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Abstract

Quantifying scientific impact of researchers and journals relies largely on citation counts, despite 

the acknowledged limitations of this approach. The need for more suitable alternatives has 

prompted research into developing advanced metrics, such as h-index and Relative Citation Ratio 

(RCR), as well as better citation categorization schemes to capture the various functions that 

citations serve in a publication. One such scheme involves citation sentiment: whether a reference 

paper is cited positively (agreement with the findings of the reference paper), negatively 

(disagreement), or neutrally. The ability to classify citation function in this manner can be viewed 

as a first step toward a more finegrained bibliometrics. In this study, we compared several 

approaches, varying in complexity, for classification of citation sentiment in clinical trial 

publications. Using a corpus of 285 discussion sections from as many publications (a total of 

4,182 citations), we developed a rule-based method as well as supervised machine learning models 

based on support vector machines (SVM) and two variants of deep neural networks; namely, 

convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). A 

CNN model augmented with hand-crafted features yielded the best performance (0.882 accuracy 

and 0.721 macro-F1 on held-out set). Our results show that baseline performances of traditional 

supervised learning algorithms and deep neural network architectures are similar and that hand-

crafted features based on sentiment dictionaries and rhetorical structure allow neural network 

approaches to outperform traditional machine learning approaches for this task. We make the rule-

based method and the best-performing neural network model publicly available at: https://

github.com/kilicogluh/clinical-citation-sentiment.
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1. Introduction

Citation-based metrics, such as journal impact factors [1], g-index [2], and h-index [3] are 

widely used to quantify and evaluate scientific impact of journals and scientists [4]. 

Academic institutions use such metrics as proxies for the quality of a scientist’s output and 

they contribute to decisions about tenure and promotion. Funding agencies also take these 

metrics into account for awarding grants and justifying renewals. Citation-based metrics 

primarily rely on citation counts, and assume that each article contains the same level of 

scientific contribution and that each citation is equally important [5]. The flaws of these 

assumptions have been widely discussed, and a strong consensus has emerged in recent 

years against an overreliance on such metrics for measuring scientific impact [6, 7]. 

However, their use remains common practice. In recent years, more sophisticated new 

metrics, such as Relative Citation Ratio (RCR) [7], have been proposed, even though such 

alternatives also rely on citation frequency, and are thus unable to account for the 

qualitatively different ways in which an article may be cited. For example, a publication can 

be cited as support for findings, or its findings can be disputed; it can be cited as a key point 

of departure for the current work or as “homage to pioneers” [5]. Making such distinctions 

can not only provide the basis for better evidence assessment and synthesis, but also help to 

develop more accurate bibliometric measures.
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Citation content analysis research focuses on describing and classifying semantic 

relationships between the citing and the reference (or cited) works [8, 9], providing a more 

nuanced, qualitative view of how an article is cited. This has the potential to enhance 

bibliometric measures and allow stakeholders to make more informed decision about 

scientific contribution and impact. Many classification schemes to describe the relationships 

between the citing and the reference papers have been developed over time. Relatively 

coarse-grained classifications involve categorizing citations based on whether or not they are 

significant for the citing work [10, 11] or based on the sentiment expressed in the citing 

paper towards the reference: whether it is being criticized or its findings refuted (negative), 

cited in a positive light or its findings confirmed (positive), or cited neutrally [12, 13]. More 

fine-grained classification schemes involve citation function, that is, the role that the citation 

plays in citing paper, for which many classifications with varying degrees of complexity 

have been developed [14, 15, 16, 17, 18]. For example, Teufel et al.’s [16] citation function 

classification includes categories, such as PBAS (author uses reference work as starting point) 

and COCO-(unfavorable comparison/contrast with citing work). Some of these classification 

schemes are purely descriptive [14, 15], others have been used for corpus annotation [16, 17, 

18], and a limited number of them for automatic citation content analysis [17, 18, 19].

Most citation content analysis research has focused on the computational linguistics 

literature ([12, 16, 19, 20], among others). In recent years, the biomedical literature has also 

garnered some attention [13, 17, 21]. In one of these studies, Xu et al. [13] presented a 

corpus of clinical trial articles annotated for citation sentiment, and experimented with 

support vector machine (SVM) models and a variety of features to identify these categories. 

In addition to enhancing bibliometric measures, they proposed that citation sentiment 

analysis can enable citation bias analysis [22] and help detect non-reproducible studies. 

While drawing such conclusions based on citation sentiment analysis alone may not be 

straightforward, three-way citation sentiment classification (positive/negative/neutral) strikes 

a balance between the widely-used quantitative metrics and complex citation function 

schemes, providing a qualitative assessment at a granularity that is easier to annotate and 

reach consensus on than citation function categorizations [23]. Furthermore, sentiment 

polarity is often implicit in fine-grained citation function categories [23]. For example, the 

COCO- (unfavorable comparison/contrast with the citing work) category in Teufel et al.’s [16] 

classification is implicitly negative.

In this paper, we focus on developing methods to automatically recognize citation sentiment 

in biomedical literature. We take Xu et al.’s [13] work as the starting point and use their 

corpus of clinical trial articles annotated for citation sentiment for training and evaluation. 

We experiment with methods of varying complexity: a relatively simple rule-based method, 

a traditional supervised machine learning method similar to that employed by Xu et al. [13], 

and two deep neural network variants. We also conduct experiments to assess the effect of 

citation context (i.e., the passage in the citing paper that discusses the reference paper) and 

citation subject matter (i.e., the part of the citation context that is about the topic of the 

reference paper) on citation sentiment analysis. Additionally, we experiment with several 

sampling techniques to address corpus imbalance, and we compare the generalizability of 

the methods, using a portion of the dataset as a held-out test set. A convolutional neural 

network (CNN) model that relies on dependency-enhanced word as well as part-of-speech 
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(POS) embeddings and hand-crafted phrase-level features yields the best classification 

performance. Our results also indicate that taking into account manual citation context and 

subject matter annotations degrades the performance, and that undersampling instances 

belonging to the majority class (neutral sentiment) has limited effect on classification.

2. Related Work

In this section, we discuss some of the relevant research in automatic citation content 

analysis (see recent reviews [21, 24] for in-depth analyses of this topic).

