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Abstract

In this paper, we present an overview of probabilistic techniques based on randomized algorithms for
solving “hard” problems arising in performance verification and control of complex systems. This area is
fairly recent, even though its roots lie in the robustness techniques for handling uncertain control systems
developed in the 1980s. In contrast to these deterministic techniques, the main ingredient of the methods
discussed in this survey is the use of probabilistic concepts. The introduction of probability and random
sampling permits overcoming the fundamental tradeoff between numerical complexity and conservatism
that lie at the roots of the worst-case deterministic methodology. The simplicity of implementation of
randomized techniques may also help bridging the gap between theory and practical applications.
© 2007 Elsevier Inc. All rights reserved.
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1. Preliminaries and motivations

Information-based complexity (IBC) is a general theory, developed within computer science,
that studies the complexity of approximately solving problems in the presence of partial and/or
contaminated information, see [54,55] and references therein. Typical applications of IBC are
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distributed computation, clock synchronization, solution of nonlinear equations and integration
problems. Other applications of IBC include system identification, time series analysis and control
of uncertain systems. Earlier contributions developing optimal algorithms for control-oriented
robust identification in the presence of noisy data within the general setting of IBC are [36,49,24].
While [36,49] studied optimal algorithms for parametric identification and filtering in the presence
of noisy data, [24] focused on nonparametric H∞ identification. These papers, however, followed
a deterministic approach. Other noticeable contributions not directly related to IBC but still linking
optimality and complexity include [64].

IBC originally focused on the worst-case setting, see [56], but later expanded to other settings:
average-case, probabilistic and asymptotic. In each setting, the task is to develop optimal algo-
rithms and to compute the associated errors and computational complexity. It is interesting to
observe that a similar path has been followed within the area of robust control. The first main
contributions dealt with a worst-case approach, see [65] for the pioneering work of H∞ control,
but more recently several authors have discussed different settings for handling complex uncertain
system. In particular, in this paper we survey the probabilistic, or randomized, approach to control
design, see [52].

Many pessimistic results on the complexity-theoretic barriers to (deterministic) robustness
problems [6,37,43] have stimulated research in the direction of finding “ways around’’ these
limits; see also [57] for discussions regarding the “curse of dimensionality’’ within computer
science and related areas. One option is, for instance, to first shift the meaning of robustness
from its usual deterministic sense to a probabilistic one. In this respect, we would claim that a
certain property of a control system is “almost’’ robustly satisfied, if it holds for “most’’ of the
instances of the uncertainty. In other words, we accept the risk of this property being violated by
a set of uncertainties having small probability measure. Such systems may be viewed as being
practically robust from an engineering point of view. This shift in meaning implies a statistical
description of the uncertainty, which is deemed more natural and engineeringly sound than a
purely unknown-but-bounded one. Hence, one of the advantages of the probabilistic approach is
to provide a rethinking of the relation between the stochastic and the robust paradigms, utilizing
classical worst-case bounds of robust control together with probabilistic information, which is
often neglected in the deterministic context. The interplay of probability and robustness also leads
to innovative concepts such as the probabilistic robustness margin and the probability degradation
function, see, for instance, [9,14].

However, it should be noticed that moving from deterministic to probabilistic robustness does
not automatically imply a simplification of the problem. Indeed, assessing probabilistic robustness
of a given property may be even computationally harder than establishing robustness in the usual
deterministic sense, since it requires the exact computation of a multi-dimensional probability
integral [17]. It is at this point that randomization comes into play: the performance probability
is estimated by randomly sampling the uncertainties, and tail inequalities are used to bound the
estimation error. Since the estimated probability is itself a random quantity, this method always
entails a certain risk of failure, i.e. there exists a nonzero probability of making an erroneous
estimation. These algorithms, usually called randomized algorithms (RAs), often have low com-
plexity and are associated to robustness bounds which are less conservative than the classical
ones, obviously at the expense of a probabilistic risk.

Randomization can also be effectively used for control synthesis. Basically, three different
methodologies are being developed for this purpose: the approach based on the Vapnik–
Chervonenkis theory of learning [30,60–63], the scenario approach of [8], and the sequential
approximation methods based on gradient iterations [15,21,22,26,27,33,40,45,58] or ellipsoid
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iterations [28]. These latter algorithms fall in the general family of stochastic optimization
programs [31].

