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Abstract

We study the quantum summation (QS) algorithm of Brassard, Høyer, Mosca and
Tapp, see [1], that approximates the arithmetic mean of a Boolean function defined
on N elements. We improve error bounds presented in [1] in the worst-probabilistic
setting, and present new error bounds in the average-probabilistic setting.

In particular, in the worst-probabilistic setting, we prove that the error of the QS

algorithm using M −1 quantum queries is 3
4πM

−1 with probability 8
π2 , which improves

the error bound πM−1+π2M−2 of [1]. We also present error bounds with probabilities
p ∈ (12 ,

8
π2 ], and show that they are sharp for large M and NM−1.

In the average-probabilistic setting, we prove that the QS algorithm has error of
order min{M−1, N−1/2} iff M is divisible by 4. This bound is optimal, as recently
shown in [10]. For M not divisible by 4, the QS algorithm is far from being optimal if
M ≪ N1/2 since its error is proportional to M−1.

1 Introduction

The quantum summation (QS) algorithm (also known as the amplitude estimation algorithm)
of Brassard, Høyer, Mosca and Tapp, see [1], computes an approximation to the arithmetic

∗This research was supported in part by the National Science Foundation (NSF) and by the Defence
Advanced Research Agency (DARPA) and Air Force Research Laboratory under agreement F30602-01-2-
0523.
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mean of all values of a Boolean function defined on a set of N = 2n elements. Information
regarding the Boolean function is supplied by quantum queries. The quantum queries play a
role similar to the use of function values in the worst case and randomized settings. Suppose
that we use M − 1 quantum queries. Obviously, the only case of interest is when M is much
smaller than N . It was proven in [1] that the error of the QS algorithm is at most

π

M
+

π2

M2
with probability

8

π2
= 0.81 . . . . (1)

Nayak and Wu, see [7], showed that for any p ∈ (1
2
, 1] the error of any quantum algorithm

that uses no more thanM−1 quantum queries must be proportional toM−1 with probability
p. Therefore, theQS algorithm enjoys the smallest possible error modulo a factor multiplying
M−1.

The minimal error estimate of order M−1 in the quantum setting should be compared to
the minimal error estimates in the worst case and randomized settings of algorithms using
M − 1 function values. It is known, see [8], that in the worst case setting, the error bound is
roughly 1

2
(1−M/N). This means that as long as M is much less than N the error is almost

1
2
, and is therefore of order M times larger than in the quantum setting. In the randomized

setting, the classical Monte Carlo is almost optimal, and the error bound is roughly 1/(2
√
M),

see again [8]. Hence, it is of order
√
M larger than in the quantum setting.

The QS algorithm has many applications. In particular, it can be used for approximation
of the arithmetic mean of a real function, which is the basic step for approximation of many
continuous problems such as multivariate integration, multivariate approximation and path
integration, see [4, 5, 6, 9, 11].

Since the QS algorithm has so many applications, it seems reasonable to check whether
the estimate (1) is sharp and how the error decreases if we lower the probability p = 8

π2 to
p > 1

2
. It also seems reasonable to study the error of the QS algorithm in various settings.

The estimate (1) corresponds to the worst-probabilistic setting, which is most frequently
used in the quantum setting. The essence of this setting is that it holds for all Boolean
functions. It is also interesting to study the average performance of the QS algorithm with
respect to some measure on Boolean functions. This is the average-probabilistic setting. In
the worst-average and average-average settings, we study the worst or average performance
with respect to Boolean functions and the average performance with respect to all outcomes
of a quantum algorithm. We add in passing that the worst-average setting is usually used
for the study of the classical Monte Carlo algorithm.

Sharp error bounds in the worst- and average-probabilistic settings are addressed in this
paper whereas the worst- and average-average settings will be studied in a future paper. We
study error bounds with probabilities p ∈ (1

2
, 8
π2 ]. If we want to obtain error bounds with

higher probability, it is known that it is enough to run the QS algorithm several times and
take the median as the final result, see e.g., [4].

In the worst-probabilistic setting, we show that (1) can be slightly improved. Namely,
the error of the QS algorithm is at most

3

4

π

M
with probability

8

π2
.
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Furthermore, for large M and N/M we prove that the last estimate is sharp. More
generally, for p ∈ (1

2
, 8
π2 ] we prove that the error of the QS algorithm is at most

(1− v−1(p)) π

M
with probability p,

where v−1 is the inverse of the function v(∆) = sin2(π∆)/(π∆)2. We prove that the last esti-
mate is sharp for largeM and N/M . We have 1−v−1(p) ∈ (1

2
, 3
4
] and it is well approximated

by 1
16
π2p+ 1

4
. In particular, for the most commonly used values of p we have

(1− v−1(1
2
+))π = 1.75 . . . , (1− v−1(3

4
))π = 2.23 . . . , (1− v−1( 8

π2 )) =
3
4
π = 2.35 . . . .

In the average-probabilistic setting, we consider two measures on the set of Boolean
functions. The first measure is uniform on Boolean functions, while the second measure is
uniform on arithmetic means of Boolean functions. The results for these two measures are
quite different. The mean element of the arithmetic means is 1

2
for both measures. However,

the first moment is of order N−1/2 for the first measure, and about 1
4
for the second. The

first moment is exactly equal to the error of the constant algorithm that always outputs 1
2
.

This explains why we can obtain the error of order N−1/2 without any quantum queries for
the first measure. This provides the motivation for us to check whether the error of the QS

algorithm enjoys a similar property. It turns out that this is indeed the case iff M is divisible
by 4. That is, for M divisible by 4, the average-probabilistic error of the QS algorithm is of
order min{M−1, N−1/2}, and if M is not divisible by 4, then the error is of order M−1. For
the second measure, since the first moment is not small, the average-probabilistic error of the
QS algorithm is of order M−1 for all M . For both measures, the upper bounds presented in
this paper match lower bounds that were recently obtained by Papageorgiou, see [10]. Hence,
the QS algorithm enjoys minimal error bounds also in the average-probabilistic setting if we
choose M divisible by 4 for the first measure and with no restriction on M for the second
measure.

The quantum setting, and in particular the QS algorithm, is relatively new and probably
not well known, especially for people interested in continuous complexity. Hence we present
all details of this algorithm, emphasizing its quantum parts. Since we wanted also to find
sharp error bounds, we needed a very detailed analysis of the outcome probabilities of the
QS algorithm.

We outline the contents of this paper. In Section 2 we define the QS algorithm. Section
3 deals with the performance analysis of the QS algorithm in the worst-probabilistic setting,
see Section 3.1, and in the average-probabilistic setting, see Section 3.2.

2 Quantum Summation Algorithm

We consider the most basic form of the summation problem, i.e., the summation of Boolean
functions. Let BN denote the set of Boolean functions f : {0, . . . , N − 1} → {0, 1}. Let

af =
1

N

N−1
∑

i=0

f(i)

3



denote the arithmetic mean of all values of f . Clearly, af ∈ [0, 1].

Problem: For f ∈ BN , compute an ε-approximation āf of the sum af such that

|āf − af | ≤ ε. (2)

We are interested in the minimal number of evaluations of the function f that are needed
to compute āf satisfying (2). It is known that in the worst case setting, we need roughlyN(1−
ε) evaluations of the function f . In the randomized setting, we assume that āf is a random
variable and require that (2) holds for the expected value of |āf −af | for any function f . It is
known, see e.g., [8], that in the randomized setting we need roughly min{N, ε−1/2} function
evaluations. In the quantum setting, we want to compute a random variable āf such that
(2) holds with a high probability (greater than 1

2
) either for all Boolean functions or on the

average with respect to a probability measure defined on the set BN . These two error criteria
in the quantum setting will be precisely defined in Section 3.

In this section we describe the quantum summation algorithm, which is also called the
quantum amplitude estimation algorithm. This algorithm was discovered by Brassard, Høyer,
Mosca and Tapp [1], and uses Grover’s iterate operator as its basic component, see [2]. We
use standard notation of quantum computation, see e.g., [3].

For simplicity we assume that N = 2n. Let Hn denote the tensor product C2 ⊗ · · · ⊗ C2

of n copies of C2, with C
2 the 2-dimensional complex vector space. Unit vectors from C

2 are
called one qubit quantum states (or qubits). Let |0〉 and |1〉 be an orthonormal basis of C2.
Then any qubit |ψ〉 can be represented as

|ψ〉 = ψ0|0〉+ ψ1|1〉 with ψk ∈ C and |ψ0|2 + |ψ1|2 = 1.

For j = 0, 1, . . . , N − 1, we have j =
∑n−1

k=0 2
n−1−kjk, with jk ∈ {0, 1}. Let

|j〉 =
n−1
⊗

k=0

|jk〉.