Most automatic citation analysis research has focused on the computational linguistics 

literature, owing to the availability of a corpus of full-text articles (ACL Anthology Network 

Corpus) [25]. This corpus has been used to study citation significance [10], citation 
sentiment [12, 26], as well as citation context [20, 27]. Citation significance and sentiment 

have been addressed as classification tasks, while citation context recognition has been 

studied both as a classification and a sequence labeling task. Conventional supervised 

machine learning techniques with various lexical, syntactic, and citation-specific features 

have been applied. For example, in his study on citation significance, Athar [10] used as 

features the similarity of the citation sentence (i.e. the sentence containing an explicit 

citation) with the title of the article as well as number of sentences with acronyms, with 

formal citation to the paper, and to the author’s name, and achieved the best results with a 

Naive Bayes classifier (0.55 F1). In an earlier study on citation sentiment recognition [12], 

he used an SVM classifier with n-gram and dependency relation features from the citation 

sentence, obtaining a macro-F1 score of 0.76. Qazvinian and Radev [27] studied detection of 

citation context, the span of text that discusses the reference paper in the citing paper. Their 

approach, based on Markov Random Fields, used sentence similarity and lexical features to 

detect the neighboring sentences that are part of the citation context, and improved extractive 

summarization due to better citation context recognition. From a different angle, Abu-Jbara 

and Radev [20] investigated citation contexts that are shorter than the full sentence. They 

compared several classification and sequence labeling approaches, achieving the best results 

(0.87 F1) with a Conditional Random Fields (CRF) model augmented with rule-based post-

processing. The effect of accurate, multi-sentence context identification on citation 

sentiment has also been investigated [26, 28], with contradictory results. While Abu Jbara et 

al. [28] found that citation sentiment recognition performance improved with ground truth 

context information (specifically for polarized citations), Athar and Teufel [26] found that 

classification without multi-sentence context (i.e., citation sentence only) performed better, 

attributing this to data sparsity resulting from larger citation contexts.

Several studies involved other smaller corpora, while still focusing on computational 

linguistics articles. In early work, Teufel et al. [16] developed a fine-grained citation 
function classification consisting of 12 categories (e.g., WEAK (weakness of the cited 

approach), PBAS (author uses cited work as starting point)) and presented a corpus annotated 

with these categories. Inter-annotator agreement was found to be 0.72 (Cohen’s κ). In a 

follow-up study [19], they used a memory-based learning algorithm to recognize these 

categories, achieving Cohen’s κ of 0.57. Features used included cue phrases in the citation 

sentence, position of the citation, and whether the citation was a self-citation. More recently, 
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Zhu et al. [11] focused on the notion of citation influence (similar to significance), building 

a corpus by surveying authors about the most influential citations in their papers. Based on 

this corpus, they built SVM models using features based on counts, similarity, position, and 

context. Their results indicate that the number of times the reference paper is cited is the 

most predictive feature of citation influence. Hernández-Alvarez et al. [18] proposed a 

composite classification scheme based on four dimensions (function, polarity, influence, and 

aspects), the latter referring to key phrases indicating citation use. They suggested that this 

approach simplified annotation while providing adequate information for qualitatively 

measuring the impact of a reference paper in a citing paper. They reported inter-annotator 

agreement of 0.86 and 0.91 for citation function and polarity, respectively. They obtained F1 

scores of 0.89 and 0.93 in recognizing these dimensions, using SVM models based on aspect 

(i.e., key phrase) features.

In the biomedical domain, citation content analysis is a relatively understudied research area. 

Few existing studies focus on different corpora and tasks, also relying primarily on 

supervised machine learning approaches. In early work, Agarwal et al. [17] annotated a 

corpus of 43 biomedical articles with eight citation function categories (Background/

Perfunctory, Contemporary, Contrast/Conflict, Evaluation, Explanation of results, Material/

Method, Modality, Similarity/Consistency), obtaining moderate inter-annotator agreement 

(κ=0.63). Using n-gram features with SVM and Naive Bayes models, they achieved a 

macro-F1 score of 0.75. Xu et al. [13] investigated citation sentiment, annotating the 

discussion sections of 285 clinical trial articles. They trained SVM models using as features 

n-grams as well as sentiment lexicons and higher-level phrase categories indicating 

rhetorical structure (e.g., CITING_WORK, NEGATION, CONTRAST), obtaining a macro-F1 score of 

0.72. Jia [21] developed a two-level annotation scheme, the top level concerning citation 

polarity, and the bottom-level involving eight citation function categories (e.g., 

Confirmation, Contrast/Conflict). She annotated a corpus of 1823 citation sentences, 

obtaining moderate intra-annotator agreement (κ=0.71). Experimenting with various 

supervised machine learning techniques and feature combinations, she achieved the best 

results with POS tags, n-grams, and dependency features and linear SVM models (0.73 F1 

score for citation function and 0.78 F1 score for citation polarity). It is worth noting that the 

schemes proposed by Agarwal et al. [17] and Jia [21] both address citation sentiment to 

some extent, as they incorporate categories of Confirmation and Contrast, subsumed by the 

positive and negative sentiment classes of Xu et al. [13], Abu Jbara et al. [28] and others.

3. Materials and Methods

In this section, we first briefly describe the corpus that we used in this study, developed in 

previous work [13]. We also describe additional annotation we performed on this corpus to 

better understand the role of citation context in citation sentiment classification. Next, we 

provide details about the methods we used: a rule-based method that is based on scoring key 

phrases, SVM models with a variety of features discussed in earlier work, and two deep 

neural network variants: a convolutional neural network (CNN) model and a bidirectional 

long short-term memory (BiLSTM) model, both being increasingly used for natural 

language processing tasks.
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3.1. Annotated Corpus

For our experiments, we used a corpus of 285 clinical trial articles with 4,182 citations 

annotated for citation sentiment (Positive, Negative, and Neutral) [13]. We obtained the 

corpus from the primary author of the corresponding publication via personal 

communication1. In this corpus, only the discussion sections of the articles have been 

annotated, since these sections have a fairly significant rhetorical component and are thus 

more likely to contain opinionated citations. The annotation scheme was presented as a 

decision tree (reproduced in Supplementary File 1). The corpus was double-annotated and 

adjudicated. The inter-annotator agreement was reported to be 0.504 (Cohen’s κ), indicating 

moderate agreement. The basic statistics of the corpus is shown in Table 1. Similar to other 

citation sentiment corpora, this corpus is also imbalanced, with most citations being Neutral.

It is important to reiterate at this point that in the context of citation analysis, sentiment is 

broadly used to include agreement (positive sentiment) or disagreement (negative) of the 

findings in the citing paper with those of reference paper, rather than indicating a value 

judgment about the reference paper (good or bad). The examples for sentiment classes given 

in Table 2 illustrate this point. Key sentiment-related phrases are underlined.

3.2. Citation context and subject matter annotation

One of our goals in this study was to more accurately assess the effect of citation context on 

classification and isolate the effect of citation subject matter. The effect of context size on 

classification, generally in terms of number of sentences surrounding the citation sentence, 

has been considered in previous work (e.g., [27, 26]), with inconclusive results. In principle, 

it also seems plausible that discussion of subject matter of the reference paper would lead to 

noisy features, as citation sentiment is often indicated with a few rhetorical phrases that are 

distinct from the clauses discussing biomedical topics such as treatments and adverse 

effects. This intuition also underpinned earlier work in unsupervised learning of rhetorical 

structure in scientific writing [29]. Consider the example with Negative sentiment in Table 2. 

The citation sentence does not contain any explicitly negative phrase, while it seems crucial 

to recognize that the previous sentence (These results differ from two previous studies.) is 

part of this citation’s context. Furthermore, the subject matter (discussion of glucose control 

and morbidity/mortality) seems essentially irrelevant for citation classification.

