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Abstract

Timely outreach to individuals in an advanced stage of illness offers opportunities to exercise 

decision control over health care. Predictive models built using Electronic health record (EHR) 

data are being explored as a way to anticipate such need with enough lead time for patient 

engagement. Prior studies have focused on hospitalized patients, who typically have more data 

available for predicting care needs. It is unclear if prediction driven outreach is feasible in the 

primary care setting.

In this study, we apply predictive modeling to the primary care population of a large, regional 

health system and systematically examine the impact of technical choices, such as requiring a 

minimum number of health care encounters (data density requirements) and aggregating diagnosis 

codes using Clinical Classifications Software (CCS) groupings to reduce dimensionality, on model 

performance in terms of discrimination and positive predictive value. We assembled a cohort of 

349,667 primary care patients between 65 and 90 years of age who sought care from Sutter Health 

between July 1, 2011 and June 30, 2014, of whom 2.1% died during the study period. EHR data 

comprising demographics, encounters, orders, and diagnoses for each patient from a 12 month 

observation window prior to the point when a prediction is made were extracted. L1 regularized 

logistic regression and gradient boosted tree models were fit to training data and tuned by cross 

validation. Model performance in predicting one year mortality was assessed using held-out test 

patients.

Our experiments systematically varied three factors: model type, diagnosis coding, and data 

density requirements. We found substantial, consistent benefit from using gradient boosting vs 

logistic regression (mean AUROC over all other technical choices of 84.8% vs 80.7% 

respectively). There was no benefit from aggregation of ICD codes into CCS code groups (mean 

AUROC over all other technical choices of 82.9% vs 82.6% respectively). Likewise increasing 

data density requirements did not affect discrimination (mean AUROC over other technical 
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choices ranged from 82.5% to 83%). We also examine model performance as a function of lead 

time, which is the interval between death and when a prediction was made. In subgroup analysis 

by lead time, mean AUROC over all other choices ranged from 87.9% for patients who died within 

0 to 3 months to 83.6% for those who died 9 to 12 months after prediction time.

Graphical abstract

Introduction

Evidence indicates that when individuals are in an advanced stage of illness and also have 

control of care decisions, they often choose home-based, comfort-oriented care [1–4]. Such 

control is only possible, however, when care preferences are known and documented. This 

often occurs late in the illness course or not at all, often due to the difficulty of engaging in 

discussions about end-of-life care wishes [5–8]. Timely outreach by care providers 

experienced with these kinds of discussions could make it possible for better care alignment 

with personal preferences, potentially avoiding the loss of control that can occur when 

urgent clinical interventions are required (see Bernacki et al [9] for a discussion of issues 

surrounding the timing of goals of care conversations). The growth in availability and use of 

both hospice and inpatient palliative care programs is consistent with patient preferences; 

between 2000 and 2013, the percentage of hospitals offering palliative care increased from 

25% to 72%, and the use of hospice services among Medicare beneficiaries increased from 

22% in 2000 to 42.2% in 2009 [10]. However, outreach offering such support services is 

largely confined to inpatient care, usually following a serious acute event. As a consequence, 

care at the end of life continues to be aggressive because the option to choose is 

unnecessarily delayed or simply not offered. Typically, three to four months are required 

after an initial contact for individuals to decide on options they want to exercise [11]. 

Therefore, effective outreach should occur roughly six months or more before end of life 

care decisions have to be made.

Electronic health records (EHRs), now widely adopted in U.S. healthcare, have opened a 

unique era in medicine where population-level data on patients can be used in real time to 

predict and potentially improve outcomes for a given patient [12–14]. Studies conducted in 

the inpatient setting have been able to effectively predict the need for end-of-life care [15]. 

Prediction within the non-hospitalized population could allow for patient outreach and 

support earlier in the advanced illness course, ideally in advance of critical events that result 

in hospitalization. Data collected in the non-inpatient setting, however, can be very sparse. 

