
ar
X

iv
:q

ua
nt

-p
h/

03
05

03
0v

1
 6

 M
ay

 2
00

3

Quantum Approximation I. Embeddings of Finite

Dimensional Lp Spaces

Stefan Heinrich
Fachbereich Informatik

Universität Kaiserslautern
D-67653 Kaiserslautern, Germany

e-mail: heinrich@informatik.uni-kl.de
homepage: http://www.uni-kl.de/AG-Heinrich

Abstract

We study approximation of embeddings between finite dimensional
Lp spaces in the quantum model of computation. For the quantum
query complexity of this problem matching (up to logarithmic fac-
tors) upper and lower bounds are obtained. The results show that for
certain regions of the parameter domain quantum computation can
essentially improve the rate of convergence of classical deterministic
or randomized approximation, while there are other regions where the
best possible rates coincide for all three settings. These results serve as
a crucial building block for analyzing approximation in function spaces
in a subsequent paper [11].

1 Introduction

In this paper we continue the investigation of numerical problems of analysis
in the quantum model of computation. In a number of papers the integration
problem and its discretized version, the mean computation, were studied
and matching upper and lower bounds (often up to logarithmic factors)
were established for various function classes. See the references [2, 5, 16,
19, 8, 14, 10, 25, 15, 12]. It turned out that for these types of problems
quantum computing can reach an exponential speedup over deterministic
classical computation and a quadratic speedup over randomized classical
computation.

All these problems are such that the solution is a single number. There-
fore the question arises what happens if we consider problems whose solu-

1

http://arxiv.org/abs/quant-ph/0305030v1
http://www.uni-kl.de/AG-Heinrich

tion is a family of numbers or, in other words, a function. A particularly
typical situation is function approximation, where the solution is just the
input function itself (and we are asked to compute an approximation to it
in a given norm). A first consideration of an approximation problem in the
quantum setting appears in [20], but no matching upper and lower bounds
were obtained.

In the present paper we provide the first results for approximation in the
quantum model of computation, with matching upper and lower bounds. We
start with the very basic situation: the approximation of the embedding JN

pq

of LN
p into LN

q , or, in other words, the approximation of N -sequences with

bounded LN
p norm in the norm of LN

q . These embeddings are the elementary
building blocks of embeddings of function spaces – in the same way as mean
computation is the elementary building block of integration, see [10] and [11]
for more on this principle. Our results show that for p < q, the quantum
model of computation can bring an acceleration up to a factor N−1 of the
rate of the classical (deterministic or randomized) setting. On the other
hand, for p ≥ q, the optimal rate is the same for all three settings, so in
these cases there is no speedup of the rate by quantum computation.

We prove that the following version of Grover’s quantum search algo-
rithm is optimal: we find all coordinates of f ∈ LN

p with absolute value not
smaller than a suitably chosen threshold and set the other coordinates to
zero. The crucial new element in proving lower bounds is a multiplicative
inequality for the n-th minimal query error, which is – in a wide sense –
analogous to multiplicativity properties of s-numbers, see [21].

In a subsequent paper [11] we show that, similarly to the analysis in
[10], sufficiently precise knowledge about the embeddings JN

pq leads to a
full understanding of the infinite dimensional problem of approximation of
functions from Sobolev spaces.

The paper is organized as follows. In Section 2 we recall notation from
the quantum setting of information-based complexity theory as developed
in [8]. In Section 3 we derive some new general results which will be needed
later on. Section 4 contains the main results on approximation of embed-
dings of LN

p into LN
q spaces. Finally, in Section 5 we give some comments

on the quantum bit model and a summary including comparisons to the
respective results in the classical deterministic and randomized setting.

For more details on the quantum setting of information-based complexity
we refer to [8], to the survey [13], and to an introduction [9]. For the classical
settings of information-based complexity theory see [18, 26, 7]. General
background on quantum computing can be found in the surveys [1, 4, 24]

2

and in the monographs [22, 6] and [17].

2 Notation

For nonempty sets D and K, we denote by F(D,K) the set of all functions
from D to K. For a normed space G we let B(G) = {g ∈ G | ‖g‖G ≤ 1}
denote the unit ball of G. Let F ⊆ F(D,K) be a nonempty subset. Let
K stand for either R or C, the field of real or complex numbers, let G be
a normed space over K, and let S : F → G be a mapping. We seek to
approximate S(f) for f ∈ F by means of quantum computations. Let H1

be the two-dimensional complex Hilbert space C2, with its unit vector basis
{e0, e1}, let

Hm = H1 ⊗ · · · ⊗H1︸ ︷︷ ︸
m

,

equipped with the tensor Hilbert space structure. Denote

Z[0, N) := {0, . . . , N − 1}

for N ∈ N, where we agree to write, as usual, N = {1, 2, . . . } and N0 =
N ∪ {0}. Let Cm = {|i〉 : i ∈ Z[0, 2m)} be the canonical basis of Hm, where
|i〉 stands for ej0 ⊗ · · · ⊗ ejm−1

, i =
∑m−1

k=0 jk2
m−1−k is the binary expansion

of i. Let U(Hm) denote the set of unitary operators on Hm.
A quantum query on F is given by a tuple

Q = (m,m′,m′′, Z, τ, β),

where m,m′,m′′ ∈ N,m′ + m′′ ≤ m,Z ⊆ Z[0, 2m
′

) is a nonempty subset,
and

τ : Z → D

β : K → Z[0, 2m
′′

)

are arbitrary mappings. We let m(Q) := m be the number of qubits of Q.
Given a query Q, we define for each f ∈ F the unitary operator Qf by

setting for |i〉 |x〉 |y〉 ∈ Cm = Cm′ ⊗ Cm′′ ⊗ Cm−m′−m′′ :

Qf |i〉 |x〉 |y〉 =
{

|i〉 |x⊕ β(f(τ(i)))〉 |y〉 if i ∈ Z
|i〉 |x〉 |y〉 otherwise,

where ⊕ means addition modulo 2m
′′

.
A quantum algorithm on F with no measurement is a tuple

A = (Q, (Uj)
n
j=0).

3

Here Q is a quantum query on F , n ∈ N0 and Uj ∈ U(Hm) (j = 0, . . . , n),
with m = m(Q). Given f ∈ F , we define Af ∈ U(Hm) as

Af = UnQfUn−1 . . . U1QfU0.

We denote by nq(A) := n the number of queries and by m(A) = m =
m(Q) the number of qubits of A. Let (Af (x, y))x,y∈Z[0,2m) be the matrix
of the transformation Af in the canonical basis Cm, that is, Af (x, y) =
(Af |y〉 , |x〉).

