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Abstract

Regularized empirical risk minimization including support vector machines plays an impor-
tant role in machine learning theory. In this paper regularized pairwise learning (RPL) methods
based on kernels will be investigated. One example is regularized minimization of the error en-
tropy loss which has recently attracted quite some interest from the viewpoint of consistency
and learning rates. This paper shows that such RPL methods have additionally good statistical
robustness properties, if the loss function and the kernel are chosen appropriately. We treat two
cases of particular interest: (i) a bounded and non-convex loss function and (ii) an unbounded
convex loss function satisfying a certain Lipschitz type condition.
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1 Introduction

Regularized empirical risk minimization based on kernels have attracted a lot of interest during
the last decades in statistical machine learning. To fix ideas, let D = ((x1, y1), . . . , (xn, yn)) be a
given data set, where the value xi denotes the input value and yi denotes the output value of the
i-the data point. Let L be a loss function which is typically of the form L(x, y, f(x)), where f(x)
denotes the predicted value for y, when x is observed, and the real-valued function f is unknown.
Many regularized learning methods are then defined as minimizers of the optimization problem

inf
f∈F

1

n

n
∑

i=1

L(xi, yi, f(xi)) + pen(λ, f), (1.1)

where the set F consists of real-valued functions f , λ > 0 is a regularization constant, and
pen(λ, f) ≥ 0 is some regularization term to ovoid overfitting for the case, that F is rich. One exam-
ple is that F is a reproducing kernel Hilbert space H and pen(λ, f) = λ‖f‖2H , see e.g. Vapnik (1995,
1998), Poggio and Girosi (1998), Wahba (1999), Schölkopf and Smola (2002), Cucker and Zhou
(2007), Steinwart and Christmann (2008) and the references cited there.

In recent years there is quite some interest in related learning methods where a pairwise loss function
is used, which yields optimization problems like

inf
f∈H

1

n2

n
∑

i=1

n
∑

j=1

L(xi, yi, xj , yj, f(xi), f(xj)) + λ‖f‖2H (1.2)
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or asymptotically equivalent versions of it. In other words, the estimator for f is defined as the
minimizer of the sum of a V -statistic of degree 2 and the regularizing term λ‖f‖2H , see e.g. Serfling
(1980). An example of this class of learning methods occurs when one is interested in minimizing
Renyi’s entropy of order 2, see e.g. Hu et al. (2013), Fan et al. (2014), and Ying and Zhou (2015)
for consistency and fast learning rates. Another example arises from ranking algorithms, see e.g.
Clemencon et al. (2008) and Agarwal and Niyogi (2009). Other examples include gradient learning,
and metric and similarity learning, see e.g. Mukherjee and Zhou (2006), Xing et al. (2002), and
Cao et al. (2015). However, much less theory is currently known for such regularized learning
methods given by (1.2) based on pairwise loss functions than for the more classical problem (1.1)
using standard loss functions. This is true in particular for statistical robustness aspects. Statistical
robustness is one important facet of a statistical method, especially it the data quality is only
moderate or unknown, which is often the case in the so-called big data situation.

The main goal of this paper is to show that such regularized learning methods given by (1.2) have
nice statistical robustness properties if a combination of a bounded and continuous kernel used to
define H and a convex, smooth, and separately Lipschitz continuous (see Definition 2.5) pairwise
loss function is used. We also establish a representer theorem for such regularized pairwise learning
methods, because we need it for our proofs, but the representer theorem may also be helpful to
further research.

The rest of the paper has the following structure. In Section 2, we define pairwise loss functions,
their corresponding risks, derive some basic properties of pairwise loss functions and their risks,
and give some examples. In Section 3 we define regularized pairwise learning (RPL) methods
treated in this paper and derive results on existence and uniqueness. We will show that shifted loss
functions (defined in (3.10)) are useful to define RPL methods on the set of all probability measures
without making moment assumptions. This is of course desirable, because the probability measure
chosen by nature to generate the data is completely unknown in machine learning theory. Section
4 contains a representer theorem for RPL methods, which is our first main result, see Theorem
4.3. This result is interesting in its own, but we will also use it as a tool to prove our statistical
robustness results in Section 5. For the case of bounded and not necessarily convex pairwise loss
functions we show that RPL methods have a bounded maxbias if a bounded kernel is used. For
the case of a convex pairwise loss function which is separately Lipschitz continuous in the sense of
Definition 2.5 and a bounded continuous kernel, we can formulate the two other main results of this
paper: Theorem 5.3 shows that the RPL operator has a bounded Gâteaux derivative and hence a
bounded influence function, see Corollary 5.4, and Theorem 5.5 shows that RPL methods and their
empirical bootstrap approximations are qualitatively robust, if some non-stochastic conditions are
satisfied. Hence these statistical robustness properties of RPL methods hold for all probability
measures provided these conditions on the input and output space, on the kernel, and on the loss
function are fulfilled, which can easily be checked by the user. All proofs are given in the Appendix.

2 Pairwise Loss Functions and Basic Properties

If not otherwise mentioned, we will assume the following setup.

Assumption 2.1. Let X be a complete separable metric space and Y ⊂ R be closed. Let (X,Y ) and
(Xi, Yi), i ∈ N, be independent and identically distributed pairs of random quantities with values in
X × Y. We denote the joint distribution of (Xi, Yi) by P ∈ M1(X × Y), where M1(X × Y) is the
set of all Borel probability measures on the Borel σ-algebra BX×Y .

As usual we will denote the realisations of (Xi, Yi) by (xi, yi). For a given data set Dn =
(

(x1, y1), . . . , (xn, yn)
)

∈ (X × Y)n we denote the empirical distribution by Dn = 1
n

∑n
i=1 δ(xi,yi).

Furthermore, we write P := Pn = 1
n

∑n
i=1 δ(Xi,Yi). Hence Pn(ω) = Dn for the realisations

(Xi(ω), Yi(ω)) = (xi, yi), i = 1, . . . , n.
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Leading examples on the spaces are of course given by X = R
d and Y = {−1,+1} for binary

classification and X = R
d and Y = R for regression, where d is some positive integer.

For P ∈ M1(X×Y), we denote the marginal distribution ofX by PX and the conditional probability
of Y given X = x by P(y|x). The n-fold product measure of P is denoted by P⊗ . . .⊗P or simply
by Pn.

The classical definition of a loss function in the machine learning literature is a measurable function
from X × Y ×R to [0,∞) and one goal is to minimize the expected loss plus some regularization
term over a hypothesis space, which is often a reproducing kernel Hilbert space (RKHS), say H, de-
fined implicitly by a kernel k : X ×X → R, see e.g. Vapnik (1995, 1998), Poggio and Girosi (1998),
Wahba (1999), Schölkopf and Smola (2002), Cucker and Zhou (2007), Steinwart and Christmann
(2008) and the references cited there.

