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Abstract

Smartphone and smartwatch technology is changing the transmission and monitoring landscape 

for patients and research participants to communicate their healthcare information in real time. 

Flexible, bidirectional and real-time control of communication allows development of a rich set of 

healthcare applications that can provide interactivity with the participant and adapt dynamically to 

their changing environment. Additionally, smartwatches have a variety of sensors suitable for 

collecting physical activity and location data. The combination of all these features makes it 

possible to transmit the collected data to a remote server, and thus, to monitor physical activity and 

potentially social activity in real time. As smartwatches exhibit high user acceptability and 

increasing popularity, they are ideal devices for monitoring activities for extended periods of time 

to investigate the physical activity patterns in free-living condition and their relationship with the 

seemingly random occurring illnesses, which have remained a challenge in the current literature. 

Therefore, the purpose of this study was to develop a smartwatch-based framework for real-time 

and online assessment and mobility monitoring (ROAMM). The proposed ROAMM framework 

will include a smartwatch application and server. The smartwatch application will be used to 

collect and preprocess data. The server will be used to store and retrieve data, remote monitor, and 

for other administrative purposes. With the integration of sensor-based and user-reported data 

collection, the ROAMM framework allows for data visualization and summary statistics in real-

time.
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1. Introduction

As technology continues to evolve, more and more physical devices are being integrated 

with sensors and connectivity. This growing network of devices able to connect and 

exchange data has been termed the Internet of Things [1], and will ultimately lead to high-

fidelity data collection on a variety of health-based outcomes at the population level. At 

present, such connected devices offer researchers the immediate benefit of free-living data 

collection in the absence of direct physical contact with the device or participant. In fact, 

modern mobile devices (e.g., smart devices) offer a convenient platform that includes power 

computational abilities, high-speed connectivity, adequate storage, and a wide array of 

sensors. Unlike more specialized devices for data collection (e.g. FitBit) that are focused on 

one domain (i.e. accelerometer-based activity monitors), smart devices combine power and 

flexibility with a variety of sensors that provide the necessary framework for a more 

comprehensive approach to remote personal health monitoring. Moreover, this approach also 

provides several major advantages over traditional methods including the ability to 

customize apps through the Application Program Interface (API), a screen interface for 

displaying information and interacting with participants, a physical input option (e.g. turn 

dial bezel), the large number of sensors, and the potential to have remote connectivity and 

control of sensors.

Smartwatches are convenient to wear and have the capability to collect data in a continuous 

manner given that the battery is charged periodically. Furthermore, they provide additional 

benefit to the participant including managing their calendar, text messaging and making 

phone calls which can have a signifi-cant impact on their acceptance and wear time. There 

has been a growing interest in adopting smartwatches for research on behaviors and mobility 

patterns [2]. While their convenience in wear and continuous data collection capability 

already make them a lucrative research tool, their ability for remote access and control of 

sensors along with the potential for direct communication with a user offers seemingly 

limitless possibilities of additional applications. For example, ecological momentary 

assessments (EMA) can be incorporated to describe health, symptoms and potential episodic 

health events that are challenging to capture in real-time (e.g., falls, hospitalizations). The 

concomitant collection of location information via GPS to understand community mobility 

patterns, physical activity data from an accelerometer and reported health symptoms or 

events is ideal for creating a narrative of personal health information in a remote and 

interactive manner.

Several smartphone-based frameworks have been introduced to monitor health conditions in 

free-living environment. These mobile healthcare or mHealth [3] frameworks rely on 

communication means to obtain vital information from patients in real time and provide 

warnings and guidelines remotely when data deviate from an expected value. While such 

frameworks bring merit, there are some gaps in phone-based ascertainment. Smartphones 

are usually carried in pocket, which is not an ideal location for activity recognition, or in 

hand-held bags (typically for women). Therefore, sensor data collected from these devices 

do not provide information required for activity recognition; especially, for cases where 

there are only hand movements, such as drinking water [4]. Smart-watches offer a more 

logical choice because they possess the same sensors and connectivity and are fixed to the 
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body. Despite the benefits, the development of smartwatch apps for data collection has not 

progressed since their initial consumer release.

In sum, the purpose of this study is to develop the framework for a novel remote monitoring 

system through the integration of a smartwatch-based application and a remotely-connected 

server. Such framework will pave the way for additional applications that simultaneously 

collect data in the target domains of physical activity, mobility, EMA, patient-reported 

outcomes, and intervening health events. To accomplish this goal, we present the Real-time 

Online Assessment and Mobility Monitoring (ROAMM) framework that offers: 1) a 

convenient approach for long-term assessment in the context of varying health, 2) the ability 

to synchronize sensor data with reports of health events and symptoms (e.g., pain, fatigue), 

and 3) interactive communication in real time, providing an active channel for patient 

reported outcomes, health events and future intervention delivery (Figure 1). Knowledge of 

these domains in real-world scenarios will help understanding the inter and intra-personal 

factors that contribute to episodic health events.

2. Related Works

Monitoring mobility, activity, health events and self-reported health is a well-researched 

field. Most research has ascertained this information in broad snapshots in time, relying 

heavily on long-term recall of symptoms and medical events. Additionally, the use of such 

devices does not allow for real-time access to sensor data and patient reported outcomes 

(PROs) in free-living participants. Regarding the latter, the ROAMM infrastructure 

capitalizes on the “Experience Sample Method” of data collection originally developed by 

Larson and Csikszentmihalyi in 1983 [5]. The method, now often referred to ecological 

momentary assessment, was originally developed for psychological purposes to assess what 

activities people do, how they feel, and what they are thinking of during their daily lives. 