A quantum algorithm from F to G with k measurements is a tuple

A = ((Al)
k−1
l=0 , (bl)

k−1
l=0 , ϕ),

where k ∈ N, Al (l = 0, . . . , k − 1) are quantum algorithms on F with no
measurement,

b0 ∈ Z[0, 2m0),

bl :

l−1∏

i=0

Z[0, 2mi) → Z[0, 2ml) (1 ≤ l ≤ k − 1),

where ml := m(Al), and

ϕ :

k−1∏

l=0

Z[0, 2ml) → G.

The output of A at input f ∈ F is a probability measure A(f) on G, defined
as follows. First put

pA,f(x0, . . . , xk−1) = |A0,f (x0, b0)|2|A1,f (x1, b1(x0))|2 . . .
. . . |Ak−1,f (xk−1, bk−1(x0, . . . , xk−2))|2.

Then define A(f) by setting for any subset C ⊆ G

A(f)(C) =
∑

ϕ(x0,...,xk−1)∈C

pA,f (x0, . . . , xk−1).

Let nq(A) :=
∑k−1

l=0 nq(Al) denote the number of queries used by A. For
more details and background see [8]. Note that we often use the term
‘quantum algorithm’ (or just ‘algorithm’), meaning a quantum algorithm
with measurement(s).

If A is an algorithm with one measurement, the above definition simpli-
fies essentially. Such an algorithm is given by

A = (A0, b0, ϕ), A0 = (Q, (Uj)
n
j=0). (1)

4

The quantum computation is carried out on m := m(Q) qubits. For f ∈ F
the algorithm starts in the state |b0〉 and produces

|ψf 〉 = UnQfUn−1 . . . U1QfU0 |b0〉 . (2)

Let

|ψf 〉 =
2m−1∑

i=0

ai,f |i〉 (3)

(referring to the notation above, we have ai,f = A0,f (i, b0)). Then A outputs
the element ϕ(i) ∈ G with probability |ai,f |2. It is shown in [8], Lemma 1,

that for each algorithm A with k measurements there is an algorithm Ã with
one measurement such that A(f) = Ã(f) for all f ∈ F and Ã uses just twice
the number of queries of A, that is, nq(Ã) = 2nq(A). Hence, as long as we
are concerned with studying the minimal query error (see below) up to the
order, that is, up to constant factors, we can restrict ourselves to algorithms
with one measurement.

Let θ ≥ 0. For a quantum algorithm A we define the (probabilistic) error
at f ∈ F as follows. Let ζ be a random variable with distribution A(f).
Then

e(S,A, f, θ) = inf {ε ≥ 0 | P{‖S(f)− ζ‖ > ε} ≤ θ}
(note that this infimum is always attained). Hence e(S,A, f, θ) ≤ ε iff the
probability that the algorithm A computes S(f) with error at most ε is at
least 1− θ. Observe that for algorithms with one measurement ((1)-(3)),

P{‖S(f)− ζ‖ > ε} =
∑

i: ‖S(f)−ϕ(i)‖>ε

|ai,f |2.

Trivially, e(S,A, f, θ) = 0 for θ ≥ 1. We put

e(S,A, F, θ) = sup
f∈F

e(S,A, f, θ)

(we allow the value +∞ for this quantity). Furthermore, we set

eqn(S,F, θ)

= inf{e(S,A, F, θ) | A is any quantum algorithm with nq(A) ≤ n}.

It is customary to consider these quantities at a fixed error probability level.
We denote

e(S,A, f) = e(S,A, f, 1/4)

5

and similarly,

e(S,A, F) = e(S,A, F, 1/4), eqn(S,F) = eqn(S,F, 1/4).

The choice θ = 1/4 is arbitrary – any fixed θ < 1/2 would do. The quantity
eqn(S,F) is central for our study – it is the n-th minimal query error, that
is, the smallest error which can be reached using at most n queries. Note
that it essentially suffices to study eqn(S,F) instead of eqn(S,F, θ), since with
O(ν) repetitions, the error probability can be reduced to 2−ν (see Lemmas
3, 4, and Corollary 1 below).

3 Some General Results

Let G and G̃ be normed spaces. Recall that a mapping Φ : G → G̃ is said
to be Lipschitz, if there is a constant c ≥ 0 such that

‖Φ(x)− Φ(y)‖G̃ ≤ c ‖x− y‖G for all x, y ∈ G.

The Lipschitz constant ‖Φ‖Lip is the smallest constant c such that the rela-
tion above holds.

Given a quantum algorithm A from F to G and a mapping Φ from G to
G̃, the algorithm Φ ◦A is defined as the composition, meaning that ϕ in the
definition of A is replaced by Φ ◦ ϕ (this is a special case of the definition
of the composition given in [8], p. 13). The following direct consequence of
the definitions will be needed later.

Lemma 1. Let S be a mapping and A a quantum algorithm, both from F
to G. Let Φ be a Lipschitz mapping from G to G̃. Then for each f ∈ F and
θ ≥ 0,

e(Φ ◦ S,Φ ◦A, f, θ) ≤ ‖Φ‖Lipe(S,A, f, θ).
Consequently, for each n ∈ N,

eqn(Φ ◦ S,F, θ) ≤ ‖Φ‖Lipeqn(S,F, θ).
The next result was shown in [10], Lemma 2, for G = R, but the proof

of the general case is identical to that one.

Lemma 2. Let D,K and F ⊆ F(D,K) be nonempty sets, G a normed
space, let k ∈ N0 and let Sl : F → G (l = 0, . . . , k) be mappings. Define
S : F → G by S(f) =

∑k
l=0 Sl(f) (f ∈ F). Let θ0, . . . , θk ≥ 0, n0, . . . , nk ∈

N0 and put n =
∑k

l=0 nl. Then

eqn(S,F,

k∑

l=0

θl) ≤
k∑

l=0

eqnl
(Sl, F, θl).

6

The following results are generalizations of the usual procedure of ”boost-
ing the success probability”, which decreases the failure probability by re-
peating the algorithm a number of times and computing the median of the
outputs (see, e.g., [8], Lemma 3). This works for algorithms whose outputs
are real numbers. Since there is no natural linear order on a normed space,
in general, the latter step has to be changed suitably when dealing with
outputs in a normed space G.

For this purpose, let ν ∈ N. Let µ : Rν → R be the mapping given by
the median, that is, µ(a0, . . . , aν−1) is the value of the ⌈(ν+1)/2⌉-th element
of the non-decreasing rearrangement of (ai). First we deal with the case that
G is a space of the form G = l∞(T), where T is a nonempty set and l∞(T)
denotes the space of all bounded real-valued functions on T , equipped with
the supremum norm ‖g‖l∞(T) = supt∈T |g(t)|. Define µ̄ : l∞(T)ν → l∞(T)
as follows:

µ̄(g0, . . . , gν−1) = (µ(g0(t), . . . , gν−1(t)))t∈T ,

that is, we apply the median componentwise. For any algorithm A from
F to l∞(T) denote by µ̄(Aν) := µ̄(A, . . . , A) the composed algorithm (see
again p. 13 of [8])) of repeating ν times the algorithm A and applying µ̄ to
the outputs.