From the historical point of view, probabilistic methods for robustness made some early ap-
pearance in the eighties, but at that time they did not receive adequate attention in the systems
and control literature. In particular, the notion of “probability of instability,’’ which is crucial for
stochastic robustness, was first introduced in the context of flight control in 1980 by Stengel [46]
and then revisited in his book on stochastic optimal control in 1986 [47]. In 1989, the paper [20] by
Djavdan et al. titled “Probabilistic robust controller design’’ was published. This is presumably
the first paper with a title containing both words “probabilistic’’ and “robust.’’ Subsequently,
Stengel and coauthors continued the line of research on stochastic robustness exploring various
techniques, mainly based on Monte Carlo, for the computation of the probability of instability
and with specific attention to flight dynamics applications in aerospace engineering. However,
the absence of newly developed mathematical tools limited these attempts to merge probability
and robustness to analysis problems.

A few years later, in 1996 the papers [29,50] (developed independently by Khargonekar and
Tikku and by Tempo et al.) proposed an approach based on explicit sample size bounds, thus
refuelling enthusiasm on randomized techniques. Subsequently, the study of statistical learning
theory and its application to robust control conducted by Vidyasagar [60–62] provided additional
impetus and also exposed researchers of robust control to a different viewpoint based on solid
mathematical foundations. This formulation led to the development of RAs for control system
design.

RAs and probabilistic methods are now becoming an increasingly popular tool within the robust
control community. For a comprehensive treatment of these topics the reader is referred to the
recently published books [12,52]. A different perspective is given in [53] where the class of Las
Vegas RAs is introduced and studied. Interesting results regarding RAs for system identification
and model validation are given in [7,48]. Mixed methods, which successfully combine determin-
istic and probabilistic techniques, are analyzed in [18,23] for solving the so-called one-in-a-box
problem and for computing a fixed order stabilizer. Finally, specific applications of RAs for con-
trol systems include unmanned aerial vehicles (UAV) platform stabilization [34], robustness of
high-speed networks [2] and synthesis of real-time embedded controllers [42].

2. RAs for robustness analysis

In our exposition, we denote by RA any algorithm that makes some random choices in the
course of its execution. The outcome of such a decision process is hence a random variable, and
the quality of this outcome is to be assessed via a probabilistic statement.

Specifically, an RA for probabilistic robustness analysis is an algorithm that, based on random
extractions of uncertainty samples, returns an estimated probability of satisfaction of an analysis
condition. The estimate provided by the RA is within an a priori specified accuracy � ∈ (0, 1)

from the true value, with high confidence 1 − �, � ∈ (0, 1). That is, the algorithm may indeed fail
to return an approximately correct estimate, but with probability at most �.

Formally, let � ∈ D represent the random uncertainty acting on the system, where D is the
support of the random variable � (for instance, D can be the space of �-dimensional real vectors, or
the space of block-structured matrices with a norm bound), and denote with f�(�) the probability
density function (pdf) of �. Let further J (�) : D → R be a performance function for the
uncertain system, i.e. a function measuring the performance of the system for a given value of �.
For instance, J (�) can be the H2 or the H∞ norm of the system.
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First, we specify the characteristics that an RA for probabilistic performance verification should
comply with.

Definition 1 (RA for probabilistic performance verification). Let � ∈ (0, 1), � ∈ (0, 1) be prob-
ability levels. Given a performance level �, the RA should return with probability 1−� an estimate
p̂N of the probability of performance

p = Pr {J (�)��}
that is within � accuracy from p. The estimate p̂N should be constructed based on a finite number
N of random samples of �.

Notice that a simple RA for performance verification is directly constructed by means of the
classical Monte Carlo method as follows.

Algorithm 1. Given �, �, �, the following RA returns with probability 1−� an estimate p̂N

such that

|p − p̂N |�� (1)

1. Determine a suitable sample size N = Nch(�, �) according to (3);
2. Draw N �N independent samples �(1), . . . ,�(N) distributed according to f�(�);
3. Return the empirical probability

p̂N = 1

N

N∑
i=1

I[J (�(i))��]

where I[·] = 1 when its argument is true, and it is zero otherwise.