The method asks individuals to provide systematic diaries of their experiences at periodic or 

system defined occasions. It was brought about by the fact that people are poor at 

reconstructing their psychological experience after it has occurred. When frequently and 

randomly sampled, ecological assessments are often regarded as the “truth” because they 

estimate an unbiased average that has no tendency to either overestimate or underestimate 

the state. Additionally, questionnaires that rely on recall are noted to suffer from biases due 

to response sets and cultural/age normativity [6, 7]. It is particularly di cult for individuals to 

assess or recall complex experiences like pain, mood or fatigue after it has occurred [8, 9]. 

For example, Stone and colleagues demonstrated that patients with chronic pain 

overestimate their pain intensity levels by 35% (44 vs. 57 on a 100 point scale) on recalled 

compared to average of momentary pain experiences. There were also vast differences in 

pain intensity changes from one week to the next. Recalled changes in pain explained only 

15% of the variance in momentary changes in pain [10, 11]. This finding is critically 

important to the current application because pain intensity is expected to change following 

an Intervening Health Event (IHE, i.e., episodic falls, injuries, illnesses, hospitalizations). 

These results are consistent with other reports on pain [10, 11], fatigue [12, 13, 14] and 

depressive mood [15, 16, 17]. A smartwatch approach to ecological momentary assessments 

being proposed in this application is a methodological advancement to Larson and 

Csikszentmihalyi’s paper diaries and current methods using computers, phones or tablet 
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devices. This work presents a convenient approach for responses on a watch face that is 

synced to sensor data.

Intervening health events are an emerging scientific area in geriatrics and gerontology. 

Frequent and real-time queries of symptoms and health are a significant advance over 

traditional means that use infrequent reports of health. Accurately capturing falls is a perfect 

example of this pervasive issue. Falls occur in about 20–30% of the older adult population 

and result in 2.8 million injuries treated in the emergency room department [18, 19]. Falls 

result in a wide spectrum of consequences that span from no injury to death. Additionally, 

there are millions of fall events that do not result in medical care yet have a significant 

impact on physical and social independence [20, 21, 22]. Importantly, the severity of a fall 

dictates the accuracy in which an older person recalls the event prompting the science to 

move to more frequent ascertainment [23, 24, 25]. Despite decades of research, fall 

ascertainment remains archaic, costly, and burdensome [23, 24, 25, 26]. Plus, fall detection 

using wrist worn sensors have largely failed to demonstrate accuracy [27]. For example, the 

“gold-standard” ascertainment method uses paper and pencil weekly or monthly fall 

calendars to facilitate recall. Events discovered on calendars trigger questionnaires about the 

event or telephone interview. There has been some work to convert these methods to the 

digital age with web-based or smartphone ascertainment, but they tend to be focused on 

workplace settings or young populations with technology knowhow [28, 29].

There have been two major challenges for EMA studies. The first challenge is the frequency 

and length of interruptions; user compliance decreases rapidly if they are prompted with 

long questions and/or too frequently. Furthermore, the burden of responding to interruptions 

are intensified if the prompting device is not immediately accessible. While smartphones 

offer some convenience when used to collect EMA data, they are within hands reach for 

only 50% of the time [30]. Smartwatches are more proper and convenient means for 

collecting EMA data, because they are worn on the wrist, and have been used in recent 

works. Intille et. al. [31] have introduced a smartwatch-based framework to interact with 

participants through short multiple-choice questions that appear on the watch.

Studying physical activity, which requires wearable sensor data, along with EMA has 

attracted attention in the recent years. Blaauw et. al. [32] have proposed a framework to 

obtain unified sensor data from smart wearables along with participants’ responses to EMA 

questionnaire. Smartwatches provide sensor data, the capability to prompt users, and 

connectivity means that allow for collecting and analyzing sensor and EMA data at the same 

time and in real-time. The ROAMM infrastructure aims to leverage smartwatches’ 

capabilities and make an important leap to a wearable interface that offers convenience, real-

time connectivity, and periodic prompting about falls or other events that benefit from 

frequent ascertainment.

Online data monitoring using smart devices has the potential of addressing issues related 

balancing convenience and research capability. To achieve this balance, several challenges, 

which were not present for smartphone-based frameworks, must be addressed. These include 

limiting the computational power used to sensors of importance to maintain battery life. The 

ROAMM framework described in this paper utilizes a standalone smartwatch application to 
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collect and process raw sensor data. These sensor data are then synced with screen-based 

information on symptoms, patient-reported outcomes, and recorded incidents. Overall, 

ROAMM is designed to fill gaps in inadequate measurement tools that are not suited for 

studies that require continuous data collection for extended periods of time or real-time 

mobility monitoring.

3. ROAMM Domains and Measures

ROAMM is designed to capture three important domains that include: 1) mobility and 

activity through sensors, 2) EMA and patient-reported outcomes through the screen, and 3) 

intervening health events (hospitalizations and falls). The domains described in Table 1 are 

considered critical pieces of information in Geriatric and Gerontological research as well as 

clinical care of older adults.