The set {|j〉 : j = 0, . . . , N − 1} forms an orthonormal basis of Hn and any unit vector
|ψ〉 ∈ Hn can be represented as

|ψ〉 =
N−1
∑

j=0

ψj |j〉 with ψj ∈ C and
N−1
∑

j=0

|ψj|2 = 1.

Unit vectors from Hn are called n qubit quantum states (or quantum states or just states,
whenever n is clear from the context).

The only transforms that can be performed on quantum states are defined by certain
unitary operators on Hn. We now define the six unitary operators that are basic components
of the summation algorithm. Since unitary operators are linear, it is enough to define them
on the basis states |j〉.

1. Let S0 : Hn → Hn denote the inversion about zero transform

S0|j〉 = (−1)δj,0 |j〉,

4



where δj,0 is the Kronecker delta. Hence, S0|0〉 = −|0〉 and S0|j〉 = |j〉 for all j 6= 0.
This corresponds to the diagonal matrix with one element equal to −1, and the rest
equal to 1. The operator S0 can be also written as the Householder operator

S0 = I − 2|0〉〈0|.

Here, for a state |ψ〉, we let |ψ〉〈ψ| denote the projection onto the space span{|ψ〉}
given by

(|ψ〉〈ψ|) |x〉 = 〈ψ|x〉 |ψ〉,
where 〈ψ|x〉 is the inner product1 in Hn, 〈ψ|x〉 =

∑N−1
k=0 ψkxk. The matrix form of the

projector |ψ〉〈ψ| in the basis {|j〉} is (ψkψj)
N−1
j,k=0. One can also view the matrix form

of the projector |ψ〉〈ψ| as the matrix product of the N × 1 column vector |ψ〉 and the
N × 1 row vector 〈ψ|, which is the Hermitian conjugate of |ψ〉, 〈ψ| = |ψ〉†. For any
|x〉 ∈ Hn we have

〈k|
(

I − 2|0〉〈0|
)

|x〉 = 〈k|x〉 − 2〈0|x〉〈k|0〉 =
{

xk − 2xk = −xk for k = 0,

xk − 0 = xk for k 6= 0.

Hence I − 2|0〉〈0| = S0, as claimed.

2. Let WN : Hn → Hn denote the Walsh-Hadamard transform

WN |j〉 =
1√
N

n−1
⊗

k=0

(

|0〉+ (−1)jk |1〉
)

.

That is, the Walsh-Hadamard transform corresponds to the matrix with entries

〈i|WN |j〉 =
1√
N

n−1
∏

k=0

〈ik|
(

|0〉+ (−1)jk |1〉
)

=
1√
N

n−1
∏

k=0

(−1)ikjk =
1√
N
(−1)

∑n−1

k=0
ikjk .

The matrix (〈i|WN |j〉)N−1
i,j=0 is symmetric. Furthermore,

W 2
N |j〉 =

1√
N
Wn

n−1
⊗

k=0

(

|0〉+ (−1)jk |1〉
)

=
1√
N

n−1
⊗

k=0

(

1√
2
(|0〉+ |1〉) + (−1)jk√

2
(|0〉 − |1〉)

)

=
1√
N

n−1
⊗

k=0

√
2|jk〉 = |j〉.

Thus, W 2
N = I and W−1

N = WN is orthogonal. This means that the operator WN is
symmetric and unitary.

1We follow the quantum mechanics notation in which the first argument is conjugated in the inner product,
whereas in the standard mathematical notation the second argument is usually conjugated.
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3. For K = 1, 2, . . . , 2n, let FK,n : Hn → Hn denote the quantum Fourier transform

FK,n|j〉 =
{

1√
K

∑K−1
k=0 e

2πijk/K |k〉, for j = 0, 1, . . . , K − 1, (i =
√
−1)

|j〉 for j = K, . . . , 2n − 1.

Hence, FK,n corresponds to the unitary block-diagonal matrix

[

FK 0
0 I

]

,

where FK =
(

K−1/2 e2πijk/k
)K−1

j,k=0
is the matrix of the inverse quantum Fourier trans-

form. For K = 2n = N we have

FN,n|ψ〉 =
N−1
∑

j=0

ψjFN,n|j〉 =
1√
N

N−1
∑

k=0

(

N−1
∑

j=0

ψje
2πijk/N

)

|k〉.

The coefficients of FN,n|ψ〉 in the basis {|j〉} are the inverse quantum Fourier transforms
of the coefficients of the state |ψ〉. Note that WN and FN,n coincide for the state |0〉,
i.e.,

WN |0〉 = FN,n |0〉 =
1√
N

N−1
∑

j=0

|j〉.

4. Let Sf : Hn → Hn denote the quantum query operator

Sf |j〉 = (−1)f(j)|j〉,

This again corresponds to the diagonal matrix with elements ±1 depending on the
values of the Boolean function f . This operator is the only one that provides informa-
tion about the Boolean function f . This is analogous to the concept of an oracle or a
black-box which is used in classical computation and which supplies information about
the function f through its values.

The standard definition of the quantum query S̄f is

S̄f : Hn ⊗ C
2 → Hn ⊗ C

2, S̄f |j〉|i〉 = |j〉|i⊕ f(j)〉,

where ⊕ means addition modulo 2. We can simulate Sf by S̄f if we use an auxiliary
qubit (1/

√
2)(|1〉 − |0〉), namely,

S̄f

(

|j〉 |1〉 − |0〉√
2

)

= |j〉 |1⊕ f(j)〉 − |f(j)〉√
2

= (−1)f(j)|j〉 |1〉 − |0〉√
2

=
(

Sf |j〉
) |1〉 − |0〉√

2
.

5. Let Qf : Hn → Hn denote the Grover operator

Qf = −WN S0W
−1
N Sf .

6



This is the basic component of Grover’s search algorithm, see [2]. As we shall see,
Qf also plays the major role for the summation algorithm. The eigenvectors and
eigenvalues of Qf will be useful in further considerations. Let

|ψ〉 =WN |0〉 =
1√
N

N−1
∑

k=0

|k〉

and |ψ0〉, |ψ1〉 denote the orthogonal projections of |ψ〉 onto the subspaces
span{|j〉 : f(j) = 0} and span{|j〉 : f(j) = 1}, respectively. That is,

|ψj〉 =
1√
N

∑

k: f(k)=j

|k〉 j = 0, 1.

Then |ψ〉 = |ψ0〉 + |ψ1〉 and 〈ψ0|ψ1〉 = 0. Furthermore, 〈ψj |ψj〉 = N−1
∑

k: f(k)=j 1, for

j = 0, 1, so that 〈ψ1|ψ1〉 = a and 〈ψ0|ψ0〉 = 1− a, where a = af is the sum we want to
approximate.

From [1], we know that

Qf |ψ0〉 = (1− 2a)|ψ0〉+ 2(1− a)|ψ1〉,
Qf |ψ1〉 = −2a|ψ0〉+ (1− 2a)|ψ1〉.

(3)

For the sake of completeness, we provide a short proof of (3). By the definition of the
operator Sf we have

Sf |ψj〉 = (−1)j|ψj〉, j = 0, 1,

and
WN S0W

−1
N = WN (I − 2|0〉〈0|)W−1

N = I − 2(WN |0〉〈0|WN).

Since 〈0|WN = (WN |0〉)† = (|ψ〉)† = 〈ψ|, we obtain for j = 0, 1,

WN S0W
−1
N |ψj〉 = |ψj〉 − 2(|ψ〉〈ψ|) |ψj〉 = |ψj〉 − 2〈ψ|ψj〉|ψ〉 = |ψj〉 − 2〈ψj |ψj〉|ψ〉.

From this we calculate for j = 0, 1,

Qf |ψj〉 = (−1)1+jWNS0W
−1
N |ψj〉

= (−1)δj,0 (|ψj〉 − 2(δj,1a+ δj,0(1− a))(|ψ0〉+ |ψ1〉)) ,

which is equivalent to (3).

Thus, the space span{|ψ0〉, |ψ1〉} is an invariant space of Qf and its eigenvectors and
corresponding eigenvalues can be computed by solving the eigenproblem for the 2 × 2
matrix

[

1− 2a −2a
2(1− a) 1− 2a

]

.

For a ∈ (0, 1), the eigenvectors and the corresponding orthonormalized eigenvalues of
Qf are

|ψ±〉 =
1√
2

(

± i√
1− a

|ψ0〉+
1√
a
|ψ1〉

)

and λ± = 1− 2a± 2i
√

a(1− a) = e±2iθa ,

7



where θa = arcsin
√
a. Moreover, it is easy to check that

|ψ〉 = −i√
2

(

eiθa |ψ+〉 − e−iθa |ψ−〉
)

. (4)

For a ∈ {0, 1}, we have span{|ψ0〉, |ψ1〉} = span{|ψ〉} and |ψ〉 is the eigenvector of Qf

with eigenvalues ±1, respectively. For a ∈ {0, 1}, we define

|ψ+〉 = i1−a
√
2 |ψ〉 and |ψ−〉 = 0.

