
1 year mortality prediction are not present in the patient notes. Similarly, the absence of the terms related
to the female gender implies the male class. Additionally, the absence of numbers (‘numeric val’) in notes
is the most useful feature for diagnostic and procedural category identification, which may have been used
by the model to identify certain lab tests with numeric results that were not carried out.

Furthermore, many top features extracted for primary diagnostic category prediction are the terms
corresponding to text segments like “Sinus rhythm. Compared to the previous tracing of ...”, which is a
common pattern in the notes for the patient. When evaluated without the context, many of these terms do
not make sense. However, although we input a bag-of-words representation to the SDAE, co-occurrence of
the terms is reflected in the extracted features. We further observe that there is a minimal overlap between
the sets of important features for different tasks. This shows that the learned representations R are task-
independent, and that the classifiers can identify task-specific important information when they are trained
for a particular task.

To illustrate the applicability of the feature extraction technique to understand relative model behavior,
we compare the set of the most important features for a) one instance where the bag-of-words model predicts
in-hospital death correctly, whereas the SDAE dense representations fail to make that prediction, and b)
one instance where both the models make correct predictions. These features are presented in Table 5.
We find that the BoW model identifies the direct indicators of patient death such as ‘expired’, ‘autopsy’,
‘morgue’, and ‘death’ as the top features along with certain features related to the procedures performed
on the patient. Instead, the generalized SDAE-BoW model uses the features related to the holistic patient
condition as the more important features. Examples are ‘cad (Coronary Artery Disease)’, ‘cabg (Coronary
Artery Bypass Graft surgery)’, ‘vasopressin’, ‘dopamine’, ‘dnr (do not resuscitate)’, and ‘cvvhd (Continuous
Veno-Venous Hemofiltration Dialysis)’. This shows us that the models operate in very different feature
spaces. The generalized models are good when we want a comprehensive view of the patient condition.
However, the sparse BoW model may be better if we want to pick up the strong lexical features present for
a task.

5.2.3. Visualization of Unsupervised Representations

In Figure 5, we present 2D visualizations of the unsupervised representations learned by the SDAE and
the doc2vec architectures. It is important to note that the SDAE-BoW and the doc2vec representations were
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Table 4: The most significant features in ranked order for the classifiers for one instance each when the SDAE-BoW represen-
tations are used as the input. The true classes are ‘patient death’ for the mortality tasks (a common instance for 30 days and 1
year mortality prediction), and ‘diseases of the digestive system’, ‘operations on the digestive system’, and ‘male’ respectively
for a common patient for the other tasks.

In hosp 30 days 1 year Pri diag cat Pri proc cat Gender

vasopressin leaflet magnevist numeric val numeric val woman
pressors structurally signal previous no female
focused pacemaker decisions rhythm of she
dnr sda periventricular no enzymes man
dopamine periventricular embolus flexure extubated he
acidosis excursion underestimated dementia rhythm male
levophed non-coronary calcified brbpr and her
pressor dosages screws of the his
cvvhd microvascular rib sinus vent wife
cvvh left-sided shadowing for uncal uterus
emergency chronic gadolinium to mso him
pneumatosis extubation mri tracing to urinal

learned in an unsupervised manner, and were not finetuned to represent a particular property of the data.
Hence, they encode information that represent patient notes in a holistic manner, and span many different
properties. We use t-SNE3 [52] to generate the visualizations, after first reducing the representations to 50
dimensions4 using Principal Component Analysis. In the figure, as an example, we color the representations
according to the corresponding primary diagnostic category. For the purpose of clarity, we limit to the 5
most frequent diagnostic categories in the dataset. We observe that the patients with the same diagnostic
category are frequently close together, forming clusters. This suggests that using the proposed techniques,
“similar” patients result in similar representations.

6. Conclusions and Future Work

Our research provides insight into the suitability of learning patient representations only from clinical
notes, for an arbitrary task, while understanding model performance. We have shown that the generalized
dense patient representations significantly improve the classification performance for 30 days mortality pre-
diction, a task where we are confronted with a very low proportion of positive instances. For the other
tasks, this advantage is not visible. Moreover, we have shown that a combination of the stacked denoising
autoencoder and the doc2vec representations improves over the individual models for some tasks, without
any harm to the others tasks. We recommend combining these representations for unknown tasks. We have
further shown that there is no advantage of using a bag-of-concepts feature set as opposed to a bag-of-words
feature set as either sparse inputs or to learn dense representations. Expensive concept identification process
is not required for these setups.

