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Abstract

Quantum algorithms and complexity have recently been studied not only for discrete, but also

for some numerical problems. Most attention has been paid so far to the integration problem, for

which a speed-up is shown by quantum computers with respect to deterministic and randomized

algorithms on a classical computer. In this paper we deal with the randomized and quantum

complexity of initial-value problems. For this nonlinear problem, we show that both randomized

and quantum algorithms yield a speed-up over deterministic algorithms. Upper bounds on the

complexity in the randomized and quantum setting are shown by constructing algorithms with

a suitable cost, where the construction is based on integral information. Lower bounds result

from the respective bounds for the integration problem.

1 This research was partly supported by AGH grant No. 10.420.03

2Department of Applied Mathematics, AGH University of Science and Technology,
Al. Mickiewicza 30, paw. A3/A4, III p., pok. 301,
30-059 Cracow, Poland
kacewicz@uci.agh.edu.pl, tel. +48(12)617 3996, fax +48(12)617 3165

http://arxiv.org/abs/quant-ph/0311148v1


1 Introduction

Potential advantages of quantum computing over deterministic or classical random-
ized algorithms have been extensively studied by many authors for discrete problems,
starting from Shor’s paper on factorization of integers [14] and Grover’s algorithm for
searching databases [2]. Recently, a progress has also been achieved in quantum so-
lution of numerical problems. The first paper dealing with the quantum complexity
of a continuous problem was the work of Novak [13], who established matching upper
and lower bounds on the quantum complexity of integration of functions from Hölder
classes, based on the results on complexity of summation of real numbers from [1] and
[11]. A general model of quantum computing for continuous problems has been devel-
oped by Heinrich [4], where the computation of a sum of real numbers is studied under
various assumptions, and the results are applied to the integration problem. Another
integration problem, computing path integrals, has been discussed in [15]. Recently,
the approximation problem in discrete and continuous versions has also been treated in
[5] and [6]. The linear problems of integration and approximation seem to be the only
specific (and important) numerical problems discussed in the quantum setting so far.
In the randomized setting, complexity results for problems such as integration, approx-
imation or optimization are classical, see, e.g., [12] for an overview.
In this paper we deal with the randomized and quantum solution of initial-value prob-
lems. The complexity of this nonlinear problem was studied until now in the determin-
istic worst-case and asymptotic settings, see, e.g., [8] and [9] for matching upper and
lower bounds, or [10] for a discussion of complexity of initial-value problems on parallel
computers.
We show in this paper that a speed-up is achieved for initial-value problems by ran-
domized and quantum algorithms over the deterministic ones. The results are summa-
rized in Theorem 1, where we establish upper and lower bounds on the complexity of
initial-value problems in the randomized and quantum settings. The upper bounds are
obtained by defining algorithms based on the deterministic integral algorithm devel-
oped in [8]. The procedure is shown allowing for an application of any algorithm for
computing integrals (in the deterministic, randomized or quantum setting) to yield a
new algorithm for initial-value problems in the respective setting. In the complexity
analysis, the results on integration from [12] and [13] in the randomized and quantum
settings are exploited. The comparison of the upper bounds on the randomized and
quantum complexity to the worst-case complexity of initial-value problems shows that
a speed-up is achieved in both non-deterministic settings. Lower bounds on the com-
plexity refer to those for integration; the existing gap between the upper and lower
bounds is discussed.

2 Problem Formulation and Results

We consider the solution of a system of ordinary differential equations with initial
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conditions
z′(t) = f(z(t)), t ∈ [a, b], z(a) = η, (1)

where f : Rd → Rd, z : [a, b] → Rd and η ∈ Rd (f(η) 6= 0).
Given an integer r ≥ 0, ρ ∈ (0, 1], and positive numbers D0,D1, . . . ,Dr and H, we
assume that the right-hand function f = [f1, . . . , fd]T belongs to the Hölder class