Then it is easy to check that (4) is valid, and λ± = e±2iθa = (−1)a is an eigenvalue of
Qf for all a ∈ [0, 1].

6. The next unitary transform, called the Grover iterate operator, is defined on the tensor
product of Hm ⊗ Hn and uses m + n qubits. The first space Hm and m qubits will
be related to the accuracy of the quantum summation algorithm. The Grover iterate
operator Λm(Qf) : Hm ⊗Hn → Hm ⊗Hn is defined by

Λm(Qf) |j〉|y〉 = |j〉Q j
f |y〉 for |j〉|y〉 ∈ Hm ⊗Hn.

Hence, the power of Qf applied to the second component depends on the first one.
Note that j may vary from 0 to 2m − 1. Therefore Λm(Qf) may use the powers of Qf

up to the (2m − 1)st.

We need one more concept of quantum computation, that of measurement. Suppose s is
a positive integer and consider the space Hs. Given the state

|ψ〉 =
2s−1
∑

k=0

ψk|k〉 ∈ Hs,

we cannot, in general, recover all the coefficients ψk. We can only measure the state |ψ〉 with
respect to a finite collection of linear operators {Mj}pj=0, where the Mj : Hs → Hs satisfy
the completeness relation

p
∑

j=0

M †
jMj = I.

After performing the measurement, we obtain the outcome j and the state |ψ〉 collapses into
the state

1
√

〈ψ|M †
jMj|ψ〉

Mj |ψ〉,

both these events occur with probability 〈ψ|M †
jMj |ψ〉. Note that forMj |ψ〉 = 0 the outcome j

cannot happen with positive probability. Hence, with probability 1 the outcome j corresponds
to Mj |ψ〉 6= 0 for j = 0, 1, . . . , p.

The most important example of such a collection of operators is {|j〉〈j|}2s−1
j=0 . Then,

the measurement of the state |ψ〉 with respect to this collection of operators gives us the
outcome j and the collapse into the state

〈j|ψ〉
|〈j|ψ〉| |j〉

8



with probability |ψj |2, j = 0, 1, . . . , 2s − 1.
Another example is a variation of the previous example and will be used in the quantum

summation algorithm. We now let s = m+ n, as for the Grover iterate operator, and define
Mj : Hm ⊗Hn → Hm ⊗Hn by

Mj = |j〉〈j| ⊗ I

for j = 0, 1, . . . , 2m − 1, with I denoting the identity operator on Hn. That is,

(|j〉〈j| ⊗ I) |x〉|y〉 = 〈j|x〉 |j〉|y〉

for |x〉 ∈ Hm and |y〉 ∈ Hn.
Since

∑2m−1
j=0 (|j〉〈j| ⊗ I) |x〉|y〉 = |x〉|y〉 for all basis states |x〉 of Hm and |y〉 of Hn, the

completeness relation is satisfied. Consider now the probability of the outcome j for a special
state |ψ〉 of the form |ψ〉 = |ψ1〉|ψ2〉 with |ψ1〉 ∈ Hm, |ψ2〉 ∈ Hn and 〈ψk|ψk〉 = 1 for k = 1, 2.
Since |j〉〈j| ⊗ I is self-adjoint, the outcome j and the collapse of the state |ψ〉 to the state

〈j|ψ1〉
|〈j|ψ1〉|

|j〉|ψ2〉

occur with probability |〈j|ψ1〉|2. Hence, this collection of operators measures the components
of the so-called first register |ψ1〉 of the quantum state |ψ〉.

Following [1], we are ready to describe the quantum summation (QS) algorithm for solving
our problem. TheQS algorithm depends on a Boolean function f and on an integer parameter
M that controls the number of quantum queries of f used by the algorithm. We perform
computations in the space Hm⊗Hn, with m = ⌈log2M⌉, so we use n+m qubits. As we will
see later, the accuracy of the algorithm is related to the dimension of the space Hm.

Algorithm QS(f , M)

Input state: |0〉|0〉 ∈ Hm ⊗Hn with m = ⌈log2M⌉ and n = log2N .

Computation:

1. |η1〉 = FM,m ⊗WN |0〉|0〉,
2. |η2〉 = Λm(Qf) |η1〉,
3. |η3〉 = (F−1

M,m ⊗ I) |η2〉.

Measurement:

Perform the measurement of the state |η3〉 with respect to the collection
{ (|j〉〈j|)⊗ I }2m−1

j=0 . Denote the outcome by j.

Output: āf(j) = sin2
(

πj/M
)

.

We briefly comment on the QS algorithm. The input state is always the same and does
not depend on f . Step 1 computes |η1〉 = (NM)−1/2

∑M−1
j=0

∑N−1
k=0 |j〉|k〉, which is the equally

weighted superposition of the basis states. Step 2 computes |η2〉 by using the Grover iterate

9



operator. During this step we use the successive powers of the Grover operator Qf , and this is
the only step where information about the Boolean function f is used. We shall see that the
QS algorithm uses M − 1 quantum queries. Step 3 computes |η3〉 by performing the inverse
quantum Fourier transform on the first m qubits, and prepares the system for measurement.
After Step 3, we perform the measurement, obtain the outcome j and compute the output
āf(j) on a classical computer. We stress that the distribution of the outcomes j depends on
the Boolean function f , and this is the only dependence of the output āf (j) on f .

3 Performance Analysis

In this section we analyze the error of the QS algorithm. As we have seen in Section 2, the
output āf(j) of the QS algorithm is a random value chosen according to a certain distri-
bution dependent on the input function f . In this way, the QS algorithm is a randomized
algorithm. Various ways of measuring the performance of randomized algorithms are com-
monly used in the analysis of algorithms and computational complexity. They correspond
to various error criteria. In this paper we consider two error criteria: worst-probabilistic and
average-probabilistic. In a future paper we consider other two error criteria: worst-average
and average-average, which correspond to the worst or average performance with respect to
Boolean functions and the average performance with respect to all outcomes.

Worst-Probabilistic Error

We start with the error criterion that is used in most papers dealing with quantum computa-
tions. We are interested in the worst case error of the QS algorithm that holds with a given
probability p. Here p ∈ [0, 1] and 1−p measures the probability of QS algorithm’s failure and
usually p is set to be 3

4
. In our analysis, however, we will allow an arbitrary p ∈ (1

2
, 8
π2 ]. The

choice of the upper bound 8
π2 = 0.81 . . . will be clear from the analysis of the QS algorithm.

The QS algorithm outputs āf (j) with probability pf(j) for j = 0, 1, . . . ,M − 1, see Theorem
2 where the pj(f)’s are given. Its worst-probabilistic error is formally defined as the smallest
error bound that holds for all Boolean function with probability at least p, i.e.,

ewor−pro(M, p) = inf

{

α :
∑

j: |af−āf (j)|≤α

pf(j) ≥ p ∀f ∈ BN

}

.

It is easy to see that ewor−pro(M, p) can be rewritten as follows. Let A ⊂ {0, 1, . . . ,M − 1}.
For f ∈ BN define the measure of A as

µ(A, f) =
∑

j∈A
pf (j).

Then

ewor−pro(M, p) = max
f∈BN

min
A: µ(A,f)≥p

max
j∈A

|af − āf (j)|. (5)

10



Average-Probabilistic Error

The worst-probabilistic error ewor−pro(M, p) of the QS algorithm is defined by the worst
performance with respect to Boolean functions. It is also natural to consider the average
performance of the QS algorithm with respect to Boolean functions. Let p be a probability
measure on the set BN . That is, any Boolean function f ∈ BN occurs with probability p(f).
Obviously, p(f) ≥ 0 and

∑

f∈BN
p(f) = 1. The average-probabilistic error is defined by

replacing the first max in (5) by the expectation, i.e.,

eavg−pro(M, p) =
∑

f∈BN

p(f) min
A: µ(A,f)≥p

max
j∈A

|af − āf(j)|,

Hence, we are interested in the average error that holds with a certain fixed probability.

3.1 Worst-Probabilistic Error

We begin by citing a theorem from [1] for which we will propose a number of improvements.

Theorem 1. [1] For any Boolean function f ∈ BN , the QS algorithm uses exactly M − 1
quantum queries and outputs ā that approximates a = af such that

|ā− a| ≤ 2π

M

√

a(1− a) +
π2

M2
≤ π

M
+

π2

M2

with probability at least 8
π2 = 0.81 . . . . Hence,

∑

j: |āf (j)−af |≤(2π/M)
√

af (1−af )+π2/M2

pf (j) ≥
8

π2
∀f ∈ BN ,

and, therefore,

ewor−pro(M, 8
π2 ) ≤

π

M
+

π2

M2
.

