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Preface

Computability and Complexity in Analysis (CCA) investigates the fundamental
capabilities and limitations of operations on continuous data. This provides a rigor-
ous theory of computing for instance over real numbers, (say, continuous or smooth)
functions, and (e.g., compact or open) subsets by approximation up to prescribable
absolute error - inspired by, and with applications to, numerics. Initiated by Alan
Turing, this field thus combines Theoretical Computer Science (recursion and com-
plexity theory) with Analysis and its foundations by means of Mathematical Logic.
Computability theory is the study of the limitations and abilities of computers in
principle.

Computational complexity theory provides a framework for understanding the
cost of solving computational problems, as measured by the requirement for re-
sources such as time and space. The classical approach in these areas is to con-
sider algorithms as operating on finite strings of symbols from a finite alphabet.
Such strings may represent various discrete objects such as integers or algebraic
expressions, but cannot represent general real or complex numbers, unless they are
rounded. Most mathematical models in physics and engineering, however, are based
on the real number concept. Thus, a computability theory and a complexity theory
over the real numbers and over more general continuous data structures is needed.
Despite remarkable progress in recent years many important fundamental problems
have not yet been studied, and presumably numerous unexpected and surprising
results are waiting to be detected. Scientists working in the area of computation
on real-valued data come from different fields, such as theoretical computer science,
domain theory, logic, constructive mathematics, computer arithmetic, numerical
mathematics and all branches of analysis. The conference provides a unique oppor-
tunity for people from such diverse areas to meet, present work in progress and
exchange ideas and knowledge. The topics of interest include foundational work on
various models and approaches for describing computability and complexity over
the real numbers. They also include complexity-theoretic investigations, both foun-
dational and with respect to concrete problems, and new implementations of exact
real arithmetic, as well as further developments of already existing software pack-
ages. We hope to gain new insights into computability-theoretic aspects of various
computational questions from physics and from other fields involving computations
over the real numbers.

Starting in 1995 at the FernUniversität Hagen, annual meetings have continu-
ously (pun!) taken place and quickly grown both in number and national variety of
attendance into a truly international conference series on various locations through-
out the world. The 11th International Conference on Computability and Complexity
in Analysis was held on July 21-24, 2014 at TU Darmstadt (GERMANY); and the
present proceedings contain the papers presented at CCA 2014: 6 invited speakers
had kindly agreed to deliver talks and the program committee decided to accept 23
of the submitted works. A special session on Implementation of Exact Real Number
Arithmetic, organized by Norbert Müller (Trier), demonstrated and fostered con-
nections between theory and practice. We gratefully acknowledge financial support
by both local departments of mathematics and computer science, by the Interna-
tional Research Training Group 1529, and by the German Research Foundation
(DFG).

Vasco Brattka and Martin Ziegler
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17:30 Debriefing and Open Problems

July 22nd (Tuesday) Morning Session:
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09:00 Johanna Franklin (Invited Talk):
Techniques in randomness and ergodic theory

10:00 Coffee

10:30 Vasco Brattka, Guido Gherardi and Rupert Hölzl:
Probabilistic Computability and Choice

11:00 Akitoshi Kawamura and Kentarô Yamamoto:
On the Computational Power of Algorithmically Random
Constants in Blum-Shub-Smale Machines

11:30 Nathanael Ackerman, Cameron Freer and Daniel Roy:
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12:00 Lunch

Afternoon Session: Logic in Analysis

13:30 Mart́ın Escardó (Invited Talk):
A constructive manifestation of the Kleene-Kreisel
continuous functionals

14:30 Coffee

15:00 Stéphane Le Roux and Arno Pauly:
Weihrauch degrees of finding equilibria
in sequential games

15:30 Andrej Bauer and Kazuto Yoshimura:
The Weihrauch lattice is too small

16:00 Kazuto Yoshimura:
Same for Bishop, different for Weihrauch

16:30 Coffee

17:00 Tahina Rakotoniaina and Vasco Brattka:
A survey on the strength of Ramseys Theorem

17:30 Robert Lubarsky and Matt Hendtlass:
Separating Variants of LEM, LPO, and MP



July 23rd (Wednesday) Morning: Special Session
on Implementation of Exact Real Number Arithmetic

09:00 Keith Briggs:
Computational aspects of simultaneous Diophantine
approximation

09:30 Valérie Ménissier-Morain:
Tools for a gentle slope transition from floating point
arithmetic to exact real arithmetic

10:00 Gregorio de Miguel Casado:
Decimal on-line Arithmetic for Rational Operation in
C++ (DARIO C++)

10:30 Coffee

11:00 Michal Konečný and Jan Duracz:
Exact Function Interval Arithmetic

11:30 Franz Brauße, Margarita Korovina, Norbert Th. Müller
and Alexander van Ackerern:
Exact real arithmetic and ODE systems with polynomial
right hand sides

12:00 Akitoshi Kawamura, Florian Steinberg and Holger Thies:
Analytic Functions in iRRAM

12:30 Lunch

14:00 Excursion & Dinner:
Guided tour of Grube Messel, UNESCO world heritage
site due to its vast collection of fossiles, followed by . . .
a vegetarian dinner served in TU Darmstadt’s Georg-
Christoph-Lichtenberg-Haus

July 24th (Thursday) Morning Session:
Dynamical Systems, ODEs/PDEs, Complex Analysis

09:00 Christoph Spandl:
True orbit simulations of dynamical systems for validating
molecular dynamics simulations

09:30 Michal Konečný, Jan Duracz, Amin Farjudian and Walid
Taha:
Picard Method for Enclosing ODEs with Uncertain Initial
Values

10:00 Pieter Collins:
Computability of Solutions of Stochastic Differential
Equations

10:30 Svetlana Selivanova, Victor Selivanov:
On computability of boundary-value problems for some
linear hyperbolic PDEs

11:00 Coffee

11:30 Timothy McNicholl (Invited Talk):
Explorations of effective local connectivity

12:30 Alexander Melnikov (Invited Talk):
Computable Metric Space Theory is a Generalization of
Effective Algebra

13:30 Closing Address
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Characterizations of the topological complexity of

discontinuous functions∗

Matthew de Brecht
CiNet, NICT, Osaka, Japan

It is well known in computable analysis that discontinuous functions on ad-
missibly represented topological spaces are not computable for simple informa-
tion theoretic reasons. When working with such functions, the user must either
provide additional information about the input, or else be satisfied with a weaker
representation of the output (such as a sequence of points that converge to the
correct output with some unknown modulus of convergence). There has been a
great deal of work characterizing the degree of discontinuous functions, which
has led to deep connections with descriptive set theory and various notions of
limit computability.

Within the framework of Type Two Theory of Effectivity, several researchers
such as V. Brattka and M. Ziegler have investigated certain “jump operators”
which modify the representation of a space and can capture classes of discontin-
uous functions and limit computability. Here we investigate a general definition
of “jump operator” in an attempt to unify this line of research. We will show
that some common notions of limit computability can be reinterpreted as jump
operators, and we will also provide topological characterizations of the functions
that are realizable in this way. We will also show that our approach adds a nice
category theoretical perspective to the analysis of degrees of discontinuity.

A represented space is a pair 〈X, ρ〉 where X is a set and ρ : ⊆ ωω → X is
a surjective partial function. If X = 〈X, ρX〉 and Y = 〈Y, ρY 〉 are represented
spaces and f : ⊆ X → Y is a partial function, then a function F : ⊆ ωω → ωω

realizes f if and only if f ◦ ρX = ρY ◦ F . We say that a function between
represented spaces is (continuously) realizable if it is realized by some continuous
function.

Definition 1. A (topological) jump operator is a partial surjective function
j : ⊆ ωω → ωω such that for every partial continuous F : ⊆ ωω → ωω, there is
partial continuous F ′ : ⊆ ωω → ωω such that F ◦ j = j ◦ F ′. ut

A j-realizer of a function f between the represented spaces X and Y is a
function F : ⊆ ωω → ωω such that f ◦ ρX = ρY ◦ j ◦ F . In other words, F is a
j-realizer of f if and only if F realizes f when we reinterpret the codomain of

∗A full length paper with references is available online: M. de Brecht (2013): Levels of
discontinuity, limit-computability, and jump operators. arXiv:1312.0697.
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f to be j(Y) := 〈Y, ρY ◦ j〉, the “j-jump” of Y. We will say that a function is
j-realizable if and only if it has a continuous j-realizer.

The following jump operators are of particular interest to computable anal-
ysis (we let 〈· · · 〉n∈ω : (ωω)ω → ωω be some fixed computable bijection):

• Define jΣ0
2
: ⊆ ωω → ωω as:

〈ξn〉n∈ω ∈ dom(jΣ0
2
) ⇔ ξ0, ξ1, . . . converges in ωω

jΣ0
2
(〈ξn〉n∈ω) = lim

n∈ω
ξn

For each natural number n > 1 define jΣ0
n+1

= jΣ0
n
◦ jΣ0

2
.

• Define j∆ : ⊆ ωω → ωω as:

〈ξn〉n∈ω ∈ dom(j∆) ⇔ (∃n)(∀m ≥ n)[ξm = ξn]

j∆(〈ξn〉n∈ω) = lim
n∈ω

ξn

• For each countable ordinal α, define jα : ⊆ ωω → ωω as:

〈〈βn〉α � ξn〉n∈ω ∈ dom(jα) ⇔ (∀n)(α > βn ≥ βn+1) and

(∀n)(ξn 6= ξn+1 ⇒ βn 6= βn+1)

jα(〈〈βn〉α � ξn〉n∈ω) = lim
n∈ω

ξn

where 〈·〉α : α→ ω is some fixed encoding of ordinals less than α as natural
numbers, and 〈β〉α � ξ is the element of ωω obtained by prepending the
encoding of β to the beginning of ξ.

Realizability according to these jump operators is best understood in terms
of “limit-computability” by Type Two Turing machines (possibly with access
to an oracle). A jΣ0

2
-realizer for a function reads in an infinite string on its

input tape and produces an infinite string on the output tape, but is allowed to
modify the contents of each cell in the output tape a finite number of times. A
j∆-realizer is similar, but it is only allowed to make finitely many revisions (so
after some finite amount of time a j∆-realizer will no longer make revisions, but
it is possible for a jΣ0

2
-realizer to make infinitely many revisions so long as it

only revises each particular cell a finite number of times). A jα-realizer outputs
an (encoding of an) ordinal less than α, and must decrement its ordinal bound
every time it makes a revision without ever going below zero.

For functions between admissibly represented countably based T0-spaces,
the realizability notions induced by these jump operators have the following
topological characterizations:

• A function is jΣ0
n
-realizable (1 ≤ n < ω) if and only if it is Σ0

n-measurable.
This was first observed for metric spaces by V. Brattka and M. Ziegler.

2
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• A function is j∆-realizable if and only if it is ∆0
2-piecewise continuous.

This was first observed for metric spaces by A. Andretta, and the charac-
terization is important for analyzing classical descriptive set theory results
like the Jayne-Rogers theorem.

• A function is jα-realizable (α < ω1) if and only if its level of discontinuity
is α according to P. Hertling’s hierarchy. This characterization appears to
be new, but L. Motto Ros has independently investigated a similar notion
of realizability for metric spaces. It is also related to previous work on the
connections between the Hausdorff difference hierarchy, Cantor-Bendixson
rank, and computation with ordinal mind-change bounds.

The above results show that jump operators provide a unifying approach
to classifying the degree of discontinuity of functions between countably based
T0-spaces.

Next we switch to a category theoretic perspective. The definition of a
(topological) jump operator given above is chosen so that taking the j-jump,
i.e. the mapping 〈Y, ρY 〉 7→ 〈Y, ρY ◦ j〉, is functorial within the category of
represented spaces and continuously realizable functions. When dealing with
the category of computably realizable functions, the definition of a jump operator
must be modified so that F and F ′ range over all partial computable functions.
This distinction is necessary, because V. Brattka, A. Pauly, and the author
showed that in the effective category there is a jump operator that is left adjoint
to jΣ0

2
and which fails to be a jump operator in the category of continuously

realizable functions (it is interesting to note that the monad from this adjoint
is a jump operator in the effective category that characterizes the recursion
theoretic notion of low-computability).

Since the j-realizable functions from X to Y are precisely the realizable
functions from X to j(Y), the cartesian closedness of the category of represented
spaces and realizable functions allows a natural interpretation of the exponential
object j(Y)X as being the space of j-realizable functions from X to Y. In
particular, if we let Σ be the Sierpinski space with an admissible representation,
then the object j(Σ)X is the space of “j-semi-decidable” subsets of X. In
particular, if X is an admissibly represented countably based T0-space, then
jΣ0

n
(Σ)X is the space of Σ0

n-subsets of X.
Certain abstract re-formulations of topology, such as Abstract Stone Duality

and Synthetic Topology, identify open subsets of an arbitrary object with func-
tions into a Sierpinski-like object. Basic topological properties such as being
compact, overt, Hausdorff, or discrete, are defined and applied in such frame-
works using diagrams involving the Sierpinski space Σ. Within the category
of represented spaces and realizable functions, for any jump operator j we can
simply replace Σ with j(Σ) and obtain relativized definitions of j-compact, j-
overt, j-Hausdorff, and j-discrete. Concepts such as overtness, which is trivial in
frameworks based on classical logic, often become highly non-trivial (even clas-
sically) when relativized to most jump operators. This leads to many questions
about the relationship between abstract approaches to topology, descriptive set
theory, computability theory, and the use of modal operators in type theories.

3
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A constructive manifestation of the

Kleene–Kreisel continuous functionals

Mart́ın Escardó and Chuangjie Xu
University of Birmingham, UK

Abstract. We identify yet another category equivalent to that of Kleene–
Kreisel continuous functionals. Reasoning constructively and predicatively, all
functions from the Cantor space to the natural numbers are uniformly continu-
ous in this category. We do not need to assume Brouwerian continuity axioms
to prove this, but, if we do, then we can show that the full type hierarchy is
equivalent to our manifestation of the continuous functionals. We construct
this manifestation within a category of concrete sheaves, called C-spaces, which
form a locally cartesian closed category, and hence can be used to model sys-
tem T and dependent types. We show that this category has a fan functional
and validates the uniform continuity axiom in these theories. Our development
is within informal constructive mathematics, along the lines of Bishop mathe-
matics. However, in order to extract concrete computational content from our
constructions, we formalized it in intensional Martin-Löf type theory, in Agda
notation.

Technical summary. In a cartesian closed category with a natural numbers
object N, define the simple objects to be the least collection containing N and
closed under exponentials (function spaces). The simple objects of any such cat-
egory give an interpretation of the simply typed lambda calculus and higher-type
primitive recursion (the term language of Gödel’s system T). The Kleene–Kreisel
continuous functionals, or countable functionals [13], form a category equivalent
to the full subcategory on the simple objects of any of the following categories,
among others: (1) compactly generated topological spaces [13, 6], (2) sequential
topological spaces [6], (3) Simpson and Schröder’s QCB spaces [2, 6], (4) Ku-
ratowski limit spaces [7], (5) filter spaces [7], (6) Scott’s equilogical spaces [3],
(7) Johnstone’s topological topos [9]. See Normann [14] and Longley [10, 11] for
the relevance of Kleene–Kreisel spaces in the theory of higher-type computa-
tion. Counter-examples include Hyland’s effective topos [8] and the hereditary
effective operations (HEO) [10], which give a second simple-type hierarchy [10].
A third type hierarchy, discussed here in connection with the continuous func-
tionals, is the full type hierarchy, which is the full subcategory on the simple
objects of the category of sets [13].

We work with a category of sheaves, analogous to the topological topos, and

4



with a full subcategory of concrete sheaves [1], here called C-spaces, analogous
to the limit spaces. The C-spaces can be described as sets equipped with a
suitable continuity structure, and their natural transformations can be regarded
as continuous maps. The main contributions of this work are the following:

1. The simple C-spaces form a category equivalent to that of Kleene–Kreisel
continuous functionals.

The proof here is non-constructive (as are the proofs of the above equiv-
alences). But we claim that the C-spaces form a good substitute of the
above categories of spaces for the purposes of constructive reasoning.