Here we will consider the case that a regularized risk is to be minimized, where the loss func-
tion for pairwise learning has six instead of three arguments. I.e., we wish to find a function
f : X → R such that for some non-negative loss function L the value L(x, y, x̃, ỹ, f(x), f(x̃)) is
small, if the pair (f(x), f(x̃)) is a good prediction for the pair (y, ỹ). The close connection to
V -statistics and U -statistics (both of degree 2) is obvious, see e.g. Serfling (1980, p. 172-174) and
Koroljuk and Borovskich (1994).

Definition 2.2. Let (X ,A) be a measurable space and Y ⊂ R be closed. Then a function

L : (X × Y)2 ×R
2 → [0,∞) (2.1)

is called a pairwise loss function, or simply a pairwise loss, if it is measurable. A pairwise
loss L is represented by ρ, if ρ : R → [0,∞) is a measurable function and, for all (x, y) ∈ X × Y,
for all (x̃, ỹ) ∈ X × Y, and for all t, t̃ ∈ R,

L(x, y, x̃, ỹ, t, t̃) := ρ
(

(y − t)− (ỹ − t̃)
)

. (2.2)

In the following, we will interpret L(x, y, x̃, ỹ, f(x), f(x̃)) as the loss when we predict (f(x), f(x̃)) if
(x, x̃) is observed, but the true outcome is (y, ỹ). The smaller the value L(x, y, x̃, ỹ, f(x), f(x̃)) is,
the better (f(x), f(x̃)) predicts (y, ỹ) by means of L. From this it becomes clear that constant loss
functions, such as L := 0, are rather meaningless for our purposes, since they do not distinguish
between good and bad predictions. Therefore, we will only consider non-constant pairwise loss
functions.

Let us now recall from the introduction that our major goal is to have a small average loss for
future unseen observations (x, y). This leads to the following definition.

Definition 2.3. Let L be a pairwise loss function and P ∈ M1(X × Y).

(i) The L-risk for a measurable function f : X → R, i.e. f ∈ L0(X ), is defined by

RL,P(f) :=

∫

(X×Y)2
L
(

x, y, x̃, ỹ, f(x), f(x̃)
)

dP2(x, y, x̃, ỹ). (2.3)

(ii) The minimal L-risk

R∗
L,P := inf

{

RL,P(f) ; f : X → R measurable
}

(2.4)

is called the Bayes risk with respect to P and L. In addition, a measurable function f∗
L,P :

X → R with RL,P(f
∗
L,P) = R∗

L,P is called a Bayes decision function.
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Note that the function (x, x̃, y, ỹ) 7→ L(x, y, x̃, ỹ, f(x), f(x̃)) is measurable by our assumptions, and
since it is also non-negative, the above integral always exists, although it is not necessarily finite.

If X is a Polish space and Y ⊂ R is closed, then X ×Y is a Polish space, too, such that we can split
up P into the regular conditional probability P(dy|x) and the marginal distribution PX , cf. Dudley
(2002, Section 10.2). If we combine this with the Tonelli-Fubini theorem, we can write RL,P(f) as

∫

X

∫

X

∫

Y

∫

Y

L
(

x, y, x̃, ỹ, f(x), f(x̃)
)

P(dy|x) P(dỹ|x̃) PX (dx) PX (dx̃). (2.5)

For a given sequence D := Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, we denote by D := Dn :=
1
n

∑n
i=1 δ(xi,yi) the empirical measure associated to the data set D. The risk of a function f : X → R

with respect to D is called the empirical L-risk

RL,D(f) =
1

n2

n
∑

i=1

n
∑

j=1

L
(

xi, xj, yi, yj, f(xi), f(xj)
)

. (2.6)

Analogously to (2.6) one can also define modifications in which one only adds terms in (2.6) over
all pairs (i, j) with i 6= j or over all pairs (i, j) with i ≤ j. Here we will not investigate these
modifications.

We will now introduce some useful properties of pairwise loss functions and their risks in much
the same manner than these properties are defined for classical loss functions. The first step is of
course measurability.

Lemma 2.4 (Measurability of risks). Let L be a pairwise loss and F ⊂ L0(X ) be a subset
that is equipped with a complete and separable metric d and its corresponding Borel σ-algebra.
Assume that the metric d dominates the pointwise convergence, i.e., limn→∞ d(fn, f) = 0 im-
plies limn→∞ fn(x) = f(x) for all x ∈ X and for all f, fn ∈ F . Then the evaluation map
F × X → R defined by (f, x) 7→ f(x) is measurable, and consequently the map (x, y, x̃, ỹ, f) 7→
L(x, y, x̃, ỹ, f(x), f(x̃)) defined on (X × Y)2×F and the map (x, y, x̃, ỹ, f, f) 7→ L(x, y, x̃, ỹ, f(x), f(x̃))
defined on (X × Y)2 ×F2 are also measurable. Finally, given P ∈ M1(X ×Y), the risk functional
RL,P : F → [0,∞] is measurable.

Obviously, the metric defined by the supremum norm ‖ · ‖∞ dominates the pointwise convergence
for every F ⊂ C(X )∩L∞(X ). It is well-known that the metric of reproducing kernel Hilbert spaces
(RKHSs) also dominates the pointwise convergence.

Definition 2.5. A pairwise loss L is called

(i) (strictly) convex, continuous, or differentiable, if

L(x, y, x̃, ỹ, · , · ) : R2 → [0,∞)

is (strictly) convex, continuous, or (total) differentiable for all (x, y, x̃, ỹ) ∈ (X × Y)2, respec-
tively.

(ii) locally separately Lipschitz continuous, if for all b ≥ 0 there exists a constant cb ≥ 0
such that, for all t, t̃, t′, t̃′ ∈ [−b, b], we have

sup
x,x̃∈X
y,ỹ∈Y

∣

∣L(x, y, x̃, ỹ, t, t̃)− L(x, y, x̃, ỹ, t′, t̃′)
∣

∣ ≤ cb
(

|t− t′|+ |t̃− t̃′|
)

. (2.7)

Moreover, for b ≥ 0, the smallest such constant cb is denoted by |L|b,1. Furthermore, L is
called separately Lipschitz continuous1, if there exists a constant |L|1 ∈ [0,∞) such that,
for all t, t̃, t′, t̃′ ∈ R, the inequality (2.7) is satisfied, if we replace cb by |L|1.