Using proof ideas of Theorem 1 from [1] we present the following theorem and the subse-
quent corollaries.

Theorem 2. For any Boolean function f ∈ BN , denote

σa = σaf =
M

π
arcsin

√
a ∈

[

0, 1
2
M
]

.

1. The QS algorithm uses exactly M − 1 quantum queries, and log2N + ⌈log2M⌉ qubits.

2. For j = 0, 1, . . . ,M − 1, the outcome j of the QS algorithm occurs with probability

pf(j) =
sin2(π(j − σaf ))

2M2 sin2( π
M
(j − σaf ))

(

1 +
sin2

(

π(j − σaf )/M
)

sin2
(

π(j + σaf )/M
)

)

. (6)

(If sin(π(j ± σaf )/M) = 0 we need to apply the limiting value of the formula above.)

For j =M,M + 1, . . . , 2⌈log2 M⌉ − 1, the outcome j occurs with probability 0.
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3. If σaf is an integer then the QS algorithm outputs the exact value of af with probabil-
ity 1. This holds iff af = sin2(kπ/M) for some integer k ∈ [0, 1

2
M ]. In particular, this

holds for af = 0, for af = 1 and even M , and for af = 1
2
and M divisible by 4.

4. Let x = π(⌈σa⌉ − σa)/M and x = π(σa − ⌊σa⌋)/M . If σaf is not an integer then the
QS algorithm outputs the same value ā = āf(⌈σa⌉) = āf (M − ⌈σa⌉) for the outcomes
⌈σa⌉ and M − ⌈σa⌉ such that

|ā− a| =
∣

∣

∣
sin(x)

(

2
√

a(1− a) cos(x) + (1− 2a) sin(x)
)
∣

∣

∣

≤ π

M

(

⌈σa⌉ − σa
)

(7)

with probability

sin2(π(⌈σa⌉ − σa))

M2 sin2( π
M
(⌈σa⌉ − σa))

(

1 + (1− δ⌈σa⌉,M/2)
sin2(π(⌈σa⌉ − σa)/M)

sin2(π(⌈σa⌉+ σa)/M)

)

≥ sin2
(

π(⌈σa⌉ − σa)
)

π2(⌈σa⌉ − σa)2
= 1− π2

3
(⌈σa⌉ − σa)

2 +O
(

(⌈σa⌉ − σa)
4
)

, (8)

and outputs the same value ā = āf (⌊σa⌋) = āf((1− δ⌊σa⌋,0)M − ⌊σa⌋) for the outcomes
⌊σa⌋ and (1− δ⌊σa⌋,0)M − ⌊σa⌋such that

|ā− a| =
∣

∣

∣
sin(x)

(

2
√

a(1− a) cos(x) + (1− 2a) sin(x)
)∣

∣

∣

≤ π

M
(σa − ⌊σa⌋) (9)

with probability

sin2(π(σa − ⌊σa⌋))
M2 sin2( π

M
(σa − ⌊σa⌋))

(

1 + (1− δ⌊σa⌋,0)
sin2(π(σa − ⌊σa⌋)/M)

sin2(π(σa + ⌊σa⌋)/M)

)

≥ sin2
(

π(σa − ⌊σa⌋)
)

π2(σa − ⌊σa⌋)2
= 1− π2

3
(σa − ⌊σa⌋)2 +O

(

(σa − ⌊σa⌋)4
)

. (10)

Proof. As before, let θa = arcsin
√
a and

|SM(ω)〉 = 1√
M

M−1
∑

k=0

e2πiωk|k〉, i =
√
−1,

for arbitrary ω ∈ R. Note that

FM,m|j〉 =
{

|SM(j/M)〉 for j = 0, 1, . . . ,M − 1,

|j〉 for j =M,M + 1, . . . , 2m − 1.
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The steps 1–3 of the QS algorithm are equivalent to the application of the operator (F−1
M,m⊗

I) Λm(Qf )FM,m ⊗ WN to the state |0〉|0〉 ∈ Hm ⊗ Hn. Then |η1〉 can be written as

M−1/2
∑M−1

j=0 |j〉|ψ〉, and |ψ〉 =WN |0〉 is given by (4). Hence

|η1〉 =
−i√
2M

M−1
∑

j=0

|j〉
(

eiθa |ψ+〉 − e−iθa |ψ−〉
)

.

Applying Λm(Qf) in Step 2 and remembering that Qj
f |ψ±〉 = λj±|ψ±〉, we obtain

|η2〉 = Λm(Qf) |η1〉 =
−i√
2M

M−1
∑

j=0

|j〉
(

e2ijθaeiθa |ψ+〉 − e−2ijθae−iθa |ψ−〉
)

=
−i√
2

(

eiθa |SM(σa/M)〉|ψ+〉 − e−iθa |SM(−σa/M)〉|ψ−〉
)

.

Since j = 0, 1, . . . ,M − 1, the largest power of Qf is M − 1. Hence, we use exactly
M − 1 quantum queries to compute |η2〉. The remaining steps of the QS algorithm do not
use quantum queries. This means that the total number of quantum queries used by the QS
algorithm is M − 1, and obviously we are using n +m qubits. This proves the first part of
Theorem 2.

Step 3 yields the state

|η3〉 = (F−1
M,m ⊗ I)|η2〉 =

−i√
2

(

eiθaF−1
M,m|SM(σa/M)〉|ψ+〉 − e−iθaF−1

M,m|SM(−σa/M)〉|ψ−〉
)

.

We are ready to analyze the probability of the outcome j of the QS algorithm. Observe that

|α±〉 := (|j〉〈j| ⊗ I) F−1
M,m|SM(±σa/M)〉|ψ±〉

= 〈j|F−1
M,m|SM(±σa/M)〉 |j〉|ψ±〉

=

{

〈SM(j/M)|SM(±σa/M)〉 |j〉|ψ±〉 for j = 0, 1, . . . ,M − 1,

0 for j =M,M + 1, . . . , 2m − 1,

and therefore

〈α±|α±〉 =
{

|〈SM(j/M)|SM(±σa/M)〉|2 〈ψ±|ψ±〉 for j = 0, 1, . . . ,M − 1.

0 for j =M,M + 1, . . . , 2m − 1.

Observe that for a ∈ (0, 1), we have 〈ψ±|ψ±〉 = 1, whereas for a ∈ {0, 1}, we have
〈ψ+|ψ+〉 = 2 and 〈ψ−|ψ−〉 = 0.

For ω1, ω2 ∈ R we have

|〈SM(ω1)|SM(ω2)〉|2 =
∣

∣

∣

∣

∣

(

1√
M

M−1
∑

j=0

e−2πiω1j〈j|
)(

1√
M

M−1
∑

j=0

e2πiω2j |j〉
)
∣

∣

∣

∣

∣

2

=
1

M2

∣

∣

∣

∣

∣

M−1
∑

j=0

e−2πi(ω1−ω2)j

∣

∣

∣

∣

∣

2

.
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If ω1 − ω2 is an integer then the last sum is clearly M , and the whole expression is 1. If
ω1 − ω2 is not an integer then

1

M

M−1
∑

j=0

e−2πi(ω1−ω2)j =
e−2πiM(ω1−ω2) − 1

M(e−2πi(ω1−ω2) − 1)
,

which holds for all ω1, ω2 ∈ R if we take 0/0 as 1. Therefore

∣

∣

∣

∣

∣

1

M

M−1
∑

j=0

e−2πi(ω1−ω2)j

∣

∣

∣

∣

∣

2

=
1− cos(2πM(ω1 − ω2))

M2(1− cos(2π(ω1 − ω2)))
=

sin2(πM(ω1 − ω2))

M2(sin2(π(ω1 − ω2)))
.

Hence

|〈SM(ω1)|SM(ω2)〉|2 =
sin2(Mπ(ω1 − ω2))

M2 sin2(π(ω1 − ω2))
(11)

which holds for all ω1, ω2 ∈ R if we take 0/0 as 1. Applying this we conclude that

〈α±|α±〉 =
{

sin2(π(j∓σa))

M2 sin2(π(j∓σa)/M)
〈ψ±|ψ±〉 for j = 0, 1, . . . ,M − 1,

0 for j =M,M + 1, . . . , 2m − 1.

The outcome j occurs after the measurement and the state |η3〉 collapses to the state
(〈η3|M †

jMj |η3〉)−1Mj |η3〉, where Mj = |j〉〈j| ⊗ I. For j = 0, 1, . . . ,M − 1, we have

Mj|η3〉 = |j〉
(−i√

2

(

eiθa〈SM(j/M)|SM(σa/M)〉 |ψ+〉

− e−iθa〈SM(j/M)|SM(−σa/M)〉 |ψ−〉
)

)

,

whereas Mj |η3〉 = 0 for j = M,M + 1, . . . , 2m − 1. Since |ψ+〉 and |ψ−〉 are orthogonal we
have

〈η3|M †
jMj |η3〉 = 1

2
(〈α+|α+〉 + 〈α−|α−〉) .