2. If we assume the Brouwerian axiom that all set-theoretic functions 2N → N
are uniformly continuous, then we can show constructively that the full
type hierarchy is equivalent to the Kleene–Kreisel continuous hierarchy
within C-spaces.

3. Without assuming Brouwerian axioms, we show constructively that the
category of C-spaces has a fan functional (2N → N)→ N that continuously
calculates moduli of uniform continuity of maps 2N → N.

4. C-Spaces give a model of system T with a uniform continuity axiom, ex-
pressed as the skolemization of

∀f : 2N → N. ∃m ∈ N. ∀α, β ∈ 2N. α =m β =⇒ fα = fβ,

where α =m β stands for ∀i < m. αi = βi, with the aid of a fan-functional
constant.

5. C-Spaces give a model of dependent types with a uniform continuity ax-
iom, expressed as a type via the Curry–Howard interpretation:

∏

f : 2N→N

∑

m∈N

∏

α,β∈2N

(α =m β =⇒ fα = fβ).

6. We give a constructive treatment of C-spaces suitable for development in a
predicative intuitionistic type theory in the style of Martin–Löf, which we
formalized in Agda notation [12, 5] for concrete computational purposes.

We stress, however, that in this talk we deliberately reason informally,
along the lines of Bishop mathematics [4].

As mentioned above, our sheaf topos is closely related to Johnstone’s topo-
logical topos. Working non-constructively, one can show that the topological
topos has a fan functional and that it interprets uniform continuity axioms for
both simple and dependent types. The point of our contribution is that we can
achieve this by working constructively instead, without assuming Brouwerian
axioms, and remaining predicative.

5
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TECHNIQUES IN RANDOMNESS AND ERGODIC THEORY

JOHANNA N.Y. FRANKLIN
UNIVERSITY OF CONNECTICUT

A point is algorithmically random if it is typical with respect to some class of measure-zero
computability-theoretic properties. Clearly, different computability requirements for these proper-
ties generate different classes of random points. Ergodic theorems describe typicality with respect
to ergodic (or simply measure-preserving) transformations: a typical ergodic theorem states that,
given any transformation of a certain kind, the orbit of almost every point in a space behaves regu-
larly. It is natural to ask whether, when an ergodic theorem is effectivized in a particular way, the
points that satisfy this ergodic theorem are precisely the points that are algorithmically random
with respect to some class of properties.

This topic has been studied extensively in recent years, and it has been found that the above
question can often be answered in the affirmative, regardless of the way in which the ergodic theorem
is effectivized. In this talk, I’ll survey the techniques that have been used in the proofs of these
results, focusing on my own work with Towsner and the method of cutting and stacking [1].

References
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Explorations of effective local connectivity
Timothy H. McNicholl, Ph.D.
Department of Mathematics

Iowa State University

A topological space X is locally connected if, whenever U is a neighbor-
hood of a point p of X, U contains a connected neighborhood V that contains
p. We will discuss:

• Several natural ways to define effective notions of local connectivity
and their equivalence.

• Applications to computable space-filling curves.

• Applications to boundary extensions of computable conformal maps.
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COMPUTABLE METRIC SPACE THEORY IS A

GENERALIZATION OF EFFECTIVE ALGEBRA

ALEXANDER MELNIKOV

In my CCA 2014 talk I will concentrate on several recent applications of
effective algebra to computable metric and Banach spaces. It is clear that
both fields have very similar underlying ideas and motivation. For instance,
in both fields we ask:

- what does it mean for an (algebraic/metric) structure to be algo-
rithmically presented?

- which (algebraic/analytic) operations on the structure are effective?
- how many effective presentations does a structure have up to com-

putable isomorphism?
- can we classify effectively presented members of a given class?
- can we measure the complexity of an effective classification problem?

and other familiar questions. Despite of these obvious similarities, the fields
have been developing almost independently. I will survey several recent
projects that aim to (re)unite these fields both technically and philosophi-
cally1.

0.1. A reduction. We will discuss a rather elementary proof of the follow-
ing observation (due to Khoussainov and myself):

Fact. There exists an injective effective functor Ψ from the class of com-
putable algebraic structures to the class of computable metric spaces that
preserves all structural and effective features.

In other words, every algebraic structure can be effectively “coded” into a
metric space and then, if necessary, effectively “uncoded” back. Further-
more, A ∼=comp B iff Ψ(A) ∼=comp

iso Ψ(B). Indeed, the functor can be modified
to range over perfect Polish spaces. The fact above has several interesting
corollaries and also a peculiar philosophical interpretation stated in the title.

0.2. The right category. In effective algebra, each countable algebra (e.g.,
a group) corresponds to a class of classically isomorphic computable pre-
sentations that are typically viewed up to computable isomorphisms. We
associate each computably presentable metric or Banach space with a class
of computable countable algebraic structures under a specific effective mor-
phism that will be defined. This approach will allow us to derive several
interesting adaptations of effective algebraic techniques to computable met-
ric and Banach space theory.

1Based on papers jointly written with Ng, Greenberg, Turetsky, and Nies.
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2 ALEXANDER MELNIKOV

0.3. The right language. In effective algebra definability plays a central
role. A classical result of effective algebra states that an operation is com-
putably enumerable in every presentation of an algebra if and only if it is
Σ1-definable in the language of the algebra. We choose an appropriate lan-
guage and extend this and similar results to effective metric and Banach
space theory. We will also discuss several pleasant applications of the result
to classical problems that go back to Pour-El and Richards.

0.4. Index sets and higher categoricity. In recursion theory and effec-
tive algebra one typically uses hyperarithmetical hierarchy and index sets to
measure the complexity of a classification problem. Another closely related
approach uses isomorphisms that are computable relative to an oracle. We
apply these ideas to obtain several classification-type results for compact
metric and probability spaces.

0.5. Questions. I conclude my talk with a short list of selected open prob-
lems.

UC at Berkeley
E-mail address: alexander.g.melnikov@gmail.com
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The descriptive theory of represented spaces

Arno Pauly
Clare College

University of Cambridge, United Kingdom

Arno.Pauly@cl.cam.ac.uk

The emergent descriptive theory of represented spaces encompasses several recent develop-
ments and research projects that are to be summarized here. It has been demonstrated by de
Brecht [1] and others that many results from classic descriptive set theory can be extended
from Polish spaces to to Quasi-Polish spaces. Beyond a mere extension of the known theory
though, we will see that the larger scope allows us to introduce entirely new techniques.

The category of represented spaces has sufficient closure properties to form all relevant
derived spaces considered in descriptive set (and function) theory. Moreover, as shown by the
author and de Brecht [7], these constructions can be expressed in terms of endofunctors – and
doing so both provides avenues for simple proofs and a deeper understanding of theorems such
as the Jayne-Rogers theorem [8].

Taking into account explicit the representations of spaces exposes the connection between
dimension-theoretic properties of spaces and certain substructures of the Medvedev degrees.
Building partially on prior work by Miller [5], Kihara and the author presented and exploited
this connection in [4].

Further work to be touched upon is Schröder’s and Selivanov’s study of represented
spaces with certain complexity of the equivalence relation [10, 9]; Kihara’s work on a com-
putable decomposition theorem [3]; the agreement of notions of synthetic descriptive set theory
with the approach in effective descriptive set theory demonstrated by Kispetér, Gregoriades
and the author; and the translation of Motto-Ros’ constructions of games for pointclasses [6]
into the language of Weihrauch reducibility by Nobrega [2].
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Extended abstract: On computability and disintegration

Nathanael L. Ackerman1, Cameron E. Freer2, and Daniel M. Roy3

1Department of Mathematics, Harvard University
2Massachusetts Institute of Technology and Analog Devices Lyric Labs

3Department of Engineering, University of Cambridge

Conditioning is a basic tool in probability theory that can be understood in several different ways.
While conditioning is often characterized in terms of averaging, or in terms of projection, the per-
spective most often taken in statistical contexts is that of disintegration. One of the primary goals of
Bayesian statistical inference is to compute or summarize the disintegration of a collection of random
variables (or their joint distribution) with respect to a subfamily of “observed” random variables. On
the other hand, disintegrations are defined only up to null sets, and so their evaluation at points, as
is statistical practice, has typically relied upon additional (sometimes unstated) hypotheses.

One such hypothesis is the continuity of some version of the disintegration, which ensures that it is
canonically defined everywhere in the support of the distribution of the conditioning variables, and it
is interesting to consider the computability of the conditioning operator in this context.

In [AFR11] and [AFR10], we showed that disintegrations of computable random variables need
not be computable on any measure one (or indeed any positive measure) set, even when there is
guaranteed to be a continuous version. Here we strengthen and uniformize these results, by providing
precise bounds on how noncomputable disintegration can be. We make use of certain constructive
definitions of disintegration, especially those of Tjur; see [Tju75] and [Tju80]. Other work in this
direction includes [Pfa79], [FMNP95], and [Zab79].

We show that the disintegration operator on topological spaces along a projection map, restricted
to measures for which the disintegration is continuous, is strongly Weihrauch-equivalent to the limit
operator Lim (for definitions, see below). We also show that in the case where the disintegration exists
everywhere (but is not necessarily continuous), the disintegration itself is strongly Weihrauch-reducible
to Lim, and further exhibit a single distribution realizing this upper bound.

A result by Hoyrup, Rojas, and Weihrauch [HRW12] (see also [HR11]) can be shown to imply that
the map taking a distribution and a real ε > 0 to a continuous disintegration on some (1− ε)-measure
set is Weihrauch reducible to the limit operator Lim. Our work can therefore also be viewed as an
extension of this result.

Tjur points and disintegrations. We briefly describe Tjur points, which Tjur used in order to
provide a constructive definition of disintegrations in certain cases; for more details, see [Tju80, §9.7].

We assume that every topological space is Hausdorff, locally finite, and inner regular, and that
its underlying set along with the collection of all its Borel subsets is a standard Borel space; in this
case all measures on such a space are Radon. The following property is due to Tjur, and is a slight
rearrangement of a property described in [Tju75].

Definition 1 (Tjur Property). Let S and T be topological spaces, let µ be a Borel probability
measure on S, and let g : S → T be a measurable function. Suppose x ∈ T is such that for every
open neighborhood U of x, we have µ(g−1(U)) > 0. Let D(x) denote the set of pairs (U,B) where
U is an open neighborhood of x and B is a measurable subset of U with µ(g−1(B)) > 0. We write
(U,B) 4 (U ′, B′) when U ′ ⊇ U . Note that this relation is a partial ordering on D(x) and makes D(x)
a directed set. We say that x has the Tjur property (for µ along g) when the directed limit
µxg(·) := lim(U,B)∈D(x)(µ ◦ g−1)B( · ) exists and is a probability measure, where the superscript denotes
the conditional probability with respect to B.

Many common properties imply that a point is Tjur. For example, every point of continuity of an
absolutely continuous distribution is a Tjur point. Also, any isolated point mass (e.g., a point in the
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support of a discrete random variable taking values in a discrete space) is a Tjur point. On the other
hand, nonisolated point masses are not necessarily Tjur points.

The following lemma is a consequence of Corollary 9.9.2 and Proposition 9.10.1 of [Tju80]. For
more details on the notion of disintegration, see [Kal02, §6].

Lemma 2. Let S be a topological space, T a metric space, µ a Borel probability measure on S, and
g : S → T a measurable function. Suppose that (µ ◦ g−1)-almost all x ∈ T have the Tjur property (for
µ along g). For each such Tjur point x, suppose that {Bx

n}n∈N is a sequence of measurable sets for
which each Bx

n is contained in the 2−n-ball around x and µ(g−1(Bx
n)) > 0.

Then the function κ : S × BT → [0, 1] given by κ(x,A) := limn→∞ µB
x
n(A) for Tjur points x and

Borel sets A ⊆ T (and defined by κ(x, ·) = ν for an arbitrary probability measure ν otherwise) is a
version of the disintegration of µ along g.

Even when such limits exist, they may not be computable. One of the main constructions of
[AFR10], which we generalize here, is an example of a conditional distribution for which almost all
points are Tjur, and yet no version of the disintegration is a computable map.

Given a topological space S, write M1(S) for the topological space of probability measures on
S under the weak topology, and δM1(S) for its representation. For topological spaces S and T , let
CS,T ⊆M1(S×T ) be the subset consisting of those measures µ that admit a continuous disintegration
and that have full measure, in the sense that µ(S × A) > 0 for every nonempty open A ⊆ T . Let
δCS,T

be the restriction of the representation δM1(S×T ) to CS,T .
Let C(T,M1(S)) be the class of continuous functions from T to M1(S), and define the map

D̂S,T : CS,T → C(T,M1(S)) by D̂S,T (µ) := f such that µ(A×B) =
∫
B

(
f(t)

)
(A) µ(S × dt). Note that

this is well-defined by the definition of CS,T . Also observe that κ, as defined in Lemma 2, is equal

to D̂S,T (µ) when it is a.e. continuous. The following lemma is a consequence of Proposition 9.14.2 of
[Tju80].

Lemma 3. Let S and T be topological spaces and let µ be a Borel probability measure on S × T .
Suppose that every point of T is a Tjur point for µ along the projection map. Then the disintegration

D̂S,T (µ) : T →M1(S) is continuous.

We make use of Lemmas 2 and 3 to prove the continuity of a particular disintegration, which is a
key step in establishing a lower-bound in the Weihrauch degrees for the disintegration operator, in the
proof of Proposition 4.

Weihrauch reducibility and represented spaces. For background on Weihrauch reducibility,
Weihrauch degrees, and represented spaces, see, e.g., [BG11], [Pau12], or the introduction to [BHG13].
Recall the Lim (on Cantor space) and EC operators, which are equivalent by [Bra05, Prop. 9.1].

For computable topological spaces S and T , define the disintegration operator DS,T :⊆ NN ⇒ NN

to be the partial multi-map taking any representation of a measure µ ∈ CS,T to the representations

of its disintegration D̂S,T (µ). Write D for DI,I, where I consists of the non-dyadic reals in the interval
[0, 1].

The disintegration operator on distributions having a continuous disintegration. Our main
theorem is a characterization of the Weihrauch degree of D.

Proposition 4. EC ≤sW DN,I.

We show this by uniformly computing, given a representation βx of a function x ∈ C(N, S), a
measure µβx ∈M1(N× I) with the following properties.

Corollary 5. For every X ∈ 2ω there is a continuous function x ∈ C(N, S) and a representation βx
of x such that

• the representation βx is computable in X,
• the disintegration D(µβx) : I→M1(N) along the projection π : N× I→ I is continuous, and
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• any representation of the function D(µβx) computes X ′, the Turing jump of X.

We note that the construction of µβx is a relativization of the construction of the measure used
in [AFR10] to show that the conditional distribution of a computable random variable given another
need not be computable.

Proposition 6. For any two computable topological spaces S and T , we have DS,T ≤W Lim.

In fact, we prove the following statement as well.

Corollary 7. Let µ ∈ M1(S × T ) be such that D(µ) is continuous on some set X ⊆ T such that
µ(S ×X) = 1. If β is a representation of µ, then there is a representation of D(µ) computable from
the Turing jump of β.

Using Propositions 4 and 6, we obtain our main theorem.

Theorem 8. D ≡sW Lim.

The disintegration of specific distributions. Above we considered the disintegration operator on
the space of measures for which the disintegration operator is continuous. Even for other measures, we
can ask about the Weihrauch degree of the disintegration of the measure. As we saw in Corollaries 5
and 7, in the case that disintegration is continuous, the disintegration is computable from the Turing
jump of (a representation of) the distribution and bounded by the jump of (a representation of) the
distribution. We finally consider the Weihrauch degree of disintegrations in the case when they are
not continuous, and show that a single one can be as bad as Lim, even when it is defined everywhere;
in fact our example is even absolutely continuous with respect to Lebesgue.