In view of these considerations, we also conducted an exploratory annotation of citation 

context and subject matter on this corpus. We defined citation context as “the spans of text 

that are relevant to understanding the contribution of a particular citation to the article in 

consideration”. We also stipulated that citation context should be interpretable in isolation 

and that it can consist of one sentence, a fragment of a sentence, or a set of sentences (either 

contiguous or non-contiguous). Citation subject matter was defined as “the main substance/

argument/claim of the reference paper that the citing paper refers to or compares/contrasts 

with”. It is the same as or is subsumed by the citation context and is often a factual/neutral 

statement attributed to the author of the reference paper. In the Negative example in Table 2, 

the subject matter was annotated as patients in a cardiovascular ICU [5] demonstrated a 

1While the corpus is currently not publicly available, it can be requested from the authors of that paper.
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decrease in morbidity and mortality, whereas in the Neutral example, the subject matter is 

the same as the context, the full sentence.

In the first step of annotation, four authors (HK, ST, GR, JS) annotated and reconciled seven 

articles, and developed annotation guidelines. Next, 30 articles were annotated by three 

authors (HK, GR, JS) according to the guidelines and reconciled by two (HK, GR). Then, 

the rest was annotated by a single annotator (GR). On the 30 articles that were annotated 

independently based on the guidelines, we calculated inter-annotator agreement using F1 

measure, when one set of annotations was taken as the ground truth. We considered both 

exact and partial matches of annotations. With exact match, mean average agreement was 

low (context: 0.56, subject matter: 0.33). Considering partial matches, we observed much 

higher agreement (0.83 for both context and subject matter), which suggests that the main 

difficulty in annotating these elements is identifying their precise boundaries. The resulting 

set of annotations can be considered a “silver” standard, since it was not fully adjudicated.

3.3. Rule-based method

Our rule-based method generates a cumulative sentiment score for each citation c (cscore(c)) 

and uses thresholding to determine the sentiment class for the citation. Sentiment scores are 

generated using a list of key phrases, each of which (p) is assigned a pre-computed score 

based on their occurrences in positive and negative citation contexts (pscore(p)). An initial 

phrase list was constructed, based on the dictionary developed by Teufel [5] and categorized 

into various relevant classes (e.g., Comparison, Contrast, Good, Negation) in her work on 

citation analysis. We augmented this list with positive and negative word lists used by Xu et 

al. [13], resulting in a total of 570 phrases. We manually reduced this list to 189 phrases, 

selecting those explicitly indicating positive or negative assessment. We then calculated the 

number of times each of these phrases occurred in the context of citations with positive vs. 

negative sentiment in the training set. If an explicit negation marker (e.g., no, not) appeared 

in a window size of 2 preceding the phrase p, the opposite sentiment was recorded. Citation 

context was taken to be the single sentence containing the citation. We calculated a score for 

the phrase with the formula given below:

pscore p = nPOS p − nNEG p / nNEU p + 1

nPOS(p) indicates the number of times the phrase p appears in a positive context, nNEG(p) the 

number of times it appears in a negative context, and nNEU(p) the number of times it appears 

in a neutral context. 41 terms were assigned a sentiment score of zero, leaving us with 148 

phrases.

We then calculated a cumulative sentiment score for each citation (cscore(c)), summing up 

the scores associated with the relevant phrases in the context. The scores were adjusted in 

three ways:

• If the relevant phrase p appears as sentence-initial, and is a contrastive discourse 

marker (e.g., however, nevertheless, despite), it is excluded from the calculation.
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• If there is an explicit negation marker in a window size of 2 preceding p, we 

reverse the sign of its score (−pscore(p)).

• If the score resulting from the phrase is less than zero, we apply a weight to this 

score by a factor based on the distance between the phrase and the citation. This 

factor is given as: log2d(p, c), where d(p, c) indicates the distance between p and 

c in terms of lexical units.

The citation sentiment value is determined from the resulting cumulative score cscore(c) as 

follows. The thresholds for POS and NEG classes were determined using the training set.

sentiment c =
POS, if cscore c > 1
NEG, if cscore c < − 0.1
NEU, otherwise.

3.4. Support vector machines (SVM)

The goal of SVM experiments was four-fold: a) to reproduce the results of Xu et al. [13], b) 

to experiment with additional features, c) to use additional citation context and subject 

matter annotations and assess their effect on citation sentiment classification, and d) to 

address class imbalance using undersampling techniques.

To reproduce the results of Xu et al. [13], we re-implemented their features based on their 

description. They reported three types of features, briefly explained below. All features 

consider the elements within the citation context, which they defined as “the citation 

sentence plus the next sentence, unless the next sentence contains another citation or starts 

with a contrastive discourse marker”.

• n-gram features

– All unigram, bigram, and trigrams in the context

– Total number of negation phrases in the context

– For a word within negation scope (i.e., word within a window of 2 

words following a negation term), NOT_word features

• Sentiment lexicon features based on positive and negative lexicons derived from 

the corpus (53 and 46 phrases, respectively)

– The presence/absence of a sentiment phrase with its polarity (opposite 

polarity if the phrase is within negation scope)

• Structure features based on rhetorical phrase lists for citing work (e.g., Our data), 

comparatives, negation, sentiment, and contrastive markers

– Unigrams, bigrams, and trigrams of the phrase types recognized in the 

context (e.g., CITINGWORK_CONTRAST_POS trigram)

– If there is a CONTRAST phrase, the direction of this phrase with respect to 

the other phrases (e.g., CITINGWORK_CONTRAST and CONTRAST_POS for the 

trigram above)
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Like Xu et al. [13], we used LIBLINEAR [30] implementation of SVM with default 

parameters (L2-regularized, L2-loss classification, regularization parameter C = 1). We used 

Weka release 3.8.2 in our experiments.

To improve classification, we also considered additional features proposed in prior work on 

citation sentiment, including features based on POS tags and syntactic dependency relations. 

Syntactic dependency features were found to be useful in Athar et al.’s [12] and in Jia et 

al.’s work [21], while POS tags were found useful in Jia’s work [21]. We computed syntactic 

dependencies using the Stanford Core NLP toolkit [31]2, and represented each syntactic 

dependency in the citation context as a feature. We generated two types of POS features. 

First, POS n-grams (unigram, bigram, and trigrams) used POS tag sequences as features. 

Secondly, we concatenated token n-gram features with their POS tags, to address ambiguity 

to some extent.

We augmented the resulting set of features in two ways. First, for features involving tokens 

(n-gram, n-gram-POS pair, syntactic dependency features), we used lemmas instead of 

tokens. Secondly, we used the prediction made by the rule-based method as an additional 

feature. Features and their illustration on an example instance are shown in Table 3. The 

surrogate [TC] indicates the citation under consideration, and [OC] indicates other citation in 

the context.

We used citation context/subject matter annotations in our experiments as follows: first, 

instead of using the heuristics for determining the context as proposed by Xu et al. [13], we 

used the “silver” citation contexts annotations. Second, we simply substituted the text spans 

corresponding to subject matter annotations with the surrogate [SUBJECT_MATTER] before 

computing the features described above.