This could cause the performance of any predictive model to suffer within patient 

populations with lower frequencies of health care utilization.
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The purpose of this study is to examine the effectiveness of end-of-life care prediction in the 

primary care context, and to determine the extent to which technical choices made during 

model development impact model performance. Specifically, we examine the impact of data 

density requirements (requiring patients to have a minimum number of health care 

encounters before making a prediction) and dimensionality reduction by grouping of ICD 

diagnosis codes into Clinical Classifications Software code groups on model performance. 

We also conduct sub-group analysis to examine model performance as a function of lead 

time, which is the interval between the prediction and time of death and quantifies the extent 

of “early warning” offered by the model.

Related Work

Mortality and morbidity models have a long history in medical informatics; the venerable 

Charlson Index [16], for instance, is still widely used to quantify disease and morbidity 

burden in health services research. However, it is not clear that such simple indexes are 

suitable for use in population-wide surveillance and needs-assessment monitoring. They 

often have poor discriminative ability [17] and rely on the accurate scoring of presence or 

absence of various disorders; computationally phenotyping these disorders in EHR or claims 

data for these purposes is often problematic [17–20]. In addition, efforts to update the 

parameters of the Charlson index have yielded mixed results, with slightly improved 

performance in some datasets and unchanged or worse performance in others [21]. Thus, 

recent work on mortality models takes a statistical learning approach using observed patient 

characteristics (from patient-reported outcomes [22,23], administrative claims data [24–26], 

survey data [27,28], or EHRs [15]) without assuming much about the semantics of the 

presence or absence of the data elements. Unlike the present study, this prior work largely 

focuses on specific patient populations, such as patients with end-stage renal disease [29], 

acute ST-elevated myocardial infarction [30], dementia [31], or recent episodes of critical 

care [32]. Recent studies also primarily center upon hospitalized patients, in-hospital 

mortality, or very short or long timeframes for mortality [23,33–45]. These studies do not 

systematically examine the tradeoffs between model performance and applicability resulting 

from technical choices, such as data density requirements. Our experiments were thus 

conceived specifically to address the feasibility and elucidate the tradeoffs in monitoring a 

primary care population for advanced illness or end-of-life care using statistical learning 

methods.

Methods

Problem Formulation

We developed predictive models with the intention of identifying patients sufficiently far in 

advance of death that patients could decide what type of care they would prefer by e.g., 

facilitating goals of care conversations between patients and providers and completing 

advanced directives. We approached this as a supervised learning problem using EHR data. 

Our dataset spans three years from July 1, 2011 and July 1, 2014, and for each patient we 

pick a random date between July 1, 2012 and July 1, 2013 as their prediction time. We 

examine model performance for subgroups of patients who died 0 to 3, 3 to 6, 6 to 9, and 9 
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to 12 months after prediction time. Identifying patients with end-of-life care needs farther 

ahead of time (within limits) presumably benefit patients and families by providing more 

time in which to explore care options. In this analysis, we labeled those who died as positive 

cases, while other patients are labeled as negative cases.

Because this is a retrospective study, we must also decide for each patient when in their 
timeline we make the prediction; we refer to this time point as the prediction time. For each 

patient, we pick a random date in the second year of the study period as their prediction 

time. We do so because in real life we never know exactly when someone is going to die; the 

final model will be applied to the patient’s record at some time, and some will die in the 

following 12 months, while others will not. Our models use as input the EHR data from the 

twelve months prior to each patient’s randomly chosen prediction time; we refer to these 

prior 12 months as the observation window. Thus, for a given patient, our task is to predict, 

at the patient’s prediction time, whether the patient will die within the next 12 months given 

the EHR data available in their observation window (Figure 1). Patients who died prior to 

their prediction time were removed from analysis.