Proposition 9. There is a computable distribution µ ∈ M1(N × 3ω) such that its conditional distri-
bution D(µ) (along π : N× 3ω → 3ω) exists everywhere and satisfies EC ≤sW D(µ).

Proposition 10. Suppose µ ∈ M1(S × T ) is a computable measure such that DS,T (µ) is total. Then
DS,T (µ) ≤sW Lim.
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In constructive reverse mathematics we care about implications of the form

(∀y ∈ B .ψ(y)) =⇒ (∀x ∈ A .φ(x)), (1)

where φ and ψ are two principles that cannot be shown constructively valid. There is a natural
way of proving such statements: given an arbitrary x ∈ A, find a suitable (not necessarily unique)
y ∈ B such that ψ(y) implies φ(x). A cursory glance at the literature reveals numerous applications
of the proof method, which therefore deserves a name. Recall that a relation K ⊆ A× B is total
when ∀x ∈ A .∃y ∈ B .K(x, y). We write φ ⊆ A to indicate that φ is a predicate on A.

Definition 1. Suppose φ ⊆ A is a predicate on A and ψ ⊆ B is a predicate on B. Say that φ
is instance reducible to ψ, written as (φ,A) ≤I (ψ,B) or just φ ≤I ψ, if there is a total relation
K ⊆ A×B such that

∀x ∈ A . (∃y ∈ B .K(x, y) ∧ ψ(y))⇒ φ(x). (2)

The relation K explains what it means for x to be “suitable” for y. We say that K is a witness
for the reducibility. Often K is the graph of a function, i.e., K(x, y) is just y = k(x) for some
k : A→ B. Notice that (2) is equivalent to ∀x ∈ A, y ∈ B .K(x, y) ∧ ψ(y)⇒ φ(x).

Theorem 2. Instance reducibilities form a bounded distributive lattice.

We must be careful about the interpretation of the above theorem. The lattice in question is
large in the sense that its carrier consists of all sets and predicates. Also, ≤I is a preorder rather
than a partial order, so we should consider the structure up equivalence ≡I, which is of course
defined as mutual reducibility.

We say that a set I is projective if it satisfies the axiom of choice: any family (Ai)i∈I of
inhabited sets has a choice function, which is an element of the product

∏
i∈I Ai. For example,

projectivity of N is precisely countable choice. Aczel’s presentation axiom states that every set
(or object) is covered by a projective one. It is typically valid in realizability models.

Theorem 3. If Aczel’s presentation axiom holds then instance reducibilities form a complete
lattice in which finite meets distribute over all joins. Furthermore, every predicate is equivalent to
one on a projective set.

More precisely, the theorem states that set-indexed suprema and infima exist. Thus we do not
have a large frame, as that would require arbitrarily large suprema.

The structure of instance reducibilities is very rich. For example, every truth value corresponds
to a subset of the singleton set, which yields an anti-monotone embedding of truth values into
instance reducibilities. For any φ ⊆ A and B we may define its parameterization φB ⊆ AB by
φB(f) ⇐⇒ ∀y ∈ B .φ(f(y)). A reduction φ ≤I ψ

B then expresses the fact that we need B-many
instances of ψ to prove one instance of φ.

The relevance of instance reducibilities is further bolstered by their relationship to Weihrauch
reducibility. In the relative realizability model over Baire space, in which object-level realizers
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are elements of Baire space NN and morphisms are tracked by elements of the effective Baire
space (NN)eff , we obtain the following correspondence. Recall that φ ⊆ A is ¬¬-dense when
¬¬φ(x)⇒ φ(x) for all x ∈ A.

Theorem 4. Instance reducibilities on ¬¬-dense predicates correspond to Weihrauch degrees (with
a top degree) in the relative realizability model over Baire space.

The correspondence immediately gives rise to fruitful interaction between constructive and
computable mathematics. Realizers for constructive proofs of implication (2) give reductions
between corresponding Weihrauch degrees. Insights gained by the study of Weihrauch degrees
can be used to conclude lack of constructive implications between non-constructive principles
(although such results require additional careful meta-mathematical analysis). The embedding
of Medvedev degrees into Weihrauch lattice corresponds to the embedding of truth values into
instance reducibilities, and so on.

We could check that Theorem 2 and half of Theorem 3 restrict to ¬¬-dense predicates to
obtain the usual distributive lattice structure on Weihrauch degrees, with an effective version of
arbitrary infima. But we can do better by generalizing the notion of Weihrauch reducibility so
that it matches perfectly instance reducibility.

Definition 5. An extended Weihrauch degree is a pair (U,F ) where U ⊆ NN and F ⊆ U × NN.
A Weihrauch reduction (U,F ) ≤W (V,G) between two such degrees is given by a pair of partial
computable maps k : NN ⇀ NN and ` : NN × NN ⇀ NN such that:

1. for every α ∈ U , k(α) is defined and k(α) ∈ V ,

2. for every α ∈ U and β ∈ NN, if (k(α), β) ∈ G then `(α, β) is defined and (α, `(α, β)) ∈ F .

If Weihrauch degrees are viewed as multivalued maps between represented spaces, then the ex-
tended degrees correspond to partial multivalued maps. Natural examples of extended Weihrauch
degrees which are not already Weihrauch degrees are readily available. Let us only mention the
degree (NN, C) of formal Church’s thesis, where (α, β) ∈ C if, and only if, β(0) is the code of a
Turing machine computing α. Also known Weihrauch degrees may behave more naturally in their
extended version. For instance, closed choice can be defined as an extended degree so that the
empty set is included in the definition. Of course, it is impossible to choose anything from the
empty set, but one might face a situation in which a reduction to closed choice must be performed
without the implicit knowledge that the closed set in question is non-empty.

Again, it can be argued that extended Weihrauch degrees are of independent interest for
computable mathematics. Moreover, they correspond precisely to instance reducibilities.

Theorem 6. Instance reducibilities correspond to extended Weihrauch degrees in the relative re-
alizability model over Baire space.

Theorems 2 and 3 now apply to the extended Weihrauch degrees directly to give them the
structure of a bounded distributive lattice with effective infima and suprema, indexed by arbitrary
subsets of NN.

The Weihrauch lattice embeds into its extended version: to every Weihrauch degree F ⊆
NN×NN we assign an extended degree (suppF , F ) where suppF = {α | ∃β . (α, β) ∈ F}. Conversely,
every extended Weihrauch degree (U,F ) may be restricted to the Weihrauch degree F . The
restriction yields a monotone map which however does not preserve the lattice structure. The
extension is in fact proper.

Instance reducibilities pave a way for generalizations of Weihrauch lattice to other models of
computation. By interpreting Definition 1 in other models of computability, or even in any topos,
we obtain a notion of Weihrauch-style reductions in that model. A preliminary investigation shows
that in the effective topos we obtain a variant of truth-table reducibility.
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PROBABILISTIC COMPUTABILITY AND CHOICE
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While the power of randomized algorithms has been studied in the discrete setting for
a long time (see for instance [4]), very little is known for computations on real numbers.
The aim of this talk is to give an overview of the systematic investigation we have recently
carried out onto this largely unexplored field.

Randomization has no impact on what can be computed in principle as far as functions
over natural numbers are concerned. In contrast, we will show that in the setting where
inputs and outputs are infinite sequences, randomization can actually increase the compu-
tational power. In particular, a first very natural and significant scenario is the one where
we allow a Turing machine to access, beside the information contained in the input, the
auxiliary random advice information encoded by a sequence of coin tosses (that is, an ele-
ment of Cantor space 2N), and we assume that the success probability ε that such random
advice is useful to solve the problem is positive (i.e., ε ∈ I = (0, 1]). Moreover we require
the following failure recognition mechanism: the machine either produces a correct result or
recognizes at some finite stage that the advice is unsuccessful and stops the computation.
We will speak of Las Vegas computability to denote this type of computational concept1,
and of Las Vegas computability over R with measure I ⊆ R for the general case in which the
advice information space R and the measure interval I may be differently chosen.

In our study, we have been able to show that the class of Las Vegas computable functions
is closed under composition, which makes it a natural computational class, and we have
found alternative characterizations of it. A first one is given by the probabilistic choice
operator PICZ , i.e., the restriction of the closed choice operator as studied in [2] to closed
subsets A of a represented Borel measurable space Z with measure µ(A) ∈ I:

Theorem 1. Let X and Y be represented spaces, let R ⊆ NN be endowed with a Borel mea-
sure, let I be an interval and let f :⊆ X ⇒ Y be a multi-valued function. Then f ≤W PICR
iff f is Las Vegas computable over R with measure in I.

We abbreviate the notation for intervals, for instance, by writing “> ε” instead of (ε,∞]
and denote the positive choice operator P>0CZ for Z by “PCZ” (as in [3]). As a corollary
to Theorem 1 we deduce that f is Las Vegas computable iff f ≤W PC2N ≡W PC[0,1]. We also
obtain:

Theorem 2 (Probability dependency). Let ε, δ ∈ [0, 1] and R = 2N or R = [0, 1]. Then
P>εCR≤W P>δCR ⇐⇒ ε ≥ δ.

This theorem shows that the technique of probability amplification, which is well-known
from the theory of randomized algorithms [4] over finite objects, fails for Las Vegas com-
putability over infinite sequences.

A second characterization can be formulated in terms of the Weak Weak Kőnig’s Lemma
operator WWKL, which is the restriction of the Weak Kőnig’s Lemma operator WKL as
studied in [2] to trees p ∈ 2N of positive measures:

Corollary 3. f ≤W WWKL iff f is Las Vegas computable.

Since WWKL<W WKL holds, Las Vegas computable functions constitute a proper sub-
class of non-deterministically computable functions (i.e., functions f satisfying f ≤W WKL).

1Our understanding of Las Vegas algorithms for infinite computations is very close to Babai’s original
understanding of this concept, see [1].

1
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But in contrast to WKL, WWKL is not a cylinder (it does not compute the identity on the
Baire space). This means that the Las Vegas computable functions do not coincide with the
functions that are strongly Weihrauch reducible to WWKL.

Do mathematically meaningful examples of Las Vegas solvable problems that are not
ordinarily computable exist? We will answer this question in the affirmative by some results
proved by A. Pauly [5]:

Theorem 4. The task of finding matrix Nash equilibria is a Las Vegas computable problem
that is not ordinarily computable.

The Weihrauch lattice actually provides in general a finer classification than that given
by reverse mathematics and we also gain further evidence for this phenomenon in our new
context: there are statements equivalent over RCA0 to WWKL0 that correspond to operators
of different computational complexity. For instance, as we have seen, PC[0,1] determines via
≤W the class of Las Vegas computable functions, whereas PCR determines exactly the larger
class of Las Vegas computable functions with finitely mind changes (i.e., compositions of a
Las Vegas computable function and a function computable with finitely mind changes in
either order).

A second natural scenario for infinite randomized computation can be obtained by reject-
ing the condition about the failure recognition in the following way:

Definition 5 (Probabilistic functions). Let (X, δX), (Y, δY ) be represented spaces. A multi-
valued function f :⊆ X ⇒ Y is called probabilistic, if there is a computable function
F :⊆ NN×2N → NN and a family (Ap)p∈D of measurable sets Ap ⊆ 2N with D := dom(fδX)
such that (i) µ(Ap) > 0 for all p ∈ D and (ii) δY F (p, r) ∈ fδX(p) for all p ∈ D and r ∈ Ap.

We have proved that this class is actually larger than that of Las Vegas computable func-
tions, where a fundamental theorem of real analysis can serve as witness for the separation:

Theorem 6. The problem IVT of finding zeros of continuous functions changing their signs
over the unit interval is probabilistically computable but not even Las Vegas computable with
finitely many mind changes (it holds in fact IVT |W PCR).
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Ordinary differential equations (ODEs) have been addressed numerous times
in computable analysis, consider for example [BHW08] or [Wei00] for general
questions of computability. Major results in [Ko83] and [KC10] show that solv-
ing differential equations is closely related to the problem ‘P=PSPACE’ from
discrete complexity theory. For special ODEs, on the other side, polytime com-
putable right hand sides of the ODE lead to solutions that are computable
in polynomial time as well. An analysis of the resulting complexity for one-
dimensional solutions with special initials value can already be found in [MM93]:
If the right hand side of a one-dimensional ODE is holomorphic and computable
in polynomial time, then the solution is polynomial time computable as well for
all polytime computable initial values. The basic idea of the proof goes back to
the well-known power series method for the solution of ODEs, where the dif-
ferential equations lead to a recurrence relation for the coefficients of the ODE
solution, see for example [BS85] or [Tes12]. It is worth noting that such classical
mathematic textbooks do not consider aspects of computability or complexity.

In [MK10] the power series method had been analyzed for its applicability in
computable analysis also in higher dimensions and for more general initial values
than in [MM93]. Also a prototypical implementation working for linear differ-
ential equations had been described in brief. However, such implementations of
ODE solvers in exact real arithmetic, thus being able to produce results of arbi-
trary precision, seem to be very rare. The authors only know about one further
prototypical implementation mentioned in [EP07], which from its description
seems to be based on the explicit construction of the solution using piecewise
linear functions. This necessarily leads to a complexity that is exponential in
the precision of the solution, so that approach can hardly be useful in practice
without significant modifications.

In this paper we generalize the algorithm proposed in [MK10] to explicit
ODEs with right hand sides that are polynomials. In addition to a discussion
of the theory behind our approach we present a prototypical implementation in
the iRRAM software package [Mül01,Mül09]. It is applicable to d-dimensional
ODEs given by d polynomials Fν : R×Rd → R (1≤ν≤d) defining the right hand
sides of the ODE

ẏν(t) = Fν(t, y1(t), . . . yd(t)) (1≤ν≤d).
? This research was partially supported by EU project PIRSES-GA-2011-294962, and
RFBR grant N 11-01-00236-a.
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and vectors w0 defining initial values for the solution at a time t0.
The implementation is able to compute

(a) a mapping solve : (Fν , w0, t0) 7→ (aν,n) for the power series
∑
aν,n · (t− t0)n

of the unique solutions yν(t) near t0,
(b) a mapping RM : (Fν , w0, t0) 7→ (R,M) for lower bounds R of the radii of

convergence of these power series as well as bounds M suitable for their
evaluation, and

(c) a mapping sum : ((aν,n), R,M, t0, t) 7→ yn(t) evaluating the solution at
time t for |t− t0| < R.

For polynomials Fν , (a) turns out to be a simple algebraic computation, thus
suited perfectly for an implementation in exact real arithmetic, also (b) can be
implemented this way, (c) is already known from [MK10].

Using (c) to produce new initial values, iterations of the parts (a), (b), (c)
allow to follow the solution on a longer interval. Here (b) plays the role of the
adaptive step size known from ordinary ODE solvers.

We discuss aspects of computational complexity, especially the influence of
the dimension d and further characteristics of the ODE on the number of basic
arithmetic steps in (a). Additionally we discuss how (b) can be improved. Finally
we present a few benchmarks for well-known ODEs like the Van der Pol oscillator.
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1 Abstract

The classical one-dimensional Diophantine approximation concerns the finding of rational numbers close
to a given irrational number. This problem is fully solved by the classical theory of continued fractions, but
from the computational point of view, this theory already hides some difficulties. How is the input irrational
number to be specified — by rational bounds, a sequence of rational approximations, or something else? If
it uses floating-point arithmetic, a fully rigorous continued fraction algorithm will need some kind of error
analysis and precision control. I will mention some approaches to this problem, but my main emphasis will
be two-dimensional generalizations of such algorithms.