Hence, the outcome j, j = 0, 1, . . . ,M − 1, occurs with probability

pf (j) =
1

2

(

sin2(π(j − σa))

M2 sin2(π(j − σa)/M)
+

sin2(π(j + σa))

M2 sin2(π(j + σa)/M)

)

. (12)

Indeed, for a ∈ (0, 1), we have 〈ψ±|ψ±〉 = 1 and (12) follows from the form of 〈α±|α±〉. For
a ∈ {0, 1}, we have 〈ψ+|ψ+〉 = 2 and 〈ψ−|ψ−〉 = 0. Since the two terms in (12) are now the
same, the formula for 〈α+|α+〉 again yields (12).

Since sin2(π(j − σa)) = sin2(π(j + σa)), the last formula is equivalent to (6). Obviously
for j =M,M+1, . . . , 2m−1, the probability of the outcome j is zero. This proves the second
part of Theorem 2.

Assume now that σa ∈ Z. If σa = 0 or σa = 1
2
M (if M is even) then the probability

pf(σa) of the outcome σa is 1. For σa = 0 we have a = 0 and the output is āf (0) = 0.
For σa = 1

2
M we have a = 1 and the output is āf (

1
2
M) = 1. Hence, in both cases the QS

algorithm outputs the exact value with probability 1.
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If σa ∈ Z and σa /∈ {0, 1
2
M} then the probability of the distinct outcomes σa and M − σa

is 1
2
. These two values of the outcomes yield the same output

sin2 (πσa/M) = sin2 (π(M − σa)/M) = a.

Hence, the QS algorithm outputs the exact value with probability 1. This proves the third
part of Theorem 2.

We now turn to the case when σa /∈ Z. It is easy to check that the third part of Theorem 2
holds for M = 1. Assume then that M ≥ 2 which implies that

⌈

1
2
M
⌉

≤ M − 1. Since σa is
not an integer, we have ⌈σa⌉ ≥ 1, ⌈σa⌉ ≤

⌈

1
2
M
⌉

≤M−1 andM−⌈σa⌉ ≤M−1. This means
that both ⌈σa⌉ and M − ⌈σa⌉ may be the outcomes of the QS algorithm. Obviously, these
two outcomes are different iff ⌈σa⌉ 6= 1

2
M . Similarly, both ⌊σa⌋ and (1 − δ⌊σa⌋,0)M − ⌊σa⌋

may be also the outcomes. They are different iff ⌊σa⌋ 6= 0.
We show that the outputs for the outcomes ⌈σa⌉ and ⌊σa⌋ satisfy (7) and (9) with prob-

abilities (8) and (10), respectively. We focus on the output for the outcome ⌈σa⌉ and its
probability. The proof for the outcome ⌊σa⌋ is similar.

We estimate the error of the QS algorithm for the output ā = sin2(π ⌈σa⌉ /M). Recall
that x = π(⌈σa⌉ − σa)/M . We have

|ā− a| = | sin2(π ⌈σa⌉ /M)− sin2(πσa/M)| = | sin(x) sin(x+ 2πσa/M)|
=
∣

∣ sin(x)
(

sin(2πσa/M) cos(x) + cos(2πσa/M) sin(x)
)
∣

∣

≤ π(⌈σa⌉ − σa)/M.

Since sin(2πσa/M) = 2
√

a(1− a) and cos(2πσa/M) = 1−2a, this proves the estimate of the
error of the QS algorithm in the fourth part of Theorem 2.

We find the probability of the output ā. Since sin2(πt/M) is injective for t ∈ [0, 1
2
M ], the

output ā occurs only for the outcomes ⌈σa⌉ and M − ⌈σa⌉. If ⌈σa⌉ = 1
2
M then these two

outcomes are the same and ā occurs with probability pf(
1
2
M). Due to (12)

pf
(

1
2
M
)

=
sin2

(

π(1
2
M − σaf )

)

M2 sin2
(

π(1
2
M − σaf )/M

)

which agrees with the claim in Theorem 2.
If ⌈σa⌉ 6= 1

2
M then ⌈σa⌉ 6=M −⌈σa⌉ and ā occurs for exactly two distinct outcomes. The

probability of ā is now equal to the sum of the probabilities pf(⌈σa⌉) + pf(M − ⌈σa⌉) with
pf ’s given by (12). Since both terms are equal, the probability of ā is 2pf(⌈σa⌉) which also
agrees with the claim in Theorem 2. Since sin( π

M
(⌈σa⌉ − σa)) ≤ π

M
(⌈σa⌉ − σa) we have

sin2(π(⌈σa⌉ − σa))

M2 sin2( π
M
(⌈σa⌉ − σa))

≥ sin2(π ⌈σa⌉ − σa)

π2(⌈σa⌉ − σa)2
.

We finish proving (8) using the standard expansion of the sine. This completes the proof.

Based on Theorem 2 we present simplified estimates of the error of the QS algorithm and
of the corresponding probability.
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Corollary 1. The QS algorithm outputs ā such that

|ā− a| ≤ π

M
max{⌈σa⌉ − σa, σa − ⌊σa⌋} (13)

with probability at least

sin2(π(⌈σa⌉ − σa))

M2 sin2( π
M
(⌈σa⌉ − σa))

+
sin2(π(σa − ⌊σa⌋))

M2 sin2( π
M
(σa − ⌊σa⌋))

≥ 8

π2
. (14)

Proof. It is enough to prove Corollary 1 if σa is not an integer. The estimate of the error of
the QS algorithm by the maximum of the estimates (7) and (9) holds with probability that
is the sum of the probabilities (8) and (10). Moreover, ⌈σa⌉ − σa = 1 − (σa − ⌊σa⌋). It now
suffices to observe that the function

g(∆) =
sin2(π∆)

π2∆2
+

sin2(π(1−∆))

π2(1−∆)2

is a lower bound of the left hand side of (14) with ∆ = ⌈σa⌉ − σa, and attains the minimum
8
π2 on the interval [0, 1] for ∆ = 1

2
, see also [1].

Corollary 1 guarantees high probability of the estimate (13). Unfortunately this estimate
does not preserve the continuity of the estimates (7) and (9) with respect to ⌈σa⌉ − σa and
σa−⌊σa⌋. The continuity of the estimates will be present in the next corollary at the expense
of the probability of the outcome. This corollary will also play an essential role in the study
of the average-probabilistic error of the QS algorithm.

Corollary 2. The QS algorithm outputs ā such that

|ā− a| ≤ π

M
min{⌈σa⌉ − σa, σa − ⌊σa⌋} (15)

with probability at least

max

{

sin2(π(⌈σa⌉ − σa))

M2 sin2( π
M
(⌈σa⌉ − σa))

,
sin2(π(σa − ⌊σa⌋))

M2 sin2( π
M
(σa − ⌊σa⌋))

}

≥ 4

π2
. (16)

Proof. We may again assume that σa is not an integer. Let us define

w(∆) =
sin2(π∆)

M2 sin2( π
M
∆)

for ∆ ∈ [0, 1].

Then w(⌈σa⌉ − σa) is the probability of (7) and w(1 − (⌈σa⌉ − σa)) is the probability
of (9). For ∆ ∈ [0, 1

2
], note that w(·) is decreasing, and w(1− ·) is increasing. Therefore

w(∆) ≥ w(1
2
) ≥ w(1−∆) for ∆ ∈ [0, 1

2
].

Let ⌈σa⌉ − σa ≤ σa − ⌊σa⌋. Then ⌈σa⌉ − σa ≤ 1
2
. In this case (15) is equivalent to (7)

and holds with probability at least w(⌈σa⌉ − σa), which corresponds to (16). Analogously, if
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⌈σa⌉ − σa ≥ σa − ⌊σa⌋ then ⌈σa⌉ − σa ≥ 1
2
. In this case (15) is equivalent to (9) and holds

with probability at least w(σa − ⌊σa⌋), which also corresponds to (16). Finally, note that

max {w(⌈σa⌉ − σa), w(σa − ⌊σa⌋)}

is minimal for ⌈σa⌉ − σa =
1
2
and is equal to

1

M2
sin−2 π

2M
≥ 4

π2
.

Unfortunately for ⌈σa⌉ − σa close to 1
2
the probability of the estimate (15) is too small.

However, in this case we may use Corollary 1, which yields the estimate with high probability.
We now turn to global error estimates, that is, estimates independent of a. Theorem 1 of

[1] states, in particular, that |ā − a| ≤ π/M + π2/M2 with probability at least 8
π2 . We now

improve this estimate by combining the estimates (13) and (15).