F r,ρ = { f : Rd → Rd | f ∈ Cr(Rd), |∂if j(y)| ≤ Di, i = 0, 1, . . . , r,

|∂rf j(y)− ∂rf j(z)| ≤ H ||y − z||ρ, y, z ∈ Rd, j = 1, 2, . . . , d }, (2)

where ∂if j represents all partial derivatives of order i of the jth component of f , and
|| · || denotes the maximum norm in Rd. To assure that f is a Lipschitz function, we
assume that ρ = 1 for r = 0.
We wish to compute a bounded function l on [a, b] that approximates the solution z.
Letting {xi} be the uniform partition of [a, b], xi = a + ih with h = (b − a)/n, the
function l will be produced by an algorithm φ, based on approximations ai(f) to z(xi),
i = 0, 1, . . . , n.
We now discuss the error and complexity models in the worst-case deterministic, ran-
domized and quantum settings. In the worst-case deterministic setting, the error of φ
at f for the problem (1) is defined by

e(φ, f) = sup
t∈[a,b]

||z(t)− l(t)||,

and the error in the class F r,ρ by

eworst(φ, F r,ρ) = sup
f∈F r,ρ

e(φ, f). (3)

We assume that the values of f or its partial derivatives can be computed at given points
by a subroutine. The cost of an algorithm φ is measured by a number of subroutine calls.
For a given ε > 0, by the ε-complexity of the problem, compworst(F r,ρ, ε), we mean the
minimal number of subroutine calls (taken among all possible algorithms) sufficient to
solve the problem with error at most ε, i.e., the minimal cost of an algorithm φ taken
among all φ such that eworst(φ, F r,ρ) ≤ ε.

In the randomized setting, we allow a random selection of points at which the function f
is evaluated, so that the output of an algorithm is a random variable (on a probability
space (Ω, Σ, P)). Let the mappings ω ∈ Ω → aωi (f) be random variables for each
f ∈ F r,ρ By an algorithm in the randomized setting, we mean a tuple

φ = ({aω0 (·), a
ω
1 (·), . . . , a

ω
n(·)}ω∈Ω, ψ), (4)

where ψ is a mapping that produces a bounded function

lω(t) = ψ(aω0 (f), a
ω
1 (f), . . . , a

ω
n(f))(t) , (5)
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t ∈ [a, b], based on aω0 (f), a
ω
1 (f), . . . , a

ω
n(f). The error of φ at f for the problem (1) is

defined by
eω(φ, f) = sup

t∈[a,b]
||z(t)− lω(t)||. (6)

We assume that the mapping ω ∈ Ω → eω(φ, f) is a random variable with values in R,
for each f ∈ F r,ρ. The error of φ in the class F r,ρ is given by

erand(φ, F r,ρ) = sup
f∈F r,ρ

(Eeω(φ, f)2)1/2 , (7)

where E is the expectation.
As in the worst-case setting, we measure the cost of an algorithm φ by a number of
subroutine calls that are needed to compute an approximation. For a given ε > 0, by
the ε-complexity of the problem, comprand(F r,ρ, ε), we mean the minimal cost of an
algorithm φ taken among all φ such that erand(φ, F r,ρ) ≤ ε.

In the quantum setting, the output of an algorithm is a random variable (taking a
finite number of values), but the reason of randomness is different than that in the
randomized setting. On a quantum computer, where, roughly speaking, basic objects
are qubits (elements of a two-dimensional complex space H1) and allowed operations
are unitary transformations of the the tensor product of a number of copies of H1,
randomness is a result of quantum measurement operations. For a detailed description
of the framework of numerical quantum computing one is referred to [4], where the
notions of quantum measurement, quantum query, quantum algorithm and complexity
are defined and thoroughly discussed, and applications to summation and integration
problems are studied. For a condensed discussion of randomized and quantum settings,
in particular for the integration problem, one is also referred to [7].
By a quantum algorithm φ for solving our problem we mean a tuple (4), where aωi (f)
are random approximations, in the quantum sense, to z(xi) for each f . The error of φ
at f is defined by (6).
Let 0 < δ < 1/2. The error of φ in F r,ρ in the quantum setting is defined [4] by

equant(φ, F r,ρ, δ) = sup
f∈F r,ρ

inf { α| P{ eω(φ, f) > α } ≤ δ }. (8)