3.4.1. Undersampling—Since the majority of instances in the dataset are neutral in 

sentiment, we also conducted experiments that undersampled those instances. In one 

experiment, we randomly selected a subset of neutral examples to reach a predefined ratio of 

positive and negative examples versus neutral instances to use for training. Considering that 

the proportion of the total number of POS and NEG instances to the number of NEU instances in 

the dataset is 1:3.15, we used ratios of 1:1 and 1:2 in undersampling. In another experiment, 

we used the Easy Ensemble method for undersampling [32], in which we divided the neutral 

instances randomly into five subsets, trained five models by augmenting each neutral subset 

with all the positive and negative instances, and used majority voting among these trained 

models to predict the sentiment class.

3.5. Deep neural network models

In recent years, approaches based on deep neural network (NN) architectures in conjunction 

with distributed text representations have dominated the NLP field, including text 

classification tasks [33]. To evaluate these approaches for citation sentiment classification, 

we experimented with two well-known NN architectures, convolutional neural networks 

(CNNs) [34] and bidirectional long short-term memory networks (BiLSTMs) [35]. We also 

2We also used this toolkit for tokenization and POS tagging.
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evaluated several distributed text representations and their combination as input to these 

models: word embeddings [36], dependency-based word embeddings [37], and POS 

embeddings. In addition, we investigated the effect of augmenting the models with 

predictive hand-crafted features that were used for SVM models.

Below, we first briefly describe the distributed text representations used in this study, and 

then provide a high-level overview of the deep neural network models.

3.5.1. Distributed text representations—In this work, NN models use the sentence 

in which a given citation mention occurs as the input context for that mention. To generate 

input for these models, each citation sentence is tokenized and represented as a sentence 
matrix, where the rows correspond to dense vector representations of each token in the 

sentence. For a sentence that consists of s tokens and a vector dimensionality of d, the 

dimensionality of the sentence matrix is s × d.

Most commonly, word embeddings learned from text corpora using unsupervised methods 

such as word2vec [38] are used as distributed text representations. The core idea underlying 

word embeddings has also been generalized to generate other types of embeddings, 

including character, POS, or dependency-based embeddings. We considered word, POS, and 

dependency-based embeddings in this work, based on our observation that such information 

proved useful as features in SVM experiments.

As word embeddings, we used the publicly available biomedical word embeddings pre-

trained on PubMed abstracts and PubMed Central articles using word2vec [39]3. These 

embeddings consist of 200-dimensional vectors (d = 200) and were generated using the skip-

gram model with a window size of 5, hierarchical softmax training, and a frequent word 

subsampling threshold of 0.001. During our training process, word vectors were further 

modified via backward propagation (i.e., non-static embeddings).

In the absence of similarly pre-trained part-of-speech vectors, we generated POS 

embeddings ourselves from the full-text of 2200 clinical trial articles retrieved from PubMed 

Central in addition to the original training data for citation sentiment analysis. To generate 

these embeddings, POS tags associated with the tokens were used instead of the tokens 

themselves. The gensim4 implementation of the word2vec algorithm is used to generate 30-

dimensional part-of-speech vectors using the skip-gram model, a window size of 5 and a 

sample count of 5 for negative sampling.

As dependency-enhanced word embeddings, we used 300-dimensional vectors pre-trained 

on English Wikipedia corpus [37]. These embeddings were generated using the skip-gram 

model with a sample count of 15 for negative sampling. When so indicated, these 

dependency-enhanced embeddings substitute the pre-trained word embeddings in our 

experiments. As with word embeddings, both POS and dependency-enhanced word 

embeddings are further modified during training.

3http://bio.nlplab.org/
4https://radimrehurek.com/gensim/ 
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3.5.2. Convolution neural networks—Convolutional networks (CNNs) are a type of 

feed-forward neural network, originally developed for image recognition tasks [34, 40]. 

More recently, they have also been successfully applied to various text classification tasks 

[33, 41, 42]. In a text classification scenario, a CNN essentially identifies informative 

localized patterns in the text, and combines them to produce a fixed size feature 

representation of the text. To achieve this, CNNs use convolution and pooling operations. 

Convolution operation involves a convolution filter, which is applied to a window of words 

in the sentence (i.e., filter region) to produce a feature map representation for that window. 

1-max pooling operation then identifies the most important feature corresponding to each 

filter. These features are combined and passed to a fully connected softmax layer whose 

output is the probability distribution over labels. We refer the reader to [33, 41] for a more 

formal and in-depth discussion of the CNN architecture.

Kim [41] proposed a CNN with a single convolution layer (one-layer CNN) that achieved 

state-of-the-art results on several well-known text classification datasets. Owing to its 

relative simplicity and good performance, one-layer CNN architecture has been proposed as 

a drop-in replacement for traditional supervised machine learning approaches, such as SVM 

[43]. We adopted this one-layer CNN architecture in this study. The following model 

configuration was used in training the CNN model: activation function (rectified linear 

units), filter region size (3,4,5), feature maps (200), dropout rate (0.5), and mini-batch size 

(16). A random 20% of the training data serves as the development set. We trained the model 

for a maximum of 20 epochs while checkpointing on each epoch. The final network 

parameters correspond to the checkpoint that performed best on the development set. We 

illustrate our CNN architecture in Fig. 1.

3.5.3. Bidirectional long short-term memory—While representations derived from 

CNNs offer some sensitivity to word order, they are restricted to mostly local patterns, and 

cannot account for the order of patterns that are far apart in a sequence. Recurrent neural 

networks (RNNs) [44] have been proposed specifically for sequential data and can learn 

arbitrarily long-distance dependencies. Accordingly, they have been primarily applied to 

sequence modeling tasks in NLP, such as language modeling, named entity recognition, and 

relation extraction [33]. However, some text classification studies also demonstrated superior 

performance with RNN-based architectures [45]. Therefore, we considered such an 

architecture in this work, as well.

RNNs employ cyclical connections to recurrently compose context vectors of a sentence 

from left to right, accumulating information from the previously seen word sequence. The 

input to an RNN at each time step is a vector representation of the next word in text and the 

output is a vector representation of the context, including the current word and all the 

previous words. The output of the hidden layer is fed back to itself at consecutive time steps.

Long short-term memory (LSTM) network [35] is a type of RNN that aims to address some 

of the limitations associated with the basic RNN architecture, primarily the vanishing 

gradients problem. An LSTM network substitutes the conventional hidden layer of an RNN 

with an LSTM unit, which consists of a memory cell and three gates that control the 

information flow into and out of the cell: input gate, forget gate, and output gate. The 
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memory cell remembers values over arbitrary time intervals. The input gate limits the extent 

of information from the next input to incorporate into the memory, the forget gate controls 

how much of the current memory is to be forgotten, and the output gate determines how 

much of the information from the current memory cell to propagate to the output state.