Source Population

The study, completed as a retrospective cohort analysis of Sutter primary care patients, was 

approved by the Sutter Health Institutional Review Board. Sutter Health 

(www.sutterhealth.org) is a not-for-profit open health system with a network of more than 

5,000 physicians, 24 hospitals, and other healthcare services serving 23 counties in northern 

California, and uses a single instance of EpicCare across all of its health care delivery 

facilities. We used patient data from July 1, 2011 through June 30, 2014. Patients were 

included in the study if they: (1) had a primary care (PC) relationship with Sutter Health, 

defined as having at least two encounters with a primary care physician (Family Medicine, 

Internal Medicine or Obstetrics-Gynecology) during the study period; and (2) were 65 to 89 

years of age throughout the study period. Death dates were obtained from a combination of 

EHR, Medicare records, California Department of Public Health records, and the Social 

Security Death Index. Individuals were randomly partitioned once prior to analysis into 

training and test sets, with 70% of patients assigned to the training set. In the combined 

training and test sets, 90.8% of patients who died in the year following after their prediction 

time had no hospital encounters during their observation windows, and 93.1% of these 

patients had no inpatient admissions during the same period. Furthermore, only 1.6% of 

these patients were assigned an ICD-9CM code for palliative care (V66.7) or had an 

encounter encoded as “Palliative Medicine”. These statistics highlight the need for timely 

outreach to these patients and also demonstrate why inpatient mortality prediction is 

insufficient to reach the majority of patient that might benefit.

Data and Features

EHR data from each patient’s observation window was processed into features as follows. 

The data comprised demographics (age, gender and race) and counts of individual ICD 

diagnosis codes, procedure CPT codes, medication pharmacy subclasses, encounters, and 

hospital visits. Features were not created for ICD and CPT codes occurring in fewer than 

200 patients, or for pharmacy subclasses occurring in fewer than 10 unique patients. 
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Intuitively, patients with complex medical histories including many distinct diagnoses, 

procedures and medication orders are more likely to be seriously ill. We therefore 

characterize the complexity of each patient’s medical history by computing - separately for 

diagnosis, procedure, and pharmacy subclasses - the maximum and minimum count of 

distinct codes occurring in any single day of their respective observation periods. Thus, if a 

patient has three encounters during their observation period, with 3, 8, and 5 diagnosis codes 

for those encounters, the values of these features would be 8 and 3. The number of distinct 

medical specialties seen during the observation window was also computed, along with the 

mean and maximum number of office visits and of distinct medical specialties seen on each 

day (excluding days with zero counts). Supplementary Materials Table 1 lists the full set of 

features used.

Experimental Design

Many choices made during model development interact with each other to influence model 

performance and utility [46,47]. We thus performed experiments systematically varying 

important factors. The most important factor is the data density requirement for patient 

inclusion, where data density is defined as the number of clinical encounters occurring 

during the patient’s observation window. Clinical encounters are defined as any patient 

interaction with a provider and may include ambulatory care office visits, virtual visits, ED 

visits, hospitalizations, and prescription orders. Although patients with higher data density 

have more information on which to base a prediction, requiring many encounters as an 

inclusion criterion reduces the eligible population for the study. As we increase the data 

density requirement from 1 encounter to 8 encounters, the eligible population decreases by 

73% and the prevalence of 1 year mortality increases from 2.1% to 3.8% (Figure 2). The 

choice directly influences the amount of data available for training and, separately, the 

patient population on which the model may eventually be used [48]. Such patients are also 

more likely to be seriously ill than the general population [49,50]. We varied the minimum 

number of encounters required in the observation window between 1, 2, 4, and 8 encounters. 

Motivated by recent work [51] we also explored the effect of reducing dimensionality of the 

data by grouping ICD codes into coarser categories as defined by the Healthcare Cost and 

Utilization project (HCUP) single level Clinical Classifications Software, or CCS, categories 

(see https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp).

For each combination of the above choices, we fit two types of models – L1 regularized 

logistic regression [52] and gradient boosted trees [53] – yielding a total of 16 experimental 

conditions under which models were built. Regularized logistic regression models are 

widely used because they are easy to interpret, straightforward to tune, and often yield 

performance that is close to that of more complex models; gradient boosted trees can 

automatically model non-linearities and interactions between features. We used the glmnet 

[54] and gbm [55] R packages, respectively. Note that, in contrast to related work whose aim 

was to maximize predictive performance using neural nets for hospitalized patients [15], our 

current study focused instead on exploring the impact of technical decisions in a new setting 

- monitoring a primary care population for advanced illness or end-of-life care needs. This 

requires systematic exploration of the space of choices, rendering extensive tuning of neural 
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nets problematic. In addition, we note that simple models with reasonable features have 

proven to be quite competitive with neural nets [43].