It is shown in Section 2.1 that, when the sample size Nch(�, �) is chosen according to (3), then
Algorithm 1 indeed satisfies the requirements of Definition 1.

A related robustness analysis problem is to assess the worst-case performance level of the
system. In this case, we shall consider an RA that enjoys the following features.

Definition 2 (RA for probabilistic worst-case performance). Let p∗ ∈ (0, 1), � ∈ (0, 1) be as-
signed probability levels. The RA should return with probability 1 − � a performance level �̂N

such that

Pr
{
J (�)� �̂N

}
�p∗.

The performance level �̂N should be constructed based on a finite number N of random samples
of �.

In words, we require that an RA for probabilistic worst-case performance determines a perfor-
mance level �̂N which is guaranteed for most of the uncertainty instances. This can be obtained
via the following algorithm.
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Algorithm 2. Given p∗, �, the following RA returns with probability 1 − � a level �̂N such
that

Pr
{
J (�)� �̂N

}
�p∗ (2)

1. Determine a suitable sample size N = Nwc(p
∗, �) according to (4);

2. Draw N �N independent samples �(1), . . . ,�(N) distributed according to f�(�);
3. Return the empirical maximum

�̂N = max
i=1,...,N

J (�(i)).

It is shown in Section 2.1 that, when the sample size Nwc(�, �) is chosen according to (4), then
Algorithm 1 indeed satisfies the requirements of Definition 2.

2.1. Computational complexity of RAs and related issues

The computational complexity of an RA is due to three main sources:

1. The minimum number of samples required to attain the desired probabilistic guarantees of
quality in the solution (sample complexity).

2. The computational cost of generating the random samples of � according to f�(�).
3. The computational cost of evaluating the performance J (�), for fixed �.

The second of the above components depends critically on the type and structure of the set in
which randomization is to be performed. This issue is discussed in Section 5. We remark that the
choice of a uniform distribution is common in this setting, because it permits the interpretation
of the probabilistic statements in terms of “volumes’’ of certain sets, and also for its worst-case
properties, see [4,5,32].

In all typical control applications, the performance function J (�) can be efficiently evaluated,
for fixed �. Hence, we see that the actual computational burden of an RA is strictly related to the
first item above, i.e. to its sample complexity. Assuming that the problem “size’’ is described by
some integer n (for instance, the size of a matrix or the order of a dynamical system), we say that
the RA is efficient if its sample complexity is at most polynomial in the problem size n and the
probabilistic levels.

For instance, for the two algorithms presented above, the sample complexity can be assessed
using fairly classical large deviations inequalities. In particular, for Algorithm 1, one of the best-
known bounds is the so-called Chernoff bound [16], derived from the Hoeffding tail probability
inequality, see [25],

Nch(�, �) = 1

2�2
ln

2

�
. (3)

For Algorithm 2, the following bound was independently derived in [29,51]:

Nwc(p
∗, �) =

ln
1

�

ln
1

p∗
. (4)
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An important conclusion is therefore that Algorithms 1 and 2 have a sample complexity that is
not only polynomial in the problem size and probabilistic levels, but that is actually independent
of the problem size (the dimension of D).

3. RAs for control synthesis

Two different philosophies are currently followed for control synthesis in the probabilistic con-
text. The first philosophy aims at designing controllers that satisfy the performance specification
for most values of the uncertainties, i.e. that are robust in a probabilistic sense. In this case, an RA
should return a controller, represented by a parameter � ∈ � (� ⊆ Rn� being the set of allowable
design parameters), which guarantees the desired performance with an a priori specified (high)
probability p∗ ∈ (0, 1). As in the analysis case, this algorithm may fail with probability at most
�.

An alternative synthesis paradigm is to seek a controller that (approximately) minimizes the
mean value of the performance index. That is, the objective is to obtain a controlled system that
performs well on average.

Let J (�, �) : D ×� → R be a function measuring the closed-loop performance of the system
with controller parameter �. An RA for the robust design approach is specified as follows.

Definition 3 (RA for robust performance synthesis (RPS)). Let � be a given performance level
and let p∗ ∈ (0, 1), � ∈ (0, 1) be assigned probability levels. An RA for robust synthesis should
return with probability 1 − � a design vector �̂N ∈ � such that

Pr
{
J (�, �̂N)��

}
�p∗. (5)

The controller parameter �̂N should depend on a finite number N of random samples of �.