The two-dimensional problem of approximation of a pair of irrationals by a pair of rationals with the
same denominator is much harder, and for the computation of so-called best approximants, no classical
algorithm exists. But little-known algorithms by Vaughan Clarkson (PhD thesis, University of Queensland
1997) do exist, and I discuss the computational issues in implementing these.

I will thus present some results from the first fully-rigorous implementation of an algorithm for finding
the sequence of best approximants for the simultaneous rational approximation of two irrationals; this allows
investigation of some unsolved problems in elementary number theory. The ultimate target is in fact the
study of some of these unsolved problems, such as which pair of irrationals is the worst approximable (in
the sense of the golden mean in one dimension).

2 The continued fraction algorithm

The problem is: given x∈R+\Q and an integer n, find n terms of the sequence of best approximation denomi-
nators, defined as the unique infinite sequence Q={qi} (i=0,1,2, . . . ; q0=bxc) for which qi x< q j x ∀ j<i (here
· is defined as the distance to the nearest integer). Example: x=(

√
5−1)/2, Q={1,1,2,3,5,8,13,21,34, . . .}.

This elementary algorithm forms a prototype for the higher-dimensional algorithms which we really want
to study.

We are interested in practical computability, in this precise sense: if a nested sequence of rational bounds
for x can be computed, can we compute Q (and if so, with what complexity)? The answer is yes, and one
simple way is to apply Euclid’s algorithm for rationals, with purely rational arithmetic, separately to the
lower and upper bounds. A simple theorem tells us that as long as these two sequences agree, then they are
correct for x. When they first disagree, we have to compute tighter rational bounds for x, apply a correction
to account for the steps of Euclid’s algorithm already made, and continue. This works, but the correction
step is inelegant and the whole algorithm may not have optimal complexity. Euclid’s algorithm is: A=

[
0 1
1 0

]
;

for i=0,1,2, . . . : ai←bxc, A←
[ 0 1

1 ai

]
A, qi←A22, x←1/(x−ai), endfor.
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However, I would like to exploit mpfr, the correctly-rounding floating-point library, as this will effec-
tively do the bound calculations for me (by rounding down and up). If I build a ball arithmetic (center and
radius) on top of mpfr, then I can remove the requirement to run Euclid’s algorithm twice, but I still have to
stop at the point where the floor cannot be determined because the radius has got too big, and the fix-up step
is still required. So it is a fundamental question as to whether there is a better continued fraction algorithm
which runs indefinitely. In any case, I will assume ball arithmetic for all subsequent algorithms.

3 Two-dimensional algorithms

We now move to two dimensions, where analogous algorithms are not generally known. My aim is to
implement a practical algorithm for computing the sequence of best Diophantine approximations for two
dual problems, given a pair of irrationals (α1,α2).

• Firstly, simultaneous approximation: make the “radius” f ( qα1 , qα2 ) small, where f is some norm
on R2, while not making the “height” q not too big.

• Secondly, minimization of a linear form: that is, make the radius |q+α1 p1+α2 p2| small, while not
making the height f (α1,α2) (measured by some norm f on R2) too big.

For both problems we have a sequence Q of best approximation denominators, analogous to the continued
fraction case. The fundamental problem is:

• Given (α1,α2), can we compute Q (better than simply trying q=1,2,3, . . . )?

• Given (α1,α2) in the form of nested rational intervals, can we compute Q to arbitrary length?

The answer to the first question is yes; an algorithm was given by Clarkson (1997) and proved correct. My
contribution here is an answer to the second question (yes, with one caveat).

However, we still have the practical software-design issues of handling the ball arithmetic (or some-
thing equivalent, such as interval arithmetic). Although there is not space for details here, it turns out that
Clarkson’s algorithm 6.1 can be expressed as a main loop which only handles integer 3-vectors (see below;
all subscripted variables are integer 3-vectors), and a function L which (and only which) handles the real
arithmetic. Inside L (which simply return true or false), some comparison are made, and this is where
ball arithmetic is used. Clarkson groups the radius and height functions (mentioned above) into a 2-tuple
ρh(x)≡(ρ(x),h(x)) (similarly hρ) and defines sorting of such objects lexicographically. L is then defined by
L(x,y,z)=(ρh(x)<ρh(z)∧ρh(y)<ρh(z))∧(hρ(x)<hρ(y))∨¬[ρh(x)<ρh(z)∧ρh(y)<ρh(z)]∧ρh(x)<ρh(y).
Strictly speaking, the sequence Q is not computable, as in some cases of (α1,α2), some of the comparisons
may actually be of equal quantities, in which case the ball arithmetic will enter an infinite loop. Neverthe-
less, in many cases of practical interest, this does not happen and we may now investigate some unsolved
number-theoretic problems with computer experiments, such as whether the values of the linear form in the
example in the plot are bounded below by a strictly positive constant (and if so, how big is that constant?).
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1: procedure Clarkson6.1(b1,b2,b3)
2: if L(b2,b1,b2) then swap(b1,b2)
3: if L(b3,b2,b3) then swap(b3,b2)
4: if L(b2,b1,b2) then swap(b1,b2)
5: while true do
6: if L(b3+b1,b3−b1,b3) then c1=b1 else c1=−b1

7: if L(b3+b2,b3−b2,b3) then c2=b2 else c2=−b2

8: repeat
9: t1=t2=0

10: if L(b3+c2+c1,b3+c2−c1,b3) then d1=c1 else d1=−c1

11: if L(b3−c2+c1,b3−c2−c1,b3) then d2=c1 else d2=−c1

12: while L(b3+c2+t1+d1,b3+c2+t1,b3) do t1+=d1

13: while L(b3−c2+t2+d2,b3−c2+t2,b3) do t2+=d2

14: if L(b3+c2+t1,b3−c2+t2,b3) then c2+=t1 else c2=t2−c2

15: swap(c1,c2)
16: until ¬L(b3+c1,b3+c2,b3)
17: if L(b2+b1,b2−b1,b2) then e1=b1 else e1=−b1

18: if L(b2+e1,b3+c2,b3) and L(b2+e1,b2,b2) then
19: b2+=e1; output(b2) else b3+=c2; output(b3)
20: if L(b3,b2,b3) then swap(b2,b3)
21: if L(b2,b1,b2) then swap(b1,b2)
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Computability of Solutions of Stochastic Differential Equations

Pieter Collins

7 April 2014

Abstract

In this talk, we consider computability of solutions of the stochastic differential equation

dX(t) = f(X(t))dt+ g(X(t)) dW (t) (†)

where f, g : R → R are Lipschitz functions, W is the Wiener process and X is a real-valued
stochastic process.

The main result is that given a fixed initial condition X(0) = x0, the process X is a com-
putable random variable taking values in C([0, T ];R). The proof is a fairly straightforward
effectivisation of classical existence and uniqueness results; see [Fri75, BP06, Eva13]. One first

defines the Itō stochastic integral
∫ T
0 X(t) dW (t) and then solves the integral version of (†). The

main difficulty is is effectivising the limiting procedures involved.
The effectivisation depends crucially on the notion of random variable introduced in [Col12]

based on an idea of [CS09]. The type of measurable random variables on a probability space
(Ω, P ) taking values in a Polish space (E, d) is the effective completion of piecewise-continuous
random variables under the Fan metric

d(X,Y ) = sup
{
ε ∈ Q+ | P

(
{ω ∈ Ω | d(X(ω), Y (ω)) > ε}

)
> ε
}
.

While our approach shows that that sample paths are continuous almost everywhere, it does
not allow for sample paths to be computed as a function of ω ∈ Ω, even though a computable
version of Brownian motion exists [Col12].
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Separating Variants of LEM, LPO, and MP

Matt Hendtlass and Robert Lubarsky

Omniscience principles are commonly used in constructive mathematics. The
best known ones likely are:

I LPO: For any binary sequence α, either α(n) = 0 for all n or there exists
n such that α(n) = 1.

I WLPO: For any binary sequence α, either α(n) = 0 for all n or it is not
the case that α(n) = 0 for all n.

I LLPO: For any binary sequence α with at most one non-zero term, either
α(n) = 0 for all even n or α(n) = 0 for all odd n.

Closely related to those is:

I WKL: Every infinite decidable tree has an infinite branch.

In [11] Richman defined a hierarchy of principles LLPOν (ν ∈ ω + 1, ν > 2)
related to LLPO:

I LLPOν : Let (Pi)i<ν be a decidable partition of ω into blocks of size ω,
and let α be a binary sequence with at most one non-zero term. Then
there exists k < ν such that α(m) = 0 for all m ∈ Pk.

The mother of all omniscience principles is:

I LEM: For any proposition A, either A is true or A is false,

Corresponding to (and implying) WLPO is:

I WLEM: For any proposition A, either ¬A or ¬¬A.

Similar to LLPOn is a hierarchy of weakenings of WLEM:

I WLEMn: ¬∨i,j<n,i6=j Ai ∧Aj −→
∨
i<n ¬Ai.

Another principle commonly considered in constructive reverse mathematics is:

I MP: If not all terms of α are zero, then, for some n, α(n) = 1.

There are two standard weakenings of MP:

1
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I WMP:

∀α [∀β (¬¬∃n (β(n) = 1)∨¬¬∃n (α(n) = 1∧ β(n) = 0))→ ∃n α(n) = 1].

I MP∨: If α has at most one non-zero term and it is impossible for all terms
of α to be zero, then either all even terms or all odd terms are zero.

We shall also consider weakenings of MP∨
n and MP∨

ω of MP∨ corresponding to
and implied by LLPOn and LLPOω.

We show here that all of the implications among these principles that are
not easily seen to be true are in fact not provable over IZF (usually with DC).
Some of these were already known, many were not. In particular, we show:

• LPO does not imply WLEMω.

• WKL does not imply WLPO.

• WLEM does not imply WMP, and WLEMn+1 does not imply MP∨
n .

• Even the weakest principle we consider, MP∨
ω , is not provable.

Our techniques are to provide Kripke models, topological models, and mixes
of the two, as counter-examples. Even in those cases where the independence
result is already known, there is a contrast in the methods, since many of ex-
tant proofs are realizability constructions, and sometimes are over weaker base
theories.
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Computable transition points
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University of Zagreb, Croatia

If f : [0, 1] → R is a computable function such that f(0) < 0 and f(1) > 0,
then there exists a computable number x ∈ [0, 1] such that f(x) = 0.

Let S = R × {0}. Let f : [0, 1] → R be a computable function and let K
be the graph of f , i.e. K = {(x, f(x)) | x ∈ [0, 1]}. Then f has a computable
zero-point if and only K intersects S in a computable point.

Since S and K are computable sets in R2, the question which arises is the
following: under what assumptions the intersection of two computable sets con-
tains a computable point?

There exists a computable function f : [0, 1]→ R which has zero-points, but
none of them is computable. For such a function f we have K ∩ S 6= ∅, but K
does not intersect S in a computable point. Note that in this case K cannot
intersects both of the sets U = {(x, y) ∈ R2 | y < 0} and V = {(x, y) ∈ R2 | y >
0}.

However, if f : [0, 1] → R is computable and f(0) < 0 and f(1) > 0,
then its graph K intersects both U and V . Since the graph of a continuous
function is compact and connected (i.e. a continuum), the question is this: if K
is a computable continuum which intersects U and V , does K intersect S in a
computable point?

It turns out that the answer to this question is negative. However, the graphs
of computable functions [0, 1]→ R are not just any computable continua, they
are computable arcs. So we wonder what can be said in the case when K is a
computable arc such that both U and V contain one of the endpoints of K. On
the other hand, we can generalize the ambient space by taking any computable
metric space (X, d, α) and we can take S to be any subset of X which separates
X into two computably enumerable open sets U and V .

Moreover, we examine spaces more general than arcs, the spaces called chain-
able continua. A metric space (X, d) is said to be continuum chainable from a
to b, a, b ∈ X, if (X, d) is a continuum and for each ε > 0 there exists a finite
sequence of open sets C0, . . . , Cm which cover X, whose diameters are less than
ε, such that a ∈ C0, b ∈ Cm and such that

Ci ∩ Cj = ∅ if |i− j| > 1.

For example, if K is an arc with endpoints a and b, then K is a continuum
chainable from a to b. On the other hand, K = {(0, y) | y ∈ [−1, 1]}∪{(x, sinx) |
0 < x ≤ 1} is a continuum chainable from (0,−1) to (1, sin 1), but K is not an
arc.

1
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Suppose (X, d, α) is a computable metric space. Let U and V be disjoint
and computably enumerable open sets and let K be a computable compact set
in this space. Let S = X \ (U ∪ V ). Suppose K is a continuum chainable from
a to b, where a and b are computable points, a ∈ U , b ∈ V .

We prove the following: if K∩S is totally disconnected, then K∩S contains
a computable point.

This result implies the following: if A is a computable arc with computable
endpoints such that both U and V contain one of the endpoints of A, then A
intersects S in a computable point.
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[4] Zvonko Iljazović. Chainable and Circularly Chainable Co-c.e. Sets in Com-
putable Metric Spaces. Journal of Universal Computer Science, 15(6):1206–
1235, 2009.

[5] Takayuki Kihara. Incomputability of Simply Connected Planar Continua
Computability, 1(2):131–152, 2012.

[6] Joseph S. Miller. Effectiveness for Embedded Spheres and Balls. Electronic
Notes in Theoretical Computer Science, 66:127–138, 2002.

[7] S.B. Nadler. Continuum theory. Marcel Dekker, Inc., New York, 1992.

[8] Marian Pour-El and Ian Richards. Computability in Analysis and Physics.
Springer-Verlag, Berlin-Heielberg-New York, 1989.

[9] Ernst Specker. Der Satz vom Maximum in der rekursiven Analysis. Con-
structivity in Mathematics (A. Heyting, ed.). North Holland Publ. Comp.,
Amsterdam, 254–265, 1959.

[10] Klaus Weihrauch. Computable Analysis Springer, Berlin, 2000.

2

30



Analytic Functions in iRRAM∗

Akitoshi Kawamura1, Florian Steinberg2, Holger Thies1,2
1 The University of Tokyo (JAPAN), 2 TU Darmstadt (GERMANY)

The Type-2 Theory of Effectivity provides a sound framework for investigating the
computability of real numbers, sequences, functions, and operators. It is well known
that an analytic function on a compact domain is computable if and only if its
sequence of Taylor coefficients is computable. However, an algorithm evaluating a
given power series must in addition to said coefficient sequence be provided with ad-
ditional information about its rate of convergence [Mül95]. On simple domains, this
information can be realized by two integer parameters. Moreover, Real Complex-
ity Theory shows that this representation renders the usual operations on analytic
functions uniformly computable within parameterized polynomial time [KMRZ12].
This is in contrast with the situation for smooth functions where maximization has
been shown to correspond to the P vs. NP Millennium Prize Problem [KF82] and
integration to the even stronger FP vs. #P question [Fri84, Ko91]. Theory thus
suggests a mixed real/integer data structure and interface declaration for practical
and efficient implementations of power series in imperative programming. iRRAM

constitutes a free library to build upon, conveniently providing an abstract data
type REAL in C++.

We present such a prototype implementation of power series and analytic func-
tions on a fixed line segment. The data type encodes a germ enriched with integer
information as described above; it supports basic operations like pointwise addi-
tion and multiplication, composition, differentiation and integration. Evaluation is
realized by analytic continuation using iterated evaluation and interpolation. We
proceed to explore the practical performance of our implemented and compare its
empirical behaviour with the theoretical predictions.

Let D denote the closed complex unit disc. The analytic functions on D are
in one to one correspondence with the sequences a = (an)n∈N, whose radius of
convergence is strictly larger than 1 via the assignment

a 7→ fa, where fa(x) =
∑

n∈N
anx

n,

resp.

f 7→
(
f (n)(x)

n!

)

n∈N
.

These assignments can easily be seen to be discontinuous and therefore not com-
putable. Thus consider tuples

(
A, k, (an)n∈N

)
, where A and k are integers such

that

• r := k
√

2 is strictly smaller than the radius of convergence of (an)n∈N

• |an|rn ≤ A for all n ∈ N.