4. ROAMM Architecture

The ROAMM architecture6 is an infrastructure for sensor and user-reported data collection, 

transmission, visualization, and analysis. The infrastructure relies on a smartwatch 

application for data collection and preprocessing, which is developed for Samsung Gear S2 

and S3. The collected data are transmitted to a remote server that maintains them in a 

database. The server provides means to remotely modify watch application’s configurations 

such that the framework can be adjusted to any study’s requirements. The ROAMM 

framework supports the capability of expanding server and application functions to have 

multiple operating smartwatches in the field. The framework was built with an extensible 

Application Program Interface (API) that would allow for any mobile device with 

networking capabilities to communicate with the server. This would allow for newer 

smartwatches to be integrated into the ROAMM infrastructure effortlessly. We also 

developed a supplementary web portal frontend to allow for remote interaction with active 

smartwatches and additional adminstrative functions, such as registering research 

participants and assigning watches to them. Figure 2 shows an overview of the ROAMM 

framework. In the following sections, we discuss the smartwatch application (under sections 

4.1.1–4.1.4) and the server program (under sections 4.2.1–4.2.3) in further detail.

4.1. Watch Application

The smartwatch application has the following unique features and advan tages:

1. The application collects sensor data (e.g., accelerometer, gyroscope, location, 

and heart rate) at specified and customizable frequencies and sends them to the 

server. The data upload is performed using HTTPS communication protocol to 

ensure the security of data transmission. Furthermore, the address to which data 

are transmitted are only revealed to registered smartwatches (see 4.2.2).

2. Data are uploaded to the server over a WiFi or 4G network connection. The use 

of WiFi connection or cellular data for data transmission allows for having the 

6Due to the restrictions applied to using the University of Florida’s servers and the lack of capacity to maintain an open source 
platform, the software program is not released to the public. However, the code is available upon reasonable request.
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collected data available on the server in real-time and in a minimally obtrusive 

manner.

3. Beside sending its collected data, the application requests the server to receive 

configuration parameters and adjusts its sensors utilization accordingly. The 

server can customize the watch application’s function through the configuration 

parameters, which include the list of sensors for data collection, their sampling 

rates, the definition of feature vectors (i.e., calculated variables from sensor data) 

and PROs.

4. The application is flexible enough to accommodate different types of studies 

with a variety of target variables and outcomes. Variables can be calculated from 

the raw data instantly and on the watch. By combining the data collection and 

variable construction steps, the application reduces the data cleaning time, and 

thus, expedites the analysis. Furthermore, transmitting variables instead of raw 

data results in a significant decrease in the size of the data sent to the remote 

server; hence lowers the transmission costs (e.g., data plan).

5. Smartwatches’ computational power and available sensors are sufficient for 

detecting non-wear time instantly and accurately. Non-wear times are defined as 

the times when the device is not worn on the wrist, such as during showering and 

times when the device needs to be charged. Identifying non-wear periods helps to 

improve the analysis. In addition, real-time non-wear time detection is used to 

achieve a power-efficient data collection. The informed decision to collect data 

only during wear times extends the battery life and make the framework suitable 

for longer periods of activity monitoring [41].

6. The watch allows for the development of interactive interfaces, such as 

prompting the user to report symptoms or asking them to charge the watch.

The application is developed and tested for Samsung Gear S2 and S3 smart-watches, 

although the concept that we discuss applies to similar devices, such as Apple watch7. The 

operating system of these smartwatches is Tizen, which provides APIs for managing and 

interacting with sensors and system-level procedures. Tizen supports web-based applications 

written in Javascript and HTML5, which are executed in a webkit-based browser 

environment operated by Google V8 Javascript engine. Tizen Javascript APIs are the means 

for all interactions with the watch hardware, such as sensors and memory. There are also 

HTTP tools in the webkit environment for the network connectivity.

4.1.1. User interface.—The smartwatch application can serve as a reporting tool to 

obtain participants’ reports of their health. There are two separate ways for users to provide 

their inputs: 1) for variables where order can be applied (e.g., pain and fatigue levels), rates 

on a Likert scale such as a 0–10 range as depicted in Figure 3a is used; 2) for categorical 

variables (e.g., activity types) a single choice user interface (Figure 3b) is displayed. Users 

7Previous versions of Apple watches required iPhones to be functional and they did not have a built-in cellular feature (no SIM card). 
These were serious limitations and the reason for choosing Gear S smartwatches for this study. However, the newer versions of Apple 
watches support SIM cards and can be used independently. Developing ROAMM application for iWatches are subject to our future 
work.
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can change the numeric values or the categorical choices by rotating the bezel of the watch, 

and in order to move to the next health status question, they should press the top button 

(Figure 3c). The application was designed in a modular way to be able to add/remove 

questions as desired. The application receives a remote configuration with the initial time 

and intervals during which the user ought to be prompted. Researchers can adjust the 

configurations remotely, which frees the user from bringing the watch to the research 

establishment for software updates.

4.1.2. Data Monitoring.—The ROAMM application collects patient-reported and sensor 

monitor data. As explained previously, patient-reported data are obtained by prompting the 

user questions about pre-defined outcomes, such as pain and fatigue. The Data Monitoring 

module interfaces with the Human Activity Monitor libraries that Tizen provides to collect 

sensor monitor data. Since accelerometers are widely used for activity monitoring and 

assessment, a validation of smartwatch’s accelerometer data is warranted and has been the 

subject of recent works [42]. Similarly, we compared the collected accelerometer data from 

the Samsung smartwatch with ActiGraph GT9X link to validate its measurements. Due to 

time drifts and processing shortcuts in smartwatches’ accelerometer data and the fact that 

time points at which data are sampled are varying [42], we use normalized root mean 

squared values for each second of data from each axis. Figure 4 shows that the smartwatch’s 

accelerometers provide similar information as ActiGraph GT9X (correlation > 0.97) for 

frequencies linked to human movement, i.e., 0.5 to 2.5 Hz. Thus, we consider the 

smartwatch a valid and accurate replacement of specialized devices for monitoring physical 

activities.