An RA for the average performance synthesis (APS) should instead have the following char-
acteristics.

Definition 4 (RA for APS). Let � ∈ (0, 1), � ∈ (0, 1) be given probability levels. Let

�(�)
.= E�

[
J (�, �)

]
denote the average performance (with respect to �) of the controlled plant, and

�∗ .= min
�∈�

�(�)

denote the optimal achievable average performance. A randomized average synthesis algorithm
should return with probability 1 − � a design vector �̂N ∈ � such that

�(�̂N) − �∗ ��.

The controller parameter �̂N should be constructed based on a finite number N of random samples
of �.
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We present in the next sections some RAs that meet these specifications. We first deal with the
average design approach.

3.1. The learning theory approach for APS

Consider a normalized performance function J (�, �) : D × � → [0, 1], which measures the
performance of the controlled plant, for given � and �. The goal is to determine a controller,
i.e. a � ∈ �, such that the average performance of the controlled plant is minimized. In the
approach presented in this section, the design follows two steps: in the first step, the expected
value �(�) = E�

[
J (�, �)

]
is estimated, and in the second step a minimization is performed

on �(�) to obtain the “optimal’’ controller. The following RA for average synthesis satisfies the
requirements of Definition 4.

Algorithm 3. Given �, �, the following RA returns with probability 1 − � a controller
parameter �̂N such that

�(�̂N) − �∗ �� (6)

1. Determine a suitable sample size N = N sl(�, �) according to (8);
2. Draw N �N independent samples �(1), . . . ,�(N) distributed according to f�(�);
3. Return the controller parameter

�̂N = arg min
�∈�

1

N

N∑
i=1

J (�(i), �). (7)

The sample complexity of this algorithm may be assessed using the uniform convergence
bounds derived in statistical learning theory [44,59,60,62], which yield

N sl(�, �) = 128

�2

[
ln

8

�
+ d

(
ln

32e

�
+ ln ln

32e

�

)]
, (8)

where d is an upper bound on the so-called Pollard (or P ) dimension of the function family
{J (·, �), � ∈ �}.

Notice that, in principle, the minimization over � ∈ � in (7) can be performed by any numerical
optimization method. However, since this constrained minimization problem is in general non-
convex, there are obvious difficulties in finding its global solution. Thus, a viable approach would
be to use an RA also for this minimization. When even this latter optimization step is performed by
means of randomization (over the controller parameters), then the global RA returns a so-called
probably approximate near minimizer of the averaged performance function; see [30,60,61] for
further discussions along this line.

Certainly, a notable feature of this fully randomized synthesis approach is its complete gen-
erality. However, two main criticisms are in order. The first one relates to the “looseness’’ of
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bound (8) which makes the required number of samples so large to be hardly useful in practice.
Secondly, randomization over the controller parameters (which is in general necessary) leads
to rather weak statements on the quality of the resulting solutions. This latter problem may be
avoided in principle when the performance function J (�, �) is convex in � for any fixed �.

In the next section, we discuss RAs for robust (as opposed to average) performance synthesis,
which are based on sequential stochastic iterations. These algorithms are applicable whenever
J (�, �) is convex in � for any fixed �, and their convergence properties are not based on the
Vapnik–Chervonenkis theory.

4. Sequential approaches for RPS

In this section, we outline the basic sequential stochastic algorithms that have been recently
proposed in the literature for probabilistic robust synthesis. In particular, we recall the stochas-
tic gradient methods introduced in [15,21,45], and the iterative ellipsoid method proposed in
[28]. In this paper we show how these algorithms can be suitably modified in order to fit
Definition 3.

Consider a performance function J (�, �) : D × � → R, convex in � for all � ∈ D, and let
� be a desired performance level. The goal is here to develop RAs that conform to the require-
ments of Definition 3, i.e. that return a candidate controller �̂N ∈ � such that the performance
requirement J (�, �̂N)�� is satisfied with probability at least p∗. The main idea behind the pro-
posed design paradigm consists of randomization to handle uncertainty and convex optimization
to select the design parameters. More precisely, we concentrate on design algorithms based on
sequential random update techniques that aim to minimize, with respect to �, a particular function
v(�, �) related to J (�, �). This function, which measures the extent of violation of the perfor-
mance specification J (�, �)��, is called performance violation function and is now formally
defined.