Lemma 3. Let A be any quantum algorithm and S be any mapping, both
from F to l∞(T), and let ν ∈ N. Then for each f ∈ F ,

e(S, µ̄(Aν), f, e−ν/8) ≤ e(S,A, f).

Proof. Fix f ∈ F . Let ζ0, . . . , ζν−1 be independent random variables with
distribution A(f). Let χi be the indicator function of the set

{‖S(f)− ζi‖l∞(T) > e(S,A, f)}.

Then P{χi = 1} ≤ 1/4. Hoeffding’s inequality, see, e.g., [23], p. 191, yields

P

{
ν−1∑

i=0

χi ≥ ν/2

}
≤ P

{
ν−1∑

i=0

(χi −Eχi) ≥ ν/4

}
≤ e−ν/8.

Hence, with probability at least 1− e−ν/8,

|{i | ‖S(f)− ζi‖l∞(T) ≤ e(S,A, f)}| > ν/2. (4)

It follows from (4) that for all t ∈ T

|{i | |S(f)(t)− ζi(t)| ≤ e(S,A, f)}| > ν/2.

7

Consequently,

|S(f)(t)− µ(ζ0(t), . . . , ζν−1(t))| ≤ e(S,A, f),

which means that

‖S(f)− µ̄(ζ0, . . . , ζν−1)‖l∞(T) ≤ e(S,A, f). (5)

Since (4) holds with probability at least 1− e−ν/8, so does (5).

Now let G be a general normed space. For the following construction
we consider G as a space over R (each normed space over C can also be
considered as a normed space over R). We define for each δ > 0 a suitable
mapping ψδ : G

ν → G as follows. Let G∗ denote the dual of G, that is, the
space of all bounded linear functionals on G. Let T ⊆ B(G∗) be a norming
set, i.e., for all g ∈ G

‖g‖ = sup
t∈T

|t(g)| (6)

(such a T always exists, one can take, for example, T = B(G∗) itself).
Then G can be identified with a subspace of l∞(T) via the embedding map
J : G→ l∞(T) defined by

Jg = (t(g))t∈T

in such a way that the norm is preserved: ‖Jg‖l∞(T) = ‖g‖G. For δ > 0, let
finally πδ : l∞(T) → G be any δ-approximate metric projection, by which
we mean a mapping satisfying

‖x− πδ(x)‖l∞(T) ≤ (1 + δ) inf
g∈G

‖x− g‖l∞(T)

for all x ∈ l∞(T). We define ψδ : G
ν → G by setting

ψδ = πδ ◦ µ̄ ◦ Jν .

Lemma 4. Let A be any quantum algorithm and S be any mapping, both
from F to a normed space G, let ν ∈ N and δ > 0. Then for each f ∈ F ,

e(S,ψδ(A
ν), f, e−ν/8) ≤ (2 + δ)e(S,A, f).

Proof. It follows from (6) that

e(JS, JA, f) = e(S,A, f).

8

By Lemma 3,

e(JS, µ̄((JA)ν), f, e−ν/8) ≤ e(JS, JA, f) = e(S,A, f).

Let ζ be a random variable with values in l∞(T) with distribution µ̄((JA)ν)(f).
Then with probability at least 1− e−ν/8,

‖JS(f)− ζ‖ ≤ e(S,A, f).

Hence

‖S(f)− πδ(ζ)‖ ≤ ‖JS(f)− ζ‖+ ‖ζ − πδ(ζ)‖
≤ e(S,A, f) + (1 + δ)‖ζ − S(f)‖
≤ (2 + δ)e(S,A, f).

But πδ(ζ) is a random variable with distribution

πδ ◦ µ̄((JA)ν)(f) = ψδ(A
ν)(f),

and it follows that

e(S,ψδ(A
ν), f, e−ν/8) ≤ (2 + δ)e(S,A, f).

Corollary 1. Let S be any mapping from F ⊆ F(D,K) to a normed space
G. Then for each n, ν ∈ N,

eqνn(S,F, e
−ν/8) ≤ 2eqn(S,F).

If G is a space of the form l∞(T) for some set T , then the constant 2 above
can be replaced by 1.

The definition of ψδ is not constructive (and neither is that of µ̄, if T
is infinite). Since we are dealing with the quantum query complexity, the
cost of (classically) computing the ϕ part of a quantum algorithm (this is
the place where µ̄ and ψδ enter) are generally neglected. However, if one
looks for a more efficient procedure, here is one which leads to the constant
3 instead of 2+δ of Lemma 4. Define ̺ : Gν → G as follows: ̺(g0, . . . , gν−1)
is the element gi0 , where

i0 = argmin
i
µ(‖g0 − gi‖, . . . , ‖gν−1 − gi‖)

9

(if there is more than one index i at which the minimum is attained, we
choose the smallest index, just for definiteness). It can be shown along the
lines of the proof of Lemma 3 that for all f ∈ F ,

e(S, ̺(Aν), f, e−ν/8) ≤ 3e(S,A, f).

Note that the cost is O(ν2) (which is usually a logarithmic term) times the
cost of computing the norm ‖gi − gj‖ (which depends on the structure and
dimension of G, and on the – possible – sparsity of the gi, see also the
discussion in Section 3 of [11]).

Corollary 2. Let D,K, F ⊆ F(D,K), G, k ∈ N0 and S, Sl : F → G
(l = 0, . . . , k) be as in Lemma 2. Assume ν0, . . . , νk ∈ N satisfy

k∑

l=0

e−νl/8 ≤ 1

4
.

Let n0, . . . , nk ∈ N0 and put n =
∑k

l=0 νlnl. Then

eqn(S,F) ≤ 2

k∑

l=0

eqnl
(Sl, F).

If G = l∞(T), then the relation holds with constant 1.

This is an obvious consequence of Lemma 2 and Corollary 1. In the sequel
we need the following mappings. Let m∗ ∈ N and define β : R → Z[0, 2m

∗

)
for z ∈ R by

β(z) =

0 if z < −2m
∗/2−1

⌊2m∗/2(z + 2m
∗/2−1)⌋ if − 2m

∗/2−1 ≤ z < 2m
∗/2−1

2m
∗ − 1 if z ≥ 2m

∗/2−1.