∗Supported in part by JSPS Kakenhi projects 23700009 and 24106002, by 7th EU IRSES
project 294962, by DFG project Zi 1009/4-1, and by DAAD.
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Figure 1: A function f defined on an open superset of a closed rectangle with
marked singularity. We consider a germ around x0.

The evaluation operator
(
A, k, (an)n∈N, x

)
7→ fa(x) becomes computable in time

polynomial in the binary output precision, in log(A), and in k. Moreover, addition,
integration, maximization and many other basic operations on power series can be
shown to be parameterized polynomial time computable if considered as multivalued
operators on such tuples.

The data type BASE ANA realizes the above theoretical considerations as an inter-
face class for iRRAM. There is an constructor, constructing a BASE ANA object from
a given power series together with integers A and k, where the user has to make
sure they fulfill the above relations. The standard operators +, ∗ are overloaded to
also work for these objects and differentiation as well as integration and evaluation
are implemented.

Our implementation of a data type ANA RECT for analytic functions on a line
segment follows the ideas from [KMRZ12] closely. That is, a function f on a line
segment can either be represented by its Taylor sequence around some point x0 on
the line segment and integer parameters A and k such that f (j)(x) ≤ Akjj! for all
x in the line segment, or by an evaluation procedure together with constants B and
l such that f allows an analytic continuation onto an rectangle as indicated in fig. 1
and |f(x)| ≤ B for all x in that rectangle. Implementation of basic operations like
addition, multiplication, differentiation and integration for these objects is straight
forward.

The availability of the additional discrete information makes it possible to switch
back and forth between the two representations. Note, however, that even with A
and k available, the Taylor expansion of f around x0 can not directly be used to
evaluate the function, as the series may diverge due to singularities being close (cmp.
fig. 1). This is where analytic continuation becomes necessary: By evaluating the
power series, we can compute the coefficients of the Taylor series around a different
base point x1 and by iterating this process, we can evaluate in any point on the
line segment. This can also be understood as an instance of ANA RECT alternately
calling different constructors for shifted and scaled BASE ANA objects.
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To compute the Taylor series around some point of the domain when given a
triple (f,B, l) as above, we use the interpolation procedure described in [Mül87]:
Computing the coefficient am := 1

m!f
(m)(x1) can be done by a interpolating f with

a polynomial P and compute the derivatives P (k)(x1). If P is the unique polynomial
interpolating f at j + 1 points for any m ≤ j the error made when computing am
through P can be approximated by

∣∣∣∣am −
1

m!
P (k)(0)

∣∣∣∣ ≤ B
(

1

2l

)j+1−m
4

4j+1

( 1
l )

j+1

.

The interpolation is done by partitioning the domain into equidistant points z0, . . . ,
z2m+1 with distance h and using the Lagrange Interpolation Formula

P (z) =
2m∑

i=0

f(zi)Lm,i(z) with Lm,i =
∏

0≤j≤2m
j 6=i

z − zj
zi − zj

.

It can be shown that

am ≈
2m∑

i=0

f(zi)
h−mlm,i

i!(2m− i)!

for lm,i that can be computed in time polynomial in m. Therefore the same holds
for the right hand side.

As a practical example, we try to continuously extend the square root function
around the boundary of the unit square.
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Parameterized Uniform Complexity in Numerics: from Smooth to Analytic,
from NP-hard to Polytime, arXiv preprint (2012).

[Ko91] Ker-I Ko, Complexity theory of real functions, Progress in Theoretical Com-
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On the Computational Power of
Algorithmically Random Constants
in Blum–Shub–Smale Machines

Akitoshi Kawamura∗ Kentarô Yamamoto†

A Blum–Shub–Smale (BSS) machine over R, which can operate on elements
of R in a unit time, is one of the models for the theory of computation over real
numbers. An interesting problem regarding BSS machines is to determine the
computational power of BSS machines relative to other computational models.

Allender, Bürgisser, Kjeldgaard-Pedersen and Miltersen [1] related BSS ma-
chines with ordinary Turing machines and straight-line programs (SLPs), an
algebraic model of computation perused in algebraic complexity theory. To see
their work in detail, let us introduce a few notations. Let L0 denote the discrete
decision problem of deciding whether a given 0-variate SLP (that uses 0 and
1 as constants) represents a positive number. Also, for a finite set S ⊂ R, let
BP(PS

R) denote the class of discrete decision problems solved by polynomial-
time BSS machines that may use only elements of S as machine constants, i. e.,
the real numbers that the machine may access when performing operations on
R. The union of BP(PS

R) over all finite sets S ⊂ R is denoted BP(PR). It is
easily seen that PL0/poly ⊂ BP(PR); Allender et al. conjectured that, in fact,
PL0/poly = BP(PR).

As a step towards proving the conjecture, they introduced the notion of a
real number α being approximable, which means that either

1. α is algebraic, or

2. α is transcendental and there exists a family of 0-variate SLPs (Γn)n∈ω
such that |Γn| = nO(1) and for every n there is no univariate SLP of
length at most n such that the polynomial represented by it has a real
root between α and the real number represented by Γn.

They showed that PL0/poly ⊃ BP(P{α}
R ) if α ∈ R is approximable, and that

almost every real number is approximable. In addition, they proved that the
values of elementary functions at rationals are approximable.

A natural question to ask next is whether or not there exists a non-
approximable transcendental number of higher complexity, e. g., among non-
∗Department of Computer Science, University of Tokyo
†Research Institute for Mathematical Sciences, Kyoto University
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computable reals. In this light, we investigated the approximability of algorith-
mically random reals, and showed the following.

Theorem. Every Schnorr random real is approximable.

We prove this by effectivizing Allender et al.’s proof that almost every real
number is approximable. Specifically, we construct a c. e. null cover of com-
putable measure that contains all non-approximable reals in [0, 1], by exploiting
the fact that approximating the complex roots of a given polynomial can be
done effectively [3].

In fact, Schönhage’s algorithm [3] approximates the roots efficiently, but our
proof does not exploit this fact. It remains open whether we can strengthen our
claim using notions of resource-bounded randomness. The notion of resource-
bounded randomness based on tests has been introduced by Ko [2], and is
dependent on two parameters: a complexity class that the null cover belongs
to, and an upper bound of the rate at which the amount of information extracted
by a null cover from an initial segment of an infinite sequence grows depending
on its length. We have been unable to generalize our proof to this setting,
because the null cover we constructed does not seem to be even computable,
and the rate of information growth is also unclear.

Acknowledgements. This work is based on part of the bachelor thesis of
the second author at the University of Tokyo. The authors thank the advisor
Hiroshi Imai and his group members for their support and discussions. The
work was supported in part by KAKENHI.
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On the Effectively Gδ-Decomposable Functions

Takayuki Kihara

Japan Advanced Institute of Science and Technology, Japan
kihara.takayuki.logic@gmail.com

Suppose that X and Y are topological spaces, and Γ is a pointclass. A func-
tion f : X → Y is Γ-piecewise continuous if there is a countable Γ-cover {Xn}n∈ω

of X such that f ↾ Xn is continuous for every n ∈ ω. For instance, Dirichlet’s
nowhere continuous function χQ is obviously Π0

2-piecewise continuous, but not
Π0

1-piecewise continuous.
Indeed, Dirichlet’s function is Π0

2-2-wise continuous. Here, a function f :
X → Y is Γ-n-wise continuous if there is a Γ-cover {Xk}k<n of X such that
f ↾ X ′

k is continuous, where X ′
k = Xk \ ∪

j<k Xj , for every k < n. As another

example of a Π0
2-n-wise continuous function, it is known in topological dimension

theory that there is a Π0
2-(n + 1)-wise embedding of Rn into 2ω whereas there

is no Π0
2-n-wise embedding of Rn into 2ω.

The hierarchies of Π0
1-piecewise continuous functions have been extensively

studied in the context of the levels of discontinuity [1, 4, 5, 8], the subhierarchy
of Baire-one-star functions [6, 7, 9], and the mind-change hierarchy [2, 3]. In this
talk, we deal with a proper hierarchy of Π0

2-piecewise continuous functions.
A Γ-piecewise continuous function is controlled by a conditional branching

by a Γ formula. The flowchart of this control process is represented as an infinite
branching tree T of height 2, where the root of T is labeled by a Γ formula,
and each leaf (terminal node) of T is labeled by a partial continuous function.
A flowchart for a nested-piecewise continuous function will be represented as
a well-founded tree T ⊆ ω<ω, where every nonterminal node is labeled by a
formula, and every terminal node is labeled by a continuous function.

P

f0 f1 f2 f3

2

1 1 1 1

Fig. 1. (left) A realization of Π0
2-piecewise continuity via a Π0

2-condition P = ⟨Pi⟩i∈ω and contin-

uous functions ⟨fi⟩i∈ω; (right) The skeleton representing Π0
2-piecewise continuity.

For a well-ordered set (I, <), a sequence ⟨Pi : i ∈ I⟩, Pi ⊆ X, is called a
Γ-layer of Q if Q ⊆ ∪

i∈I Pi, and there is a Γ set R ⊆ I × X such that Pi =

R[i]\∪
j<i R[j], where R[i] is the i-th section of R, i.e., R[i] = {x ∈ X : (i, x) ∈ R}.

Definition 1. A skeleton is a pair S = (S, ν) of a well-founded tree S ⊆ ω<ω

and a function ν : S → ω1. A realization of a skeleton (S, ν) is a collection
consisting of Λ = ⟨Pσ, fρ : σ ∈ S, ρ ∈ Sleaf⟩ such that

(i) ⟨Pσ⌢i : i ∈ succS(σ)⟩ forms a Π0
ν(σ)-layer of Pσ for every σ ∈ S \ Sleaf .
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(ii) fρ is a Σ0
ν(ρ)-measurable function with domain Pρ for every leaf ρ ∈ Sleaf .

The set P⟨⟩ is called the domain of the realization Λ, and written as dom(Λ).
In this talk, we assume that ν(σ) = 1 for every leaf σ of a skeleton.

Note that for every x ∈ dom(Λ), there is a unique leaf TPΛ(x) ∈ Sleaf such
that x ∈ ∩

σ⪯TPΛ(x) Pσ. Such a leaf TPΛ(x) is said to be the true path of Λ at x.

The realization Λ generates a function fΛ : dom(Λ) → Y by fΛ(x) = fTPΛ(x)(x).

Definition 2. Let S = (S, ν) be a skeleton. A function f is said to be S-piecewise
continuous if there is a realization Λ of S such that f = fΛ.

The rank of the skeleton S = (S, ν) is the least ordinal γ < ω1 such that for
every σ ∈ S \ Sleaf , ν(σ) ≤ γ, and #succS(σ) = ∞ implies ν(σ) < γ.

We study the nested-piecewise continuity with respect to a skeleton of rank
2. Clearly, such a continuity is stronger than the Gδ-piecewise continuity. Thus,
by analyzing the property of a such continuity notion, we can understand the
fine structure of the Gδ-piecewise continuous functions.

We show that if skeletons S0 and S1 of rank 2 are sufficiently different, then
S0-piecewise continuity and S1-piecewise continuity are also different. More pre-
cisely, we show that the S0-piecewise notion and the S1-piecewise notion have
very different computational power. To see this, we shall introduce the notion of
piecewise computability.

Definition 3. A skeleton (S, ν) is computable if S is a computable well-founded
tree, and ν : S → ωCK

1 is computable, where ωCK
1 is represented via some com-

putable coding such as Kleene’s system of ordinal notations.

Definition 4. A realization Λ = ⟨Pσ, fρ : σ ∈ S, ρ ∈ Sleaf⟩ of a computable
skeleton (S, ν) is computable if there is a computable function q : S → ω such
that q(σ) is an index of the (lightface) Π0

ν(σ)-layer ⟨Pσi⟩i∈succS(σ) for every non-

terminal node σ ∈ S, and q(ρ) is an index of the effectively Σ0
ν(ρ)-measurable

function fρ for every terminal node ρ ∈ Sleaf .

Recall that ν(ρ) is supposed to be 1 for every terminal node ρ ∈ Sleaf .
Therefore, fρ must be computable.

Definition 5. Let S = (S, ν) be a skeleton. A function f is said to be S-piecewise
computable if there is a computable realization Λ of S such that f = fΛ.

For subsets of topological spaces A ⊆ X × Y and B ⊆ Z × W , a function
f : A → B satisfies the Weihrauch condition if there exists a continuous function
p : X → Z such that every f(p(x), y) is of the form ⟨x,w⟩, that is, f [A[p(x)]] ⊆
B[x] for every x ∈ Z. One of our main theorems can be written as follows:

Theorem 1. Suppose that skeletons S0 and S1 of rank 2 are sufficiently differ-
ent. Then, there are compact (indeed, Π0

1 ) sets P ⊆ Q ⊆ 2ω ×2ω such that there
exists a S0-piecewise computable function f : Q → P satisfying the Weihrauch
condition via p = id (indeed, f ↾ P = id), whereas there is no S1-piecewise
continuous function f : Q → P satisfying the Weihrauch condition.
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In our proof, each skeleton plays a role of priority tree, and the true path
TP(x) in the previous definition plays a role of the true path in the sense of the
usual priority argument, and then the usual infinite injury priority argument
ensures the difference between two different skeleton-continuity/computability
notions.

For instance, consider the following rank 2 skeletons of height 3:

2

1 1

1

2 2 2 2

S2
1,2 = S2

2,1 =

Fig. 2. (left) Sn
1,2 = {⟨⟩, ⟨k⟩, ⟨k, m⟩ : k ∈ ω, m < n}, ν1,2(⟨⟩) = 1, and ν1,2(⟨k⟩) = 2; (right)

Sn
2,1 = {⟨⟩, ⟨m⟩, ⟨m, k⟩ : m < n, k ∈ ω}, ν2,1(⟨⟩) = 2, and ν2,1(⟨m⟩) = 1.

Our theorem clearly includes the following corollary:

Corollary 1 There is a S2
1,2-piecewise computable function which is not Sn

2,1-
piecewise continuous for any n ∈ ω. There is a S2

2,1-piecewise computable func-
tion which is not Sn

1,2-piecewise continuous for any n ∈ ω. ⊓⊔
Indeed, our main theorem implies much more stronger property. For instance:

Corollary 2 Suppose that P is a Π0
1 subset of 2ω having no computable element.

Then, there exists a Π0
1 set Q ⊆ 2ω with Q ⊇ P such that there is a S2

2,1-piecewise
computable function f with Q ⊆ dom(f) and f [Q] ⊆ P , and for any n, there is
no Sn

1,2-piecewise computable function f with Q ⊆ dom(f) and f [Q] ⊆ P . ⊓⊔
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Exact Function Interval Arithmetic

Michal Konečný1 and Jan Duracz2
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We describe a method for implementing exact real arithmetic based on function approximations,
building on ideas from iRRAM [6] and Taylor Models [5].

Exact real computation aims to provide a method for programming with real numbers that agrees
as much as possible with a mathematician’s intuition, minimising the need to consider matters of
internal representation and approximation errors introduced by the limitations of computers. In typed
languages this is facilitated by a real number type that supports common operations such as the
arithmetic field operations (+,−, ·, /), computable versions of equality and dis-equality (=,,) and
order-relations (<,≤, >,≥).

In applications that feature intervals, such as decision procedures for inclusion relations between
interval expressions [2], e. g.

1 − ex2
(

0.3480242
1 + 0.47047x

− 0.0958798
(1 + 0.47047x)2 +

0.7478556
(1 + 0.47047x)3

)
∈ 2√

π

∫ x

0
e−t2

dt ± 0.00005 (1)

one needs exact interval computation supported by a real interval type. Beyond interval extensions
of the arithmetic operations and order relations, the interval type should support also the refinement
relation (v), i. e. inverse inclusion of real intervals.