1We mention that Rio (2013) used the related term “separately 1-Lipschitz” in a different context.
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Figure 1: Comparison of ρ0 (black) and ρa with a = 0.01 (blue).

If L is differentiable, we denote by DL(x, y, x̃, ỹ, t, t̃) the (total) derivative of L(x, y, x̃, ỹ, · , · ) at
(t, t̃) ∈ R

2. If L(x, y, x̃, ỹ, ·, ·) is differentiable with respect to the 5th or 6t argument, we denote
the corresponding partial derivative by D5L(x, y, x̃, ỹ, ·, ·) and D6L(x, y, x̃, ỹ, ·, ·), respectively.
Let us now consider a few examples of pairwise loss functions.

Example 2.6 (Minimum error entropy (MEE) loss). Fix h ∈ (0,∞). Define the pairwise loss
L = LMEE represented by ρMEE, where ρMEE(u) := 1−exp

(

−u2/(2h2)
)

, u ∈ R, see e.g. Hu et al.
(2013), Fan et al. (2014), and Feng et al. (2015). Some easy calculations show that the first two
derivatives ρ′ and ρ′′ are continuous and bounded. However, ρMEE is not convex and therefore the
MEE loss is not convex in the sense of Definition 2.5. ✁

Example 2.7 (Absolute value type loss). Define the pairwise loss L represented by ρ0, where
ρ0(u) = |u|, u ∈ R. Obviously, ρ0 is Lipschitz continuous, but not differentiable at u = 0. ✁

Example 2.8 (Logistic pairwise loss). Fix some a ∈ (0,∞), e.g. a = 0.01 or a equals the rounding
precision of the observations. Denote the cumulative distribution function of the logistic distribution
by Λ(r) := 1/[1 + exp(−r)], r ∈ R. Define the pairwise logistic loss La represented by ρa, where

ρa(u) := u− 2a log
(

2Λ(u/a)
)

, u ∈ R. (2.8)

As Figure 1 shows, the pairwise logistic loss can be considered for some small tuning value a as
a smoothed version of the absolute value type loss. Some calculations show that ρa is Lipschitz
continuous with Lipschitz constant 1 and ρ′a and ρ′′a are continuous and bounded. ✁

Example 2.9 (Squared loss). Define the pairwise loss L = LLS represented by ρ0, where ρLS(u) =
u2, u ∈ R. Obviously, ρLS is only locally Lipschitz continuous and ρ′LS and ρ′′LS are continuous.
However, ρ′LS is unbounded. ✁

Example 2.10 (Ranking loss). Many ranking algorithms can be induced by a pairwise loss of
the form L(x, y, x̃, ỹ, t, t̃) := ℓ(t − t̃, y − ỹ) with a bivariate function ℓ : R2 → [0,∞). See e.g.
Agarwal and Niyogi (2009), the hinge ranking loss by

L(x, y, x̃, ỹ, t, t̃) = max{0, v}

and the least squares ranking loss by

L(x, y, x̃, ỹ, t, t̃) = v2,

5



where
v := |y − ỹ| − (t− t̃) sign(y − ỹ).

For further use we mention that the hinge ranking loss is not differentiable and the least squares
ranking loss is not separately Lipschitz continuous in the sense of Definition 2.5. In contrast, the
logistic ranking loss, which we define by

L(x, y, x̃, ỹ, t, t̃) = ρa(v). (2.9)

by using the ρa function from (2.8) for some a > 0, is a separately Lipschitz continuous, differen-
tiable pairwise loss function with bounded first and second order partial derivatives w.r.t. the last
two arguments. ✁

Example 2.11 (Similarity loss). Some distance metric or similarity learning algorithms for X =
R

d and Y := {−1,+1} can be induced by a pairwise loss of the form

L(x, y, x̃, ỹ, t, t̃) = ℓ((x− x̃)TA(x− x̃), r(y, ỹ))

or
L(x, y, x̃, ỹ, t, t̃) = ℓ(xTAx̃, r(y, ỹ))

with a positive semidefinite symmetric matrix A ∈ R
d×d and ℓ : R2 → [0,∞), r : R2 → R. See e.g.

Cao et al. (2015), a hinge similarity loss by

L(x, y, x̃, ỹ, t, t̃) := max{0, 1− w},

where
w := yỹxTAx̃.

In the same manner as the logistic pairwise loss function considered as a smooth alternative to the
classical hinge loss function for binary classification problems, we can define a logistic similarity
loss by

L(x, y, x̃, ỹ, t, t̃) := ln
(

1 + exp(−w)
)

. (2.10)

✁

It will become clear in Theorem 5.3 and in Theorem 5.5, that separate Lipschitz continuity and
bounded derivatives are key properties of pairwise loss functions to achieve a RPL method with
good robustness properties.

In the following we will often need that the risk functional is convex to achieve uniqueness of the
estimator. This can easily be achieved by the following result.

Lemma 2.12 (Convexity of risks). Let L be a (strictly) convex pairwise loss and P ∈ M1(X ×Y).
Then RL,P : L0(X ) → [0,∞] is (strictly) convex.

We also need some additional relationships between a pairwise loss function and its risk. Such rela-
tionships are of course well-known for standard loss functions, see e.g. Steinwart and Christmann
(2008).

Lemma 2.13 (Lipschitz continuity of risks). Let P ∈ M1(X × Y) and L be a locally separately
Lipschitz continuous pairwise loss. Then for all B ≥ 0 and all f, g ∈ L∞(PX ) with ‖f‖∞ ≤ B and
‖g‖∞ ≤ B, we have

∣

∣RL,P(f)−RL,P(g)
∣

∣ ≤ 2 |L|B,1 · ‖f − g‖L1(PX ) .

Furthermore, the risk functional RL,P : L∞(PX ) → [0,∞) is well-defined and continuous.

6



In general, we can not expect that the risk of a differentiable loss function is differentiable. In
this paper we are mainly interested in convex, separately Lipschitz continuous and differentiable
pairwise loss functions, for which all partial derivatives (up to order one or two) are continuous and
uniformly bounded. Such loss functions will yield several desirable statistical robustness properties
of the learning methods, as we aim to show. However, we conjecture that similar results can be
shown for certain integrable Nemitski losses, see e.g. Steinwart and Christmann (2008, Lem. 2.21)
for a result for standard loss functions from X × Y ×R → [0,∞).