(7)

Furthermore, let γ : Z[0, 2m
∗

) → R be defined for y ∈ Z[0, 2m
∗

) as

γ(y) = 2−m∗/2y − 2m
∗/2−1. (8)

It follows that for −2m
∗/2−1 ≤ z ≤ 2m

∗/2−1,

γ(β(z)) ≤ z ≤ γ(β(z)) + 2−m∗/2. (9)

10

Proposition 1. Let D be a nonempty set and let ∅ 6= F ⊆ X ⊆ F(D,R),
where X is a linear subspace equipped with a norm ‖ ‖X , such that
(i) supf∈F |f(t)| <∞ for each t ∈ D, and
(ii) X separates the points of D in the following sense: Given t0 ∈ D and
a finite subset D0 ⊆ D\{t0}, there is an g ∈ X with g(t0) 6= 0 and g(t) = 0
for all t ∈ D0.

Let J : F → X be the embedding map, let G be a normed space and
S : X → G a bounded linear operator. Then for all ñ, n ∈ N, 0 ≤ θ1, θ2 ≤ 1,

eqñ+2n(SJ, F, θ1 + θ2 − θ1θ2) ≤ eqñ(J, F, θ1) e
q
n(S,B(X), θ2).

Proof. Let δ > 0, let Ã be a quantum algorithm from F to X with q(Ã) ≤ ñ
and

e(J, Ã, F, θ1) ≤ eqñ(J, F, θ1) + δ := σ1. (10)

Put
σ = σ1 + δ. (11)

Let A be a quantum algorithm from B(X) to G with q(A) ≤ n and

e(S,A,B(X), θ2) ≤ eqn(S,B(X), θ2) + δ := σ2. (12)

Let
Ã = ((Ãl)

k̃−1
l=0 , (̃bl)

k̃−1
l=0 , ϕ̃),

with
Ãl = (Q̃l, (Ũlj)

ñl

j=0),

and
Q̃l = (m̃l, m̃

′
l, m̃

′′
l , Z̃l, τ̃l, β̃l).

for l = 0, . . . , k̃ − 1. Furthermore, let

A = ((Al)
k−1
l=0 , (bl)

k−1
l=0 , ϕ),

and for l = 0, . . . , k − 1,

Al = (Ql, (Ulj)
nl

j=0),

and
Ql = (ml,m

′
l,m

′′
l , Zl, τl, βl).

We need some auxiliary functions and relations. Let

DA = {τl(i) | l = 0, . . . , k − 1, i ∈ Zl}

11

(the set of all points at which the quantum algorithm A queries the function).
By assumption (ii), for each t ∈ DA there is a gt ∈ X such that g(t) = 1 and
g(s) = 0 for all s ∈ DA\{t}. Let M1 = maxt∈DA

‖gt‖X . By asumption (i),

M2 := max
f∈F, t∈DA

|f(t)| <∞.

Now choose the m∗ in the definition of the mappings β, γ in (7) and (8) in
such a way that for a ∈ R with |a| ≤M2,

|a− γ ◦ β(a)| ≤M−1
1 |DA|−1δ.

Define for f ∈ F and x = (x0, . . . , xk̃−1) ∈
∏k̃−1

l=0 Z[0, 2m̃l),

hf,x = σ−1

f − ϕ̃(x) +

∑

t∈DA

(γ ◦ β ◦ f(t)− f(t))gt

(recall that ϕ̃(x) ∈ X). Then hf,x ∈ X,

hf,x(s) = σ−1(γ ◦ β ◦ f(s)− ϕ̃(x)(s)) (s ∈ DA), (13)

and
‖f − ϕ̃(x)− σhf,x‖X ≤M1|DA|M−1

1 |DA|−1δ = δ. (14)

Moreover,

‖hf,x‖X = σ−1‖(f − ϕ̃(x))− (f − ϕ̃(x)− σhf,x)‖X
≤ σ−1(‖(f − ϕ̃(x)‖X + δ). (15)

We build an algorithm as follows. It has k̃+ k cycles. The first k̃ cycles are
exactly those of Ã. After the k̃ measurements we have the result, say

x = (x0, x1, . . . , xk̃−1),

(from which ϕ̃(x0, . . . , xk̃−1) would be computed – but we don’t do that yet).
Next the k cycles of A follow, with certain modifications. In each cycle we

add m̃ =
∑k̃−1

l=0 m̃l qubits which are initialized in the state

|x〉 = |x0〉 |x1〉 . . .
∣∣xk̃−1

〉

and remain there all the way. We add m∗ further auxiliary qubits, initially
set to zero (and being zero again at the end of each cycle). We also want

12

to modify the queries Ql of A. For 0 ≤ l < k introduce the following new
query:

Q̄l = (ml + m̃+m∗,m′
l,m

∗, Zl, τl, β),

where β was defined in (7). Define a unitary operator Vl on

Hm′

l
⊗Hm′′

l
⊗Hml−m′

l
−m′′

l
⊗Hm̃ ⊗Hm∗

by setting for

|i〉 |z〉 |u〉 |x〉 |v〉 ∈ Cm′

l
⊗ Cm′′

l
⊗ Cml−m′

l
−m′′

l
⊗ Cm̃ ⊗ Cm∗

Vl |i〉 |z〉 |u〉 |x〉 |v〉 = |i〉
∣∣∣z ⊕ βl

(
σ−1

(
γ(v)− ϕ̃(x)(τl(i))

))〉
|u〉 |x〉 |v〉

if i ∈ Zl, and
Vl |i〉 |z〉 |u〉 |x〉 |v〉 = |i〉 |z〉 |u〉 |x〉 |v〉

otherwise (recall that ϕ̃(x) ∈ X ⊆ F(D,R) and τl(i) ∈ D, so the respective
expression above is well-defined). We also need

Wl |i〉 |z〉 |u〉 |x〉 |v〉 = |i〉 |z〉 |u〉 |x〉 |⊖v〉

with ⊖v = (2m
∗ − v) mod 2m

∗

. Now we consider the following composition

PlQ̄l,fPlWlVlPlQ̄l,fPl, (16)

where Pl exchanges the |z〉 with the |v〉 component. Let us look how the
combination (16) acts, when the last m∗ qubits are in the state |0〉. Assume
i ∈ Zl. Then

|i〉 |z〉 |u〉 |x〉 |0〉
is mapped by PlQ̄l,fPl to

|i〉 |z〉 |u〉 |x〉 |β ◦ f ◦ τl(i)〉 .

Using (13), we see that Vl produces

|i〉
∣∣∣z ⊕ βl

(
σ−1

(
γ ◦ β ◦ f ◦ τl(i)− ϕ̃(x)(τl(i))

))〉
|u〉 |x〉 |β ◦ f ◦ τl(i)〉

= |i〉 |z ⊕ βl ◦ hf,x ◦ τl(i)〉 |u〉 |x〉 |β ◦ f ◦ τl(i)〉 .