Note that for a given ε > 0 the bound eω(φ, f) ≤ ε holds with probability at least 1− δ
for each f iff equant(φ, F r,ρ, δ) ≤ ε.
In the quantum setting the value of δ is usually set to δ = 1/4. The error probability
can then be reduced to any δ by computing (componentwise) the median of c log 1/δ
repetitions of the algorithm, where c is a positive number independent of δ, see [5],
Lemma 3. For our problem, the procedure of increasing the probability of success
can be applied at different levels which influences a logarithmic part of the cost of an
algorithm, so that we shall describe it in more detail and discuss after the proof of
Theorem 1.
On a quantum computer, the right-hand side function f can be accessed through a
query that returns, for a given point, a value of a component of f . Roughly speaking,
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a query on a class of real functions is defined as a transformation Q that associates
with each function p a unitary mapping Qp defined on a Hilbert quantum space. For
a detailed discussion of what is meant by ”returning a value” of a function, and how
a query is implemented in the quantum setting, the reader is referred to [4] or [13].
The cost of an algorithm φ is measured by a number of quantum queries that are
needed to compute an approximation. (In upper bounds in Theorem 1, classical evalu-
tions of f or its partial derivatives are also taken into account.) For a given ε > 0, by
the quantum ε-complexity of the problem, compquant(F r,ρ, ε, δ), we mean the minimal
cost of a quantum algorithm φ taken among all φ such that equant(φ, F r,ρ, δ) ≤ ε .
We prove in this paper upper and lower bounds on the randomized and quantum com-
plexity of initial-value problems (1). The upper bounds, summarized in the following
theorem, will be next compared to the known lower bounds on deterministic complexity
to show that a speed-up is achieved in both settings. Lower bounds in the randomized
and quantum settings are derived from a simple argument in the case d ≥ 2, and are
also included. We take below log = log2 (although the base of the logarithm is not
crucial).

Theorem 1 For the problem (1), we have that

comprand(F r,ρ, ε) = O





(

1

ε

)

r+ρ+3/2
(r+ρ+1/2)(r+ρ+1)

log
1

ε



 , (9)

compquant(F r,ρ, ε, δ) = O

(

(

1

ε

)
r+ρ+2

(r+ρ+1)2

(log
1

ε
+ log

1

δ
)

)

. (10)

For d ≥ 2,

comprand(F r,ρ, ε) = Ω

(

(

1

ε

) 1
r+ρ+1/2

)

, (11)

and, for 0 < δ ≤ 1/4,

compquant(F r,ρ, ε, δ) ≥ compquant(F r,ρ, ε, 1/4) = Ω

(

(

1

ε

) 1
r+ρ+1

)

. (12)

The constants in the ”O” and ”Ω” notation only depend on the class F r,ρ, and are
independent of ε and δ.

Upper bounds (9) and (10) will be derived by defining suitable algorithms, while the
lower bounds (11) and (12) are equal to those on the complexity of randomized or
quantum computation of integrals of a function of one variable.
Before giving the proof, we make some comments on these results. If the values of f
or its partial derivatives can only be accessed, the deterministic worst-case complexity
of the problem (1) is of the order ε−1/(r+ρ), see Theorem 3 in the next section. Since

r + ρ+ 2

(r + ρ+ 1)2
<

r + ρ+ 3/2

(r + ρ+ 1/2)(r + ρ+ 1)
<

1

r + ρ
, (13)
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both randomized and quantum computation yield an improvement over the determin-
istic setting over the entire range of r and ρ (we neglect the logarithmic factors). For
instance, if r = 0 and ρ = 1, the worst-case complexity in the deterministic setting is
of the order ε−1, in the randomized setting it is bounded from above by ε−5/6, while
on the quantum computer by ε−3/4.
The lower bounds coincide with those for the integration problem, see (16) and (17).
To see what the size of the gap between the bounds is, note that the reciprocal of the
exponent in 1/ε in the quantum case is such that

lim
r→∞

(

(r + ρ+ 1)2

r + ρ+ 2
− (r + ρ)

)

= 0 ,

so that it behaves for large r as r + ρ, while the lower bound depends on r + ρ+ 1. In
the randomized setting, the reciprocal of the exponent in 1/ε behaves for large r like
r + ρ, while the lower bound depends on r + ρ+ 1/2.
We now recall results on randomized and quantum computation of integrals, as well as
those on deterministic solution of initial-value problems.