A modification of the LSTM architecture, called bidirectional LSTM (BiLSTM) builds on 

the notion that words following the current word may also be useful for prediction tasks, 

allowing to look arbitrarily far at both the past and the future. A BiLSTM network consists 

of two separate RNNs, each using its own parameters and capturing the context from one 

direction (left-right or right-left). To generate the output for each time step, output vectors 

from each RNN are typically concatenated. We refer the reader to [33] for a more formal 

and in-depth discussion of RNN and related architectures.

In this work, we use the BiLSTM variant described in Kavuluru et al. [46]. This variant 

augments the BiLSTM with a subsequent 1-max pooling layer, which generates one feature 

vector for each sentence, and a fully-connected softmax layer that outputs probability 

distributions. The following experimental setup was used in training the BiLSTM model: 

hidden size (200), dropout rate (0.5), and mini-batch size (16). Unlike Kavuluru et al. [46], 

we did not include position vectors (encoding the distance of a word to the citation mention) 

as input, as we did not observe any benefit from their inclusion. The overall training 

procedure of the BiLSTM model mirrors that of the CNN model. The BiLSTM architecture 

is illustrated in Fig. 2.

3.5.4. Additional high-level features—To determine whether NN models can be 

augmented with high-level contextual features (as opposed to word-level features) to 

improve performance further, we concatenated a feature representation derived from some 

features used by the SVM model to the feature representation derived from neural models 

before the fully connected softmax layer. The features incorporated in this way are: part-of-

speech n-grams (POSGRAM), negation count, negated unigrams, sentiment lexicon features 

(SENT), structure features (STRUCT), and rule-based output. These feature sets corresponded to 

a total of 4539 features in SVM training. Using principal component analysis (PCA), we 

reduced the dimensionality of this feature representation to 200 to ensure that these features 

do not overwhelm the features derived using neural architectures.

3.6. Evaluation

We performed two types of evaluation. First, we measured the performance of SVM and NN 

models using 10-fold cross-validation, following Xu et al. [13]. Second, we measured 

performance of these models using a 80-20 training/test split of documents. This was done 

to a) provide a fair comparison to the rule-based method, which was based on an analysis of 

the 80% of the corpus documents, and b) to assess the generalizability of SVM/NN models 

and various features to unseen data. The evaluation metrics used were overall accuracy and 

macro-F1 scores, as well as precision, recall, and F1 scores for each sentiment class. Unlike 

Xu et al. [13], we do not report micro-F1, since trends with this metric were the same as 

those observed with accuracy.
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Since the deep NN training process is highly stochastic in nature, different models with 

different randomly initialized parameters typically result in slightly different performance. 

One solution is model averaging, where the final class is predicted based on the average of 

probability estimates of multiple models trained using the same architecture with different 

parameter initializations with the goal of reducing variance and improving performance. In 

this work, we use model averaging to report NN performance. To do this, we trained a pool 

of 20 models each with different random parameter initializations and the same 80-20 split 

for the training and development set. The final reported evaluation measures are based on 

averaging the individual performance of 20 “runs” where each “run” corresponds to an 

ensemble of ten models randomly sampled from the pool. The ensembling aspect improves 

stability, while reporting mean-performance over “runs” allows us to draw comparisons 

based on average model behavior.

4. Results

In this section, we first provide the results of 10-fold cross-validation experiments. Results 

obtained with SVM models are presented and compared to earlier results reported in Xu et 

al. [13]. We also examine the effect of citation context/subject matter annotations and 

various sampling approaches on performance of the best SVM model. Next, we present the 

results obtained with NN models. We conclude this section by providing a comparison of 

rule-based, SVM, and NN methods on a held-out test set.

4.1. SVM experiments

The results of SVM experiments with 10-fold cross-validation are provided in Table 4. To a 

large extent, we were able to reproduce the results of Xu et al. [13], matching their accuracy, 

while obtaining slightly better results for NEG and NEU classes. On the other hand, the 

replication results were very slightly lower for macro-F1 and the pos class. These minor 

differences are likely due to possible differences in the pre-processing steps, such as 

tokenization, or in phrase lists, as well as the precise cross-validation folds used.

Using lemmas instead of tokens (NGRAML vs. NGRAM) improved overall accuracy and macro-

F1 , as well as the performance for POS and NEU classes, while leading to a slight degradation 

in performance for the NEG class.

The effect of dependency features (DEP) and the rule-based method output (RULE) on 

classification performance was positive, with increases in overall measures, as well as F1 

scores for all sentiment classes. In particular, we matched the best SVM accuracy (0.878) 

and obtained the best SVM POS class performance (0.744 F1) with the addition of these 

features.

The addition of part-of-speech information helped mainly with the NEG class performance 

and with macro-F1, the main performance criterion in this study. Using n-gram-POS pairs 

(NGRAML_POS) and POS sequences (POSGRAM) as additional features, we obtained the best NEG 

class performance (0.556 F1 score), as well as the best macro-F1 score (0.741), which 

represents a 3.1% improvement over the score reported in Xu et al. [13].
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With macro-F1 as the main evaluation criterion, we used the best feature combination 

(NGRAML_POS + POSGRAM + SENT + STRUCT + DEP + RULE) as the basis of experiments that 

incorporated “silver” citation context and subject matter annotations as well as those that 

considered undersampling. The results of these experiments are presented in Table 5.

Incorporating citation context and subject matter degraded the results across the board. A 

similar overall degradation in performance was also observed with undersampling, although 

we observed some improvements for polarized classes (POS and NEG). For a balanced dataset 

(1:1 ratio), we obtained the best recall and F1 score for the POS class. On the other hand, the 

Easy Ensemble method led to the best precision for this class as well as best recall for the 

NEG class. However, the performance for the majority class (NEU) suffered in all cases.

4.2. NN experiments

The results of NN experiments are provided in Table 6. The performance of the baseline 

BiLSTM model is somewhat higher than that of the baseline CNN model (0.668 macro-F1 

vs. 0.635), but neither baseline model performs any better than baseline SVM model that use 

simple n-gram features (macro-F1 of 0.665– full data not shown). However, with additional 

features and embeddings, the CNN model outperforms the corresponding BiLSTM model 

(0.757 macro-F1 vs. 0.732). We did not observe any improvement due to simply substituting 

word vectors in the baseline model with POS and dependency-enhanced word vectors.

Augmenting neural network models with additional high-level features improved results 

across the board. Simply adding these features to baseline models increased the macro-F1 

score by more than 13% and 10% for CNN and BiLSTM, respectively. Interestingly, while 

using POS and dependency-enhanced word vectors with the baseline models degraded 

overall results slightly, when both these vectors were used as input in conjunction with high-

level features, they yielded the best overall results (a 5.6% improvement in macro-F1 and an 

increase of 3% in accuracy over replication of Xu et al. [13]). There was also improvement 

when either of these vectors was used in conjunction with high-level features (full data not 

shown), though their combination performed best. We note that this additional performance 

improvement due to POS and dependency-enhanced word embeddings was only observed 

for CNN (macro-F1 of 0.757 vs. 0.719), and not for BiLSTM (macro-F1 of 0.732 vs. 0.731).