Lemma 2.14 (Differentiability of risks). Let P ∈ M1(X×Y) and L be a differentiable pairwise loss
such that, for all x, x̃ ∈ X and all y, ỹ ∈ Y, the partial derivatives DiL(x, y, x̃, ỹ, ·, · ), i ∈ {5, 6},
are continuous and uniformly bounded by some constant cL ∈ [0,∞). Then the risk functional
RL,P : L∞(PX ) → [0,∞) is Fréchet differentiable and its derivative at f ∈ L∞(PX ) is the bounded
linear operator R′

L,P(f) : L∞(PX ) → R, where R′
L,P(f)g equals

∫

(X×Y)2

D5L(x, y, x̃, ỹ, f(x), f(x̃))g(x) +D6L(x, y, x̃, ỹ, f(x), f(x̃))g(x̃)dP
2(x, y, x̃, ỹ) .

Example 2.15 (Logistic pairwise loss; continuing Example 2.8). For later use, we mention some
properties of the pairwise loss La, where a ∈ (0,∞). Some tedious but straightforward calculations
show that La is a convex, continuous, differentiable, and separately Lipschitz continuous pairwise
loss with |La|1 = 1 and

sup
(x,y,x̃,ỹ)∈(X×Y)2

|DiLa(x, y, x̃, ỹ, ·, · )| ≤ 1 (2.11)

sup
(x,y,x̃,ỹ)∈(X×Y)2

|DiDjLa(x, y, x̃, ỹ, ·, · )| ≤ 1

2a
, (2.12)

where i, j ∈ {5, 6}. We note that Λ′(r) = Λ(r) ·
(

1 − Λ(r)
)

∈ (0, 1/4) and Λ′′(r) = Λ(r) ·
(

1 −
Λ(r)

)

·
(

1−2Λ(r)
)

∈ (−1/10,+1/10), r ∈ R. Hence, all partial derivatives of La of order up to two
w.r.t. the last two arguments are continuous and bounded. Fix a ∈ (0,∞). For any fixed values of
(x, y, x̃, ỹ) ∈ (X × Y)2 define u := (y − t)− (ỹ − t̃) = (y − ỹ) + (t̃− t). We have

D5La(x, y, x̃, ỹ, t, t̃) = −D6La(x, y, x̃, ỹ, t, t̃) = 1− 2Λ(u/a)

DiDiLa(x, y, x̃, ỹ, t, t̃) =
2

a
Λ(u/a) (1− Λ(u/a)) , i ∈ {5, 6}

DiDjLa(x, y, x̃, ỹ, t, t̃) = −2

a
Λ(u/a) (1− Λ(u/a)) , i, j ∈ {5, 6}, i 6= j.

Hence, if we consider La as a function of the last two arguments, the Hessian matrix is given by

2
a Λ(u/a) (1− Λ(u/a)) ·

[

+1 −1
−1 +1

]

, which is obviously positive semi-definite. Hence, La is a

convex pairwise loss. Of course, La is a continuous pairwise loss , too. Furthermore, using the
above formulae of the partial derivatives of La, we obtain that La is a differentiable pairwise loss
with continuous and bounded partial derivatives up to order two (w.r.t. the last two arguments of
La). Therefore, Lemma 2.14 yields that the risk functional RL,P : L∞(PX ) → [0,∞) is Fréchet
differentiable and its derivative at f ∈ L∞(PX ) is the bounded linear operator R′

L,P(f) : L∞(PX ) →
R, where R′

L,P(f)g is given by
∫

(X×Y)2

(

1− 2Λ
( (y − f(x))− (y − f(x̃))

ε

)

)

·
(

g(x)− g(x̃)
)

dP2(x, y, x̃, ỹ) ,

where g ∈ L∞(PX ). Since 1− 2Λ(r) ∈ (−1,+1) for all r ∈ R, we immediately obtain

|R′
L,P(f)g| ≤ 2‖g‖∞ , g ∈ L∞(PX ).

Furthermore, some calculations yield that La is a separately Lipschitz continuous pairwise loss with
|La|1 = 1 for all a ∈ (0,∞). ✁
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Example 2.16 (LLS-loss; continuing Example 2.9). For later use, we mention that the pairwise
loss LLS is a convex, continuous, and differentiable pairwise loss. All partial derivatives of LLS of
order up to two w.r.t. the last two arguments are continuous. For any fixed values of (x, y, x̃, ỹ) ∈
(X × Y)2 define u := (y − t)− (ỹ − t̃) = c+ t̃− t. We have

D5LLS(x, y, x̃, ỹ, t, t̃) = −D6LLS(x, y, x̃, ỹ, t, t̃) = −2u

DiDiLLS(x, y, x̃, ỹ, t, t̃) = +2, i ∈ {5, 6}
DiDjLLS(x, y, x̃, ỹ, t, t̃) = −2, i, j ∈ {5, 6}, i 6= j.

Hence, if we consider LLS as a function of the last two arguments, the Hessian matrix is given by
[

+2 −2
−2 +2

]

, which is obviously positive semi-definite. Hence, La is a convex pairwise loss . But

of course,
sup

x,x̃∈X , y,ỹ∈Y , t,t̃∈R

|DiLLS(x, y, x̃, ỹ, t, t̃)| = ∞ , i ∈ {5, 6}, (2.13)

if Y = R. This is in contrast to the separately Lipschitz continuous pairwise loss La, as the previous
example showed. ✁

3 Regularized Pairwise Learning Methods

Definition 3.1. Let L be a pairwise loss, H be the RKHS of a measurable kernel on X , and λ > 0.
For f ∈ H, define the regularized risk by Rreg

L,P,λ(f) = RL,P(f) + λ‖f‖2H . A function fL,P,λ ∈ H
which satisfies

Rreg
L,P,λ(fL,P,λ) = inf

f∈H
Rreg

L,P,λ(f) (3.1)

is called a regularized pairwise learning (RLP) method.

If fL,P,λ exists, we have

λ‖fL,P,λ‖2H ≤ Rreg
L,P,λ(fL,P,λ) ≤ Rreg

L,P,λ(0) = RL,P(0) , (3.2)

or in other words

‖fL,P,λ‖H ≤
√

RL,P(0)

λ
. (3.3)

Let us now investigate under which assumptions there exists an fL,P,λ ∈ H and when it is unique.

Assumption 3.2. Let k : X × X → R be a continuous and bounded kernel with reproducing
kernel Hilbert space H and define ‖k‖∞ := supx∈X

√

k(x, x) ∈ (0,∞). Denote the canonical feature
map by Φ(x) := k(·, x), x ∈ X .

It is well-known that if k is a continuous kernel defined on a Polish space, then Φ is continuous,
too. This assumption on the kernel is fulfilled e.g., if X = R

d and k is a Gaussian RBF-kernel
k(x, x′) := exp(−‖x− x′‖22/γ), an Abel RBF-kernel k(x, x′) := exp(−‖x− x′‖1/γ), where γ > 0, or
a compactly supported kernel, see e.g. Wu (1995) and Wendland (1995).