Corollary 3. The QS algorithm outputs ā such that

|ā− a| ≤ 3

4

π

M
(17)

with probability at least 8
π2 . That is,

ewor−pro(M, 8
π2 ) ≤ 3

4

π

M
.

Proof. Let us define

h(∆) = max

{

sin2(π∆)

π2∆2
,
sin2(π(1−∆))

π2(1−∆)2

}

. (18)

Clearly, h(⌈σa⌉ − σa) is a lower bound of the max{w(⌈σa⌉ − σa), w(1 − (⌈σa⌉ − σa))} and
therefore h(⌈σa⌉ − σa) is a lower bound of the probability of the output satisfying (15). We
consider two cases.

Assume first that ∆ = ⌈σa⌉ − σa ∈ [0, 1
4
] ∪ [3

4
, 1]. It is easy to see that then

h(∆) ≥ 8
π2 and the estimate (15) yields

|ā− a| ≤ π

M
min{⌈σa⌉ − σa, σa − ⌊σa⌋} ≤ 1

4

π

M

with probability at least 8
π2 .

Assume now that ⌈σa⌉ − σa ∈ (1
4
, 3
4
). Then we can use the estimate (13), which holds

unconditionally with probability at least 8
π2 . In this case, we have

|ā− a| ≤ π

M
max{⌈σa⌉ − σa, σa − ⌊σa⌋} ≤ 3

4

π

M
.

These two estimates combined together yield (17).
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The obvious consequence of Corollary 3 is that for M large enough we can compute the
value of a exactly by rounding the output.

Corollary 4. Assume that

M >
3π

2
N.

Then the rounding of the QS algorithm output to the nearest number of the form k/N yields
the exact value of the sum a with probability at least 8

π2 .

The proof of Corollary 3 may suggest that the constant 3
4
in (17) can be decreased.

Furthermore one may want to decrease the constant 3
4
at the expense of decreasing the

probability 8
π2 . These points are addressed in the next corollary. We shall see that the

constant 3
4
may be lowered only by decreasing the probability.

Corollary 5. Define

C(p) = inf

{

C : |āf − af | ≤ C
π

M
∀f ∈ BN with probability at least p

}

and

v(∆) =
sin2(π∆)

π2∆2
for ∆ ∈ [1

4
, 1
2
].

Then

C(p) ≤











1
2

for p ∈ [0, 4
π2 ),

1− v−1(p) for p ∈ [ 4
π2 ,

8
π2 ],

M/π for p ∈ (8/π2, 1].

(19)

Moreover, 1− v−1(p) ∈ [1
2
, 3
4
] and

∣

∣

∣

∣

π2

16
p+

1

4
−
(

1− v−1(p)
)

∣

∣

∣

∣

≤ 0.0085 for p ∈ [ 4
π2 ,

8
π2 ]. (20)

Proof. For p ∈ [0, 4
π2 ), Corollary 5 is a consequence of Corollary 2. For p ∈ ( 8

π2 , 1], Corollary 5
trivially holds since |ā−a| ≤ 1 = (M/π)π/M . For the remaining p’s we use a proof technique
similar to that of Corollary 3.

Let p ∈ [ 4
π2 ,

8
π2 ]. It is easy to check that v is decreasing and, therefore, v−1(p) is well

defined and v−1(p) ∈ [1
4
, 1
2
]. We have to show that the estimate

|ā− a| ≤ (1− v−1(p))
π

M
(21)

holds with probability at least p. We consider two cases.
Assume first that ∆ = ⌈σa⌉−σa ∈ [0, v−1(p)]∪ [1−v−1(p), 1]. Observe that the function h

defined in (18) can be rewritten as

h(∆) = max{v(∆), v(1−∆)}.
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It is easy to see that in this case, h(∆) ≥ p and the estimate (15) yields

|ā− a| ≤ π

M
min{∆, 1−∆} ≤ v−1(p)

π

M
≤ (1− v−1(p))

π

M

with probability at least p.
Assume now that ∆ = ⌈σa⌉−σa ∈ (v−1(p), 1−v−1(p)). Then we can use the estimate (13),

which holds unconditionally with probability at least 8
π2 > p. In this case, we have

|ā− a| ≤ π

M
max{∆, 1−∆} ≤ (1− v−1(p))

π

M
.

This proves (21).
We found the estimate (20) by numerical computations.
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Figure 1: The estimate (19) of C(p) for p ∈ [0, 8
π2 ]

From Figure 1 we see that the estimate (19) is almost linear on the interval [ 4
π2 ,

8
π2 ], which

explains why the right hand side of the estimate (20) is small.
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Figure 2: The function v on [0, 1]. The two horizontal lines show 4
π2 and 8

π2 levels. The part
of the graph between the arrows shows that v is almost linear.

We now find a sharp bound on the worst-probabilistic error of the QS algorithm. We
show that for largeM and N/M the bound obtained in Corollary 5 is optimal for p ∈ (1

2
, 8
π2 ].

Theorem 3. For large M and N/M , the worst-probabilistic error of the QS algorithm is
given by

ewor−pro(M, p) = (1− v−1(p))
π

M
(1 +O(M−1) +O(MN−1) ) for p ∈ (1

2
, 8
π2 ].
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Here, v is as in Corollary 5, and 1− v−1(p) ≈ (π2/16)p+ 1
4
by (20).

Proof. From Corollary 5, it is enough to show a lower bound on the error. Define

s1 = sin2

(

π
⌈

1
4
M
⌉

M

)

and s2 = sin2

(

π(1 +
⌈

1
4
M
⌉

)

M

)

.

For large M , we have

si =
1
2
+O(M−1) and s2 − s1 = sin

( π

M

)

sin

(

π(1 + 2
⌈

1
4
M
⌉

)

M

)

=
(1 +O(M−1))π

M
.

There exist two Boolean functions f1 and f2 with sums a1 = af1 and a2 = af2 such that

|ai − si| ≤ N−1 for i = 1, 2.

Since σsi =
⌈

1
4
M
⌉

+ (i− 1) and the derivative of σa for a = 1
2
is M/π, we have

σa1 =
⌈

1
4
M
⌉

+O(MN−1) and σa2 =
⌈

1
4
M
⌉

+ 1 +O(MN−1).

Obviously, ai = ki/N for some integers ki with k1 < k2. Consider σx/N for x ∈ {k1, k1 +
1, . . . , k2}. Then σx/N varies from σa1 for x = k1 to σa2 for x = k2. Since v−1(p) ∈ [1

4
, 1
2
),

for a positive and small η (we finally let η go to zero), we can choose x = xη such that for
a∗ = xη/N we have

σa∗ :=
⌈

1
4
M
⌉

+ v−1(p) + η +O(MN−1).

For large N/M , we then have

⌊σa∗⌋ =
⌈

1
4
M
⌉

and ⌈σa∗⌉ =
⌈

1
4
M
⌉

+ 1,

σa∗ − ⌊σa∗⌋ = v−1(p) + η +O(M/N) and ⌈σa∗⌉ − σa∗ = 1− v−1(p)− η +O(M/N).

Let ā∗1 denote the output for the outcome ⌈σa∗⌉, and ā∗2 for ⌊σa∗⌋.
Due to (7) and (9) of Theorem 2 we have

|a∗ − ā∗1| =
π

M

(

1− v−1(p)− η
) (

1 +O(M−1 +MN−1)
)

|a∗ − ā∗2| =
π

M

(

v−1(p) + η
) (

1 +O(M−1 +MN−1)
)

.

Let us write 1 + o(1) for 1 + O(η2 +M−1 +MN−1). The probability of ā∗2 is given by (10)
and is now equal to

sin2(π(v−1(p) + η))

(π(v−1(p) + η))2
(1 + o(1)) =

sin2(πv−1(p)) + πη sin(2πv−1(p))

π2v−1(p)2(1 + 2η/v−1(p))
(1 + o(1)) .