4.3. Comparison of Three Approaches

To provide a fair comparison to the rule-based method, we also used a 80-20 training/test 

document split for classification. In Table 7, we report the results on the test split for the 

rule-based method and the SVM model that uses the features in Xu et al. [13], as well as the 

best-performing SVM and NN models.

The performance of the rule-based method did not reach that of the supervised learning 

methods. It particularly performed poorly for the NEG class. We also observed that both Xu et 

al.’s SVM model and the best SVM model incur a significant performance hit for the NEG 

class (38% and 31% degradation in F1 score, respectively) on the held-out test set. On the 

other hand, the performances for other classes were reasonably close when we compare the 

rule-based method with the SVM models and the SVM models to one another. Finally, our 
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best SVM model performs better than that of Xu et al. [13], as with 10-fold cross-validation, 

though the improvement observed on the held-out set is slightly larger (3.6% in macro-F1).

The NN model, on the other hand, seems to generalize better than other approaches. The 

performance drop for the NEG class in this case is about 9% (macro-F1 of 0.552 vs. 0.497) on 

the held-out set. Overall macro-F1 drop is 4.8%, compared to 11.7% and 12.2% for the Xu et 

al. model and the best SVM model, respectively. Lastly, the accuracy degrades by 1.6% for 

the best NN model, compared with 3.2% for the best SVM model and 2.7% for the Xu et al. 

model.

5. Discussion

5.1. SVM models

We were able to improve upon earlier work by using additional features based on part-of-

speech tags, dependency relations, and rules. These features as well as other high level 

sentiment features proposed in earlier work also proved useful within a CNN architecture, 

leading to our best results. In all experiments, the performance on the NEG class lagged 

behind that on pos and NEU classes, confirming the earlier findings that criticism toward or 

disagreement with a reference paper is often not very clear-cut, while praise or confirmation 

of the reference paper is expressed more explicitly [5, 13, 26].

The experiment that considered “silver” citation context annotation yielded poorer 

performance, consistent with the findings in Athar and Teufel [26], who explain the 

degradation by data sparsity with larger citation contexts. Using subject matter annotations 

further degraded performance, indicating that successful supervised models for this task 

learn to classify using features from the topical language surrounding the citation, possibly 

leading to overfitting. While undersampling improved results for the minority classes, this 

came at the expense of some overall degradation. Thus, it seems safe to conclude that 

undersampling should be considered only in cases in which recall of positive and negative 

sentiment is the most critical concern.

5.2. NN models

The majority of studies comparing NN architectures and traditional supervised learning 

algorithms for text classification find that NN architectures outperform such algorithms in a 

baseline configuration [43]; however, our results contrast with this general finding. This may 

be due to several reasons. First, our training data may not be large enough to benefit from 

NN architectures. Secondly, the n-gram-based SVM model may be overfitting the data, as 

suggested above. Finally, citation sentiment analysis task may be a more challenging 

problem, compared to the text classification tasks considered in earlier studies.

In NN experiments, using part-of-speech and dependency-enhanced word vectors did not 

yield any improvement over simple word vectors. This may be partly due to the fact that we 

trained POS vectors on our relatively small corpus and we used dependency-enhanced word 

vectors pre-trained on a general English corpus (Wikipedia). In contrast, word vectors were 

pre-trained on a very large set of biomedical publications, and thus, may better capture the 

regularities of the corpus under investigation. The BiLSTM model outperformed the CNN 
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model in the baseline case; however, with the additional features and embeddings, the 

situation was reversed. This suggests that, as part of its training process, the BiLSTM model 

may already be learning information contributed by these features and embeddings and, 

therefore, may not require explicit representations of such information. However, it seems 

clear that high-level features are overall beneficial for citation sentiment classification. In 

summary, a comparison of CNN and BiLSTM architectures shows a slight edge to CNN 

models in citation sentiment classification. When used simply as a drop-in for a baseline 

supervised learning model, neither performs better than that model for this task. They both 

benefit from more sophisticated input and architectural design choices, though not in the 

same way, lending support to the view that CNNs and RNNs provide complementary 

information for text classification tasks [47]. One key advantage of the CNN model over 

BiLSTM (or any RNN model) is that it is significantly faster to train (in our case, about 3 

times faster).

5.3. Comparison of Three Approaches

The rule-based method, relying simply on 148 phrases, did not perform as well as other 

methods, although the effect of its use as one of the features in SVM and NN models seems 

largely positive. It particularly performed poorly for the NEG class, pointing to the difficulty 

of relying solely on rhetorical cues for classifying this class, which, as mentioned earlier, is 

often expressed more implicitly. SVM models also incurred significant performance hits for 

the NEG class, suggesting that features learned for this class are based on topical language 

and may not generalize well. The performance hit for this class with the NN model was 

smaller, which may be partly attributed to using pre-trained vectors, which are less likely to 

overfit than corpus-based n-grams alone. The performances for other classes are reasonably 

close for the rule-based method, indicating that features and phrase lists for the pos class are 

more robust.

5.4. Limitations

Our work has several limitations. First, in NN experiments, word embeddings may not be 

directly comparable to POS or dependency-enhanced word embeddings, since they are 

generated from different corpora (though similarly modified on the training data). Our 

preliminary experiments showed that word vectors pre-trained on biomedical corpora 

performed slightly better than those pre-trained on general English corpora for our task (data 

not shown), which suggests that POS and dependency-enhanced word vectors trained on 

much larger biomedical corpora could have improved performance even further. Rather than 

attempting syntactic processing of large-scale corpora, we took a simpler route by training 

POS vectors on a small corpus and using dependency-enhanced word vectors pre-trained on 

Wikipedia. Future work should isolate the effect of different kinds of input vectors by using 

the same corpora in their training.

Another limitation is that we did not experiment with more complex NN architectures 

involving more hidden layers, since, in this study, we were primarily interested in comparing 

distinct approaches, rather than variants of the same architecture. One such model could 

outperform our best NN model. In addition, while we experimented with different model 

configuration parameters (filter region size, mini-batch size, etc.), we did not perform an 
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exhaustive search for the optimal parameters and mostly followed best practices for NN 

training [43].

Finally, the results of 10-fold cross-validation experiments should be treated as indicators of 

general trends regarding the effect of features, citation context/subject matter and 

undersampling, and relative performance of SVM models and NN models, rather than 

indicators of absolute performance. This is because we did not exclude sentiment-related 

and other relevant phrases from feature extraction based on their absence in the training 

folds in cross-validation. This was to enable comparison to Xu et al. [13] and to avoid 

overpenalizing our models. Our results on the held-out test set (Table 7) address this issue, 

since, for those experiments, we trained using phrases that appeared in the training 

documents (80%) only. Therefore, we consider the results on the held-out test as the primary 

results of our work.