The following facts, which we will need later on, are well-known for any bounded kernel k on X
with RKHS H, all f ∈ H, and all x ∈ X :

〈f,Φ(x)〉H = f(x) , (3.4)

‖f‖∞ ≤ ‖k‖∞ · ‖f‖H , (3.5)

‖Φ(x)‖H =
√

k(x, x) ≤ ‖k‖∞ , (3.6)

‖Φ(x)‖∞ ≤ ‖k‖∞ · ‖Φ(x)‖H = ‖k‖2∞ . (3.7)

First, we will derive conditions for the existence of an RPL method.
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Lemma 3.3. Let r ∈ (0,∞). If f0 ∈ H and if the sequence (fj)
∞
j=1 ⊂ B(f0, r) := {f ∈ H :

‖f − f0‖H ≤ r}, then there exists a subsequence (fjℓ)
∞
ℓ=1 and f∗ ∈ B(f0, r) such that ‖f∗‖H ≤

limℓ→∞‖fjℓ‖H and
lim
ℓ→∞

fjℓ(x) = f∗(x), ∀x ∈ X . (3.8)

Theorem 3.4 (Existence). If L is a separately Lipschitz continuous pairwise loss function, P ∈
M1(X ×Y), RL,P(f0) < ∞ for some f0 ∈ H, and H be an RKHS with bounded measurable kernel
k on X . Then a minimizer fL,P,λ ∈ H exists for any λ > 0.

We now address the question of uniqueness.

Lemma 3.5 (Uniqueness). Let P ∈ M1(X × Y), L be a convex pairwise loss with RL,P(f0) < ∞
for some f0 ∈ H, and H be the RKHS of a measurable kernel over X . Then for all λ > 0 there
exists at most one fL,P,λ.

Theorem 3.6 (Existence). Let P ∈ M1(X × Y), L be a convex, locally separately Lipschitz con-
tinuous pairwise loss function with RL,P(0) < ∞, and H be the RKHS of a bounded measurable
kernel over X . Then, for all λ > 0, there exists fL,P,λ.

Corollary 3.7 (Existence and Uniqueness). Let P ∈ M1(X × Y), L be a convex, separately
Lipschitz continuous pairwise loss function with RL,P(0) < ∞, and H be the RKHS of a bounded
measurable kernel over X . Then, for all λ > 0, there exists a uniquely defined fL,P,λ ∈ H and

‖fL,P,λ‖H ≤
(

RL,P(0)/λ
)1/2

. (3.9)

Obviously, we would like to get rid of the moment assumption RL,P(0) < ∞, because otherwise we
can not define fL,P,λ on M1(X ×Y) for arbitrary input and output spaces. The idea to shift the loss
function by an appropriate function which is independent of the last two arguments of L is useful in
this respect, as was already used e.g. by Huber (1967) for M-estimators and by Christmann et al.
(2009) for support vector machines based on a general loss function L : X × Y ×R → [0,∞) and
on a general kernel.

Let L be a pairwise loss and define the corresponding shifted pairwise loss function (or simply
the shifted version of L) by

L⋆ : (X × Y)2 ×R
2 → R, (3.10)

L⋆(x, y, x̃, ỹ, t, t̃) := L(x, y, x̃, ỹ, t, t̃)− L(x, y, x̃, ỹ, 0, 0). (3.11)

We adopt the definitions of continuity, (locally) separately Lipschitz continuity, and differentiability
of L⋆ from the same definitions for L, i.e. these properties are meant to be valid for the last two
arguments, when the first four arguments are arbitratily but held fixed. In the same manner we
define the L⋆-risk, the regularized L⋆-risk, and the RPL method based on L⋆ by

RL⋆,P(f) := EP2L⋆(X,Y, X̃, Ỹ , f(X), f(X̃)) (3.12)

Rreg
L⋆,P,λ(f) := RL⋆,P(f) + λ‖f‖2H (3.13)

fL⋆,P,λ := arg inf
f∈H

Rreg
L⋆,P,λ(f) , (3.14)

respectively. Of course, shifting the loss function L to L⋆ changes the objective function, but the
minimizers of Rreg

L,P,λ(·) and Rreg
L⋆,P,λ(·) coincide for those P ∈ M1(X × Y) for which Rreg

L,P,λ(·) has
a minimizer in H. I.e., we have

fL⋆,P,λ = fL,P,λ, if fL,P,λ ∈ H exists. (3.15)

Furthermore, (3.15) is valid for all empirical distributions D based on a data set consisting of n
data points (xi, yi), 1 ≤ i ≤ n, because fL,D,λ exists and is unique since RL,D(0) < ∞.
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Let us now show that shifting a pairwise loss function indeed helps to get rid of the moment
assumption RL,P(0) < ∞ which was essential for the Theorems 3.5 and 3.6. Assume that L is a
separately Lipschitz continuous pairwise loss. Then we obtain, for all f ∈ L1(PX ),

RL⋆,P(f) = EP2

(

L(X,Y, X̃, Ỹ , f(X), f(X̃))− L(X,Y, X̃, Ỹ , 0, 0)
)

(3.16)

≤
∫

(X×Y)2
|L(x, y, x̃, ỹ, f(x), f(x̃))− L(x, y, x̃, ỹ, 0, 0)| dP2(x, y, x̃, ỹ)

≤ |L|1
∫

X 2

(

|f(x)− 0|+ |f(x̃)− 0|
)

dP2
X (x, x̃)

≤ 2 |L|1‖f‖L1(PX ) < ∞ ,

without making the moment condition RL,P(0) < ∞. The assumption f ∈ L1(PX ) can easily be
satisfied by choosing a bounded kernel k, because then all f ∈ H are bounded due to ‖f‖∞ ≤
‖k‖∞‖f‖H , see (3.5). Therefore, taking (3.15) into account, the use of a shifted loss function just
enlarges the set of probability measures where the minimizer of the regularized risk is well-defined.
We will make this observation more precise in the remaining part of this section. The following
result gives a relationship between L and L⋆ in terms of convexity and Lipschitz continuity.

Lemma 3.8. Let L be a pairwise loss. Then the following statements are valid.

(i) If L is (strictly) convex, then L⋆ is (strictly) convex.

(ii) If L is separately Lipschitz continuous, then L⋆ is separately Lipschitz continuous. Further-
more, both Lipschitz constants are equal, i.e., |L|1 = |L⋆|1.

Lemma 3.9. Let L be a pairwise loss and L⋆ its shifted version. Then the following assertions are
valid.

(i) inff∈L0(X ) L
⋆(x, y, x̃, ỹ, f(x), f(x̃)) ≤ 0.