Finally, the application of PlQ̄l,fPlWl leads to

|i〉 |z ⊕ βl ◦ hf,x ◦ τl(i)〉 |u〉 |x〉 |0〉 = (Ql,hf,x
|i〉 |z〉 |u〉) |x〉 |0〉 . (17)

13

It can be checked analogously that if i 6∈ Zl, we also end in the state given by
the right-hand side of (17). That means, the combination (16) acts as if we
apply the original query Ql, but with f replaced by hf,x. Now we replace
each occurrence of Ql,f by this string (16), while the Ulj are replaced by
Ūlj , which are the Ulj , extended to Hm ⊗Hm̃ ⊗Hm∗ by tensoring with the
identity on Hm̃ ⊗Hm∗ . The respective b̄l are defined in such a way that

b̄l(x0, . . . , xk̃−1, (y0, x, 0), . . . , (yl−1, x, 0)) = (bl(y0, . . . , yl−1), x, 0)

for all x0, . . . , xk̃−1, y0, . . . , yl−1, l = 0, . . . , k − 1.

After the completion of the k̃+ k cycles, let the measurement results be

x0, . . . , xk̃−1, (y0, x, 0), . . . , (yk−1, x, 0),

where, as before, x = (x0, . . . , xk̃−1). Then we apply the mapping ϕ̄ defined
by

ϕ̄(x, (y0, x, 0), . . . , (yk−1, x, 0)) := Sϕ̃(x) + σϕ(y0, . . . , yk−1).

Denote the resulting quantum algorithm from F to G by B. Clearly,

q(B) = ñ+ 2n. (18)

By (17), the modified A-part, applied to f ∈ F , acts like algorithm A,
applied to hf,x. More precisely, in algorithm B, applied to f , given x as
the outcome of the measurements of the first part of B, the probability of
measuring

(y0, x, 0), . . . , (yk−1, x, 0)

in the second part of B is the same as that of measuring

y0, . . . , yk−1

in algorithm A, applied to hf,x. For a fixed f ∈ F , we have, by (10), with
probability at least 1− θ1,

‖Jf − ϕ̃(x)‖X ≤ σ1,

thus, by (15) (recalling also Jf = f),

‖hf,x‖X ≤ σ−1(σ1 + δ) = 1.

Thus, for fixed f ∈ F , with probability at least 1− θ1,

hf,x ∈ B(X). (19)

14

But for each x satisfying (19), we have by (12), with probability at least
1− θ2,

‖Shf,x − ϕ(y0, . . . , yk−1)‖G ≤ σ2. (20)

Summarizing, we see that (19) and (20) together hold with probability at
least (1− θ1)(1− θ2). We have

‖SJf − ϕ̄(x, (y0, x, 0), . . . , (yk−1, x, 0))‖G
= ‖SJf − Sϕ̃(x)− σϕ(y0, . . . , yk−1)‖G
= ‖SJf − Sϕ̃(x)− σShf,x + σShf,x − σϕ(y0, . . . , yk−1)‖G
≤ ‖S(f − ϕ̃(x)− σhf,x)‖G + σ‖Shf,x − ϕ(y0, . . . , yk−1)‖G
≤ ‖S‖δ + σσ2,

by (14) and (20), with probability at least (1−θ1)(1−θ2). Thus, using (11),

e(SJ,B, F, θ1 + θ2 − θ1θ2) ≤ ‖S‖δ + (σ1 + δ)σ2,

hence, by (18), (10), and (12),

eqñ+2n(SJ, F, θ1 + θ2 − θ1θ2)

≤ ‖S‖δ + (eqñ(J, F, θ1) + 2δ)(eqn(S,B(X), θ2) + δ).

Since δ > 0 was arbitrary, the result follows.

Corollary 3. Let ν1, ν2 ∈ N with

e−ν1/8 + e−ν2/8 − e−(ν1+ν2)/8 ≤ 1/4.

Then under the same assumptions as in Proposition 1,

eqν1ñ+2ν2n
(SJ, F) ≤ 4 eqñ(J, F) e

q
n(S,B(X)).

Proof. By Proposition 1 and Corollary 1,

eqν1ñ+2ν2n
(SJ, F) ≤ eqν1ñ(J, F, e

−ν1/8) eqν2n(S,B(X), e−ν2/8)

≤ 4 eqñ(J, F) e
q
n(S,B(X)).

15

4 Approximation of Finite Dimensional Embed-

dings

For N ∈ N and 1 ≤ p ≤ ∞, let LN
p denote the space of all functions

f : Z[0, N) → R, equipped with the norm

‖f‖LN
p
=

(
1

N

N−1∑

i=0

|f(i)|p
)1/p

if p <∞ and
‖f‖LN

∞

= max
0≤i≤N−1

|f(i)|.

Define JN
pq : LN

p → LN
q to be the identity operator JN

pqf = f (f ∈ LN
p).

Furthermore, for a real M ≥ 0 define the operator CN,M
pq : LN

p → LN
q for

f = (f(i))N−1
i=0 as

(CN,M
pq f)(i) =

{
f(i) if |f(i)| ≥M
0 otherwise.

Lemma 5. Let 1 ≤ p, q ≤ ∞. There is a constant c > 0 sucht that for all
n,N ∈ N, and M ∈ R with M ≥ 0,

eqn(C
N,M
pq ,B(LN

p)) = 0

whenever
M ≥ c(N/n)2/p max(log(n/

√
N), 1)2/p.

Remark. Throughout the paper log means log2. Furthermore, we often use
the same symbol c, c1, . . . for possibly different positive constants (also when
they appear in a sequence of relations). These constants are either absolute
or may depend only on p and q – in all statements of lemmas, propositions,
etc. this is precisely described anyway by the order of the quantifiers.

Proof. This is an immediate consequence of the proof of Proposition 1 and
Corollary 3 of [14]. Namely, it contains an algorithm with n queries that
produces, with probability ≥ 3/4, all indices i with |f(i)| ≥M and for each
such i an (arbitrarily precise) approximation yi to f(i), where M is any
number satisfying

M ≥ c(N/n)2/p max(log(n/
√
N), 1)2/p.

16

Lemma 6. Let 1 ≤ p ≤ q ≤ ∞. For all N ∈ N, and M ∈ R with M ≥ 0,

sup
f∈B(LN

p)

‖f − CN,M
pq f‖LN

q
≤M1−p/q.

Proof. We have for f ∈ B(LN
p)

1

N

N−1∑

i=0

|f(i)− (CN,M
pq f)(i)|q

≤ 1

N
max

j
|f(j)− (CN,M

pq f)(j)|q−p
N−1∑

i=0

|f(i)− (CN,M
pq f)(i)|p

≤ M q−p

N

N−1∑

i=0

|f(i)|p ≤M q−p.