Exact real or interval computation may be realised in a number of ways. We adopt the approach
where an exact quantity is approximated by a sequence of approximants that converge to the exact
quantity. A real number is approximated by an interval, while an interval is usually approximated
by a pair of intervals, one giving an outer bound and the other giving an inner bound on the exact
interval. The elements of the sequence are computed on demand until an approximation is obtained
that is sufficiently precise to decide a relation or print a sufficient amount of digits. Moreover, the
elements of the sequence are computed one by one, using increasing values of a parameter that
controls the precision of the computation. This approach was first introduced in iRRAM [6] and is
also used in RealLib [4].

Using intervals as approximants has well-known issues, the most significant of which is the depen-
dency problem. The dependency problem occurs when multiple instances of a single number x are
approximated by an interval, say [0, π], and when the information is lost that those instances of the
interval [0, π] all approximate the same number. For example, computing cos2(x) + sin2(x) using
interval operations gives [0, 2], which is much wider—less informative—than the exact result 1.

One way to reduce the dependency error is to split up the intervals that approximate the affected
variables and perform the computation for each segment and then merge all the results. However,
this approach often comes at an exponential cost.

We prefer an alternative approach that is based on parametrised intervals, or function intervals, which
retain some relational information among variables. For example, the expressions sin(x) and cos(x)
can be approximated by a pair of representable functions, such as polynomials, that bound the respec-
tive functions from below and above. Operations such as squaring and addition are applied pointwise
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to these interval functions to obtain an approximation of cos2(x) + sin2(x), which contains the con-
stant function 1. Moreover, by increasing parameters such as the polynomial order, the computation
gives a sequence of function intervals that converges to the constant function 1.

This approach has been used in the form of so-called Taylor Models (TMs) [5], in which a function
interval is represented by a single polynomial with rational coefficients, except the constant coef-
ficient, which is a rational interval that lends its thickness to the function interval. Due to the fact
that TMs have constant width across their domain, they are suitable for approximating exact real
functions but not for approximating exact interval functions.

We use the term exact function interval arithmetic for an arithmetic that can arbitrarily closely ap-
proximate

– function intervals that are given by pairs of continuous functions over rectangular domains;
– a certain set of operations on such function intervals.

We describe the API and the most important internal aspects of our implementation of an exact func-
tion interval arithmetic based on polynomials (available freely from github.org/michalkonecny/
aern). The API operations include integration and evaluation of a range over a sub-box of the do-
main. The operation that we found most difficult to implement was multiplication. This is because it
requires pointwise minimisation and maximisation:

[a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

We approximate min and max using Bernstein approximations. Computing Bernstein approxima-
tions require multiplication, creating a dependency cycle. To break the cycle, for the Bernstein ap-
proximations we use a rough multiplication that works well only for individual polynomials, i. e. for
the bounds of the function intervals.

To illustrate the power and limitations of our implementation of exact function interval arithmetic
we give several application examples. In particular, we show that the arithmetic, embedded in the
theorem prover PolyPaver (freely available from github.com/michalkonecny/polypaver), can
be used to prove inclusions such as equation (1). We also demonstrate a direct implementation of
the interval Picard operator of Edalat & Pattinson [3], enabling one to compute tight enclosures of
ODE IVPs with uncertain bounds. (Another CCA 2014 talk by our wider team gives details of this
version of the interval Picard operator.)

For further information on the arithmetic and its application see the extended abstract [1].
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2. Jan Duracz and Michal Konečný. Polynomial function intervals for floating-point software verification.

Annals of Mathematics and Artificial Intelligence, 70(4):351–398, April 2014.
3. Abbas Edalat and Dirk Pattinson. A domain-theoretic account of Picard’s theorem. LMS Journal of Compu-

tation and Mathematics, 10:83–118, 2007.
4. Branimir Lambov. RealLib: An efficient implementation of exact real arithmetic. Mathematical Structures

in Computer Science, 17(1):81–98, 2007.
5. Kyoko Makino and Martin Berz. New applications of Taylor model methods. In Automatic Differentiation

of Algorithms: From Simulation to Optimization, chapter 43, pages 359–364. Springer, 2002.
6. Norbert Th. Müller. The iRRAM: Exact arithmetic in C++. In Jens Blanck, Vasco Brattka, and Peter

Hertling, editors, CCA, volume 2064 of Lecture Notes in Computer Science, pages 222–252. Springer, 2000.

40



Picard Method for Enclosing ODEs
with Uncertain Initial Values
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We present an algorithm for enclosing solutions of ordinary differential equation (ODE) initial value
problems (IVPs) with uncertain initial values:

y′ = f (y), y(0) ∈ A (1)

where A ∈ In is a vector of intervals, seen as a box-shaped subset of Rn and f : Rn → Rn is a
Lipschitz vector field and a solution y has the type [0, b]→ Rn.

Unlike other methods for enclosing solutions of ODE IVPs with uncertain initial values [3, 2, 4],
our algorithm does not assume that the field is differentiable. Also, as with Edalat and Pattinson’s
method, our algorithm is simple and the proof of its soundness and convergence is closely related to
the usual proof of the Picard-Lindelöf theorem.

If A = a is a singleton interval, the equation has a unique solution, which we denote ya. In this case,
we utilize the interval Picard operator introduced by Edalat and Pattinson [1]:

PF,a : ([0, b]→ In)→ ([0, b]→ In)

PF,a(Y)(t) = a +
∫ t

0 F(Y(s)) ds
(2)

where Y: [0, b] → In is an interval function and F: ([0, b] → In) → ([0, b] → In) is a interval
function extension of the vector field f .

Theorem 1 (Edalat & Pattinson 2007 [1], interval Picard theorem).
If F is a Lipschitz interval extension of the field f in equation (1), PF,a is inclusion isotone and
PF,a(Y0) ⊆ Y0, then

Y0 ⊇ PF,a(Y0) ⊇ P2
F,a(Y0) ⊇ . . . and

⋂∞
i=0

Pi
F,a(Y0) = ya.

We demonstrate on a simple example that this theorem cannot be generalized to uncertain initial
value A by simply replacing a with A. We instead parametrize this operator so that it can be applied
on IVPs without the need to exponentially bisect the space of initial value uncertainty:

PF : (A × [0, b]→ In)→ (A × [0, b]→ In)

PF(Y)(a, t) = a +
∫ t

0 F(Y(a, s)) ds
(3)

Theorem 2 (Interval Picard theorem for flows).
If PF(Y0) ⊆ Y0, then

Y0 ⊇ PF(Y0) ⊇ P2
F(Y0) ⊇ . . . and

⋂∞
i=0

Pi
F(Y0) = yA.

where yA is the flow of the ODE in (1), defined by yA(a, t) = ya(t) for all a ∈ A.
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Switching from PF,A to the parametrized operator PF is beneficial not only for solving IVPs with
uncertain initial value, but also for piece-wise solving IVPs with exact initial value. This is because
the initial value for each new step has a small level of uncertainty resulting from the imprecision of
the enclosures for the preceding time step.

We propose an ODE solving algorithm enclose-flow based on a direct implementation of the para-
metrized interval Picard operator PF. This algorithm relies on function interval arithmetic. A func-
tion interval is a pair of functions of type D→ Rwhere D ⊆ Rn. A function interval can be also seen
as a function of type D → I, which appears in equations (2) and (3). A function interval arithmetic
makes function intervals first-class objects and provides operations such as point-wise addition or
integration, which facilitates computing the operator PF.

We do not discuss the implementation of function interval arithmetic but formulate a set of require-
ments for the arithmetic. These requirements imply the safety of enclose-flow. By extending the
requirements we obtain the concept of exact function interval arithmetic. We prove that with an
exact arithmetic, enclose-flow can produce enclosures that converge to the exact flow yA.

We demonstrate the feasibility of the approach using one of our implementations of function interval
arithmetic. (Available freely from github.org/michalkonecny/aern) In particular, we produce very
tight enclosures for a spring mass system with initial value uncertainty, an ODE featuring an absolute
value, and a version of the Van der Pol system. Moreover, a version of our method, using a different
function interval arithmetic, is included in the Acumen tool and language for modeling and rigorous
simulation of hybrid dynamical systems. (Available freely from www.acumen-language.org)

0 4 8
-1

0

1

Spring mass with uncertain initial speed
-2 0 2

-2

0

2

Van der Pol system

References

1. Abbas Edalat and Dirk Pattinson. A domain-theoretic account of Picard’s theorem. LMS Journal of Compu-
tation and Mathematics, 10:83–118, 2007.

2. Kyoko Makino and Martin Berz. New applications of Taylor model methods. In Automatic Differentiation
of Algorithms: From Simulation to Optimization, chapter 43, pages 359–364. Springer, 2002.

3. Nedialko S. Nedialkov, Kenneth R. Jackson, and George F. Corliss. Validated solutions of initial value
problems for ordinary differential equations. Applied Mathematics and Computation, 105(1):21–68, 1999.

4. Andreas Rauh, Eberhard P. Hofer, and Ekaterina Auer. ValEncIA-IVP: A comparison with other initial
value problem solvers. Scientific Computing, Computer Arithmetic and Validated Numerics, International
Symposium on, 0:36, 2006.

42



Tools for a gentle slope transition
From floating point arithmetic to exact real arithmetic

Valérie Ménissier-Morain∗

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, Pequan Team, F-75005, Paris, France

Floating point arithmetic (FPA) is one century old [19] and is effectively used commonly since 60 years. Exact
real arithmetic (ERA) appears 40 years ago [9] and has been developed essentially since the end of the 80’s [22, 2]
(see [11] for a survey) resulting both of the dissatisfaction about FPA results and the sharp increase of material
computing power that allows computation ambition.

FPA is essentially a fixed precision arithmetic while ERA adapts the precision of each operation to ensure the
desired accuracy of the result. However for a long time, we have had to choose between fast computed, completely
wrong, FPA results on the one hand and accurate ERA results obtained too late to be useful on the other hand.

Alternative to FPA such as interval arithmetic (IA) have been designed by mathematicians since the 50’s and during
the last three decades numerous tools have been designed by computer scientists to reduce the gap between FPA and
ERA with two principle directions: evaluate the inaccuracy of the result and try to produce a more accurate result.

Evaluate the inaccuracy of the result

Analysis of FPA behavior
In the case where it is impossible to change radically arithmetic in a program, it is however possible with only a few
modifications of the code to analyze its behavior as regards to the accuracy of the result.

It is possible to make static analysis, that is to say without execution of the program, with a tool like Fluctuat
developed at CEA List [10, 18] that detects by abstract interpretation which variable and which piece of code is
critical for the accuracy of the result and computes a bound on the error, and it can take assertions into account
like interval of possible values for data measures or properties of the result. Fluctuat is a non-free multi-platform
application to analyze C and Ada95 codes.

As an alternative to this static analysis, there exists a tool for dynamic analysis, Cadna, developed in the Pequan
Team at UPMC, based on the notion of stochastic arithmetic of the CESTAC method [21, 4] to estimate round-off
errors and detect numerical instabilities. The idea is to execute two or three times the same instruction with different
rounding modes (randomly chosen with probability 1/2 for x and x) before next instruction (synchrone evaluation)
to see how to propagate round-off errors; for each instruction the significant result will be the common part of the
different results. Cadna is an open source library for Fortran and C. There is an old version in Ada, a partial version
for BLAS, and now since a few years the SAM version for MPFR multiprecision [12].

Starting from this analysis the programmer is aware of the numerical quality of his result and can try to improve
the conditioning of his program.

A survey on rounding errors analysis is given in [5].

Interval arithmetic
The principle is very simple [16]: use intervals rather than numbers for two reasons: often numerical data are soiled
with measure errors thus considering intervals of values seems very quickly natural in scientific computations (50’s
ans 60’s) and further it has also been used simply to evaluate the importance of round-off errors in floating point
computations.

This leads to two approaches. In the first one, intervals are considered as first class objects and for any function f an
algorithm describes how to produce interval [c, d] such that f(x) ∈ [c, d] for all x ∈ [a, b] (inclusion property) and then
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functional analysis, linear algebra, etc. on this objects are developed. This approach is a branch of pure mathematics
and is essentially not concerned with computations. In the second one, intervals [x, x] represent the result of round-off
errors of floating-point computations to guarantee that the final mathematical result is in the computed interval. This
approach is the minor one but was clearly boosted by IEEE 754 standard.

There is a free C++ interval library in the Boost repository of free peer-reviewed portable C++ libraries [15].

Try to produce a more accurate result

Error-free transformations and compensated arithmetic
The starting point of this approach is the remark that the rounding error of addition and multiplication of two fp
numbers is itself a fp number with rounding to nearest. Furthermore between 1965 and 1975 explicit algorithms have
been designed to compute this error [14, 7, 20]. Algorithms that produce both the fp result and the fp error are called
Error-Free Transformations (EFT).

This has been used to double the precision of computations based on these operations during this decade and
further since 2005 it is used again in a systematic way to obtain by iterative refinement more accurate results for
example for summation, product, dot product, polynomial evaluation, solution of triangular linear system [17, 13].
The idea is to re-inject the rounding error of an operation into the following one or to accumulate rounding errors
to produce a corrective term to add to the result of the fp computation to produce a fp final result as accurate as if
computed in doubled (or more) working precision and rounded to working precision.

Multiprecision
The EFT have also been used since 40 years to implement double-double and quad-double arithmetic in Fortran (Brent
MP [3], Bayley MPFUN and QD [1]). These packages can be classified into two formats of numbers: multiple-digit
format i.e. numbers are represented as a sequence of digits coupled with a single exponent; multiple-component
format, i.e. numbers represented as an unevaluated sum of two (resp. four) IEEE double precision numbers. The
purpose is, as for FPA, to have a fixed precision all along the computation but numbers have larger representations
than fp numbers.

Later multiprecision appeared to allow more powerful and flexible computations. We can cite GMP/MPF since
1996, MPFR [8] since 2000 and its interval version MPFI since 2002 for C language, with interfaces for lots of other
languages. Each number has its own precision and the result is correctly rounded to the precision of the target variable,
in any of the four IEEE-754 rounding modes. If the programmer chooses convenient precision for each variable he
can obtain an accurate result as with an ERA computation. He simply needs to analyze the computation to deduce the
required precision everywhere while ERA computes the result without any precision indication.

Almost ERA with Sollya
Sollya, developed by PEQUAN UPMC team and APICS INRIA team [6], is both an interactive application and a
library for safe C floating-point code development. It is particularly targeted to the automatized implementation
of mathematical floating-point libraries. Sollya uses multi-precision arithmetic (MPFR) and interval arithmetic to
produce tight and safe results with the precision required by the user.

The printed value is either exact or generally a faithful rounding of the exact value at the working precision. If
a faithful rounding cannot sufficiently quickly be computed, a value is printed that was obtained using floating-point
approximations without control on the final accuracy. Whenever something is not exact, a warning is systematically
printed.

Conclusion

These few tools show that there’s nothing to despair: even if it is not possible to use ERA, there exists a variety of
tools to watch over or insure the accuracy of the results with non-ERA packages.
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[6] S. CHEVILLARD, M. JOLDEŞ, AND C. LAUTER. Sollya: An environment for the development of numerical
codes. In Mathematical Software - ICMS 2010 (2010), vol. 6327 of Lecture Notes in Computer Science, Springer,
pp. 28–31.

[7] T. J. DEKKER. A floating point technique for extending the available precision. Numerische Mathematik 18, 3
(1971), 224–242.
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Computing with real numbers has become an all-time topic since the computer
was conceived. Then, after the generalization of computers in research tasks, it
has also become of interest for a wide-range of fields in which computers pro-
vide essential support for the simulation and validation of mathematical models.
Nowadays, there exist a wide range of approaches for exact real and rational num-
ber computing according to computer abstraction levels: computational models
and paradigms[1–3]; general calculation environments (Maple, Mathematica, ...);
software libraries [4, 5], and also a draft about IEEE P754 for microprocessors
[6], to name a few.