4.1.3. Data Cleaning and Aggregation.—Specialized devices, such as Actigraph 

accelerometers, collect raw sensor data and researchers can download them after collection. 

The next step after raw data collection is the data cleaning, where researchers calculate 

variables according to the the aim of the study. The variables are usually calculated for 

longer epochs; e.g., as 1-minute activity counts [43] or time- and frequency-domain 

variables for every 5 to 60 seconds [44, 45]. Maintaining raw data might not be possible due 

to the large amount of data collected by the sensors.

We tested the size of the collected data by all sensors of Gear S and the results are presented 

in Figure 5. Figure 5a shows the size of the data collected at 1 Hz sampling rate by each 

individual sensor for 30 minutes, 1 hour, and 2 hours. At such a low sampling rate, all of the 

sensors could produce approximately ten megabytes of data after only two hours. 

Furthermore, we tested each sensor’s data size for different sampling rates (Figure 5b). For 

10 Hz sampling rate, which has been shown to be the minimum sampling rate required for 

physical activity assessment [46], and after two hours accelerometer alone produced 

approximately 20 megabytes of data. Therefore, preserving raw sensor data for extended 

periods of time might not be practical for wearables with limited memory (RAM: 1 GB; 

internal memory: 16 GB). Also, transmitting a large amount of data to a remote server over 

long periods of time requires purchasing more data plans and thus, increases the cost of 

research studies.
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The smartwatch application performs data cleaning in real time and on the watch. Besides 

the aforementioned merits, this step has the additional benefit of reducing the size of the data 

that is transmitted to the server. The processing logic for the current version of this module 

is implemented in JavaScript which can adapt to any analysis suite of functions that take raw 

sensor values as input and outputs the required variables. The default implementation 

calculates time and frequency-domain variables from tri-axial accelerometer data, which 

have been previously shown to be effective for physical activity assessment [47]. Briefly, the 

application constructs the following accelerometer variables for every 15-second epoch of 

collected data at 10 Hz:

1. Time-domain variables: these variables include the mean and standard deviation 

of vector magnitude (V M). Vector magnitude is calculated as: x2 + y2 + z2, 

where x, y, and z represent accelerometer’s axes.

2. Orientation variables: the mean and standard deviation of existing angle between 

the vector magnitude and vertical axis (x). The angle is calculated as: 
180
π × sin−1 x

VM .

3. Frequency-domain variables: these variables include the dominant frequency of 

vector magnitude and its fraction of power, as well as the fraction of power 

within frequencies related to human movement, i.e., from 0.6 to 2.5 Hz.

The data cleaning step and variable calculations reduces the size of the stored data on the 

watch by an approximately 150 times. This process has little impact on battery consumption 

(<1% for two hours) and thus, further justify the existence of this module.

4.1.4. Data Storage and Transmission.—The data storage module is programmed to 

move the collected data from temporary session storage to a permanent data storage on 

device’s memory, periodically. We used IndexedDB JavaScript library to implement the 

permanent data storage. Since the data storage module runs in parallel with the data 

monitoring module, it asynchronously stores the sensor readings to the permanent data 

storage without having to stall running processes on memory accesses. The watch does not 

require to be online for data collection, cleaning, and storing. If not connected, the app runs 

on default configuration and can store data locally for more than 30 days. When connectivity 

is established, data transmission module executes batch uploads of the stored data from the 

permanent data storage via HTTPS requests to the remote server. Data transmission is 

initiated automatically and when the device is charging or manually and by the user. The 

uploading subroutine sends fixed-size chunks of the collected data iteratively and stops when 

all the data are successfully received by the server or when it fails to deliver a chunk for a 

specified number of attempts. Depending on the configuration, once data are successfully 

received by the server, they can be deleted from the watch or marked as sent.

As mentioned earlier, one of the biggest challenges in using smartwatches is the limited 

battery life. Figure 6 shows the battery life consumption by each smartwatch sensor for 

different durations and sampling rates. Higher sampling rates required only slightly more 

power; however, it can be seen that even the least battery-consuming sensors (e.g., 

accelerometer) deplete the battery after a short period of time. It is worth noting that, for this 
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experiment, sensor APIs were called 30 times per second to allocate resources to sensors 

fully and to prevent Tizen OS from going to “sleep” mode. Furthermore, raw sensor data 

were stored which uses more memory space. Therefore, Figure 6 depicts the peak of power 

usage for each sensor. The ROAMM smartwatch application collects sensor readings much 

less frequently and uses less memory space, and thus, allows for collecting sensor and user-

reported data for more than 12 hours.

4.2. Server—The features and advantages of server software are listed, as follows:

1. The server provides a platform to register participants, personalize the 

application based on their preferences, and configure data collection settings 

according to study requirements. Personalization includes changing the color 

theme of the application and modifying the times of day participants prefer to be 

prompted. Data collection configuration includes identifying active sensors, 

specifying their sampling rates, and defining the parameters used to aggregate 

the raw data into study-required variables. All of the configuration steps are done 

remotely and without the requirement that the watches be collected from and 

returned to the participants.

2. There is a variety of modules and functionalities embedded in the server, which 

are accessible via defined roles. New roles with the desired access levels (e.g., 

Researcher I, Researcher II, Administrator) can be defined and assigned to users 

to support the minimum required privileges. For better control, the administrative 

interface for user management and security is housed on the server.

3. The server is capable of interacting with multiple watches and receiving data 

from them simultaneously. The received data are stored in a centralized fault-

tolerant database. Data are encoded and transmitted to the server over HTTPS 

communications. The server decodes and maintains the collected data securely 

by granting the access to the database only through its web portal. The web 

portal itself retrieves the data through a database view with the least privileges.