Furthermore, we have proposed novel techniques to interpret model performance to overcome the black-
box nature of neural networks. During representation analysis, we have found that frequent terms are not
encoded well during the pretraining phase of the stacked denoising autoencoder. However, when we use
these pretrained vectors as the input, sensible frequent features are selected as the most significant features

3We experimented with different values of perplexity and the number of iterations for the t-SNE. After converging at 5000
iterations, the resulting visualizations were similar across most perplexity values, albeit often rotated. We chose a perplexity
of 50 for the SDAE-BoW representations, and 30 for the doc2vec representations.

4Nearly 70% of the variation was explained by these 50 dimensions.
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Figure 5: t-SNE visualization of SDAE-BoW and doc2vec representations.
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Table 5: Comparison of the best features for one instance of in-hospital patient death, where the BoW model makes the correct
prediction and the SDAE-BoW model fails, and for one instance where both the models make the correct prediction.

BoW SDAE-BoW BoW SDAE-BoW
(correct) (incorrect) (correct) (correct)

expired cad expired vasopressin
autopsy cabg autopsy pressors
cmo pre-op morgue focused
pre-bypass preop cmo dnr
morgue numeric val toradol dopamine
diseasecoronary no diseasecoronary acidosis
deline bypass deline levophed
prebypass sternotomy prebypass pressor
death lat pre-bypass cvvhd
decannulation ptx asystolic cvvh

for the classification tasks. Some vocabulary items that are absent from patient notes are often deemed
important, while at the same time, co-occurrence of the features present in the notes is also learned by
the model. We have also shown that the unsupervised representations are task-independent and distinct
features are extracted for different tasks when these representations are used as supervised inputs.

This work lays down the path for more applied research in the clinical domain. In future, we plan to
compute patient similarity from the generalized patient representations to identify patient cohorts. We also
plan to add structured information to analyze their comparative contribution to the learned representations
for the different tasks. Furthermore, the techniques that we have proposed to understand the behavior of
statistical models are transferable to different architectures and facilitate further research in this crucial
direction.
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Appendix A. Model Hyperparameters

Table A.1: Hyperparameters for stacked denoising autoencoder to learn dense patient representations, obtained after a ran-
domized search. The default learning rate of 0.001 is used.

Feature set Number of layers Hidden dimensions Dropout proportion

Bag-of-words 1 800 0.05
Bag-of-concepts 1 300 0.4

17



Table A.2: Hyperparameters for feedforward neural network classifiers for different tasks and feature sets, obtained after a
randomized search. The default learning rate of 0.001 is used.

Task Feature set Number of layers Hidden dimensions Activation function

In hosp

BoW 7 980 sigmoid
SDAE-BoW 7 160 relu
doc2vec 10 410 sigmoid
[doc2vec, SDAE-BoW] 7 340 tanh
BoCUI 3 680 sigmoid
SDAE-BoCUI 3 560 sigmoid

30 days

BoW 10 220 relu
SDAE-BoW 3 820 sigmoid
doc2vec 2 900 sigmoid
[doc2vec, SDAE-BoW] 8 430 sigmoid
BoCUI 7 510 tanh
SDAE-BoCUI 3 750 sigmoid

1 year

BoW 1 650 sigmoid
SDAE-BoW 10 570 sigmoid
doc2vec 3 1000 sigmoid
[doc2vec, SDAE-BoW] 5 920 sigmoid
BoCUI 1 290 sigmoid
SDAE-BoCUI 6 290 relu

Pri diag cat

BoW 4 100 sigmoid
SDAE-BoW 2 110 sigmoid
doc2vec 9 600 relu
[doc2vec, SDAE-BoW] 8 700 relu
BoCUI 4 80 sigmoid
SDAE-BoCUI 8 230 relu

Pri proc cat

BoW 2 220 sigmoid
SDAE-BoW 5 890 relu
doc2vec 3 980 relu
[doc2vec, SDAE-BoW] 8 520 relu
BoCUI 10 760 relu
SDAE-BoCUI 6 540 relu

Gender

BoW 0 NA NA
SDAE-BoW 8 160 relu
doc2vec 0 NA NA
[doc2vec, SDAE-BoW] 7 280 sigmoid
BoCUI 5 410 relu
SDAE-BoCUI 1 210 relu
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