Model fitting

We subsampled the training datasets for each experimental condition such that the 

prevalence of the positive class was 10% in order to avoid convergence problems when 

fitting linear models (without subsampling, many experimental conditions yielded linear 

models that contained only an intercept term due to the very low prevalence of positive 

cases). Subsampling for each experimental condition was performed by retaining all positive 

cases and subsampling the negative cases to a 9:1 ratio to the positive cases. Note that the 

test data retained the natural prevalence of positive cases. Hyper-parameters for each model 

were tuned as follows. For logistic regression, the regularization hyper-parameter was tuned 

by 10-fold cross validation on the training data using the 1-s.e.m. rule [56]. For gradient 

boosting, we fixed the maximum depth of the base models at 6 and learning rate to 0.005, 

and tuned the number of trees by performance on 30% of the training data reserved for this 

purpose. The final models were then fit on all of the training data with the optimal number 

of trees.

Evaluation

Models were evaluated on the held-out test set using the area under the receiver operating 

characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). Each 

model was evaluated for performance on four subpopulations of the validation set patients, 

defined by the lead time provided on each subpopulation. The subpopulations were those 

who died within 3 months, between 3 and 6 months, between 6 to 9 months, and between 9 

and 12 months after prediction time. Note that we do not subsample the test set to increase 

the prevalence of positive cases, i.e., the test set has the prevalence of death at 2.1% to 

represent realistic usage scenarios in the primary care setting.

Results

Our results are summarized in Figures 3 (AUROC) and 4 (AUPRC). AUROC measures the 

ability to discriminate between positive (i.e., patients who died within one year of prediction 

time) and negative (all others) cases, and does not account for the change in the prevalence 

of the positive class induced by data density requirements. AUPRC measures the average 

Precision or Positive Predictive Value (PPV) across all possible decision thresholds, and 

takes positive class prevalence into account. These performance measures are 

complementary to each other, and together provide a more complete picture of model 

performance than either alone, particularly when there is significant class imbalance [57]. In 

addition, in order to make the tradeoffs under the different experimental conditions more 

concrete, we also report the positive predictive value (PPV), negative predictive value 

(NPV), specificity, recall (sensitivity), and F1 at a posterior probability threshold of 0.5. In 

the following sections, we first discuss the characteristics of the study and analytic 

populations and then present our results, focusing on one technical choice at a time.
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Study and Analytic Populations

A total of 349,667 patients met inclusion criteria for the study; 2.1% died during the one 

year follow-up period after their prediction times. Figure 2 summarizes the impact of 

different data density requirements on the size of the applicable population as a fraction of 

the overall study population, and on prevalence of the outcome. As expected, more stringent 

data density requirements reduce the size of the population to which the model can be 

applied, with a reduction of 73% as we increase the requirement from 1 encounter to 8 

encounters. In addition, because patients who are seriously ill tend to have more encounters 

with the healthcare system than healthy patients, prevalence also increases with data density 

requirements, from 2.1% to 3.7%. We emphasize that only a small fraction of the overall 

study population have any hospital encounters (3.2%), and an even smaller fraction (1.9%) 

were admitted as inpatients, during their observation period. Among patients who died 

within a year of their prediction time, only 9.2% had a hospital encounter and 6.9% had an 

inpatient encounter. These statistics highlight the main difference between the general 

primary care population and the hospitalized, generally very ill patients that have been the 

focus of most prior work on mortality and morbidity prediction. Supplementary Materials 

Table 2 details the characteristics of the eligible population as we vary the data density 

requirement.