This research proposes the library DARIO C++ for exact arithmetic with
decimal rationals in fractional positional notation. It extends previous research
done with a base-2 prototype for evaluating hardware feasibility issues [7].

Three main ideas motivate this research: finiteness (real world interaction
with a computer is merely finite and limited by the features of sensors and actu-
ators as well as memory bounds), coherency (between the computational model
and the software and hardware implementation paradigms so that to guaran-
tee feasibility) and flexibility (implementation tradeoffs in terms of memory and
time versus accuracy according to the requirements of the final application).

Then, the approach is based in three cornerstones: exact rational numbers
(reals can then be defined with nested Dedekind cuts), Type-2 Theory of Effec-
tivity (TTE) and on-line arithmetic operators (left-to-right operation dynamics
for addition, subtraction, multiplication, division and comparison) and a bar-
notation style (flexible operation: exact, fixed length and constrained length).

The following notation defines decimal rational numbers with fixed and pe-
riodic mantissas:

Definition 1. (base-10 bar-notation for rationals) Define the notation
νdm

b,10 :⊆ Σ∗ −→ Q by:

dom
(
νdm

b,10

)
:= {ιw (e) ιw (mf ) ιw (mp) | e ∈ dom (νZ) ,mf ∈ dom (νb,10) ,
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mp ∈ dom (νN ) ∪ {λ} \ {0} , νb,10 (mf ) ∈ ± [0, 9)} ,
νdm

b,10 (uvw) := {q = a/b | a = 10eΔνb,10 (mfmp − mf ) with

e = ιu (u) , mf = ιu (v) , mp = ιu (w) , and b = {9}p {0}f with
f = |mf | and p = |mp|,
and the following restrictions:

1. p > 1.
2. Let mf = v1v2 . . . vf and mp = w1w2 . . . wp, then v1 6= 0 and vf 6= wp.
3. If mp = u(v)∗w, then u 6= v, w.

The restrictions introduced guarantee (1) no redundancy, (2) no superpo-
sition of final digits of fixed and periodic mantissas and (3) minimality of the
periodic mantissa (no smaller sub-mantissas).

Several strategies for preserving a canonical output coherent with the no-
tation proposed have being developed. Firstly, prior length calculation of both
fixed and periodic mantissas can be done. The latter by means of a table with
precalculated data for the periodic mantissa lengths [7, Fig.2]. Secondly, signed
digit representations and on-line operators can provide an output of contiguous
negative and positive digits (or viceversa) which requires an on-the-fly recodifica-
tion so that to preserve the notation. For this purpose, a Canonical Signed-Digit
recoding (CSD) is done for each output digit by means of a automaton (7 states).
It addresses all the possible recodifications preemptively, that is preserving the
previous complementary result in a register. Finally, tracking small submantissas
within the periodic mantissa is done by obtaining digit correspondences from a
table according to the divisors of the length of the periodic mantissa.

The complexity of the implementation matches previous results [7]. In addi-
tion, some preliminary comparisons done with IRRAM C++ outline calculation
times more than 20 times slower.
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2. A. Bauer, M.H. Escardó and A. Simpson: Comparing Functional Paradigms for
Exact Real-Number Computation, Lecture Notes in Computer Science, vol. 2380,
pp. 488–500 (2002)

3. A. Bauer, and I. Kavkler: Implementing Real Numbers with Rz, Electronic Notes
in Theoretical Computer Science, vol. 202, pp. 365–384 (2008)

4. P. Gowland and D. Lester: A Survey of Exact Arithmetic Implementations, Lecture
Notes in Computer Science, vol. 2064, pp. 30–47 (2001)
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LCN–MEASURABLE FUNCTIONS

ALEXEY OSTROVSKY

By theorem of Jayne and Rogers a function f : X → Y between Polish
spaces is ∆2-measurable iff it is piecewise continuous (see [1],[4]).

By computable Jayne and Rogers Theorem we can compute from a name
of a ∆2-measurable function a name for the same function as a piecewise
continuous function [7].

We can use the computable multi-valued function (or relation R ⊂ X×Y )
to check how well we can compute a discontinuous function [8],[2],[3].

However, the generalization of theorem of Jayne and Rogers to multi-
valued functions raises some topological problems for single-valued functions
(see Problem 1 and 2 below).

Recall, that a subset X is LCn-set iff it can be written as a union of n
locally closed in X sets. A set is locally closed if it is an intersection of a
closed and an open set.

A single-valued function is function f : X → Y is called piecewise con-
tinuous iff X is a union of countable many closed sets Xi such that each
restriction f |Xi : Xi → f(Xi) is continuous.

An arbitrary function is LCn–measurable iff the preimage of any open set
is LCn-set.

Obviously, every single-valued LC1–measurable function is ∆0
2-measurable.

The following problem (see [6]) remains open for n = 1, 2, . . .

Problem 1. Let f : X → Y be an LCn-measurable function between arbi-
trary subsets X,Y of the Cantor set C. Is f piecewise continuous?

A single-valued function f is open–A2 iff the multi-valued function f−1

is A2-measurable.

Theorem 1. A continuous open–A2 function f : X → Y between arbitrary
subsets X,Y ⊂ C is piecewise open1.

Since for every closed in Y subset Y1 its complement Y \Y1 is a countable
union of clopen sets, Theorem 1 follows from the following lemma:

Lemma 1. A continuous function f : X → Y between X,Y ⊂ C is open–
A2 iff there is a closed in Y subset Y1 which is homeomorphic to a subspace
of natural numbers N and such that the restriction f |f−1(Y \ Y1) is open.

Key words and phrases. Computable discontinuous, LCn-measurable, openness, effec-
tive openness, multi-valued function, piecewise continuous.

1= there are closed Xi ⊂ X, (i ∈ N) such that each restriction f |Xi : Xi → f(Xi) is
open.

1
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2 ALEXEY OSTROVSKY

Proof. The implication ⇐ is obvious; below, we will prove the inverse
implication ⇒ .

Denote

X1 = X \ f−1({y : f is not open at some point of f−1(y)})
and

X2 = X \ X1

Then f(X2) is a closed in Y subspace homeomorphic to a subset of natural
numbers N.

Indeed suppose the contrary2 then there is an S1(y) ⊂ Y with yk → y ∈ Y
and yk ∈ f(X2).

Take xk ∈ f−1(yk)∩X2. Since xk �∈ X1, we can find an S2(y) ⊃ S1(y) and
open pairwise disjoint neighborhoods O(xk) that do not intersect f−1(y)
and f−1(yk,n).

It is easy to see that the set S2(y) ∩ f(
⋃∞

k=1 O(xk)) = {yk}∞k=1 is not an
A2-set in S2(y). This contradicts the assumption. �

It would be interesting to find the computable version of Theorem 1 and
the answer to the following problem (about effectively open functions see
[9]):

Problem 2. Is every continuous open-LCn function between Polish spaces
piecewise open for n = 2, 3, . . . ?

We direct the reader to Proposition 3.2 in [5] for a more detailed discussion
of this problem in the case of n = 1.
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Computability for Basic Quantum Mechanics

based on the Hilbert Lattice
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Martin Pape ∗

Fachbereich 4 Mathematik, TU Darmstadt
martin.pape@gmx.de

Classically there are two equivalent formulations of quantum mechanics. In
the functional analytic formulation [9], which is useful for computations, ob-
servables are identified with self-adjoint operators. In the logico-algebraic for-
mulation [3,7], which is conceptually appealing, the central object is the Hilbert
lattice, which is identified with {0, 1}-valued observables. The first formulation
has already been studied in the framework of Weihrauch’s Type Two Effectivity
(TTE) [10] in [4, 11], whereas computability for the latter has, so far, not been
considered in the literature.

TTE can be rephrased in terms of constructive analysis inside the func-
tion realizability topos RT(K2) [2, 5] or rather its restriction to effective mor-
phisms, the so called Kleene-Vesley topos KV [8]. The category AdmRep of
admissible representations of spaces and continuous(ly realizable) maps between
them, which forms the backbone of TTE, can be abstractly characterized within
RT(K2). It is equivalent to a (fairly) small full subcategory QCB0 of the cate-
gory of topological spaces and continuous maps, namely the one on T0 quotients
of countably based T0 spaces [1]. Besides being cartesian closed and closed un-
der regular subobjects, i.e. classical subobjects, it also contains all complete
separable metric spaces and, accordingly, is a natural place for the functional
analytic approach to quantum mechanics.

In our account, however, we provide a notion of computability for the logico-
algebraic approach. Due to the closure properties of AdmRep and the fact
that it hosts the Sierpiński space Σ, it also hosts the Hilbert lattice L of closed
subspaces of the Hilbert space H, which appears as a regular subobject of ΣH.
Notice that a closed subspace P of H is represented by the continuous map
p ∈ ΣH with P = p−1(⊥), i.e. somewhat surprisingly ⊥ ∈ Σ plays the role of
“true”. As a consequence the natural order induced by Σ on L is opposite to
subset inclusion as considered usually.

Let I be the unit interval [0, 1] with the lower topology. In AdmRep we
will identify the space St of quantum states as the regular, subobject of IL

∗joint work with Thomas Streicher
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consisting of those s which validate the conditions

(S1) s(0) = 0 and s(H) = 1

(S2) s(P ∨Q) = s(P ) + s(Q) whenever P ⊥ Q, i.e. ∀x ∈ P.∀y ∈ Q.〈x|y〉 = 0

since s is continuous and thus preserves infima of decreasing ω-chains.
By the spectral theorem for self-adjoint operators on H, quantum observ-

ables correspond to projection valued measures on R, i.e. certain maps from the
set B(R) of Borel subsets of R to L. But since B(R) does not live in AdmRep
we have to restrict to a generating subcollection. It turns out that the object
C(R) of closed subsets of R is a good choice for this purpose since observables
can be characterized as those o ∈ LC(R) which validate the conditions

(O1) o commutes with finite meets and joins

(O2) o(A) ⊥ o(B) whenever A ∩B = ∅

since o is continuous and thus preserves infima of decreasing ω-chains.
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[7] P. Pták and S. Pulmannová. Orthomodular structures as quantum logics. Fundamental
theories of physics. Kluwer Academic Publishers, 1991.

[8] J. Van Oosten. Realizability: An Introduction to Its Categorical Side. Studies in Logic
and the Foundations of Mathematics. Elsevier, 2008.

[9] J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer Verlag,
Berlin, Germany, 1932.

[10] K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

[11] K. Weihrauch and N. Zhong. Computing Schrödinger propagators on type-2 Turing
machines. Journal of Complexity, 22, 2006.

51



A survey on the strength of Ramsey’s Theorem

Tahina Rakotoniaina

Department of Mathematics and Applied Mathematics

University of Cape Town, South Africa

and

Faculty of Computer Science

Universität der Bundeswehr München, Germany

fenoira@gmail.com

April 5, 2014

We study the computational content of Ramsey’s Theorem with respect to
Weihrauch reducibility. The jump operator (i.e. the limit map) is one of the
main tools to test the strength of a theorem. For any positive number n, the n-th
jump operator (i.e. the composition of n limit maps) is Σ0

n+1-effectively measur-
able in the Borel hierarchy and complete with respect to Weihrauch reducibility.
In many cases, one can find nice characterizations of the parallelization of a the-
orem, which combines countably many copies of the respective statement. One
of the main results is the following: The l-th jump of Weak Kőnig’s Lemma is
equivalent to the parallelization of Ramsey’s Theorem of size l and k colors, for
any given positive number l and k. It follows from this result that increasing
the number of colors is not powerful enough to climb to the next level of the
Borel hierarchy unlike the case of increasing the size. This main result could be
proved by showing inductively that Ramsey’s Theorem of size l+1 and k colors
(RTl+1,k) can be computed by the jump of Weak Kőnig’s Lemma composed
with RTl,k.

Given Ramsey’s Theorem of size l and k colors, we consider its jump (RT′
l,k),

its parallelization (R̂Tl,k) and itself of size increased by one (RTl+1,k) and com-
pare their strength with each other. One of the main techniques in this study is
to consider suitable uniform versions of Ramsey’s Theorem. Examples are, the
Stable Ramsey Theorem in which only stable colorings are allowed and the Col-
ored Ramsey Theorem in which one has an information about the color of each
infinite homogeneous set. It can be shown that the jump of the Colored Ramsey
Theorem of size l and k color is equivalent to the Stable Ramsey Theorem of
size l + 1 and k color. Ramsey’s Theorem of size one (RT1,k) is equivalent to
the Bolzano Weierstraß Theorem (BWTk). However, one can show that even
the product of the limit map and the jump of RT1,k cannot compute the jump
of BWTk. To mention more on separation results: one can easily separate two
Ramsey’s Theorems of different sizes unlike the case of two Ramsey’s Theorems
of different colors.

The summary of the results is given by the following picture:
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We continue the investigation of the Weihrauch degrees of operations mapping games to their
equilibria started in [10]. There, finding pure and mixed Nash equilibria in two-player games
with finitely many actions in strategic form were classified. In the present work, we consider
infinite sequential games played by any countable number of players. The best-known example
of such games are Gale-Stewart games [4], which are two-player win/loose games. As such, Borel
determinacy [8] in principle falls into the scope of this research, although we will be concerned
only with determinacy for much smaller pointclasses.

One motivation for this line of inquiry is the general stance that solution concepts in game
theory can only be convincing if the players are capable of (at least jointly) computing them
taken e.g. in [11]. Even if we allow for some degree of hypercomputation, or are, e.g., willing to
tacitly replace actually attaining a solution concept by some process (slowly) converging to it,
we still have to reject solution concepts with too high a Weihrauch degree.

The results for determinacy of specific pointclasses that we provide are a refinement of results
obtained in reverse mathematics by Nemoto, MedSalem and Tanaka [9]; the first is also a
uniformization of a result by Cenzer and Remmel [2]. For some represented pointclass Γ, let
NEΓ : Γ ⇒ {0, 1}N be the map taking a Γ-subset A of Cantor space to a (suitably encoded) Nash
equilibrium in the sequential two-player game with alternating moves where the first player wins
if the induced play is in A, and the second player wins otherwise. Let A be the closed subsets
of Cantor space, and D := {U \ U ′ | U,U ′ ∈ A}. Our results are:

Theorem 1. NEA ≡W C{0,1}N and NED ≡W C{0,1}N ? lim.

We have two remarks. One, by combining the preceding theorem with the main result of
[1], we find that NED is equivalent to the Bolzano-Weierstrass-Theorem. This may be a bit
unexpected in particular seeing that C{0,1}N ? lim is not (yet) known to contain a plethora of
mathematical theorems (unlike, e.g., C{0,1}N). Two, we already need to use a limit operator
in order to move up one level of the difference hierarchy – rather than being able to move
up one level in the Borel hierarchy as one may have expected naively. Thus, this observation
may complement Harvey Friedman’s famous result [3] that proving Borel determinacy requires
repeated use of the axiom of replacement.

Another group of results is based on inspecting the various results extending Borel determi-
nacy to more general classes of games (and solution concepts) in [5, 6, 7]. If we instantiate these
generic results with specific determinacy version as above, we can prove for some of them that
they are actually optimal w.r.t. Weihrauch reducibility. We shall state two such classifications
explicitly.
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2 Weihrauch degrees of finding equilibria

Consider two-player sequential games with finitely many outcomes, where each player has
some acyclic preference relation over the outcomes. For any upper set of outcomes w.r.t. some
player’s preference let the corresponding set of plays be open or closed. Let NEfo

O∪A be the
operation taking such a game (suitably encoded) and producing a Nash equilibrium. Then:

Theorem 2. NEfo
O∪A ≡W C{0,1}N × LPO∗

Next, we restrict the aforementioned class of games to abstract zerosum games, that is,
games where the preferences of one player are the inverse of the preferences of the other player.
Those games will have subgame-perfect equilibria, and we let SPEabsz

O∪A be the operation mapping
such games to a subgame-perfect equilibrium.