(ii) If L is a separately Lipschitz continuous pairwise loss, then for all f ∈ H:

− 2|L|1EPX
|f(X)| ≤ RL⋆,P(f) ≤ 2|L|1EPX

|f(X)|, (3.17)

− 2|L|1EPX
|f(X)|+ λ‖f‖2H ≤ Rreg

L⋆,P,λ(f) ≤ 2|L|1EPX
|f(X)|+ λ‖f‖2H . (3.18)

(iii) inff∈H Rreg
L⋆,P,λ(f) ≤ 0 and inff∈H RL⋆,P(f) ≤ 0.

(iv) Let L be a separately Lipschitz continuous pairwise loss and assume that fL⋆,P,λ exists. Then
we have

λ‖fL⋆,P,λ‖2H ≤ −RL⋆,P(fL⋆,P,λ) ≤ RL,P(0),

0 ≤ −Rreg
L⋆,P,λ(fL⋆,P,λ) ≤ RL,P(0),

λ‖fL⋆,P,λ‖2H ≤ min
{

|L|1EPX
|fL⋆,P,λ(X)|,RL,P(0)

}

. (3.19)

If the kernel k is additionally bounded, then

‖fL⋆,P,λ‖∞ ≤ λ−1|L|1‖k‖2∞ < ∞, (3.20)

|RL⋆,P(fL⋆,P,λ)| ≤ λ−1|L|21‖k‖2∞ < ∞. (3.21)

(v) If the partial derivatives DiL and DiDjL of L exist for all (x, y, x̃, ỹ) ∈ (X × Y)2 and all
i, j ∈ {5, 6}, then, for all (t, t̃) ∈ R

2,

DiL
⋆(x, y, x̃, ỹ, t, t̃) = DiL(x, y, x̃, ỹ, t, t̃), (3.22)

DiDjL
⋆(x, y, x̃, ỹ, t, t̃) = DiDjL(x, y, x̃, ỹ, t, t̃). (3.23)
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The following proposition ensures that the optimization problem to determine fL⋆,P,λ is well-posed.

Lemma 3.10. Let L be a separately Lipschitz continuous pairwise loss function and f ∈ L1(PX ).
Then RL⋆,P(f) /∈ {−∞,+∞}. Moreover, we have Rreg

L⋆,P,λ(f) > −∞ for all f ∈ L1(PX ) ∩H.

Lemma 3.11 (Convexity of L⋆-risks). Let L be a (strictly) convex loss. Then RL⋆,P : H →
[−∞,∞] is (strictly) convex and Rreg

L⋆,P,λ : H → [−∞,∞] is strictly convex.

Theorem 3.12 (Uniqueness of fL⋆,P,λ). Let L be a convex pairwise loss, H be the RKHS of a
measurable kernel over X , and P ∈ M1(X ×Y). Assume that (i) RL⋆,P(f0) < ∞ for some f0 ∈ H
and RL⋆,P(f) > −∞ for all f ∈ H or (ii) L is separately Lipschitz continuous and f ∈ L1(PX ) for
all f ∈ H. Then for all λ > 0 there exists at most one decision function fL⋆,P,λ.

Theorem 3.13 (Existence and Uniqueness of fL⋆,P,λ). Let L be a convex, separately Lipschitz
continuous pairwise loss, H be the RKHS of a bounded measurable kernel k, and P ∈ M1(X ×Y).
Then for all λ > 0 there exists a unique decision function fL⋆,P,λ.

4 Representer Theorem for RPL Methods

In this section we establish a representer theorem for a general probability measure P. This result
is interesting in its own, but also useful to prove several statistical robustness properties of RPL
methods. We will often make the following two assumptions to derive our representer theorem and
robustness results.

Assumption 4.1. Let L be a separately Lipschitz-continuous, differentiable pairwise loss
function for which all partial derivatives up to order 2 with respect to the last two arguments are
continuous and uniformly bounded in the sense that there exist constants cL,1 ∈ (0,∞) and
cL,2 ∈ (0,∞) with

sup
x,x̃∈X , y,ỹ∈Y

|DiL(x, y, x̃, ỹ, ·, · )| ≤ cL,1 , i ∈ {5, 6} (4.1)

sup
x,x̃∈X , y,ỹ∈Y

|DiDjL(x, y, x̃, ỹ, ·, · )| ≤ cL,2 , i, j ∈ {5, 6}. (4.2)

Additionally, assume that

L(x, y, x, y, t, t) ≡ 0, ∀ (x, y, t) ∈ X × Y ×R. (4.3)

Of course, LLS does not satisfy the assumption (4.1), whereas e.g. La fulfills all conditions in the
Assumption 4.1. The assumption (4.3) is quite plausible and is satisfied for almost all loss functions
of practical use, e.g. for L ∈ {L0, La, LLS}. If a pairwise loss L is represented by ρ, then (4.3) is
satisfied if ρ(0) = 0. A ranking loss with ℓ(0, 0) = 0 also satisfies (4.3).

Assumption 4.2. Let L be a convex pairwise loss function.

We will reconsider these assumptions at the end of Section 5 and it will become clear that these as-
sumptions on L and k are very plausible to guarantee the existence of a bounded Gâteaux derivative
of the map P 7→ fL⋆,P,λ.

As usual we will denote Bochner integrals of an H-valued function g with respect to some Borel
measure µ by

∫

g dµ, we refer to Denkowski et al. (2003, p. 365ff). If µ is a probability measure,
we denote the Bochner integral occasionally by Eµ[g].

Theorem 4.3 (Representer theorem). Let the Assumptions 2.1, 3.2, and 4.1 be valid. Then
we have, for all P ∈ M1(X × Y) and all λ ∈ (0,∞):
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(i) If fL⋆,P,λ ∈ H is any fixed minimizer of minf∈H
(

RL⋆,P(f) + λ‖f‖2H
)

, then:

fL⋆,P,λ = − 1

2λ
EP2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

, (4.4)

where h5,P and h6,P denote the partial derivatives

h5,P(X,Y, X̃, Ỹ ) := D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

(4.5)

h6,P(X,Y, X̃, Ỹ ) := D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

. (4.6)

(ii) (Convex Case.) If additionally Assumption 4.2 is valid (and hence fL⋆,P,λ uniquely exists by
Theorem 3.13), then fL⋆,P,λ has the representation (4.4) and we have additionally, for all
Q ∈ M1(X × Y):

‖fL⋆,P,λ − fL⋆,Q,λ‖H (4.7)

≤ 1

λ

∥

∥

∥
EP2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

− EQ2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

∥

∥

∥

H
.