Definition 5 (Performance violation function). Given a performance function J (�, �) and a de-
sired performance level �, a function v(�, �) : D × � → R is said to be a performance violation
function if the following properties hold:

1. v(�, �)�0 for all � ∈ D and � ∈ �;
2. v(�, �) = 0 if and only if J (�, �)��.

Assume now that a robustly feasible solution exists, and in particular that there exists a ball of
center �∗ ∈ � and radius r > 0 contained in the solution set

S = {� ∈ � : v(�, �) = 0 for all � ∈ D}.

Notice that only a lower bound on the feasibility radius r is necessary for assessing the convergence
of Algorithm 4 below. We further assume that for any � �∈ S, it holds that

Pr� {v(�, �) > 0} > 0.

That is, there is a strictly positive probability of detecting infeasibility of a candidate solution by
random sampling the uncertainty �.
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4.1. Stochastic gradient methods

Let [·]� denote the projection operator over the set �, and let �(i,k) denote the subgradient of
v(�, �) with respect to �, evaluated at �(i), �(k), i.e.

�(i,k) .= ��{v(�, �)}∣∣�=�(i),�=�(k) .

The following algorithm returns a controller that fulfills the requirements of Definition 3.

Algorithm 4 (Stochastic gradient algorithm for RPS). Given p∗, � ∈ (0, 1) and �, the fol-
lowing RA returns with probability at least 1 − � a design vector �̂N such that (5) holds.
1. Initialization.

• Determine a sample size function N(k) = N ss(p
∗, �, k) according to (10);

• Set k = 0, i = 0, and choose �(0) ∈ �;
2. Feasibility loop.

• Set � = 0 and feas = true;
• While � < N(k) and feas = true

◦ Set i = i + 1, � = � + 1;
◦ Draw �(i) distributed according to f�;
◦ If v(�(i), �(k)) > 0 set feas = false;

• End While;
3. Exit condition.

• If feas = true
◦ Set N = i;
◦ Return �̂N = �(k) and Exit;

• End If;
4. Update.

• Update

�(k+1) =
[
�(k) − �(k) �(i,k)

‖�(i,k)‖

]
�

where �(k) is a suitable stepsize defined in (9);
• Set k = k + 1 and goto 2.

We notice that, in this algorithm, for any candidate �(k) the inner loop (“While’’ loop in step
2) performs a randomized check of robust feasibility of the current solution. If the loop performs
all the � = N(k) checks without detecting infeasibility, then the algorithm exits at step 3 with the
current solution. Otherwise, if a random sample �(i) is found such that v(�(i), �(k)) > 0, i.e. the
performance is violated, then the current solution �(k) is updated and the process is repeated.

Two different types of results can be proven. First, it can be shown that if the stepsizes

�(k) = v(�(k), �(k))

‖�(i,k)‖
+ r (9)
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are chosen, and the algorithm is run with unspecified N(k), then the algorithm is guaranteed
to converge with probability one in a finite number of iterations to a robustly feasible solution.
That is,

Pr
{

There exists k0 < ∞ : �(k) ∈ S for all k�k0

}
= 1.

However, this number of iterations could be in principle very high, see, for instance, [41]. This
explains the introduction of the sample size function N(k). In fact, if the sample size function
N(k) is chosen as, see [40],

N(k) = N ss(p
∗, �, k)

.=
⎡
⎢⎢⎢

log 	2(k+1)2

6�

log 1
p∗

⎤
⎥⎥⎥ , (10)

then, with probability greater than 1 − �, if Algorithm 4 exits, the returned solution �̂N satisfies

Pr
{
v(�, �̂N)�0

}
�p∗, (11)

that is, the RA complies with Definition 3.

4.2. Stochastic ellipsoid algorithm (SEA)

An improvement upon the stochastic gradient method outlined above has been presented in
[28]. This latter method produces a sequence of ellipsoids with decreasing volume, all containing
the solution set S. Provided that S has a nonempty interior, the centers of the ellipsoid sequence
converge to a robustly feasible solution. One distinct advantage of the SEA is that it does not
make use of the actual value of the feasibility radius r . Moreover, in [28] the authors prove that
this algorithm also converges when the volume of S is zero, although convergence in this case is
only asymptotic.