Next we give an upper bound.

Proposition 2. Let 1 ≤ p, q ≤ ∞. In the case p < q there is a constant
c > 0 such that for all n,N ∈ N

eqn(J
N
pq ,B(LN

p)) ≤ c min

((
N

n
log
(
n/

√
N + 2

))2/p−2/q

, N1/p−1/q

)
.

In the case p ≥ q, we have

eqn(J
N
pq ,B(LN

p)) ≤ 1.

Proof. For p < q the estimate involving the first term of the minimum
follows from the previous two lemmas, since by Lemma 6 (i) of [8],

eqn(J
N
pq ,B(LN

p)) ≤ eqn(C
N,M
pq ,B(LN

p)) + sup
f∈B(LN

p)

‖f − CN,M
pq f‖LN

q
.

The estimate involving the second term is a trivial consequence of ‖JN
pq‖ =

N1/p−1/q. The case p ≥ q follows from ‖JN
pq‖ = 1.

Before we derive lower bounds we recall some tools from [8]. Let D and
K be nonempty sets, let L ∈ N, and let to each u = (u0, . . . , uL−1) ∈ {0, 1}L
an fu ∈ F(D,K) be assigned such that the following is satisfied:

17

Condition (I): For each t ∈ D there is an l, 0 ≤ l ≤ L − 1, such that
fu(t) depends only on ul, in other words, for u, u′ ∈ {0, 1}L, ul = u′l implies
fu(t) = fu′(t).

For u ∈ {0, 1}L let |u| denote the number of 1’s in u. Define the function
̺(L, l, l′) for L ∈ N, 0 ≤ l 6= l′ ≤ L by

̺(L, l, l′) =

√
L

|l − l′| +
minj=l,l′

√
j(L− j)

|l − l′| . (21)

The following was proved in [8], using the polynomial method [3] and based
on a result from [16]:

Lemma 7. There is a constant c0 > 0 such that the following holds: Let
D,K be nonempty sets, let F ⊆ F(D,K) be a set of functions, G a normed
space, S : F → G a mapping, and L ∈ N. Suppose (fu)u∈{0,1}L ⊆ F(D,K)
is a system of functions satisfying condition (I). Let finally 0 ≤ l 6= l′ ≤ L
and assume that

fu ∈ F whenever |u| ∈ {l, l′}. (22)

Then

eqn(S,F) ≥
1

2
min

{
‖S(fu)− S(fu′)‖

∣∣ |u| = l, |u′| = l′
}

(23)

for all n with
n ≤ c0̺(L, l, l

′). (24)

For the case q = ∞ we give the following lower bound.

Proposition 3. Let 1 ≤ p ≤ ∞. There are constants c1, c2 > 0 such that
for all n,N ∈ N with n ≤ c1N

eqn(J
N
p,∞,B(LN

p)) ≥ c2 min

((
N

n

)2/p

, N1/p

)
.

Proof. First we assume
n ≤ c0

√
N, (25)

where c0 is the constant from Lemma 7. Put

L = N, l = 0, l′ = 1.

Then
n ≤ c0

√
L = c0̺(L, l, l

′). (26)

18

Define ψj (j = 0, . . . , L− 1) by

ψj(i) =

{
N1/p if i = j
0 otherwise.

Note that ψj ∈ B(LN
p) and

‖JN
p,∞ψj‖LN

∞

= ‖ψj‖LN
∞

= N1/p. (27)

For each u = (u0, . . . , uL−1) ∈ {0, 1}L define

fu =

L−1∑

j=0

ujψj. (28)

Since the functions ψj have disjoint supports, the system (fu)u∈{0,1}L satis-
fies condition (I). Lemma 7 and relations (26) and (27) give

eqn(J
N
p,∞,B(LN

p)) ≥ 1

2
min

{
‖JN

p,∞fu − JN
p,∞fu′‖LN

∞

∣∣ |u| = 0, |u′| = 1
}

=
1

2
N1/p.

This proves the statement in the first case. Let

c1 = c0/
√
12. (29)

Now we assume
c0
√
N < n ≤ c1N. (30)

We set
L = N, l = ⌈2c−2

0 n2N−1⌉, l′ = l + 1. (31)

It follows from (30) that l > 2. Moreover, from (31),

n ≤ c0
√
lN/2 (32)

and, taking into account that l > 2,

l/2 < l − 1 < 2c−2
0 n2N−1,

hence, by (29) and (30),

l + 1 ≤ 3l/2 < 6c−2
0 n2N−1 ≤ 6c−2

0 c21N = N/2. (33)

19

We have, by (32), (33) and (31),

n ≤ c0
√
lN/2 ≤ c0 min

j=l,l+1

√
j(N − j) ≤ c0̺(L, l, l

′). (34)

Now we define ψj ∈ LN
p (j = 0, . . . , L− 1) as

ψj(i) =

{
(l + 1)−1/pN1/p if i = j
0 otherwise.

Then
‖JN

p,∞ψj‖LN
∞

= ‖ψj‖LN
∞

= (l + 1)−1/pN1/p. (35)

Defining the system (fu)u∈{0,1}L as above, it satisfies condition (I), and

fu ∈ B(LN
p) whenever |u| = l, l + 1. Lemma 7, relations (34), (35), and the

left and middle part of (33) give

eqn(J
N
p,∞,B(LN

p)) ≥ 1

2
min

{
‖JN

p,∞fu − JN
p,∞fu′‖LN

∞

∣∣ |u| = l, |u′| = l + 1
}

=
1

2
(l + 1)−1/pN1/p ≥ 1

2
(6c−2

0 n2N−1)−1/pN1/p

=
c
2/p
0

2 · 61/pn
−2/pN2/p.

The previous results together with Corollary 3 give lower bounds also
for arbitrary q.

Proposition 4. Let 1 ≤ p, q ≤ ∞. There are constants c0, c1 > 0 such that
for all n,N ∈ N, with n ≤ c0N the following hold: If p ≤ q, then

eqn(J
N
pq ,B(LN

p)) ≥ c1 min

((
N

n

)2/p−2/q (
log
(
n/

√
N + 2

))−2/q
, N1/p−1/q

)
,

and if p > q, then

eqn(J
N
pq ,B(LN

p)) ≥ c1(logN + 1)−2/q .

Proof. Fix any ν1, ν2 ∈ N with

e−ν1/8 + e−ν2/8 − e−(ν1+ν2)/8 ≤ 1/4.