3 Randomized and Quantum Computation of Integrals
and Deterministic Solution of Initial-Value Problems

Quantum complexity of integration has been first studied by Novak [13]. The problem
is to approximate the integral

I(g) =

∫

[0,1]s

g(x) dx (14)

for functions g : [0, 1]s → R from a Hölder class with r ≥ 0, 0 < ρ ≤ 1

F̃ r,ρ = { g ∈ Cr([0, 1]s) | |g(y)| ≤ D̃0, |∂
rg(y)− ∂rg(z)| ≤ H̃ ||y − z||ρ, y, z ∈ [0, 1]s },

(15)
where ∂rg represents all partial derivatives of order r of g.
The error of an algorithm φ at g for the integration problem (14) in the randomized
and quantum settings is defined by

eω(φ, g) = |I(g) −Aω(g)|,

where Aω(g) is the output of φ (in the worst-case setting the definition is the same, only
the output is deterministic). The other definitions of errors in the class of functions
and complexity remain the same as for the problem (1), with F r,ρ replaced by F̃ r,ρ.
Based on the results on the computation of the mean of n numbers given by Brassard
et al [1] (upper bound), and Nayak and Wu [11] (lower bound), Novak [13] showed
the following result in the quantum setting. For the result in the randomized setting,
see [12], p. 62. Let γ = (r + ρ)/s.
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Theorem 2 ([12], [13]) For the problem (14) we have

comprand(F̃ r,ρ, ε) ≍ ε−1/(γ+1/2) , (16)

compquant(F̃ r,ρ, ε, 1/4) ≍ ε−1/(γ+1). (17)

An upper bound in (16) can be achieved by random algorithms with a finite number
of output values.
Consider now the solution of initial-value problem (1) in the deterministic setting. This
problem has been considered in a number of papers, see, e.g., [8] or [9]. The following
result is a straightforward modification of Corollary 4.1 from [8]. The modification is
needed, since the class of functions considered in [8], consisting of r times continuously
differentiable functions with bounded derivatives, is to be replaced with the Hölder class
F r,ρ. For the modification in lower bounds, one is referred to the proof of Theorem
3.1 from [9], where the functions gk in the construction must be replaced by suitable
functions from the class F r,ρ. The upper bounds will be derived again in the sequel, as
a by-product in the proof of Theorem 1.
Theorem 3 ([8]) In the deterministic setting, the complexity of (1) satisfies:

– if the values of f or its partial derivatives are only accessible, then

compworst(F r,ρ, ε) ≍ ε−1/(r+ρ) , (18)

– if arbitrary linear functionals are accessible, then

compworst(F r,ρ, ε) ≍ ε−1/(r+ρ+1) . (19)

(The lower bound in (19) holds true not only for linear functionals, but also for a class
of nonlinear functionals, see [8].) Relation (19) will play an important role in the proof
of Theorem 1, while (18) will serve as a point of reference in evaluating a speed-up
obtained due to randomization or due to quantum computations.
Let us now recall the algorithm that leads to the upper bound in (19). It requires the
computation of integrals of f , and is defined as follows.

Take y∗0 = η. Given y∗i (y∗i
∼= z(xi)), we let z̄∗i (t) be the solution of the problem

z̄′(t) = f(z̄(t)), t ∈ [xi, xi+1], z̄(xi) = y∗i , (20)

and we set

l∗i (t) =
r+1
∑

j=0

1

j!
z̄
∗ (j)
i (xi) (t− xi)

j , t ∈ [xi, xi+1] . (21)

Then we define

y∗i+1 = y∗i +

xi+1
∫

xi

f(l∗i (t)) dt , (22)
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i = 0, 1, . . . , n− 1, and finally

l(t) = l∗i (t) for t ∈ [xi, xi+1]. (23)

(The function l is piecewise continuous. It is also possible to define it to be continuous
on [a, b].)