Model Class

We fit gradient boosted trees and L1 regularized logistic regression models for each 

experimental condition. Under all 16 experimental conditions, gradient boosted trees were 

superior to logistic regression, suggesting that modeling interactions and non-linearities is 

beneficial. As measured by AUROC (Figure 3, first column), boosted trees had an average 

advantage of 4.1% over logistic regression, with a minimum of 2% and a maximum of 7.5%. 

Across all experimental conditions, the mean AUROC of boosted trees was 84.8% and the 

mean AUROC of logistic regression was 80.7%. As measured by AUPRC (Figure 4, first 

column), which takes prevalence into account, the gap between boosted trees and logistic 

regression was smaller but still significant and consistent, with boosted trees outperforming 

logistic regression by 3.4% on average. The smallest gap in performance by AUPRC was 

less than 1.4%, while the largest gap in performance was 7%, and the mean AUPRC across 

all experimental conditions was 9.7% for boosted trees versus 6.4% for logistic regression. 

At a posterior probability threshold of 0.5, the logistic regression models on average had 

higher specificity and lower recall than gradient boosted trees (PPV: 40.1% vs 38.5%, NPV: 

95.7% vs 94.7%, specificity: 99.6% vs 98.5%, recall: 6.89% vs 23.3% for logistic regression 

vs gradient boosting respectively, averaged across other experimental conditions). The mean 

F1 measure, which captures the balance between PPV and recall, at this threshold and 

averaged across all experimental conditions was 0.117 vs 0.290. On average, gradient 

boosted trees provide a much better balance of PPV vs recall.

Diagnosis Code Grouping

The features for our models are high-dimensional and sparse. It has been observed 

previously that grouping ICD diagnosis codes improved the performance of models 

predicting CHF [51]. However, in our study, code grouping had little impact on model 
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performance. Models using CCS diagnosis code groupings versus individual ICD codes had 

average AUROCs of 82.6% versus 82.9% (Figure 3, second column), and AUPRCs of 8.1% 

versus 8.2% (Figure 4, second column), respectively. At a threshold of 0.5, aggregating ICD 

codes into CCS code groups does not significantly change PPV, NPV, specificity, recall or 

F1 (39.3% vs 39.4%, 95.2% vs 95.2%, 99.1% vs 99.0%, 14.9% vs 15.3%, and 0.204 vs 

0.203 respectively). Thus, it appears that for this application there is little benefit to using 

grouped codes.

Data Density Requirements

Intuitively, one might expect that higher data density in the observation window (i.e., more 

encounters or more utilization of health care resources) would improve predictive accuracy 

due to increased information on which to base predictions. Furthermore, because more 

seriously ill patients are likely to have more encounters than healthy patients, we might 

expect that higher data density requirements would increase prevalence (Figure 2).

As we varied the minimum number of encounters required for patient inclusion in the study 

cohort from 1 to 8, we found that there was little variation in mean model performance as 

measured by AUROC (Figure 3, third column), which varied in a relatively narrow range 

from 82.%5 to 83.0%. This suggests that it is not significantly easier to discriminate between 

positive and negative cases when higher data density requirements are enforced.

However, requiring increased data density did have a significant impact on the eligible 

patient population, with a 73% reduction in the size of that population as the minimum 

number of encounters increased from 1 to 8. In addition, the prevalence increased from 2.1% 

for a requirement of 1 encounter to 3.7% for a requirement of 8 encounters (Figure 2). The 

mean AUPRC varied from 7.1% under the 1 encounter requirement to 9.8% under the 8 

encounter requirement (Figure 4, third column). In light of our previous results showing that 

the ability to discriminate between positive and negative cases does not vary dramatically 

when increasing data density requirements, this increase is likely due to the increasing 

prevalence of the positive class. At a threshold of 0.5, we find that specificity is unchanged 

as we vary data density requirements (99.0% at both 1 and 8 encounters), while PPV, NPV, 

and recall vary from 36.6% to 43.4%, 95.7% to 94.4%, and 16.0% to 14.8%, respectively as 

we increase the requirement from 1 encounter to 8. However, the F1 measure remains 

relatively constant, ranging from 0.209 to 0.201, indicating that the increase in PPV driven 

by increasing prevalence of the positive class is cancelled out by a drop in recall.