5.5. Error analysis

We analyzed the instances in which all three methods (rule-based method as well as the best 

SVM and NN models) failed to recognize the correct sentiment class. In the majority of 

these cases, a citation was classified as neutral by all methods, whereas it expressed positive 

or negative sentiment (36.5% and 49%, respectively).

Inability of the methods to identify the precise citation context often led to classification 

errors. In the example below, all methods classified the citation as neutral, probably because 

they failed to consider the following sentence, which expresses the positive sentiment, as 

part of the context.

1. Merlin et al. [22] also reported that the route of naloxone administration (IN or 

IV) made no difference to the effect on respiratory rate. Our findings supported 

this conclusion.

Failure to recognize a citation context shorter than the full citation sentence may lead to 

errors, too, as illustrated in the sentence below. The citation in this sentence was classified as 

neutral by the CNN model and negative by the other two, possibly because of the 

subordinate clause In contrast to the negative findings of these two studies, which in fact 

refers to the citations discussed in the previous sentence.

2. In contrast to the negative findings of these two studies, Cals and co-workers 

showed that the use of CRP testing significantly reduced, antibiotie prescribing 

for LRTI without decreasing the quality of care and the outcome of treatment 

[25].

Another significant source of errors seems to be comparative statements, which can indicate 

a discrepancy between the findings of the citing paper and those of the reference paper. In 

such cases, sentiment is often negative and the prediction neutral. On the surface, the 

statements seem objective, which may explain the challenge they present. An example is 

provided below.
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3. We found a greater fluoride concentration 12 hours following the use of both 

mouthwashes compared to investigations performed by Pessan et al. [8] , Vogel 

et al. [10] and Whitford et al. [9].

Some other errors seem to be due to inadequacy of the sentiment phrase lists used in the 

study or the inability of the supervised learning methods to learn such phrases from the 

corpus. In the example below, the matrix clause It is known that and the subordinate clause 

which may be the case in this cohort seem to contribute to the positive sentiment, but it was 

not in the rule-based method phrase list and was probably not learned as a predictive feature 

by the other methods.

4. It is known that chronically inflamed eyes are at higher risk of graft failure [27] , 

which may be the case in this cohort.

All the examples above provide support to the view that sentiment in the context of citations 

is expressed more subtly than that in other contexts, such as movie reviews.

In the only case (shown below) where all three methods classified the citation with the 

opposite polarity of the actual sentiment (negative instead of positive), we were unable to 

determine the rationale for the annotation.

5. Consistently, in the study of Basu et al., daily use of cranberry juice for 8 weeks 

caused a significant decrease in both ox-LDL and MDA versus placebo treatment 

(−33% versus −17% and −50% versus +7%, resp.) 30]; however, in this study, 

the baseline MDA values were higher than those of our subjects and the duration 

of intervention was longer.

Since the inter-annotator agreement is moderate for the corpus, it is conceivable that this 

citation was incorrectly annotated, particularly when we consider that most cases involving 

comparative statements like this one had negative polarity (as noted above).

6. Conclusions

We presented and compared several methods for citation sentiment analysis in discussion 

sections of clinical research publications. A convolutional neural network model that uses 

part-of-speech and dependency-enhanced word vectors as input and incorporates additional 

high-level features yielded the best performance and seemed to generalize better than 

traditional machine learning (SVM) and rule-based methods. However, training a NN model 

is orders of magnitude slower than training traditional learning algorithms (including SVM), 

and whether the difference in performance justifies the additional cost may be debatable. In 

our case, the difference in performance in terms of macro-F1 on unseen data was about 11%; 

however, hand-crafted features incorporated into the CNN model accounted for some of this 

improvement. Considering also the fact that baseline NN models did not perform better than 

the baseline SVM model, it seems reasonable to conclude that the features automatically 

learned through NN training were less useful than the hand-crafted sentiment lexicon, 

rhetorical structure, and rule-based features considered for this task.

NN architectures are known to benefit from large amounts of annotated data, and the 

relatively small size of the corpus is probably the biggest reason behind the somewhat 
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modest results we obtained with the baseline NN models. We explored leveraging the 

predictions of the rule-based method on unlabeled data as a kind of semi-supervised 

learning, but this did not yield any noticeable improvement for NN models (data not shown). 

However, more sophisticated methods to leverage unlabeled data or distant supervision 

based on external citation databases may be promising avenues to explore.

Our intuition that providing more complete information about the context of the citation and 

isolating its topical content would lead to more informative, less noisy features was not 

borne out by our experiments. However, since our annotation of context/subject matter was 

exploratory and our method of using these annotations for learning was relatively simple, we 

believe more work is needed to understand their role in sentiment classification of citations 

in biomedical publications.

Other future work will focus on more fine-grained citation analysis, particularly citation 

function. Challenges in this task include identifying a set of citation function classes 

appropriate for biomedical publications and the development of a manually annotated corpus 

based on these categories. The citation sentiment classification models developed in this 

work are likely to be useful as assistance for manual annotation and they can also inform 

approaches developed for recognizing citation function categories.
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Highlights:

• We present a detailed comparison of three approaches to citation sentiment 

analysis in clinical trial publications: a rule-based method, SVM and two 

neural network variants: a convolutional neural network model and a 

bidirectional long short-term memory model.

• Convolution neural network model augmented with hand-crafted features 

yields the best performance both in 10-fold cross-validation and generalizes 

better to unseen data.

• Hand-crafted phrase-based features and high-level contextual features are 

more predictive for this task than n-gram or embedding-based features.
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Figure 1: 
A high-level overview of the CNN architecture. The input is the sentence This is in 
accordance with other studies. [9].
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Figure 2: 
A high-level overview of the BiLSTM architecture. The input is the sentence This is in 
accordance with other studies. [9].
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Table 1:

Basic corpus statistics

Documents 285

Citations 4,182

Positive (POS) citations 702 (16.8%)

Negative (NEG) citations 308 (7.4%)

Neutral (NEU) citations 3,172 (75.8%)
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Table 2:

Citation sentiment examples from the annotated corpus

Class Citation Context

POS [17] Consistent with other reports of behavioral treatments [17]. adherence to yoga and exercise interventions in this clinical 
trial was significantly correlated with baseline variables including depression, fatigue, and physical aspects of quality of 
life.

NEG [5] We found that intensive glucose control did not reduce the morbidity or the mortality of patients admitted to a mixed 
medical/surgical ICU with medical problems, non-cardiovascular surgeries or trauma. These results differ from two 
previous studies. The first one with patients in a cardiovascular-surgical ICU [5] demonstrated a decrease in morbidity and 
mortality.

NEU [27] Deterioration of glycemic regulation often first appears as compensatory hyperinsulinemia seen post-prandial to a meal to 
maintain glucose uptake into cells and normal homeostasis [27].
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Table 3:

Illustration of features on the sentence Our data are generally consistent with that of other studies [4–7], but 
not with studies where a single dose of paracetamol was administered, which reported no significant impact on 
any reactions [8,9]. The citation under consideration for this example is [4–7] and the citation context is the 

current sentence only.