4 Randomized and Quantum Solution of Initial-Value
Problems

We now define randomized and quantum algorithms for the solution of (1). Let w∗
i be

a polynomial

w∗
i (y) =

r
∑

j=0

1

j!
f (j)(y∗i )(y − y∗i )

j , (24)

where f (j)(y∗i )z
j is meant to be the value of the j-linear operator f (j)(y∗i ) at (z, z . . . , z)

(j times). The values of w∗
i can be computed through evaluation of partial derivatives

of components of f of order 0, 1, . . . , r. Equality (22) can be equivalently written as

y∗i+1 = y∗i +

xi+1
∫

xi

w∗
i (l

∗
i (t)) dt + hr+ρ+1

1
∫

0

gi(u) du , (25)

where

gi(u) =
1

hr+ρ
(f(l∗i (xi + uh)) − w∗

i (l
∗
i (xi + uh))) , (26)

for u ∈ [0, 1] and i = 0, 1, . . . , n− 1 . One can verify that gi belongs to C
(r)([0, 1]), the

derivatives of gi are bounded by constants that depend only on the parameters of the
class F r,ρ (and are independent of i, y∗i and h), and

||g
(r)
i (u)− g

(r)
i (ū)|| ≤ H̃ |u− ū|ρ,

u, ū ∈ [0, 1], for some constant H̃ depending on the parameters as above.
The algorithm (deterministic, randomized or quantum) for solving (1) is defined as
follows (we omit the argument ω in random variables). Let a0(f) = y0 = η. Given
ai(f) = yi, we consider functions gi defined by (26) for yi (that is, the polynomials
l∗i and w∗

i based on y∗i are replaced by the polynomials li and wi based on yi), and

compute some approximations Ai(f) to the integrals
1
∫

0
gi(u) du in (25). The algorithm

is defined by setting ai+1(f) = yi+1, where

yi+1 = yi +

xi+1
∫

xi

wi(li(t)) dt + hr+ρ+1Ai(f) , (27)

and the approximation on [xi, xi+1] is given by

l(t) = li(t) , (28)
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i = 0, 1, . . . , n− 1. Finally, we set ψ(a0(f), . . . , an(f))(t) = l(t) for t ∈ [a, b].
The approximations Ai(f) may be obtained by deterministic, randomized or quantum
algorithms. In the randomized and quantum settings, we demand random variables
Ai(f) to satisfy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
∫

0

gi(u) du −Ai(f)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ε1 with probability at least (1− δ)1/n (29)

for i = 0, 1, . . . , n − 1 (and all yi), for some ε1. It will be shown later on that a
satisfactory choice is ε1 = h.

For illustration, we specify the algorithm above in the case r = 0. It may be considered
as a modification of Euler’s method and is defined as follows. Given yi, we compute

yi+1 = yi + hf(yi) + h1+ρAi(f),

whereAi(f) is a (deterministic, randomized or quantum) approximation to (1/hρ)
1
∫

0
(f(yi+

uhf(yi))− f(yi)) du with error at most ε1, and probability at least (1− δ)1/n (in non-
deterministic cases), i = 0, 1, . . . , n − 1. The approximation to z = z(t) is defined on
[xi, xi+1] by l(t) = yi + f(yi)(t− xi).