Sub-group Analysis

We performed a subgroup analysis to evaluate model performance in various intervals (0–3 

months, 3–6 months, 6–9 months, and 9–12 months) after a certain prediction time. We 

would expect it to be more difficult to discriminate patients who die farther from their 

prediction times. Lead time, or how far in advance we can predict an outcome, is a critical 

aspect of model performance. Longer lead times generally make the prediction task more 

difficult, but also offer more room for effective interventions. For patients who died within 3 

months of their prediction times, the mean AUROC for gradient boosted trees using ICD 

codes was 87.9%, falling slightly to 83.6% for patients who died between 9 and 12 months 
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after their prediction times (Figure 3, fourth column). The AUPRC varied more dramatically, 

falling from a high of 13% for the 0–3 month group to 8.3% for the 9–12 month group even 

though the prevalences were roughly equal (Figure 4, fourth column).

Important Features

Regularized logistic regression and gradient boosted trees automatically select relevant 

features. Examining the features selected by each model class can provide insight into both 

their utility and the observed difference in their performance. To these ends, we summarized 

feature importance for both model classes by averaging across data density requirements and 

using ICD coding of diagnoses. For logistic regression, we used the absolute value of the 

model coefficients for each feature. For gradient boosted trees, we used the relative influence 

of each feature. We provide feature importance data in Supplementary Materials 3–5. There 

are two main findings from this analysis.

First, each model class utilizes feature that indicate that the patient in question has already 

been identified as in need of end-of-life care, e.g., encounters coded as 

SPECIALTY.Palliative Medicine and ICD-9 code V49.86 (Do not resuscitate status). 

Gradient boosted tree models also utilize ICD-9 code V66.7 (Encounter for palliative care). 

However, only 2.6% of patients who died within a year of their prediction time had an 

encounter with Palliative Medicine or were assigned V66.7 or V49.86 codes. Ablation 

experiments in which we remove these three features results in drops in AUROC of 0.29% 

and 0.028% and drops in AUPRC of 0.43% and 0.46% for logistic regression and gradient 

boosted trees respectively. We therefore do not anticipate that this the use of (or censoring 

of) these features is a critical issue in these models.

Second, there is substantial agreement between the model classes that certain diagnoses, 

medications, and procedure orders are indicative of high mortality risk, e.g., patients with 

cancer or taking antipsychotic medications are at high risk. However, there are also 

substantive differences between the model classes. For instance, the single most important 

feature for gradient boosted trees is Age, which is only the 30th most important feature for 

logistic regression. In addition, the gradient boosted trees use features that summarize 

patient complexity and health care utilization such as the total number of encounters and the 

number of different medical specialties seen during the observation period, while logistic 

regression assigns zero weight to these features. One important difference between gradient 

boosted trees and logistic regression is that the former can automatically model interactions 

between features. This suggests that such features are most informative in interaction with 

other features and help explain why gradient boosted trees outperform logistic regression; in 

isolation, they are equivocal regarding one year mortality.

Discussion

The purpose of this study was to determine whether the need for advanced illness or end-of-

life care can be accurately predicted outside of the hospital setting, in a general primary care 

population, and to examine the impact of technical choices on predictive performance. In 

this population, only 9.2% of patients who died during the one year follow up period after 

their prediction time had a hospital visit during the prior year, and only 6.9% had an 
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inpatient visit. Thus, over 90% of the patients who died did not have an inpatient encounter, 

highlighting the opportunity for a predictive model for advanced illness or end-of-life care 

needs to guide outreach to these patients in an outpatient setting. We formulated the 

prediction problem using the surrogate outcome of all-cause mortality. Models were 

evaluated using AUROC, which measures the ability to discriminate between positive and 

negative cases regardless of prevalence, and AUPRC, which is sensitive to prevalence and 

may thus be more relevant when there is significant class imbalance [57,58]. In addition, we 

calculated the PPV, NPV, specificity, recall, and F1 measure at a threshold of 0.5. Each 

model was evaluated on the basis of its ability to identify patients who died in three month 

intervals after their prediction times. In contrast to related work [15], in this study we 

employ linear models and gradient boosted trees instead of neural nets, which are more 

easily tunable with limited computation than neural nets. In our experience, there is usually 

little performance difference between well-tuned gradient boosted tree models and neural 

nets for problems using EHR data [43]. We systematically varied model class, diagnosis 

code groupings, and data density requirements to examine the impact on each of these 

factors on model performance and utility.