Since p = v(v−1(p)) = sin2(πv−1(p))/(πv−1(p))2, the probability of ā∗2 is

p

(

1− 2η

(

1

v−1(p)
− π cot(πv−1(p))

))

(1 + o(1)) .
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Since cot(t) < 1/t for t ∈ [1
4
π, 1

2
π], we see that the probability of ā∗2 is slightly less than p for

small η.
We are ready to find a lower bound on the worst-probabilistic error

ewor−pro(M, p) = max
f∈BN

min
A: µ(A,f)≥p

max
j∈A

|af − āf(j)|

of the QS algorithm. Take the function f that corresponds to a∗. We claimed that the
error is minimized if A = {⌊σa∗⌋ , ⌈σa∗⌉}. Indeed, ⌊σa∗⌋ must belong to A since otherwise
µ(A, f) ≤ 1 − pf(⌊σa∗⌋) = 1 − p + o(1) < p for p > 1

2
. The probability of ⌊σa∗⌋ is slightly

less than p, and so the set A must also contain some other outcome j. If j = ⌈σa∗⌉ then
the error bound is roughly (1 − v−1(p) − η)π/M , and the sum of the probabilities of the
outputs for the outcome ⌊σa∗⌋ and ⌈σa∗⌉ is always at least 8

π2 ≥ p. On the other hand, if
⌈σa∗⌉ does not belong to the set A then any other outcome j yields the output sin2(πj/M).
Since sin2(π(j + 1)/M)− sin2(πj/M) = sin(π/M) sin(π(2j + 1)/M), the distribution of the
outcomes around 1

2
is a mesh with step size roughly π/M . Hence, if j 6= ⌈σa∗⌉, the error is

at least roughly (1 + v−1(p))π/M > π(1− v−1(p))/M . Thus the choice j = ⌈σa∗⌉ minimizes
the error and for η tending to zero, the error is roughly (1 − v−1(p))π/M . This completes
the proof.

From these results, it is obvious how to guarantee that the error of the QS algorithm is
at most ε with probability at least p. Since |ā−a| ≤ (1− v−1(p))π/M holds with probability
p, it is enough to take M ≥ (1−v−1(p))π/ε. Due to Theorem 3 this bound is sharp for small
ε and large εN . We have

Corollary 6. For p ∈ (1
2
, 8
π2 ], the algorithm QS(f , ⌈(1− v−1(p))π/ε⌉) computes ā with the

error ε and probability at least p with ⌈(1− v−1(p))π/ε⌉ − 1 quantum queries. For small ε
and large εN , the estimate of the number of quantum queries is sharp.

3.2 Average-Probabilistic Error

In this section we study the average performance of the QS algorithm with respect to some
measure on the set BN of all Boolean functions defined on the set {0, . . . , N−1}. We consider
two such measures. The first measure p1 is uniformly distributed on the set BN , i.e.,

p1(f) = 2−N ∀f ∈ BN .

The second measure p2 is uniformly distributed on the set of results, i.e.,

p2(f) =
1

(

N
k

)

(N + 1)
if af =

k

N
.

For the average-probabilistic error we want to estimate

eavg−pro
pi

(M, p) =
∑

f∈BN

pi(f) min
A: µ(A,f)≥p

max
j∈A

|af − af (j)| for i = 1, 2.

For the measures pi, the mean of the random variable af is clearly 1
2
. However, their first

(central) moments are very different. As we shall see, the moment for the measure p1 is small
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since it is of order N−1/2 whereas the moment for measure p2 is roughly 1
4
. Since the first

moments are the same as the error of the constant algorithm āf (j) =
1
2
, we can achieve small

error of order N−1/2 for the measure p1 without any quantum queries, while this property is
not true for the measure p2.

We now consider the measure p1. It is interesting to ask if the QS algorithm has the
same property as the constant algorithm. We shall prove that this is indeed the case iff M
is divisible by 4.

We compute the first moment or the error of the constant algorithm, which is

N
∑

k=0

2−N

(

N

k

)
∣

∣

∣

∣

1

2
− k

N

∣

∣

∣

∣

.

We do it only for odd N since the case of even N is analogous. We have

N
∑

k=0

2−N

(

N

k

)
∣

∣

∣

∣

1

2
− k

N

∣

∣

∣

∣

= 2

⌊N/2⌋
∑

k=0

(

N

k

)(

1

2
− k

N

)

=

⌊N/2⌋
∑

k=0

(

N

k

)

− 2

⌊N/2⌋−1
∑

k=0

(

N − 1

k

)

= 2N−1 − 2
1

2

(

2N−1 −
(

N − 1

(N − 1)/2

))

=

(

N − 1

(N − 1)/2

)

.

Thus

eavg−pro
p1

(0, 1) =
N
∑

k=0

2−N

(

N

k

)
∣

∣

∣

∣

1

2
− k

N

∣

∣

∣

∣

=

{

2−N
(

N−1
(N−1)/2

)

if N is odd,

2−(N+1)
(

N
N/2

)

if N is even.
(22)

By Stirling’s formula

k! =
√
2πk

(

k

e

)k

eθk/12k for certain θk ∈ [0, 1] ,

we estimate the both binomial quantities in (22) by

1√
2π

1√
N − 1

e1/(12(N−1))

proving that

eavg−pro
p1

(0, 1) =
N
∑

k=0

2−N

(

N

k

)
∣

∣

∣

∣

1

2
− k

N

∣

∣

∣

∣

=
1√
2π

1√
N
(1 + o(1)) ≤ 1√

2π

1√
N − 1

e1/(12(N−1)).

(23)
We are ready to analyze the average-probabilistic error of the QS algorithm.

Theorem 4. Assume that M is divisible by 4 and let p ∈ (1
2
, 8
π2 ]. Then the average-

probabilistic error of the QS algorithms with respect to the measure p1 satisfies

eavg−pro
p1

(M, p) ≤ min

{

3

4

π

M
,

√

3

2π

√

1 +
π2

4M2

1√
N − 1

e1/(12(N−1))

}

≤ 3

4
π(1 + o(1))min

{

1

M
,

1√
N

}

.
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Proof. The estimate eavg−pro
p1

(M, p) ≤ eavg−pro
p1

(M, 8
π2 ) ≤ ewor−pro

p1
(M, 8

π2 ) is obvious and, ap-
plying Corollary 3, we get

eavg−pro
p1

(M, 8
π2 ) ≤

3

4

π

M
.

As before denote σa = M
π
arcsin

√
a. Let a = 1

2
+ x. We are interested in the behavior of

σ1
2
+x

for |x| < 1
2
. Clearly σ1

2
= 1

4
M . Let |x| < 1

2
, By Taylor’s theorem, we have

σ1
2
+x

=
M

4
+
M

π

x

2
√

(1− ξx)ξx
for ξx ∈ (1

2
, 1
2
+ x)

and 2
√

(1− ξx)ξx ≥
√
1− 4x2. Assume additionally that

M

π

|x|√
1− 4x2

≤ 1

4

which is equivalent to assuming that

|x| ≤ π

(16M2 + 4π2)1/2
.

Since M is divisible by 4 then

⌊

σ1
2
+x

⌋

= 1
4
M for x ≥ 0, and

⌈

σ1
2
+x

⌉

= 1
4
M for x ≤ 0. This

yields

min

{⌈

σ1
2
+x

⌉

− σ1
2
+x
, σ1

2
+x

−
⌊

σ1
2
+x

⌋}

≤ M

π

|x|√
1− 4x2

. (24)

Observe that
⌈

σ1
2
+x

⌉

− σ1
2
+x

∈ [0, 1
4
] ∪ [3

4
, 1].

Indeed, for x ≤ 0 we have

⌈

σ1
2
+x

⌉

− σ1
2
+x

=
M

π

|x|
2
√

(1− ξx)ξx
∈ [0, 1

4
],

and for x ≥ 0 we have
⌈

σ1
2
+x

⌉

− σ1
2
+x

= 1− M

π

|x|
2
√

(1− ξx)ξx
∈ [1− 1

4
, 1] = [3

4
, 1],

as claimed.
Let a = 1

2
+ x. By the proof of Corollary 3, the error of the QS algorithm satisfies

|ā− a| ≤ π

M
min

{⌈

σ1
2
+x

⌉

− σ1
2
+x
, σ1

2
+x

−
⌊

σ1
2
+x

⌋}

and by (24), we have

|ā− a| ≤ |x|√
1− 4x2

.
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We split the sum that defines eavg−pro
p1

(M, 8
π2 ) into two sums. The first sum is for f ∈ BN

for which a = af = 1
2
+x with |x| ≤ π/(16M2+4π2)1/2 and the second sum is for f for which

a = af = 1
2
+ x with |x| > π/(16M2 + 4π2)1/2. For the first sum we estimate the error of the

QS algorithm by |x|/
√
1− 4x2 and for the second sum, by the worst-case error 3π/(4M).

Hence we have

eavg−pro
p1

(M, 8
π2 ) ≤

∑

f : |af−
1
2
|≤π/(16M2+4π2)1/2

p1(f)
|af − 1

2
|

√

1− 4(af − 1
2
)2

+
∑

f : |af−
1
2
|>π/(16M2+4π2)1/2

p1(f)
3

4

π

M
.

Since af = k/N for some integer k ∈ [0, N ],

eavg−pro
p1

(M, 8
π2 ) ≤

∑

k: |k/N−1
2
|≤π/(16M2+4π2)1/2

2−N

(

N

k

) |k/N − 1
2
|

√

1− 4(k/N − 1
2
)2

+
3

4

π

M

∑

k: |k/N−1
2
|>π/(16M2+4π2)1/2

2−N

(

N

k

)

.