5 Robustness of RPL Methods

In this section we will show that an RPL method has several desirable statistical robustness prop-
erties, if the pairwise loss function L and the kernel k fulfill weak qualitative assumptions. Because
these assumptions are independent of P, these assumptions can really be checked in advance. We
will start with the case of bounded pairwise loss functions. The case of convex pairwise loss func-
tions will be investigated in Section 5.2.

5.1 Case 1: Non-convex and Bounded Pairwise Loss

The minimizer fL⋆,P,λ typically exists, but it is unfortunately in general not uniquely defined for
non-convex pairwise loss functions. However we will show in this subsection, that RPL-methods
based on a non-convex and bounded pairwise loss function often yields a statistically robust approx-
imations of the regularized risk. More precisely, we will show that the regularized risk functional
has a small bias in neighborhoods defined by the norm of total variation, if L is a bounded, but in
general non-convex pairwise loss function. This is also valid, if we consider the classical contami-
nation “neighborhoods”, see e.g. Huber (1981, p.11). This result will indicate that we can expect a
bounded influence function for the regularized risk operator for non-convex pairwise loss functions
under appropriate conditions, provided the influence function exists.

Our most important special case for this section is of course the minimum entropy loss LMEE, see
Example 2.6.

In this section, let L be a bounded pairwise loss function, i.e. we assume

L(x, y, x̃, ỹ, t, t̃) ∈ [0, c] ∀ (x, y, x̃, ỹ, t, t̃) ∈ (X × Y)2 ×R
2

for some constant c ∈ (0,∞). Hence the risk RL,P(f) ∈ [0, c] for all P ∈ M1(X × Y) and there is
no need to consider shifted loss functions.

The norm of total variation of two probability measures P,Q ∈ M1(X × Y) is defined by

dTV (P,Q) := sup
A∈B(X×Y)

|P(A)−Q(A)| = 1

2
sup
h

∣

∣

∣

∣

∫

hdP−
∫

hdQ

∣

∣

∣

∣

,

12



where the supremum is with respect to all h : X × Y → R with ‖h‖∞ ≤ 1. It is well-known that
dTV (P,Q) ∈ [0, 1] for all P,Q ∈ M1(X × Y).
Define the function

Rreg : M1(X × Y) → [0,∞], (5.1)

Rreg(P) := RL,P(fL,P,λ) = inf
f∈H

RL,P(f) + λ‖f‖2H .

Recall that the maximum bias of Rreg is defined by

b1(ε; P) := sup
Q∈N(ε;P)

|Rreg(Q)−Rreg(P)|, ε ∈ (0, 1), (5.2)

where N(ε; P) denotes an ε-neighborhood of P, see Huber (1981, p.11, (4.5)). Common examples
are the total variation neighborhood

NTV (ε; P) := {Q ∈ M1(X × Y); dTV (Q,P) ≤ ε}

and the so-called contamination “neighborhood”

Ncon(ε; P) = {Pε := (1− ε)P + εP̄; P̄ ∈ M1(X × Y)}.

From a robustness point of view, a statistical method with a bounded maximum bias for sufficiently
large positive values of ε is considered to be robust. If two statistical methods have a bounded
maximum bias, the one with the smaller maximum bias is considered to be more robust.

Theorem 5.1 (Bounds for the bias). Let ε ∈ (0, 1) and P,Q ∈ M1(X × Y). Let L be a bounded
pairwise loss function satisfying L ≤ c ∈ (0,∞). Consider the regularised risk functional Rreg

defined in (5.1)

(i) Then
|Rreg(Q)−Rreg(P)| ≤ c dTV (Q

2,P2) ≤ 2 c dTV (Q,P) (5.3)

and an upper bound for the maximum bias over total variation neighborhoods is given by

b1(ε; P) ≤ 2cε,

uniformly for all P.

(ii) If Pε = (1− ε)P + εP̄ for some P̄ ∈ M1(X × Y), then

|Rreg(Pε)−Rreg(P)| ≤ 2 c dTV (P̄,P) · ε(1 + ε) (5.4)

and the maximum bias over contamination “neighborhoods” satisfies

b1(ε; P) ≤ 2cε(1 + ε),

uniformly for all P and P̄.

An obvious consequence of the second part of Theorem 5.1 is, that the limit

lim
ε→0

Rreg(Pε)−Rreg(P)

ε
(5.5)

is bounded by 2 c dTV (P̄,P) ≤ 2c, provided the limit exists. If we specialize Pε to Pε = (1− ε)P +
εδ(x,y) for some (x, y) ∈ X × Y, we obtain immediately from (5.5), that S has a uniformly bounded
influence function in sense of Hampel (1968, 1974), whenever the influence function exists.
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Let us now consider an interesting special case of the previous theorem. Define the discrete prob-
ability measures P := 1

n

∑n
i=1 δ(xi,yi) and Pn−1 := 1

n−1

∑n−1
i=1 δ(xi,yi) for given data sets with n and

n− 1 data points (xi, yi) ∈ X × Y, respectively, let P̄ be the Dirac measure δ(x0,y0) for some point

(x0, y0) ∈ X × Y, and let ε := 1
n . Then we obtain

Rreg(Pε)−Rreg(P)

ε
=

Rreg
(

(1− 1
n)Pn−1 +

1
nδ(x0,y0)

)

−Rreg(Pn)
1
n

.

The ratio is the so-called sensitivity curve at the point (x0, y0), see Tukey (1977) or Hampel et al.
(1986, p. 93), and is usually denoted by

SCn((x0, y0);R
reg,Pn−1).

It measures the influence which an additional single data point (x0, y0) has on the statistical method
S, if the original data set contains n− 1 data points. The influence function can under appropriate
assumptions be considered as a finite-sample version of the influence function, see Hampel et al.
(1986, p. 94). A similar version of the sensitivity curve exists, if we replace one data point from
an original data set with n data points. An immediate consequence of part (ii) in Theorem 5.1 is,
that the sensitivity curve SCn((x0, y0);R

reg,Pn−1) is uniformly bounded by 2c(1 + 1
n) for all data

sets and any additional data point (x0, y0), no matter where (x0, y0) is located in X × Y. If we are
interested in the slightly more general problem how to obtain an upper bound for the influence of ℓ
additional data points, we just define ε := ℓ

n , ℓ ∈ {1, . . . , ⌊n2 ⌋}, and use again part (ii) in Theorem
5.1 to obtain a uniform upper bound.