4. A Map-Reduce framework (Apache Spark [48]), as well as predefined scripts 

that leverage machine learning methods scaled for big data (SparkML), are 

included in the server software to be able to retrieve and analyze large amounts 

of data in real-time. This provides the potential ability to leverage a large number 

of bigdata toolkits and software that are available today for processing data. 

These tools are also provided by commercially available clouds, which allows for 

seamlessly moving the server to a cloud platform (e.g., Amazon Web Services, 

Google Cloud Platform, or Microsoft Azure) for further scalability purposes.

5. The server provides a web portal that displays information from all actively 

deployed watches and the collected data for each separate device. It presents 

summary statistics of activities, the current status of the watches, and detailed 

visualizations for the activity data. The data can be accessed through the web 

portal for data exploration and analysis.
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The server provides three major functionalities: 1) device administration, which provides the 

means to register the watches in the framework, assign them to participants, and configure 

their applications for the customized data collection; 2) data storage, which is responsible 

for receiving the collected data from the watches, store them in a database, and retrieve them 

e ciently; and 3) user interface and visualization, which provides graphs and quick 

summaries of the collected data. We describe each module in detail in the following.

4.2.1. Device administration.—The main functionality of the Device Administration 

module is to communicate with the smartwatch applications that are active in the field. This 

is a bidirectional communication where the server sends configuration parameters (e.g., 

sampling rate, upload size, variables to be calculated, etc.) to smartwatches and receives the 

sensor and user-reported outcomes from them. The server provides convenient means for 

researchers to adjust data collection parameters, which are delivered to the smartwatches by 

the Device Manager module. The smart-watches transmit their collected data to the server, 

which is received by the Application Manager. The Application Manager can be 

conveniently modified to accept a new set of variables (e.g., feature vectors) and pass the 

expected data to the database. The customizability that the Device Administration module 

provides adds the necessary flexibility to the server so it can adjust to any study 

requirements with minimum modifications.

The administrative panel on the server’s web portal (Figure 7) has three main parts. 

Researchers can add a new watch to the system, set the initial configuration parameters of its 

application, and assign it to a participant for a specific period using the register view (Figure 

7a). Researchers can also check the status of all registered smartwatches, their last reported 

battery levels, and a brief statistic about data they collected, using the status view (Figure 

7b). The collected data by smartwatches are accessible and can be retrieved using the 

download view. Figure 7c shows a snapshot of how a researcher can download data for an 

individual and a specified time frame.

4.2.2. Data storage.—The collected data are validated and processed in the previous 

steps (by the smartwatch application and the Application Manager) before reaching the Data 

Storage module. This module performs the final checks and modifications and stores data in 

a high-performance database. The data inserted into the database include an entry for each 

data item transferred from the watch as well as metadata specifying a timestamp of when the 

transfer was processed, as well as the size of the received data. Additionally, we maintain 

anonymized information about which participants were wearing a particular watch during a 

certain interval.

First, the address to receive data is defined dynamically on the server. Smartwatch 

applications receive this address upon their startups and once their credentials are verified. 

This address can be conveniently modified to ensure its anonymity and omitting the 

possibility of receiving unwanted data from un-trusted parties. Second, the received data are 

checked to confirm they have been received from a registered participant and smartwatch. 

Lastly, direct access to the database is blocked by a firewall. The remote access to stored 

data and information is provided through dedicated web interfaces and database views with 

the least privileges. All other accesses to data are granted only to the database administrator.
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This module also hosts a big data framework (i.e., Apache Spark) to be able to retrieve and 

explore large amounts of data in real-time. Furthermore, we implement a data model 

corresponding to the smartwatch application wrist accelerometer model (i.e., a set of 

variables) to be able to obtain the desired data for any study using the framework. The 

convenience of adding data models allows multiple research studies with a variety of designs 

and goals to leverage the framework simultaneously.

4.2.3. Web-based user interface and visualization.—ROAMM framework has a 

web-based user interface that presents summary statistics of the collected data (e.g., duration 

of data collection, size of the accumulated data) and the status of the watches (e.g., 

collecting/stopped, battery level). The web portal is also capable of visualizing the 

calculated variables from the data, which is an effective way to reduce errors during data 

collection phase. For example, participants might forget to wear the watch at random times 

during the requested periods, or the application stops collecting data for an erroneous reason. 

By constantly monitoring the collected data, researchers can remind participants to wear the 

smartwatch or contact them to troubleshoot the problems. They can also perform several 

data validation steps as soon as the data becomes available on the server. Furthermore, due 

to the flexible and extensible nature of the framework, it is possible to add additional 

presentation and analysis logic layers on top of the collected data to obtain a more 

informative summarization.

Figure 8 shows the data flow of the ROAMM framework. Sensor monitor and patient-

reported data are collected by the application and transmitted to the server (Figure 8a). 

Figure 8b shows a simpler visualization of the collected data. Researchers can filter the data 

by date, time, and participant to obtain time-series graphs of the calculated variables. We use 

the Google Maps JavaScript API to display an interactive map that provides a visual 

presentation of the collected location data. Depending on the study goals, the collected data 

could be further processed to generate more variables for the analysis (Figure 8c).

5. Experiments with Participants

As a “proof of concept”, ROAMM was used to collect free-living data from 5 participants 

who were asked to wear the smartwatch on their left wrist for approximately 2 weeks. From 

8 am to 8 pm participants were prompted at four random times with a minimum three-hour 

gap between two consecutive prompts. Participants were requested to charge the watches 

every night. Table 2 contains summarized results for each participant over approximately 

two weeks of wear. Briefly, a total of 777 hours of sensor and patient-reported outcome data 

were collected. Overall, 50.60 MB of data were collected with most belonging to the sensors 

(34.90 MB − accelerometer: 24.4 MB; heart rate: 3.5 MB; GPS: 7 MB) and 17% (8.7 MB) 

for EMA data.