Since 1− 4(k/N − 1
2
)2 ≥ 1− π2/(4M2) ≥ 3

4
, the first sum can be estimated as

∑

k: |k/N−1
2
|≤π/(16M2+4π2)1/2

2−N

(

N

k

) |k/N − 1
2
|

√

1− 4(k/N − 1
2
)2

≤ 2√
3

∑

k: |k/N−1
2
|≤π/(16M2+4π2)1/2

2−N

(

N

k

)
∣

∣

∣

∣

1

2
− k

N

∣

∣

∣

∣

.

The second sum can be estimated by

3

4

π

M

∑

k: |k/N−1
2
|>π/(16M2+4π2)1/2

2−N

(

N

k

)

(16M2 + 4π2)1/2

π

∣

∣

∣

∣

k

N
− 1

2

∣

∣

∣

∣

≤ 3

√

1 +
π2

4M2

∑

k: |k/N−1
2
|>π/(16M2+4π2)1/2

2−N

(

N

k

)
∣

∣

∣

∣

k

N
− 1

2

∣

∣

∣

∣

.

Adding the estimates of these two sums we obtain

eavg−pro
p1

(M, 8
π2 ) ≤ 3

√

1 +
π2

4M2

N
∑

k=0

2−N

(

N

k

)
∣

∣

∣

∣

1

2
− k

N

∣

∣

∣

∣

.

The last sum is given by (22) and estimated by (23). Hence

eavg−pro
p1

(M, 8
π2 ) ≤

√

3

2π

√

1 +
π2

4M2

1√
N − 1

e1/(12(N−1))

which completes the proof.
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In the next theorem we consider the case when M is not divisible by 4.

Theorem 5. Assume that M > 4 is not divisible by 4, and let p ∈ (1
2
, 8
π2 ]. Then the average-

probabilistic error of the QS algorithm with respect to the measure p1 satisfies

eavg−pro
p1

(M, p) ≥ π

4M

(

1− 1

M
− 1

β

)(

1− 2 exp

(

− Nπ2

(8βM)2

))

∀β > 1.

Proof. Let M = 4M ′ + τ for τ ∈ {1, 2, 3}. Let, as before, σa = (M/π) arcsin
√
a. As in the

proof of Theorem 4, for |x| < 1
2
we have

σ1
2
+x

=
M

4
+
M

π

x

2
√

(1− ξx)ξx
for ξx ∈ (1

2
, 1
2
+ x)

and 2
√

(1− ξx)ξx ≥
√
1− 4x2. Assume additionally that

M

π

|x|√
1− 4x2

≤ 1

4β
,

which is equivalent to assuming that

|x| ≤ π

(16M2β2 + 4π2)1/2
. (25)

Thus for x satisfying (25) we have

σ1
2
+x

=M ′ +
τ

4
+
M

π

x θ(x)√
1− 4x2

with θ(x) ∈ [0, 1],

and

⌊

σ1
2
+x

⌋

=M ′ and

⌈

σ1
2
+x

⌉

=M ′ + 1.

From the proof of Corollary 1 we have µ({
⌈

σaf
⌉

,
⌊

σaf
⌋

}, f) ≥ 8
π2 . Since µ(A, f) ≥ p > 1

2

then either
⌈

σaf
⌉

∈ A or
⌊

σaf
⌋

∈ A. We then estimate

eavg−pro
p1

(M, 8
π2 ) ≥

∑

f∈BN

p1(f)min
{
∣

∣af − āf
( ⌊

σaf
⌋ )
∣

∣,
∣

∣af − āf
( ⌈

σaf
⌉ )
∣

∣

}

. (26)

We now estimate the error of the QS algorithm for f ∈ BN such that af = 1
2
+ x for x

satisfying (25) and the outcome j =
⌈

σaf
⌉

=M ′ or j =
⌊

σaf
⌋

=M ′+1. Denote the outcome
by M ′ + κ for κ ∈ {0, 1}. By Taylor’s theorem we have

sin2

(

M ′ + κ

M
π

)

= sin2
(π

4
+

π

M
(κ− 1

4
τ)
)

=
1

2
+ sin(2ξκ,τ)

π

M
(κ− 1

4
τ) for ξκ,τ ∈ [1

4
π, 1

4
π + (π/M)(κ− 1

4
τ)].
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Since sin(t) ≥ 2t/π for t ∈ [0, π/2], we have | sin(2ξκ,τ)| ≥ 1−|4κ− τ |/M . Consider the error
for the outcome M ′ + κ and x satisfying (25). Then |x| ≤ π/(4βM) and the error can be
estimated by

∣

∣

∣

∣

1

2
+ x− sin2

(

M ′ + κ

M
π

)
∣

∣

∣

∣

=
∣

∣

∣
x− sin(2ξκ,τ)

π

M
(κ− 1

4
τ)
∣

∣

∣

≥ π

M
|κ− 1

4
τ || sin(2ξκ,τ)| − |x|

≥ π

4

|4κ− τ |
M

(

1− |4κ− τ |
M

)

− π

4βM
.

Clearly, |4κ−τ | ∈ {1, 2, 3} and |4κ−τ |/M ∈ [1/M, 3/M ]. Then |4κ−τ |(1−|4κ−τ |/M)/M ≥
(1− 1/M)/M . Therefore

∣

∣

∣

∣

1

2
+ x− sin2

(

M ′ + κ

M
π

)
∣

∣

∣

∣

≥ π

M

(

1

4

(

1− 1

M

)

− 1

4β

)

=
π

4M

(

1− 1

M
− 1

β

)

.

Hence, for f such that af = 1
2
+ x with x satisfying (25) we have

min
{
∣

∣af − āf
( ⌊

σaf
⌋ )
∣

∣,
∣

∣af − āf
( ⌈

σaf
⌉ )
∣

∣

}

≥ π

4M

(

1− 1

M
− 1

β

)

. (27)

We are now ready to estimate eavg−pro
p1

(M, p). First, by (26), we have

eavg−pro
p1

(M, p) ≥
∑

f : |af−
1
2
|≤(16M2β2+4π2)1/2

p1(f)min
{
∣

∣af − āf
( ⌊

σaf
⌋ )
∣

∣,
∣

∣af − āf
( ⌈

σaf
⌉ )
∣

∣

}

.

This, (27) and the Bernstein inequality,
∑

k: |k/N−1
2
|>ε

2−N
(

N
k

)

≤ 2e−Nε2/4, yields

eavg−pro
p1

(M, p) ≥
∑

f : |af−
1
2
|≤π(16M2β2+4π2)1/2

p1(f)
π

4M

(

1− 1

M
− 1

β

)

=
π

4M

(

1− 1

M
− 1

β

)

∑

k: |k/N−1
2
|≤π(16M2β2+4π2)1/2

2−N

(

N

k

)

≥ π

4M

(

1− 1

M
− 1

β

)(

1− 2 exp

(

− Nπ2

4(16M2β2 − 4)

))

≥ π

4M

(

1− 1

M
− 1

β

)(

1− 2 exp

(

− Nπ2

(8βM)2

))

,

which completes the proof.

Obviously, in the average-probabilistic setting, we should use the QS algorithm with M
divisible by 4. Then Theorem 4 states that the error is of order min{M−1, N−1/2}. Recently,
Papageorgiou [10] proved that for any quantum algorithm that uses M quantum queries the
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error is bounded from below by of cmin{M−1, N−1/2} with probability p ∈ (1
2
, 8
π2 ]. Here, c is

a positive number independent of M and N . Hence, the QS algorithm enjoys an optimality
property also in the average-probabilistic setting for the measure p1 as long as we use it with
M divisible by 4.

We now turn to the measure p2. Clearly, the average-probabilistic error of the QS

algorithm is bounded by its worst-probabilistic error, which is of order M−1 with probability
p ∈ (1

2
, 8
π2 ]. It turns out, again due to a recent result of Papageorgiou [10] that this bound is

the best possible, since any quantum algorithm that uses M quantum queries must have an
error proportional at least to M−1. Hence, the factor N−1/2 that is present for the measure
p1 does not appear for the measure p2, and the behavior of the QS algorithm is roughly the
same in the worst- and average-probabilistic settings.
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[11] J. F. Traub and H. Woźniakowski, Path Integration on a Quantum Computer, to appear
in Quantum Information Processing, http://arXiv.org/quant-ph/0109113, 2001.

29

http://arXiv.org/quant-ph/0206023
http://arXiv.org/quant-ph/0109113

	Introduction
	Quantum Summation Algorithm
	Performance Analysis
	Worst-Probabilistic Error
	Average-Probabilistic Error