By Corollary 3,

eq(ν1+2ν2)n
(JN

p,∞,B(LN
p)) ≤ 4 eqn(J

N
pq ,B(LN

p)) eqn(J
N
q,∞,B(LN

q)),

20

therefore,

eqn(J
N
pq ,B(LN

p)) ≥ 4−1eq(ν1+2ν2)n
(JN

p,∞,B(LN
p)) eqn(J

N
q,∞,B(LN

q))−1. (36)

By Proposition 2,

eqn(J
N
q,∞,B(LN

q)) ≤ c min

((
N

n
log
(
n/

√
N + 2

))2/q

, N1/q

)
, (37)

while by Proposition 3 for n such that (ν1 + 2ν2)n ≤ c1N (c1 the constant
from Proposition 3)

eq(ν1+2ν2)n
(JN

p,∞,B(LN
p)) ≥ c2 min

((
N

(ν1 + 2ν2)n

)2/p

, N1/p

)

≥ c min

((
N

n

)2/p

, N1/p

)
. (38)

We first consider the case n ≤ min
(√

N, c1N/(ν1 + 2ν2)
)
. Then (36), (37),

and (38) give
eqn(J

N
pq ,B(LN

p)) ≥ cN1/p−1/q. (39)

In the case
√
N < n ≤ c1N/(ν1 + 2ν2) we obtain similarly,

eqn(J
N
pq ,B(LN

p)) ≥ c

(
N

n

)2/p(N
n

log
(
n/

√
N + 2

))−2/q

. (40)

For p ≤ q relations (39) and (40) give the lower bound. In the case p > q
we note that it suffices to prove the lower bound for n = ⌊c1N/(ν1 + 2ν2)⌋.
But in this case (40) gives

eqn(J
N
pq ,B(LN

p)) ≥ c(logN + 1)−2/q.

To present the results in a form which emphasizes the main, polyno-
mial parts of the estimates and suppresses the logarithmic factors, we in-
troduce the following notation: For functions a, b : N2 → [0,∞) we write
a(n,N) ≍log b(n,N) if there are constants c0, c1, c2 > 0, n0 ∈ N, α1, α2 ∈ R
such that

c1(log(N + n))α1b(n,N) ≤ a(n,N) ≤ c2(log(N + n))α2b(n,N)

for all n,N ∈ N with n0 ≤ n ≤ c0N . In this notation, we summarize the
results of Propositions 2 and 4 in

21

Theorem 1. Let 1 ≤ p, q ≤ ∞. If p < q then

eqn(J
N
pq ,B(LN

p)) ≍log min

((
N

n

)2/p−2/q

, N1/p−1/q

)
,

and if p ≥ q, then
eqn(J

N
pq ,B(LN

p)) ≍log 1.

Although the polynomial part of the order has been determined, there
remains some room for improvements of the logarithmic factors. In the
sequel we present some improvements of the lower bounds for particular
situations. They involve a different way of applying Corollary 3, which is
interesting in itself: we combine it with known results about summation.
Furthermore, we will use these bounds for the Sobolev case [11]. We need
to recall some previous results about summation. Define SN : LN

p → R by

SNf =
1

N

N−1∑

i=0

f(i).

Let us recall what is known about the minimal query errors of the SN :

Proposition 5. Let 1 ≤ p ≤ ∞. There are constants c0, c1, c2 > 0 such
that for all n,N ∈ N with 2 < n ≤ c0N ,

c1n
−1 ≤ eqn(SN ,B(LN

p)) ≤ c2n
−1 if 2 < p ≤ ∞, (41)

c1n
−1 ≤ eqn(SN ,B(LN

2)) ≤ c2n
−1 log3/2 n log log n, (42)

and

c1 min(n−2(1−1/p), n−2/pN2/p−1) ≤ eqn(SN ,B(LN
p))

≤ c2 min(n−2(1−1/p), n−2/pN2/p−1)(log(n/
√
N + 2))2/p−1 (43)

if 1 ≤ p < 2.

The upper bound in the case p = ∞ is contained in [5], [2], the lower
bound for p = ∞ is from [16], while (41) for 2 < p < ∞ and (42) were
obtained in [8], and (43) is from [14]. For the case p = 2 we need another
upper estimate, which is more precise than (42) for n close to N . It can be
found in [10], Lemma 6.

22

Lemma 8. There is a constant c > 0 such that for all n,N ∈ N with n ≤ N ,

eqn(SN ,B(LN
2)) ≤ cn−1l(n,N)3/2 log l(n,N),

where
l(n,N) = log(N/n) + log log(n+ 1) + 2.

Proposition 6. Let 1 ≤ p, q ≤ ∞. There are constants c0, c1 > 0 such that
for all n,N ∈ N with N > 4 and n ≤ c0N

eqn(J
N
p,q,B(LN

p)) ≥ c1 if 2 < q ≤ ∞
eqn(J

N
p,2,B(LN

p)) ≥ c1(log logN)−3/2(log log logN)−1

eqn(J
N
p,q,B(LN

p)) ≥ c1(logN)−2/q+1 if 1 ≤ q < 2.

Proof. The proof is similar to that of Proposition 4. Fix ν1, ν2 ∈ N with

e−ν1/8 + e−ν2/8 − e−(ν1+ν2)/8 ≤ 1/4.

Since JN
pq is the identity, we have SN = SNJ

N
pq , and we deduce from Corollary

3,
eq(ν1+2ν2)n

(SN ,B(LN
p)) ≤ 4 eqn(J

N
pq ,B(LN

p)) eqn(SN ,B(LN
q))

which gives

eqn(J
N
pq ,B(LN

p)) ≥ 4−1eq(ν1+2ν2)n
(SN ,B(LN

p)) eqn(SN ,B(LN
q))−1.

It remains to apply Proposition 5 and Lemma 8 with n = ⌊c0(ν1+2ν2)
−1N⌋.

5 Comments

First we discuss the cost of the presented (optimal with respect to the num-
ber of queries) algorithms in the bit model of computation. For this purpose
we assume that n and N are powers of 2. The algorithm behind Proposition
2 for approximating JN

pq is nontrivial only for n ≥
√
N . In this case it uses n

quantum queries to finds all coordinates of f ∈ B(LN
p) with absolute value

not smaller than

M = c(N/n)2/p max(log(n/
√
N), 1)2/p

(with c a concrete constant, see [14]). It follows from ‖f‖LN
p
≤ 1 that there

are at most
NM−p = O(n2N−1max(log(n/

√
N), 1)−2)

23

of them. The algorithm of finding them, which is described and analyzed in
[14], needs O(n logN) quantum gates, O(logN) qubits,

O(n2N−1 max(log(n/
√
N), 1)−1)

measurements, and O(n2N−1 logN) classical bit operations. So the total bit
cost is O(n logN) = O(n log n), hence, up to a logarithm, the same amount
as the number of queries.