We found that the most important of these factors was model class, followed by data density 

requirements. Gradient boosted trees consistently outperformed regularized logistic 

regression by significant margins, suggesting that non-linearities and interactions are 

important for this application. At a threshold of 0.5, logistic regression has higher PPV and 

specificity, but significantly lower recall. The F1 measures at this threshold, averaged over 

the experimental conditions, were 0.117 vs 0.290 for logistic regression and gradient 

boosting respectively. Increasing the data density requirement significantly restricted the 

population to which the model could be applied and increased the prevalence of positive 

cases. We found that the AUROC varied only slightly over the range of data densities 

examined, while the AUPRC varied more, suggesting that any gains in performance were 

due primarily to the increased prevalence of positive cases among patients with many 

encounters. At a threshold of 0.5, increasing the data density requirement led to a small gain 

in PPV, but this was balanced out by a concomitant decrease in recall, resulting in no 

significant change in F1 measure. We further observed, consistent with intuition, that it is 

harder to discriminate patients who died farther in the future. However, reasonable 

discrimination was possible even 9 months in advance of death. Finally, dimensionality 

reduction by aggregation of ICD diagnosis codes into CCS categories did not prove to be 

beneficial in this setting. However, it is important to note that these conclusions may not 

apply to other problems using EHR data or to other health systems, and different tasks may 

benefit more or less from the various approaches evaluated in this study. This may be 

especially relevant in health systems which have more complete data.

These results suggest that predictive models using EHR data can be applied to a broad 

patient population, and can effectively identify the need for advanced illness or end of life 

care far enough in advance for effective interventions outside of the inpatient setting where 

such models are usually employed.

Surveillance is typically considered when an important health need is identified for which 

there is a solution available. When individuals who are in an advanced stage of illness have 
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control of care decisions, they often choose home-based, comfort-oriented care [1–4]. 

Despite recent progress translating conceptual definitions of serious illness into effective 

operational criteria using administrative data [59–60], conducting surveillance of a large 

population for patients who are approaching end-of-life remains challenging. Hence, 

accurate predictive models such as those we have developed create opportunities to 

proactively reach individuals in need.

Our work has important limitations with respect to addressing these needs. There are a host 

of cultural issues with predicting end of life including, but not limited to, ethical challenges 

as to how such models might be used, communication challenges around how providers, 

patients, and families are contacted and engaged to discuss options, and management 

challenges to ensure that patient autonomy is not usurped and that fairness and patient 

control of care access is maintained [61]. Fortunately it has been shown that mortality 

predictions are not useful for controlling spending [62] thus reducing the likelihood of one 

potential nefarious use. Data quality remains challenging - Sutter Health is an open health 

care system, meaning that patients may utilize non-Sutter facilities and health care services, 

resulting in an incomplete picture of healthcare utilization and gaps in ascertainment of the 

death outcome for model training. Even after pooling information from multiple sources, 

there may still be under-ascertainment of the outcome in the training data. With more 

complete outcome ascertainment and healthcare utilization data, model performance would 

likely increase. Furthermore, there are challenges in operationalizing such a predictive 

model, especially given that a physician must ultimately decide whether and what actions 

are warranted, recognizing that models are imperfect and mitigating potential harms that 

could arise from their blind use [63]. Decisions must therefore be balanced with caution in 

managing false positives, the benefits of patient control in care decision-making, and the 

risks from future care that offers little benefit.