Ellipsoids are described by means of a center � and a symmetric positive definite shape matrix
W :

E(�, W)
.= {x : (x − �)T W−1(x − �)�1}.

We assume that an initial ellipsoid E (0) = E(�(0), W(0)) is given such that S ⊆ E (0). For simplicity,
and without loss of generality, we assume that � ≡ Rn� . The update rule for the ellipsoid
parameters is given by

�(k+1) = �(k) − 1

n� + 1

W(k)�(i,k)

�√
�(i,k)T

� W(k)�(i,k)

�

, (12)

W(k+1) = n�
2

n�
2 − 1

(
W(k) − 2

n� + 1

W(k)�(i,k)

� �(i,k)T

� W(k)

�(i,k)T

� W(k)�(i,k)

�

)
. (13)
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Algorithm 5 (SEA for RPS).
1. Initialization.

• Let N(k) = N ss(p
∗, �, k) given in (10);

• Set k = 0, i = 0;
• Choose initial ellipsoid E (0) = E(�(0), W(0)) ⊇ S;

2. Feasibility loop.
• Set � = 0 and feas = true;
• While � < N(k) and feas = true

◦ Set i = i + 1, � = � + 1;
◦ Draw �(i) according to f�;
◦ If v(�(i), �(k)) > 0 set feas = false;

• End While;
3. Exit condition.

• If feas = true
◦ Set N = i;
◦ Return �̂N = �(k) and Exit;

• End If;
4. Update.

• Compute �(k+1), W(k+1) according to (12), (13);
• Set k = k + 1 and goto 2.

The convergence properties of the above algorithm have been established in [40]: Algorithm 5
is guaranteed to terminate in a finite number N of total iterations. Moreover, if a lower bound V

is known on the volume of the solution set Vol [S] �V > 0, then Algorithm 5 executes at most
k = 2n�

⌊
log(Vol

[E (0)
]
/V )

⌋
updates, and at most

N �1 +
∑

k=0,...,k

N ss(p
∗, �, k)�1 + (k + 1)N ss(p

∗, �, k)

total iterations. Upon termination, we have two cases

1. If Algorithm 5 executes k updates, then �̂N ∈ S, i.e. it is a robustly feasible solution.
2. With probability greater than 1−�, if Algorithm 5 terminates before k updates, then �̂N satisfies

Pr
{
v(�, �̂N)�0

}
�p∗

i.e. it is a probabilistically feasible solution.

4.3. Other methods and related literature

Other randomized methods have been recently proposed in the literature for RPS. For instance,
an improvement upon the ellipsoid algorithm is discussed in [11]. In this reference, the authors
develop a sequential analytic center cutting plane method based on a probabilistic oracle that is
guaranteed to converge in polynomial time to a probabilistically feasible solution. A very recent
sequentially optimal RA for robust feasibility problems is proposed in [1].
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A somewhat different probabilistic approach for optimization under uncertainty is instead
proposed in [8]. In this reference, the authors suggest a one shot solution of a convex optimization
problem with many constraints extracted at random (the scenarios), and provide a theoretical
bound on the number of scenarios that need to be considered in order to guarantee the required
probabilistic performance levels on the solution.

For further details on existing methods for probabilistic design the reader is referred to the
books [12,52] and references therein.

5. Sample generation problem

All the previously described randomized methods critically rely on efficient techniques for
random sample generation. The interested reader may refer to [19,38] for a general discussion
on the topic of random number generation. In particular, in [19] several algorithms for univariate
sample generation according to various distributions are shown, while in [38] Monte Carlo and
quasi-Monte Carlo methods are analyzed in detail. However, no specific algorithm for vector and
matrix sample generation within sets of interest in robust control is provided in the Monte Carlo
literature. We also remark that standard rejection methods cannot be used, due to their inefficiency,
see details in [14]. In the context of uncertain control systems described in the M − � form, the
problem is the sample generation within D according to a given density function f�.