In the following table we summarize the results of this paper on the
quantum approximation of the identical embeddings JN

pq : B(LN
p) → LN

q

and compare them with the respective known quantities in the classical
deterministic and randomized settings. We refer to [7] and the bibliography
therein for more information on the classical settings. The respective entries
of the table give the minimal errors, constants and logarithmic factors are
suppressed. We always assume n ≤ cN .

JN
pq : B(LN

p) → LN
q deterministic random quantum

1 ≤ p < q ≤ ∞, n ≤
√
N N1/p−1/q N1/p−1/q N1/p−1/q

1 ≤ p < q ≤ ∞, n >
√
N N1/p−1/q N1/p−1/q

(
N
n

)2/p−2/q

1 ≤ q ≤ p ≤ ∞ 1 1 1

We see that the quantum rate can improve the classical deterministic
and randomized rates by a factor of order N−1 (for p = 1, q = ∞, and n
of the order of N). It is this case which will lead to a speedup for Sobolev
embeddings by an exponent 1, see [11]. We observe that there are also
regions where the speedup is smaller or there is no speedup at all.

References

[1] D. Aharonov, Quantum computation – a review, in: D.
Stauffer (Ed.) Annual Review of Computational Physics,
vol. VI, World Scientific, Singapore, 1998, see also
http://arXiv.org/abs/quant-ph/9812037.

[2] G. Brassard, P. Høyer, M. Mosca, A. Tapp, Quan-
tum amplitude amplification and estimation, 2000, see
http://arXiv.org/abs/quant-ph/0005055.

24

http://arXiv.org/abs/quant-ph/9812037
http://arXiv.org/abs/quant-ph/0005055

[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de
Wolf, Quantum lower bounds by polynomials, Pro-
ceedings of 39th IEEE FOCS, 1998, 352-361, see also
http://arXiv.org/abs/quant-ph/9802049.

[4] A. Ekert, P. Hayden, H. Inamori, Basic con-
cepts in quantum computation, 2000, see
http://arXiv.org/abs/quant-ph/0011013.

[5] L. Grover, A framework for fast quantummechanical algorithms,
Proceedings of the 30th Annual ACM Symposium on the Theory
of Computing, ACM Press, New York, 1998, 53–62, see also
http://arXiv.org/abs/quant-ph/9711043.

[6] J. Gruska, Quantum Computing, McGraw-Hill, London, 1999.

[7] S. Heinrich, Random approximation in numerical analysis, in:
K. D. Bierstedt, A. Pietsch, W. M. Ruess, D. Vogt (Eds.), Func-
tional Analysis, Marcel Dekker, New York, 1993, 123 – 171.

[8] S. Heinrich, Quantum summation with an application to in-
tegration, Journal of Complexity 18 (2002), 1–50, see also
http://arXiv.org/abs/quant-ph/0105116.

[9] S. Heinrich, From Monte Carlo to quantum computation, Pro-
ceedings of the 3rd IMACS Seminar on Monte Carlo Methods
MCM2001, Salzburg, Special Issue of Mathematics and Com-
puters in Simulation (Guest Eds.: K. Entacher, W. Ch. Schmid,
A. Uhl) 62 (2003), 219–230.

[10] S. Heinrich, Quantum integration in Sobolev
classes, J. Complexity 19 (2003), 19–42, see also
http://arXiv.org/abs/quant-ph/0112153.

[11] S. Heinrich, Quantum Approximation II. Sobolev Embeddings,
2003

[12] S. Heinrich, M. Kwas, H. Woźniakowski, Quantum Boolean
Summation with Repetitions in the Worst-Average Setting,
2003, submitted to the Proceedings of the 5th International
Conference on Monte Carlo and Quasi-Monte Carlo Methods,
Singapore, 2002.

25

http://arXiv.org/abs/quant-ph/9802049
http://arXiv.org/abs/quant-ph/0011013
http://arXiv.org/abs/quant-ph/9711043
http://arXiv.org/abs/quant-ph/0105116
http://arXiv.org/abs/quant-ph/0112153

[13] S. Heinrich, E. Novak, Optimal summation and inte-
gration by deterministic, randomized, and quantum algo-
rithms, in: K.-T. Fang, F. J. Hickernell, H. Niederre-
iter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods
2000, Springer-Verlag, Berlin, 2002, pp. 50–62, see also
http://arXiv.org/abs/quant-ph/0105114.

[14] S. Heinrich, E. Novak, On a problem in quantum
summation, J. Complexity 19 (2003), 1–18, see also
http://arXiv.org/abs/quant-ph/0109038.

[15] M. Kwas, H. Woźniakowski, Sharp error bounds on
quantum Boolean summation in various settings, 2003,
http://arXiv.org/abs/quant-ph/0303049.

[16] A. Nayak, F. Wu, The quantum query complexity of approx-
imating the median and related statistics, STOC, May 1999,
384–393, see also http://arXiv.org/abs/quant-ph/9804066.

[17] M. A. Nielsen, I. L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, Cambridge,
2000.

[18] E. Novak, Deterministic and Stochastic Error Bounds in Nu-
merical Analysis, Lecture Notes in Mathematics 1349, Springer-
Verlag, Berlin, 1988.

[19] E. Novak, Quantum complexity of integration, J. Complexity 17
(2001), 2–16, see also http://arXiv.org/abs/quant-ph/0008124.

[20] E. Novak, I. H. Sloan, H. Woźniakowski, Tractability of approx-
imation for weighted Korobov spaces on classical and quantum
computers, 2002, see http://arXiv.org/abs/quant-ph/0206023.

[21] A. Pietsch, Eigenvalues and s-Numbers, Cambridge University
Press, 1987.

[22] A. O. Pittenger, Introduction to Quantum Computing Algo-
rithms, Birkhäuser, Boston, 1999.

[23] D. Pollard, Convergence of Stochastic Processes, Springer-
Verlag, New York, 1984.

26

http://arXiv.org/abs/quant-ph/0105114
http://arXiv.org/abs/quant-ph/0109038
http://arXiv.org/abs/quant-ph/0303049
http://arXiv.org/abs/quant-ph/9804066
http://arXiv.org/abs/quant-ph/0008124
http://arXiv.org/abs/quant-ph/0206023

[24] P. W. Shor, Introduction to quantum algorithms, 2000, see
http://arXiv.org/abs/quant-ph/0005003.

[25] J. F. Traub, H. Woźniakowski, Path integration on a quantum
computer, 2001, see http://arXiv.org/abs/quant-ph/0109113.

[26] J. F. Traub, G. W. Wasilkowski, H. Woźniakowski, Information-
Based Complexity, Academic Press, New York, 1988.

27

http://arXiv.org/abs/quant-ph/0005003
http://arXiv.org/abs/quant-ph/0109113

	Introduction
	Notation
	Some General Results
	Approximation of Finite Dimensional Embeddings
	Comments