There were very few instances where data being collected was not immediately available on 

the server for visualization. Table 3 contains accelerometer features that were extracted from 

the raw data. These features have been used in other studies to quantify physical activity 

type, intensity and energy expenditure [49]. Participants responded 550 times to questions 
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related to their pain, fatigue, and mood levels via the same application. The user-reported 

data were summarized and related indices required for EMA studies were calculated.

Table 3 shows details of time, frequency, and orientation-domain features calculated from 

accelerometer sensor data for each participant. The mean of vector magnitude (MVM) is 

close to the value of gravity (9.8 m/s2) for all participants and the average of dominant 

frequencies are > 2 Hz, which indicate that the participants had been engaged in sedentary 

activity (e.g., sitting) for most of the data collection period.

Figure 9 shows the accelerometer-driven features, i.e., MVM and the average of existing 

angle of between forearm and the horizontal line (MANGLE) for 350 data points (87.5 

minutes) for all of the participants. Every data point is calculated from 15 seconds of 

accelerometer data. The vector magnitude values are presented as time-series waveforms to 

show the variability of acceleration in time. The shaded areas for each point show one 

standard deviation for that particular 15-second epoch. To show MANGLE values, we use 

polar plots to achieve a better understanding of hand position. For example, 90° represents 

the times where hand is resting by participant’s side (e.g., natural hand position when 

standing still). As seen in Figure 9, the angle between P1’s hand and the horizontal line and 

the low variability in the values of vector magnitude show that he or she has been stationary 

(i.e., sitting and standing) for most of the times, whereas data from P3 indicates higher 

activity levels.

Table 4 presents details on pain-related indices from the EMA data, such as average pain, 

peak pain, pain range, and pain variability. Participants could select any value from 0 (no 

pain) to 10 (worst possible pain). However, the recorded pain values ranged from 0 to 6, 

where the most frequent selected pain level was 1 (very little pain) overall (n = 332).

Similar indices were also calculated for fatigue and mood and are presented in Tables 5 and 

6. The application allowed selection of fatigue levels from 0 (no fatigue) to 10 (worst 

possible fatigue) but participants recorded fatigue levels ranged from 0 to 6. The most 

frequent response for fatigue level was 0 (n = 398). Mood levels could be recorded following 

a different scale, where −5 represented the poorest, 0 was for neutral, and 5 showed the 

happiest moods. Except for participant 2, the rest never recorded an unhappy mood (negative 

value) and the most frequent recorded response was 4 (n = 449).

6. Discussion & Conclusion

In this paper, we have provided the ROAMM infrastructure for real-time monitoring of 

personal health. This framework relies on continuous sensor data collection at high 

frequency for physical activity monitoring and assessment and patient-reported outcomes, 

queried at random time points throughout a day, for recording EMAs. The infrastructure 

consists of two main components. The first component is an application implemented for 

Samsung Gear S2 and Gear S3 smartwatches, which collects sensor and user-reported data, 

processes them into variables and transmits them to a remote server. The second component 

is the server, which receives the data from multiple watches and stores them in a database. 
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The workload is distributed among the smartwatch application and server program in a way 

that the data become available for visualization and analysis with minimum latency.

Systems relying on smart devices for data collection and a remote server for analysis have 

been used in previous works, where they were shown to be effective approaches for online 

monitoring of vital signs [50]. Smartwatches are relatively new additions to such 

frameworks and have been mostly validated for specific applications. Shahmohammadi et al. 

showed that smartwatches were able to perform accurately for activity recognition and 

highlighted their advantages over smartphones [51]. Smartwatches were also used in cloud-

based frameworks to monitor sensor data and measure risk of asthma continuously [52]. In 

the presence of the flexibility that the ROAMM framework provides, any desired study 

model (i.e., set of independent and target variables) can be implemented on the watch and 

visualized and analyzed on the server in real time.

The main challenge with using smartwatches in research studies, especially for extended 

periods of time, is the limited battery life. The problem becomes more appranet if all sensors 

concurrently collect data at high sampling rate. The ROAMM framework leverages detecting 

wear times to address this issue [41]. This approach is aligned with the recent developments 

on the smartwatches’ software since they provide proximity APIs, which makes wear-time 

detection more accurate at no additional computational cost.

The capability of collecting patient-reported outcomes at pre-specified time points, in 

addition to sensor data, makes it possible to achieve enhanced “gold standard” ascertainment 

with reduced bias. By time syncing data streams, the ROAMM framework provides 

efficiently measurement tool to study IHEs, which has been costly and challenging for 

decades.

The ROAMM framework meets some of the major requirements for the next generation of 

the Internet of Things for mHealth. ROAMM offers an interactive interface (e.g., prompting 

for reporting symptoms) and remote application configuration (e.g., modifying data 

collection rates and types of variables to be calculated), as well as server features for making 

it flexible for online customization. Additionally, the smartwatch accelerometer hardware 

provides highly correlated results with a validated, research-grade accelerometer. Given the 

similar costs with research-grade monitors (~$300), a Gear S3 (or other comparable 

smartwatches) along with the ROAMM app offers an ideal alternative to access to multi-

sensor output, touch screen and physical inputs through a bezel, and broad GSM 

connectivity for remote device control. These are ideal characteristics for long-term, 

continuous data collection for capturing episodic intervening health events that is of 

considerable interest to health researchers.
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Highlights:

• Smartwatches possess a collection of sensors required for monitoring mobility 

and physical activity assessment

• The proposed ROAMM framework leverages smartwatches’ sensor collection 

and connectivity means to achieve real-time activity recognition.