Theorem 3. SPEabsz
O∪A ≡W lim

Various further classifications can be obtained, and adhere to the scheme that algebraic
combinations of very common Weihrauch degrees appear, which is already exhibited by our
examples above.
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Qcb-spaces [6] play an important role in Computable Analysis. They form the class
of sequential spaces which can be appropriately handled by Weihrauch’s Type Two
Model of Effectivity (TTE) [7]. The category QCB0 of qcb-spaces satisfying the T0-
property and continuous functions has excellent closure properties [1, 3]: It is cartesian
closed and has countable limits and countable co-limits.

We will characterise some subclasses of qcb-spaces defined by being the smallest full
subcategory of QCB0 containing certain spaces and having certain closure properties.
This investigation is motivated by a recent observation by M. de Brecht who showed that
any full subcategory of QCB0 that contains the Sierpiński space S and is closed under
forming function spaces, countable limits, and countable co-limits in QCB0 contains a
homeomorphic copy of any hyperprojective qcb-space.

Hyperprojective qcb-spaces

Qcb-spaces can be classified using methods of Descriptive Set Theory [2] as follows.
Given a family Γ of subsets of the Baire space NN, a qcb-spaceX is called Γ-representable
[5], if X has an admissible representation δ such that the set

EQ(δ) :=
{
〈p, q〉

∣∣ p, q ∈ dom(δ) ∧ δ(p) = δ(q)
}

is in Γ. Families Γ of interest are the family P of projective subsets of NN and the
family HP of countably hyperprojective subsets. The latter is the smallest family
that contains all opens subsets of NN and is closed under complement, projection and
countable union. Qcb-spaces that are HP-representable (or P-representable) are called
hyperprojective (resp. projective). From [5] we know:

Theorem 1 ([5]) The category QCB0(HP) of hyperprojective qcb-spaces is the small-
est (up to homeomorphic equivalence) full subcategory C of QCB0 that contains the
Sierpiński space S and is closed under forming function spaces, countable limits, and
countable co-limits in QCB0.

Remember that a category C has countable limits iff one can form countable products
and equalisers in C. Similarly, C has countable co-limits iff one can form countable sums
and co-equalisers in C. Forming equalisers in QCB0 amounts to forming subspaces and
forming co-equalisers in QCB0 amounts to forming T0-quotient spaces [3]. In certain
subcategories C of QCB0 this is not the case anymore, as we will see later.

∗email: schroem4@univie.ac.at
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Results

First we improve Theorem 1 by observing that we only need closure under forming
function spaces, countable products and T0-quotients to get every hyperprojective qcb-
space.

Theorem 2 The category QCB0(HP) of hyperprojective qcb-spaces is the smallest (up
to homeomorphic equivalence) full subcategory C of QCB0 that contains S and is closed
under forming function spaces, countable products, and co-equalisers in QCB0.

If N is an object of a full cartesian closed subcategory C of QCB0, then function
spaces and products in C can be shown to be constructed as in QCB0. Hence:

Proposition 3 The category QCB0(HP) of hyperprojective qcb-spaces is the smallest
(up to homeomorphic equivalence) full countably cartesian closed subcategory C of QCB0

that contains S and N and inherits co-equalisers from QCB0.

By a countably cartesian closed category we mean a category that has countable
products and function spaces with the usual properties.

If we replace inheritance of co-equalisers by existence, then we can only construct
replete spaces. A qcb0-space X is replete, if for every qcb0-space Y such that SY is
homeomorphic to SX there is some continuous injection j : Y → X such that Sj : SX →
SY is a homeomorphism. Any sober and thus any Hausdorff qcb-space is replete.

Theorem 4 The smallest (up to homeomorphic equivalence) full cartesian closed C
of QCB0 that contains S and N and has countable products and co-equalisers is the
category of replete hyperprojective qcb-spaces.

If we drop the Sierpiński space S, we obtain all quasi-zero-dimensional hyperprojec-
tive spaces. A quasi-zero-dimensional qcb-space [4] is a qcb-space that arizes as the
sequentialisation of some zero-dimensional space. Analogously, a quasi-normal qcb-
space is a qcb-space that arizes as the sequentialisation of some normal space. Any
quasi-zero-dimensional space is quasi-normal, and any quasi-normal space is Hausdorff.

Proposition 5 The smallest (up to homeomorphic equivalence) full cartesian closed
subcategory C of QCB0 that contains N and has countable products and co-equalisers is
the category QZ(HP) of quasi-zero-dimensional hyperprojective qcb-spaces.

Surprisingly, one can replace existence of co-equalisers by existence of equalisers.
Remember that a category is countably complete iff it has countable products and
equalisers iff it has all countable limits.

Theorem 6 The smallest (up to homeomorphic equivalence) full cartesian closed and
countably complete subcategory C of QCB0 containing N is the category QZ(HP) of
quasi-zero-dimensional hyperprojective qcb-spaces.

Theorem 6 and Proposition 5 hold analogously for quasi-normal hyperprojective
spaces: one only has to add the condition on C that C contains the Euclidean space R.
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Theorem 7 The category QN(HP) of quasi-normal hyperprojective qcb-spaces is equal
to:

(1) the smallest (up to homeomorphic equivalence) full cartesian closed subcategory
C of QCB0 that contains N and R and has countable products and co-equalisers;

(2) the smallest (up to homeomorphic equivalence) full cartesian closed and countably
complete subcategory D of QCB0 that contains N and R.

Similar results can be obtained for projective qcb-spaces by considering only finite
products rather than countable products.
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Abstract

Due to respectable power of computers nowadays, molecular dynamics simu-
lation is meanwhile state-of-the-art practice in academic and industrial research
[1]. The simulations are ranging from liquids, electrolytes to proteins and DNA.
Standard molecular dynamics simulation techniques are based on classical New-
tonian mechanics, with corrections in the potentials accounting for quantum
mechanical effects. From a numerical analysis point of view, the method consists
in integrating a system of ordinary differential equations with a more or less huge
amount of degrees of freedom. The complexity of some classes of systems to sim-
ulate, e.g. proteins, lead to the development of simulation software packages.
This situation in turn raises the question of validation [6]. Two aspects of vali-
dating molecular dynamics simulations are illuminated here. The first concerns
the validity of numerical integration schemes. The second concerns statistical
effects, since simulation runs are of finite length.

Molecular dynamics integration schemes are based on Newton’s second law:

~F = m · ~a.

Typically, an integration scheme is obtained by discretizing the above equation.
A widespread algorithm in use is the Verlet method. Despite the fact that the
Verlet method only approximates the true solution of the ODE, is has some
pleasant properties inherited from the original equations of motion. Actually
the Verlet method is a discrete dynamical system in its own right. The pleasant
property is that the system is symplectic [2].

The present work is concerned with two aspects of validation. The first aspect
deals with the problem that the equations of motion in molecular dynamics sim-
ulations, and consequently also in the obtained discrete dynamical systems, are
typically chaotic. As already examined in the one dimensional case [5], chaotic
behavior leads, when iterating the (discrete) equations of motion, asymptoti-
cally to a constant loss of significant bits per iteration step in the state space
variables. Thus, using standard IEEE-754 floating-point arithmetic for iteration,
as typically is done, rounding errors overwhelm the dynamics even after short
iteration times. The obvious question which arises here is “What makes molec-
ular dynamics work?” in practice [4]. Some researches speculate that shadowing

60



justifies the methods in use. In this work, discrete dynamical systems are iter-
ated using exact real arithmetic software: the iRRAM package [3]. This allows
one to compute true orbits and compare them with pseudo orbits obtained from
standard techniques. So, the iRRAM acts, in some sense, as at tool for vali-
dating molecular dynamics simulation methods. The second aspect concerns the
statistics of simulation results. Typically, in a molecular dynamics simulation,
time averages of the quantities of interest are computed. However, simulation
runs are only of finite length and the question arises whether the system reached
equilibrium so that the computed quantities are reliable. The present work com-
pares true orbits with pseudo orbits with respect to equilibration and quality of
statistics.

The results show that there are indeed differences in the statistics of certain
quantities in comparison of true orbits to pseudo orbits. The approach presented
here may enable researchers to promote the process of molecular dynamics sim-
ulation validation. However, the results seem to be complex and further investi-
gations are needed.
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Abstract

A dyadic subbase S of a topological space X is a subbase which is
composed of a countable collection of pairs of open subsets which are
exteriors of each other. If a dyadic subbase S is proper, then we can
construct a dcpo DS where X is embedded. However, whether the dcpo
DS is consistently complete or not depends not only on S itself but also
on the ordering of S. We give a characterization of S which induces the
consistent completeness of DS regardless of its ordering.

1 Proper dyadic subbases

Throughout this section, X = (X,O) is a second-countable Hausdorff space.
Let N be the set of non-negative integers.

Definition 1.1. A dyadic subbase of X is a map S : N× {0, 1} → O such that

{S(n, a) | n ∈ N, a ∈ {0, 1}} is a subbase of X, (1)

S(n, 0) and S(n, 1) are the exteriors of each other, for all n ∈ N. (2)

We set T := {0, 1,⊥} where ⊥ is called the bottom character meaning un-
definedness. Let TN denote the set of maps from N to T. We call an ele-
ment σ ∈ TN a bottomed sequence. For a bottomed sequence σ ∈ TN, we set
dom(σ) := {n ∈ N | σ(n) 6= ⊥}. If dom(σ) is a finite set, then we call it a finite
bottomed sequence. The set of finite bottomed sequences is denoted by T∗.

Definition 1.2. A dyadic subbase S of X is called proper if it satisfies
⋂

k∈dom(σ)

clS(k, σ(k)) = cl
⋂

k∈dom(σ)

S(k, σ(k)) for all σ ∈ T∗,

where clA denotes the closure of A ⊆ X.
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Let S be a proper dyadic subbase of X. We consider a partial order ⊥ v
0,⊥ v 1, and a T0-topology {∅, {0}, {1}, {0, 1},T} on T. We equip TN with
the product order and the product topology. We have a topological embedding
ϕS : X → TN defined as

ϕS(x)(n) :=





0 (x ∈ S(n, 0))
1 (x ∈ S(n, 1))
⊥ (otherwise)

for x ∈ X,n ∈ N. (3)

We set

KS :=
{
ϕS(x)|n

∣∣ x ∈ X, n ∈ N
}
, (4)

DS := {σ ∈ TN | (∀n ∈ N)(σ|n ∈ KS)}, (5)

where σ|n denotes the bottomed sequence with dom(σ|n) ⊆ {k ∈ N | k < n}
and σ|n(k) = σ(k) for k < n. The set DS is an algebraic pointed dcpo which is
the ideal completion of KS . The dcpo DS is not a Scott domain in general, i.e.,
DS may not be consistently complete. Moreover, even if DS is a Scott domain,
changing the order of some pairs in S might cause DS not to be consistently
complete.

Let S(n, ∂) be the common boundary of S(n, 0) and S(n, 1). Similarly to
T∗, {0, 1, ∂,⊥}∗ denotes the set of maps σ ∈ {0, 1, ∂,⊥}N such that dom(σ) :=
{n ∈ N | σ(n) 6= ⊥} is finite.

Definition 1.3. We say that a dyadic subbase S is strongly proper if it satisfies

cl
⋂

k∈dom(σ)

S(k, σ(k)) =
⋂

k∈dom(σ)

clS(k, σ(k)) for all σ ∈ {0, 1, ∂,⊥}∗.

We show that DS is a Scott domain regardless of the ordering of S, if and
only if S is strongly proper.

Theorem 1.4. Let S be a proper dyadic subbase of a Hausdorff space X. The
following are equivalent.

1. S is strongly proper.

2. For every permutation π : N → N, DSπ is a Scott domain, where Sπ
is another dyadic subbase given by Sπ(n, a) := S(π(n), a) (n ∈ N, a ∈
{0, 1}).

References

[1] Tsuiki, H., Tsukamoto, Y., Domain representations induced by dyadic sub-
bases, LMCS to apper, available at arXiv:1401.1393v1, 2014.

2

63



Same for Bishop, different for Weihrauch
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The Weihrauch lattice is a degree structure whose underlying reducibility
requires uniform computability [2]. It had been investigated under purely com-
putable analytic motivations; however, it has recently be claimed that there
should be a close relationship between constructive reverse mathematics [6] and
the classification of Weihrauch degrees.

Such relationship was originally suggested by G. Gherardi and A. Marcone in
their paper [5]. They referred only to Friedman-Simpson’s reverse mathematics, a
different version of reverse mathematics from constructive reverse mathematics,
however they provide fundamental observations on the connection to a logical
approach. Afterwards V. Brattka and G. Gherardi started their synthetic project
of classifying non-constructive principles in the Weihrauch lattice [2]; the project
will be referred as BGM-program here. Nice analogies have been found between
results of constructive reverse mathematics and those of BGM-program [3], [4].

This research aims to clarify the formal relationship between constructive
reverse mathematics and BGM-program. To explain our thesis concisely suppose
the following two fictional persons; one admits all derivations; the other one
admits only those derivations which provide witnesses. Let us refer to the former
one as Bishop and to the latter one as Weihrauch. Our thesis is that the formal
relationship can be captured by the relationship between Bishop and Weihrauch.

Our main result is a sound interpretation from (a fragment of) a version
of constructive theory, an extension of Heyting arithmetic, into the Weihrauch
lattice. Using the interpretation, for example, we can find an alternative proof
of the separation between LLPO (Σ0

1 De Morgan’s law) and (W)LPO ((weak)
Σ0

1 law of excluded middle) over Heyting arithmetic which was originally shown
in [1]. In particular, it is obtained as a consequence of a separation result in the
Weihrauch lattice.

The main result is shown by a combination of two theories concerning the
syntactic and semantic aspects, respectively. Let us explain how the two theories
are related to our thesis.

As the results on syntactic aspects are concerned, we provide a version of
witness extraction. A typical example of witness extraction is given by existence
property of intuitionistic logic i.e. the property that we find a term t which makes
the formula ψ[t/x] derivable with empty assumption whenever the formula ∃x.ψ
is derivable with empty assumption. On the other hand our witness extraction
works, dually, when a formula is derivable assuming a formula of the form ∀x.ψ.
In our case it is impossible to extract exactly one witness in general but a relaxed
formulation can still be considered. We propose such a relaxed formulation of
witness extraction and prove it using the Cut-Elimination Theorem [8].
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Unfortunately our witness extraction needs several technical conditions on
figures of sequents which are quite heavy in practice. To extend the scope of appli-
cation, we consider transformations of sequents which do not change derivability,
however which make our witness extraction succeed. In other words we try to
define a transformation so that a given sequent and the resulting transformed
sequent are the same for Bishop but different for Weihrauch, and furthermore,
they agree on the derivability of the resulting transformed sequent. This strategy
works certainly and it will be used for the main result.

As the results on semantic aspects are concerned, we introduce an operator
which generates a degree structure, called an abstract Weihrauch degree struc-
ture, for a given fibration. Fibrations are fundamental structures from categorical
logic which are frequently used to define semantics for various type theories [7].
If the given fibration is under a technical assumption, the generated abstract
Weihrauch degree structure forms a bounded distributive lattice; in such a case
we call it an abstract Weihrauch lattice. In particular, the Weihrauch lattice is
embeddable into a suitable instance of abstract Weihrauch lattices.

There is a well-known semantics of SIL (Simply typed Intuitionistic Logic)
given by first order fibration [7]. The semantics can be regarded as a sophisticated
abstraction of Kleene’s realizability interpretation. We utilize its soundness and
abstract Weihrauch lattices for the main result. In particular they are used
to show that witnesses of derivability corresponds to witnesses of Weihrauch
reducibility. The syntactic theory and the semantic theory meet at this point.
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