Proof of Theorem 1

Consider first the quantum setting. We use the quantum algorithm of Novak to compute
Ai(f) (componentwise in a statistically independent way). Due to (17) with s = 1, we
have that for each i the inequality

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
∫

0

gi(u) du −Ai(f)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ε1 (30)

holds with probability at least 3/4, and the quantum query cost O(ε
−1/(r+ρ+1)
1 ). (Since

gi has d components, only the constant in the ”O” notation is different than that in (17),
which is a result of computing the median of a suitable number of repetitions to increase
the probability of success in each component to (3/4)1/d.) Taking componentwise the
median of k repetitions,

k = Θ

(

log
1

1− (1− δ)1/n

)

,

we arrive at an approximation Ai(f) (the same symbol is used to denote this new
approximation) such that (29) is satisfied. Since

log
1

1− (1− δ)1/n
≤ c(log n+ log 1/δ)
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(where c is independent of n and δ), the cost of computingAi(f) is of orderO(ε
−1/(r+ρ+1)
1 (log n+

log 1/δ). Thus, with the cost O(ε
−1/(r+ρ+1)
1 n (log n + log 1/δ)) we assure that the

bounds
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
∫

0

gi(u) du −Ai(f)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ε1 for i = 0, 1, . . . , n− 1 (31)

hold simultanously with probability at least 1 − δ. The total cost of the algorithm
additionally includes O(n) classical subroutine calls necessary in the deterministic part
of the algorithm.
Let ei = z(xi)− yi. Since the solution of (1) satisfies

z(xi+1) = z(xi) +

xi+1
∫

xi

f(z(t)) dt , (32)

we get from (27) that

ei+1 = ei +
xi+1
∫

xi

(f(z(t))− f(li(t))) dt

+
xi+1
∫

xi

(f(li(t))− wi(li(t))) dt − hr+ρ+1Ai(f) .
(33)

We shall derive from (33) a difference inequality for ||ei||. Let z̄i denote the solution of
the local problem (20) with the initial condition z̄i(xi) = yi. By triangle inequality,

||f(z(t)) − f(li(t))|| ≤ ||f(z(t)) − f(z̄i(t))||+ ||f(z̄i(t))− f(li(t))||. (34)

To estimate the first term, we note that the dependence of the solution on initial
condition yields that

||z(t)− z̄i(t)|| ≤ exp(Lh)||z(xi)− yi||, t ∈ [xi, xi+1], (35)

where L is the Lipschitz constant of f . Writing the remainder of Taylor’s formula in
the form

z̄i(t)− li(t) =

1
∫

0

(z̄
(r+1)
i (θt+ (1− θ)xi)− z̄

(r+1)
i (xi))(t− xi)

r+1(1− θ)r/r! dθ ,

t ∈ [xi, xi+1], and checking that z̄
(r+1)
i is a Hölder function with exponent ρ (and a

constant that only depends on the parameters of the class F r,ρ and is independent of
i, yi, n), we arrive at

||z̄i(t)− li(t)|| ≤M hr+ρ+1 , (36)

t ∈ [xi, xi+1], where the constant M only depends on the parameters of the class F r,ρ.
The last two inequalities together with (33), (34) and (31) yield the relation (satisfied
with probability at least 1− δ)

||ei+1|| ≤ ||ei|| (1 + hL exp(Lh)) + LMhr+ρ+2 + hr+ρ+1ε1 , (37)
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i = 0, 1, . . . , n− 1. Take now ε1 = h. By solving difference inequality (37), we get that

max
0≤i≤n

||ei|| = O(hr+ρ+1) (38)

with probability at least 1− δ. Finally, for any t ∈ [xi, xi+1] we have due to (35), (36)
and (38) that

||z(t) − l(t)|| = ||z(t)− li(t)|| ≤ ||z(t)− z̄i(t)||+ ||z̄i(t)− li(t)|| = O(hr+ρ+1), (39)

with the constant depending only on the parameters of the class F r,ρ, and probability
at least 1− δ.
The quantum query cost of the considered algorithm is of orderO(n(r+ρ+2)/(r+ρ+1)(log n+
log 1/δ)). For ε > 0, we now take the minimal n such that the upper bound in (39)
does not exceed ε, n ≍ (1/ε)1/(r+ρ+1) , and the desired upper bound on the complexity
(10) follows.
In the randomized setting we use (16). Take an algorithm φ for approximating integrals
with s = 1 such that erand(φ, F̃ r,ρ) ≤ ε1/2. By the Chebyshev inequality we have that