For real and complex parametric uncertainties q = [q1 · · · qn]T , bounded in the �p norm ball
of radius 


Bp(
, Fn)
.= {

q ∈ Fn : ‖q‖p �

}
, (14)

the sample generation problem has a simple solution. We report here an algorithm, presented in
[13], that returns a real random vector q uniformly distributed in the norm ball Bp(
, R). This
algorithm is based on the so-called generalized gamma density Ḡa,c(x), defined as

Ḡa,c(x) = c

�(a)
xca−1e−xc

, x�0,

where a and c are given parameters and �(a) is the gamma function.

Algorithm 6 (Uniform generation in real �p norm ball). Given n, p and 
, the following
RA returns a real random vector y uniformly distributed in Bp(
, Rn).

1. Generate n independent random real scalars �i ∼ G1/p,p;
2. Construct the vector x ∈ Rn of components xi = si�i , where si are independent random

signs;
3. Generate z = w1/n, where w is uniform in [0, 1];
4. Return y = 
z x

‖x‖p
.

Fig. 1 visualizes the main steps of this algorithm in the simple case of sample generation of
two-dimensional real vectors in a circle of radius one (� = 2, p = 2, 
 = 1). First, we notice that
for p = 2 the generalized gamma density Ḡ1/p,p(x) is related to the Gaussian density function.
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Fig. 1. Generation of real random vectors uniformly distributed in a circle.

The random samples drawn from a Gaussian distribution (step 1 in the figure) are radially sym-
metric with respect to the �2 norm. Roughly speaking, this means that their level curves are �2
spheres. Secondly, the samples are normalized obtaining random vectors uniformly distributed on
the boundary of the circle (step 2), and then injected according to the volumetric factor z (step 3).
We remark that in [52] a similar algorithm for complex vectors uniformly distributed in the norm
ball B(
, Cn) is presented.

The sample generation problem becomes much harder when we are interested in the uniform
generation of real and complex matrix samples � ∈ Fn,m bounded in the induced �p norm. In
particular, while the cases p = 1 and ∞ can be immediately reduced to multiple random vector
generation for which the techniques described in [13] can be used, the solution for the induced �2
norm ball requires the development of specific methods. In particular, the algorithms presented in
[9,14], see also [52], are based on the singular value decomposition of the complex (real) matrix
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� in the matrix product

� = U�V ∗,

where U and V are unitary (orthogonal) matrices and � is a diagonal matrix containing the singular
values of �. The main idea is to compute the density functions of U , � and V , respectively, such
that the resulting pdf f�(�) is uniform. This approach is an extension of the methods described
in [3,35] in the context of the theory of random matrices for the special case when � is a real
symmetric matrix. When � is a causal stable dynamic operator, sampling techniques have been
discussed in [10,48].

6. Conclusions

This paper is focused on nonstandard tools for analysis and control of uncertain systems, with
emphasis on the interplay of probability and robustness. In this context, RAs represent a class
of computationally efficient techniques that permit the solution (in probabilistic sense) of robust
analysis and design problems that are otherwise hard to attack via deterministic methods. We hope
that this survey will pave the way for further developments of sampling-based methods within
the IBC setting.
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[57] J.F. Traub, H. Woźniakowski, Breaking intractability, Sci. Amer. 270 (1994) 102–107.
[58] V.A. Ugrinovskii, Randomized algorithms for robust stability and guaranteed cost control of stochastic jump

parameter systems with uncertain switching policies, J. Optim. Theory Appl. 124 (2005) 227–245.
[59] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[60] M. Vidyasagar, Statistical learning theory and randomized algorithms for control, IEEE Control Systems Mag. 18

(1998) 69–85.
[61] M. Vidyasagar, Randomized algorithms for robust controller synthesis using statistical learning theory, Automatica

37 (2001) 1515–1528.
[62] M. Vidyasagar, Learning and Generalization: With Applications to Neural Networks, second ed., Springer, New

York, 2002.
[63] M. Vidyasagar, V. Blondel, Probabilistic solutions to some NP-hard matrix problems, Automatica 37 (2001)

1397–1405.
[64] G. Zames, On the metric complexity of causal linear systems: �-entropy and �-dimension for continuous-time systems,

IEEE Trans. Automat. Control AC-24 (1979) 222–230.
[65] G. Zames, Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms and

approximate inverses, IEEE Trans. Automat. Control 26 (1981) 301–320.