Feature Type Features

n-gram features

n-grams (NGRAM) [OC], [TC], administered, which_reported, are_generally_consistent, …

Lemma n-grams (NGRAML) [OC], [TC], administer, which_report, be_generally_consistent, …

POS n-grams(POSGRAM) CC, DT, NN, CC_RB, DT_IN, CC_RB_IN, …

POS-augmented lemma n-grams (NGRAML_POS) [OC], [TC], administer_VB, which_WD__report_VB, 
be_VB__generally_RB__consistent_JJ …

Negation count 2 (due to no, not)

Negated unigrams NOT_impact, NOT_with, NOT_study, NOT_significant

Sentiment lexicon features (SENT)

POS sentiment TRUE (due to consistent with)

NEG sentiment FALSE

Any sentiment TRUE

Structure features (STRUCT)

n-grams [OC], [TC], CITINGWORK, POS, CONTRAST, CITINGWORK_POS, 
CITINGWORK_POS_[TC], …

Direction CITINGWORK_CONTRAST, [TC]_CONTRAST, …

Additional features

Dependency features (DEP) advcl_consistent_administer, neg_consistent_not, nsubj_consistent_datum, …

Rule-based output (RULE) POS
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Table 4:

The results of SVM experiments with various feature combinations. The best performance for individual 

metrics are underlined. The evaluation is based on 10-fold cross-validation.

Experiment
Overall Per Category

Accu. MacroF1 Cat Pr. Rec. F1

Results from Xu et al. [13] 0.870 0.719

POS 0.823 0.644 0.723

NEG 0.711 0.399 0.511

NEU 0.886 0.966 0.924

Reproducing Xu et al. (NGRAM+SENT+STRUCT) 0.870 0.717

POS 0.835 0.618 0.710

NEG 0.717 0.403 0.516

NEU 0.883 0.971 0.925

NGRAML+SENT+STRUCT 0.873 0.720

POS 0.854 0.631 0.726

NEG 0.709 0.396 0.508

NEU 0.884 0.973 0.927

NGRAML+SENT+STRUCT+DEP+RULE 0.878 0.735

POS 0.846 0.664 0.744

NEG 0.733 0.419 0.533

NEU 0.891 0.970 0.929

NGRAML+SENT+STRUCT+POSGRAM+RULE 0.876 0.738

POS 0.808 0.672 0.734

NEG 0.739 0.442 0.553

NEU 0.895 0.963 0.927

NGRAML_POS+POSGRAM+SENT+STRUCT+DEP+RULE 0.877 0.741

POS 0.828 0.667 0.739

NEG 0.751 0.442 0.556

NEU 0.891 0.966 0.927

NGRAML_POS+SENT+STRUCT+RULE 0.878 0.737

POS 0.836 0.660 0.737

NEG 0.724 0.435 0.544

NEU 0.893 0.969 0.930
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Table 5:

Results of experiments with “silver” citation context/subject matter annotations and undersampling. All 

experiments use the best feature combination (NGRAML_POS + POSGRAM + SENT + STRUCT + DEP + RULE). The best 

results are underlined. The evaluation is based on 10-fold cross-validation.

Experiment
Overall Per Category

Accu. MacroF1 Cat Pr. Rec. F1

Base case 0.877 0.741

POS 0.828 0.667 0.739

NEG 0.751 0.442 0.556

NEU 0.891 0.966 0.927

“Silver” citation context 0.868 0.718

POS 0.818 0.638 0.717

NEG 0.709 0.403 0.513

NEU 0.885 0.965 0.923

“Silver” context with normalized subject matter 0.849 0.690

POS 0.736 0.642 0.686

NEG 0.547 0.412 0.470

NEU 0.891 0.937 0.913

1:1 ratio (POS +NEG=NEU) 0.773 0.726

POS 0.801 0.738 0.768

NEG 0.687 0.513 0.587

NEU 0.774 0.876 0.822

1:2 ratio 0.824 0.709

POS 0.808 0.641 0.715

NEG 0.675 0.425 0.522

NEU 0.840 0.948 0.891

Easy Ensemble 0.839 0.701

POS 0.903 0.517 0.658

NEG 0.438 0.695 0.537

NEU 0.891 0.924 0.907
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Table 6:

Results obtained with NN models, with 10-fold cross validation and model averaging. The scores that indicate 

an improvement over SVM models in Table 4 are underlined. WORD, POS, and DEP indicate word, part-of-speech 

and dependency-enhanced word embeddings, respectively. FEAT indicates additional high-level features 

(POSGRAM + SENT + STRUCT + RULE).

Experiment
Overall Per Category

Accu. MacroF1 Cat Pr. Rec. F1

CNN(WORD) 0.858 0.635

POS 0.830 0.579 0.680

NEG 0.780 0.192 0.305

NEU 0.863 0.983 0.919

CNN(POS+DEP) 0.850 0.632

POS 0.818 0.559 0.661

NEG 0.674 0.212 0.318

NEU 0.861 0.975 0.914

CNN(WORD)+FEAT 0.887 0.719

POS 0.919 0.655 0.764

NEG 0.957 0.310 0.464

NEU 0.882 0.994 0.935

CNN(POS+DEP)+FEAT 0.896 0.757

POS 0.914 0.689 0.783

NEG 0.898 0.404 0.552

NEU 0.896 0.990 0.940

BiLSTM(WORD) 0.857 0.668

POS 0.785 0.651 0.711

NEG 0.551 0.291 0.375

NEU 0.882 0.958 0.918

BiLSTM(POS+DEP) 0.837 0.644

POS 0.747 0.610 0.670

NEG 0.456 0.303 0.356

NEU 0.876 0.938 0.906

BiLSTM(WORD)+FEAT 0.883 0.731

POS 0.845 0.695 0.761

NEG 0.827 0.378 0.509

NEU 0.892 0.973 0.931

BiLSTM(POS+DEP)+FEAT 0.874 0.732

POS 0.798 0.708 0.747

NEG 0.706 0.426 0.523

NEU 0.900 0.952 0.925
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Table 7:

Results of experiments on the held-out test set. The best performing SVM model uses the features NGRAML_POS 

+ POSGRAM + SENT + STRUCT + DEP + RULE. Best NN model is a CNN which uses POS and dependency-enhanced 

word embeddings as input and incorporates high-level features. Best results are underlined.

Experiment
Overall Per Category

Accuracy MacroF1 Cat Pr. Rec. F1

Rule-based method 0.831 0.604

POS 0.780 0.568 0.657

NEG 0.389 0.187 0.252

NEU 0.859 0.951 0.903

Xu et al. SVM model 0.847 0.633

POS 0.783 0.576 0.664

NEG 0.548 0.227 0.321

NEU 0.868 0.966 0.914

Best SVM model 0.850 0.656

POS 0.740 0.616 0.672

NEG 0.600 0.280 0.382

NEU 0.877 0.956 0.915

Best NN model 0.882 0.721

POS 0.783 0.681 0.728

NEG 0.930 0.341 0.497

NEU 0.895 0.982 0.937
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