P







∣

∣

∣

∣

∣

∣

1
∫

0

g(x) dx −Aω(g)

∣

∣

∣

∣

∣

∣

> ε1







≤ 1/4,

for any g ∈ F̃ r,ρ, where Aω(g) is the output of the algorithm. As in the quantum
case, the inequality (30) holds with probability at least 3/4, but the cost is now

O(ε
−1/(r+ρ+1/2)
1 ). Proceeding further on similarly as in the quantum case, one gets that

the bound (39) holds with probability at least 1−δ, and costO(n(r+ρ+3/2)/(r+ρ+1/2)(log n+
log 1/δ)). We denote the resulting random algorithm for initial value problems by φ̃.
Take now n to be the minimal number for which the upper bound in (39) is at most
ε/2, n ≍ (1/ε)1/(r+ρ+1) , and observe that

Eeω(φ̃, f)2 =

∫

eω(φ̃,f)>ε/2

eω(φ̃, f)2 dP(ω) +

∫

eω(φ̃,f)≤ε/2

eω(φ̃, f)2 dP(ω) ≤ K2δ + ε2/4

for all f ∈ F r,ρ, where K is a positive constant that depends only on the parameters
of the class F r,ρ such that eω(φ̃, f) ≤ K (such a constant exists, since we may assume
that |Aω(g)| ≤ 2D̃0; otherwise A

ω(g) = 0 would be a better approximation). Hence,
the algorithm φ̃ with δ = 3ε2/4K2 satisfies erand(φ̃, F r,ρ) ≤ ε. Looking at the cost of φ̃
we see that the upper bound (9) is proven.
Consider now the deterministic setting. The known upper bounds on the complexity
can be derived again as follows. If the values of f or its partial derivatives can only

be accessed, then we are able to approximate
1
∫

0
gi(u) du within the error ε1 with cost

O(ε
−1/(r+ρ)
1 ). Since n integrals are to be approximated, the total cost of the algorithm

(for ε1 = h), with the error bound (38), is of order O(n · n1/(r+ρ)). This proves the
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upper bound in (18). If exact computation of the integrals is allowed in the model,
then we simply take ε1 = 0, which leads to the upper bound in (19).

We now pass to lower bounds. Consider the quantum setting. Let g ∈ F̃ r,ρ with r ≥ 1
and ρ ∈ (0, 1], or r = 0 and ρ = 1, and with s = 1. Consider a two-dimensional problem

{

u′(t) = 1
v′(t) = g(u(t)) , t ∈ [0, 1] ,

(40)

with initial conditions u(0) = 0, v(0) = 0. The function g can be extended to R such
that the right-hand side function in (40) belongs to the class F r,ρ with suitably chosen

parameters. The solution of (40) is given by u(t) = t and v(t) =
t
∫

0
g(s) ds.

Let ε > 0 and let φ be any quantum algorithm for solving (1) with error equant(φ, F r,ρ, 1/4) ≤
ε, and quantum query cost c(ε). When applied to (40), the algorithm φ gives an ap-

proximation to v(1) =
1
∫

0
g(t) dt with error at most ε, with probability at least 3/4. Due

to the lower bound for integration in (17) the cost must be at least of order ε−1/(r+ρ+1)

queries on g, which yields that c(ε) = Ω(ε−1/(r+ρ+1)), and proves lower bound (12).
In the randomized setting we use similar arguments to show (11), adjusted to the error
formula (7). Since the same arguments apply in both settings for any d ≥ 2, the proof
of Theorem 1 is completed.

Let us finally note that the logarithmic factor in the upper bound (10) depends on what
stage the median is computed at in the algorithm. If we ask the inequality (29) to hold
with probability at least (3/4)1/n, proceed up to the final step (39) with δ = 1/4, and
after that compute the median of c log 1/δ repetitions of the entire algorithm, then the
factor log 1/ǫ+ log 1/δ in (10) would be replaced by log 1/ǫ · log 1/δ.
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