Conclusion

Constructing and validating a predictive model for end-of-life care needs is the first step in 

identifying which patients should be a priority for timely advanced illness or end-of-life care 

outreach. We have shown that EHR-based predictive models can function well within a 

primary care population, and can accurately predict the need for end-of-life care 9 months or 

more prior to death. We systematically varied model class, diagnosis code groupings, and 

data density requirements to examine the impact on each of these factors on model 

performance and utility. Our results suggest that predictive models using EHR data can be 

applied to a primary care population, and can effectively identify the need for advanced 

illness or end of life care far enough in advance for effective interventions outside of the 

inpatient setting, where such models are usually employed. This work also finds significant 

benefit to modelling non-linearities and interactions, which is easily achieved using off-the-

shelf models such as gradient-boosted trees. Data density requirements induce a tradeoff 

between wide applicability and accuracy of the model. Finally, we found no benefit to 

reducing dimensionality of the problem by aggregating diagnosis codes into CCS groups.
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Highlights

• Outreach to patients with an advanced illness is an important unmet medical 

need.

• Predictive models identify eligible patients with sufficient lead time and 

accuracy.

• Non-linearities and interactions are important for model performance.

• Data density requirements affect model performance and applicability.

• Grouping of diagnosis codes to CCS code categories did not affect 

performance.
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Figure 1. 
We construct a supervised learning problem for the task of predicting all causes mortality 

within a year. The dataset comprises patient level EHR data from July 1, 2011 through July 

1, 2014. We represent each patient’s timeline as a horizontal line, with events shown as blue 

dots (for clinical encounters) or vertical red bars (for mortality). We construct a supervised 

learning problem as follows. For each patient we pick a random time in the second year of 

the study period. We then use the data from the year prior to these times (green segments) to 

predict the probability of mortality in the follow-up period (red segments). Positive cases are 

patients whose timelines end during their follow-up period (2nd and 4th rows). Data density 

requirements may exclude patients from the study. For instance, using a data density 

requirement of 2 encounters, the patient represented by the 3rd row would be excluded 

because they have only 1 encounter during in the year preceding their prediction time.
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Figure 2. 
Impact of data density on eligible population and prevalence. As data density requirements 

increase, the fraction of the population included (and for whom the model would be 

applicable later) falls. Because patients with higher data density tend to be sicker, as data 

density increases, the prevalence of the outcome (death) increases.
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Figure 3. 
Performance measured by AUROC, which emphasizes ability to discriminate between 

positive (patients who died within one year) and negative cases (all others). Our experiments 

manipulated three factors -- model type (GBM = gradient boosted model; LASSO = L1 

regularized logistic regression), data density (minimum number of encounters during the 

observation period), and coding of the diagnoses (CCS vs ICD codes). The first three 

columns compare performance as one factor at a time is varied, with the performance across 

all other settings of the other factors shown. The fourth column shows the subgroup analysis 

evaluating model performance in various intervals. The top row plots shows the absolute 

AUROCs, whereas the plots below show the change in AUROC relative to the indicated 

baseline on the x-axis. These results show that: a) There is substantial, consistent benefit to 

modeling interactions and non-linearities, b) There is no consistent benefit in discrimination 

ability by imposing data density requirements, c) There is no benefit to aggregating 

diagnosis codes from ICD to CCS, and d) As expected it is more difficult to discern positive 

cases who die further in the future.
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Figure 4. 
Performance measured by AUPRC, which takes into account the prevalence of the positive 

class (i.e., patients who died within one year of the prediction time). We show how 

performance compares as we vary one experimental factor at a time, across all other settings 

of the other factors (first three columns). We also show how performance varies with respect 

to how far in the future the positive cases die. The top row shows absolute AUPRC while the 

bottom row shows the change in AUPRC relative to the indicated baseline. These results 

indicate that: a) Again there is consistent benefit to modeling non-linearities and 

interactions, b) Although models do not discriminate between positive and negative cases 

more accurately as we increase data density requirements, the AUPRC still increases due to 

increasing prevalence of the positive class, c) There is again no benefit to coding diagnoses 

as CCS vs ICD-9 codes, and d) As expected it is easier to discern positive cases when death 

occurs farther in the future.
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