• The proposed framework collects user-reported data (e.g., pain and fatigue 

level) which allows for studying ecological momentary assessment, in parallel 

with physical activity monitoring.

Kheirkhahan et al. Page 17

J Biomed Inform. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
ROAMM framework conceptual diagram. Smartwatches are equipped with a variety of 

sensors, such as an accelerometer, heart rate monitor, and GPS. It possesses connectivity 

means and the convenience of developing customizable applications provide a platform that 

allows a real-time activity monitoring framework to be implemented.
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Figure 2: 
The two main components of the ROAMM framework are shown. Smartwatch application 

collects sensor monitor data, as well as patient-reported (user-reported) outcomes. It 

processes the collected data into interpretable variables and transmits them to the remote 

server. The server provides means to register participants, assign watches to them, and 

configure the application parameters for data collection. It stores the received data into a 

central database and is equipped with big data framework for enhanced data retrieval, 

visualization, and analysis.
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Figure 3: 
Smartwatch application user interface. Users are prompted to provide their pain level (a), 

activity type (b) and more. The rotating bezel is used to select the response to the requested 

inquiry. A single tap on the screen stores the response locally and on the watch. By selecting 

“B”, participants can go back to the previous screen (question) to modify their response 

before finalizing, which is done by the “Save” button.
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Figure 4: 
Normalized root mean squared (NRMS) values of the acceleration data over one second for 

each axis. The experiment was conducted for five different frequencies in range of 0.5 Hz to 

2.5 Hz, 3 minute each and on a shaker table. Blue line shows data for Actigraph GT9X and 

red line represents data collected from a Samsung Gear S.
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Figure 5: 
Size of generated data by sensor monitors. (a) shows the size of data generated by sensors 

collecting at 1 Hz after 30 minutes, 1 hour, and 2 hours. (b) depicts the size of collected data 

by each sensor after two hours anf for different sampling rates.
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Figure 6: 
Remaining batteries for each sensor. (a) shows the battery life percentage used by sensors 

collecting at 1 Hz after 30 minutes, 1 hour, and 2 hours. (b) depicts the battery life 

consumption for different sampling rates after 2 hours.
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Figure 7: 
The ROAMM server administrative interface. The administrator panel allows researchers to 

(a) register smartwatches to participate, (b) monitor active watches in the field, and (c) 

retrieve data transferred by the smartwatches from the database.
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Figure 8: 
ROAMM framework data flow. Sensor monitor and patient-reported data are collected and 

transmitted to the server by the ROAMM application. (a) shows the ROAMM smartwatch 

application user interface. (b) shows the visualization of the data on the server. The 

administrative web portal facilitates filtering and retrieving the collected data. Data are 

transferred to the server, where they are stored in a high-performance fault-tolerant database. 

Data can be viewed or run through any custom analysis pipeline for presentation and/or 

analysis. (c) depicts how data are processed into variables for analysis. Depending on the 

study, a variety of variables can be constructed from the data, either on the smartwatch or 

later on the server.
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Figure 9: 
Visualization of 350 data points (87.5 minutes) of accelerometer sensor data for 5 

participants. The time-series plots (left) show the average vector magnitude (MVM) over 

every 15 seconds. For each point, one standard deviation is also shown as the shaded area. 

The constant gravity force (≈ 9.8 m/s2) is displayed as blue dashed line. On the right, the 

existing angle between the forearm and the horizontal line (MANGLE) is displayed for the 

same time periods. Each bar shows the frequency of an angle (±10°). For example, for the 

first participant, we observe that the hand is placed on a horizontal surface (e.g., when 

working with a computer) or resting by participant’s side (e.g., natural position of hand 

when standing) for most of the times.
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Table 1:

Description of ROAMM domains and measurements

Domain Description Collection Method Frequency
*

Mobility and Activity

Physcial activity: the average minutes per day Total 
activity, light, moderate & vigorous activity, sedentary

Tri-axial accelerometer and 
derived vector magnitude

Collected at 10 Hz 
and processed daily

Walk speed: GPS is triggered during a two-min bout of 
continuous of activity until the end of the bout (≥1 min 
of no activity detection). GSP data processed using 
previously validated Personal Activity and Location 
Measurement System (PALMS) [29].

Accelerometer trigger and 
GPS longitude and latitude

Continuous to 
identify two min 
duration activity 
bouts

Life-Space: Average excursion size maximum distance 
from the home for each excursion away from home. The 
maximum distances from multiple excursions are 
averaged over a day.
Average excursion span - average daily maximum 
distance between all recorded locations away from home. 
Measures travel clusters away from home, independent 
of maximal distance traveled from home Smaller values 
indicate more compact traveling.

GPS longitude and lattitude Every 15 minutes, 7 
AM and 11 PM 
based on on previous 
work [33]

Ecological momentary 
assessments & patient 

reported outcomes

Pain: A Numerical Pain Rating Scale for rating pain 
intensity from 0–10 [34, 35].
Poor mood: Adapted from the visual analogue mood 
scale [36, 37]
Fatigue: Adapted from ecological momentary 
assessment measures of fatigue from references [38, 39]

Likert scale selection using 
the graphical watch face with 
rotating bezel and save 
button (see Figure 3)

Random daily** end-
of-day summary 
rating of maximal 
pain, highest fatigue 
and worst mood 
experienced that day

Disability: “Do you have severe difficulty with [the 
task]?” Basic activities (bathing, dressing, walking, and 
transferring), instrumental activities (shopping, 
housework, meal preparation, taking medications, or 
managing finances), and mobility activities (walking a 
quarter mile, climbing a flight of stairs, or lifting or 
carrying 10 lb). Positive responses will be following by 
asking Do you need help from another person [to 
complete the task]?

Select responses using the 
graphical watch face with 
rotating bezel and “save” 
buttons

Randomly, once per 

week
**

.
End-of-week 
summary (over the 
past week did you 
have.)

Intervening health event 
monitoring

Fall: “Did you fall this week?” A yes response will 
trigger the following: 1) “What day and approximate 
time did you fall?”; 2) “Did you seek medical care or 
were hospitalized?”, 3) “Did this result in 3 or more days 
of restricted activity?”

Select responses using he 
graphical watch face with 
rotating bezel and “save 
buttons

Weekly

Hospitalization: \Were you hospitalized in the past 
month?” A hospitalization will trigger collection of 
medical records for discharge.

Graphical watch face with 
rotating bezel and “save” 
buttons

Monthly

Restricted activity: A_rmative responses to having an 
IHE will prompt the following questions: 1) “Did [said 
IHE] result in an inability to leave home for at least one 
week?”, 2) “Did you cut down on your usual activities 
because of [said IHE]?”.

Graphical watch face with 
rotating bezel and “save” 
buttons

Prompted by 
affrmative IHE 
response

*
Note: All values are collected during customized waking hours. During initialization, participants are queried about normal daily routines that are 

used to program start/stop data collection time points.

**
Random sampling is an excellent method for estimating average participant experience, because the resulting estimate is unbiased, namely, there 

is no tendency for the average to either overestimate or underestimate the mean of all participant reports [40].
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Table 2:

Summary of collected data from participants.

Characteristic Quantity

Participants 5

Duration 776.61 hours

Sampling Rate 10 Hz

Feature Window Length 15 seconds

Data Size 50.60 MB

Variable Vector Size 18

 Sensor Data

  Accelerometer (refer to 4.1.3) 7

  Heart Rate 1

  Location (lattidude & longitude) 2

 Patient-Reported Outcome 5

  (pain, fatigue, mood, sleep & activity)

 Identifiers 3

  (ID, tvmeatamp & battery)
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Table 3:

Summary of accelerometer-driven variables for participants.

#Days MVM SDVM MANGLE SDANGLE DF FPDF P625

Participant 1 3 9.90 (0.18) 0.29 (0.18) −4.26 (18.19) 2.41 (6.96) 2.20 (1.53) 0.041 (0.016) 0.390 (0.052)

Participant 2 15 9.77 (0.13) 0.33 (0.57) 2.60 (16.80) 3.87 (8.31) 2.51 (l.55) 0.035 (0.007) 0.395 (0.058)

Participant 3 7 9.83 (0.18) 0.38 (0.65) −3.89 (22.83) 4.53 (9.39) 2.23 (1.44) 0.035 (0.010) 0.407 (0.062)

Participant 4 15 9.67 (0.96) 0.29 (0.58) −1.86 (12.16) 2.08 (5.08) 2.23 (1.46) 0.035 (0.011) 0.395 (0.060)

Participant 5 7 9.81 (0.26) 0.46 (0.69) 1.03 (23.05) 5.44 (9.70) 2.02 (1.47) 0.037 (0.013) 0.408 (0.061)

Total 47 976 (0.59) 0.34 (0.61) −0.39 (17.72) 3.51 (7.82) 2.29 (1.50) 0.036 (0.010) 0.398 (0.060)

Values are reported as Mean (SD)

MVM, mean vector magnitude; SDVM, standard deviation of vector magnitude; MANGLE, mean angle between forearm and the horizontal line; 
SDANGLE: standard deviation of angle between forearm and the horizontal line; DF: dominant frequency; FPDF: fraction of power covered by 
dominant frequency; P625: fraction of power covered by frequencies in [0.6, 2.5] Hz.
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Table 4:

Pain-related indices from EMA data.

#Responses Peak Pain Average Pain Pain Range Pain Variability

Participant 1 8 3 2.07 [1, 3] 0.83

Participant 2 19 2 1.71 [0, 2] 0.62

Participant 3 50 6 2.58 [0, 6] 1.40

Participant 4 61 5 0.55 [0, 5] 1.06

Participant 5 51 3 0.94 [0, 3] 0.72

Total 189 6 1.37 [0, 6] 1.33
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Table 5:

Fatigue-related indices from EMA data.

#Responses Peak Fatigue Average Fatigue Fatigue Range Fatigue Variability

Participant 2 19 3 2.08 [1, 3] 0.77

Participant 3 49 3 0.95 [0, 3] 0.90

Participant 4 60 6 1.95 [0, 6] 1.75

Participant 5 51 3 1.21 [0, 3] 0.91

Total 179 51 1.42 [0, 6] 1.33

Participant 1 did not provide their fatigue data.
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Table 6:

Mood-related indices from EMA data.

#Responses Peak Mood Average Mood Mood Range Mood Variability

Participant 1 8 4 2.45 [0, 4] 1.69

Participant 2 18 4 1.65 [−3, 4] 2.08

Participant 3 48 4 2.35 [0, 4] 1.52

Participant 4 60 5 1.66 [0, 5] 1.69

Participant 5 48 5 3.42 [0, 5] 1.38

Total 182 5 2.34 [−3, 5] 1.77
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