Example 5.2. Theorem 5.1 is applicable for the non-convex minimum entropy loss LMEE repre-
sented by ρMEE(u) ∈ [0, 1), u ∈ R, where h ∈ (0,∞), see Example 2.6. A division by ε shows
that the absolute value of these difference quotients are bounded by 2 or 2(1 + ε), respectively,
which is an immediate consequence of Theorem 5.1. If we additionally assume for the case of con-
tamination “neighborhoods” in Theorem 5.1(ii), that the limit limεց0

Rreg(Pε)−Rreg(P)
ε exists, where

Pε := (1 − ε)P + εδz with δ(x,y) being the Dirac measure in (x, y) ∈ X × Y, then this limit equals

the influence function of Rreg at P and its absolute value is then bounded by limεց0
2ε(1+ε)

ε = 2.
This is of course desirable from a robustness point of view.

Summarizing, we showed in this subsection that the regularized risk functional based on bounded
pairwise loss functions L has some desirable robustness properties even if L is non-convex and
bounded. An example is the minimum error entropy loss.

5.2 Case 2: Convex Pairwise Loss

An immediate consequence of the second part of our representer theorem, see (4.7), is the inequality

‖fL⋆,P,λ − fL⋆,Q,λ‖H ≤ 4

λ
cL,1‖k‖2∞ < ∞, (5.6)

which is valid for all P,Q ∈ M1(X × Y) and all λ ∈ (0,∞) if the Assumptions 2.1, 3.2, 4.1, and
4.2 are valid.

The goal of this subsection however is to show that the RPL operator

S : M1(X × Y) → H, S(P) = fL⋆,P,λ (5.7)

has two additional desirable robustness properties, if weak conditions on X , Y, L, and k are satisfied:

(i) Theorem 5.3 will show that S has a bounded Gâteaux derivative for any probability measure
P and hence a bounded influence function in the sense of Hampel (1968, 1974), see also
Hampel et al. (1986).
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(ii) Theorem 5.5 will show that the sequence of RPL estimators (fL⋆,Pn,λ)n∈N are qualitatively
robust, which is a kind of equicontinuity described later in more detail. If additionally X × Y
is a compact metric space, then even the empirical bootstrap approximations are qualitatively
robust.

Please note, that the following results of this subsection are all formulated for fL⋆,P,λ and not for
fL,P,λ, because the latter is in general not well-defined for all P ∈ M1(X × Y), as was explained
in Section 3. Please recall the obvious equalities DiL(x, y, x̃, ỹ, t, t̃) = DiL

⋆(x, y, x̃, ỹ, t, t̃) and
DiDjL(x, y, x̃, ỹ, t, t̃) = DiDjL

⋆(x, y, x̃, ỹ, t, t̃) for i, j ∈ {5, 6}.

Theorem 5.3 (Bounded Gâteaux derivative). Let the Assumptions 2.1, 3.2, 4.1, and 4.2
be satisfied. Denote the shifted version of L by L⋆. Then, for all Borel probability measures
P,Q ∈ M1(X × Y), the operator

S : M1(X × Y) → H, S(P) := fL⋆,P,λ

has a bounded Gâteaux derivative S′
G(P) at P and it holds

S′
G(P)(Q) = −M(P)−1T (Q;P) . (5.8)

Here

T (Q;P) = −2EP⊗P

[

D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X)

+D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X̃)
]

+ EP⊗Q

[

D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X)

+D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X̃)
]

+ EQ⊗P

[

D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X)

+D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X̃)
]

equals the gradient of the regularized risk and

M(P) = 2λ idH

+EP⊗P

[

D5D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X)⊗ Φ(X)

+ D6D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X)⊗Φ(X̃)

+ D5D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X̃)⊗Φ(X)

+ D6D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X̃)⊗Φ(X̃)
]

equals the Hessian of the regularized risk.

Please note, that the operator M(P) and the first integral of T (Q;P) only depend on P. Only the
second and the third integral in the formula of T (Q;P) depend on Q and describe how the fL,•,λ
changes, if the probability measure equals the mixture (1− ε)P + εQ instead of fL,P,λ. Of course,
we have S′

G(P)(P) = 0 ∈ H.

The influence function is an important approach in robust statistics and was proposed by Hampel
(1968, 1974); we refer also to the classical textbook by Hampel et al. (1986). The influence function
is related to Gâteaux differentiation of the operator S in direction of the Dirac measure Q := δ(x0,y0),
where (x0, y0) ∈ X × Y, i.e.

IF((x0, y0);S,P) = S′
G(P)(δ(x0,y0)).
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The influence function has the interpretation that it measures the influence of an (infinitesimal)
small amout of contamination of the original measure P in the direction of a Dirac measure located
in the point (x0, y0) on the theoretical quantity S(P) of interest. Hence, it is desirable that a
statistical method has a bounded influence function. If different methods have a bounded influence
function, the one with the lower bound is considered to be more robust within this approach.

Corollary 5.4 (Bounded influence function). Let the Assumptions 2.1, 3.2, 4.1, and 4.2 be
satisfied. Denote the shifted version of L by L⋆. Then, for all P ∈ M1(X×Y), for all (x0, y0) ∈ X×
Y, and for all λ ∈ (0,∞), the influence function of S : M1(X ×Y) → H defined by S(P) := fL⋆,P,λ

is bounded. It holds
IF((x0, y0);S,P) = −M(P)−1T (δ(x0,y0); P), (5.9)

where T (δ(x0,y0); P) and M(P) are given by Theorem 5.3 and T (δ(x0,y0); P) simplifies to

−2EP⊗P

[

D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X)

+D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

Φ(X̃)
]

+ EP

[

D5L
(

X,Y, x0, y0, fL⋆,P,λ(X), fL⋆,P,λ(x0)
)

Φ(X)

+D6L
(

X,Y, x0, y0, fL⋆,P,λ(X), fL⋆,P,λ(x0)
)

Φ(x0)

+D5L
(

x0, y0,X, Y, fL⋆,P,λ(x0), fL⋆,P,λ(X)
)

Φ(x0)

+D6L
(

x0, y0,X, Y, fL⋆,P,λ(x0), fL⋆,P,λ(X)
)

Φ(X)
]

.

We mention that the pairwise loss La fulfills the Assumptions 4.1 and 4.2 with cLa,1 = 1 and
cLa,2 = 1

2a for any a ∈ (0,∞), see (2.11) and (2.12). Hence, Theorem 5.3 and Corollary 5.4 are
applicable for La, if used in combination with a bounded and continuous kernel, e.g. a Gaussian
RBF kernel.

Now let us reconsider the assumptions on L and k we made to establish Theorem 5.3. Due to
S′
G(P)(Q) = −M(P)−1T (Q;P) and the specific form of T (Q;P) and M(P), we see that the bound-

edness of the Gâteaux derivative stems from the fact that L is separately Lipschitz continuous and
k is bounded. One of these properties will in general not be enough to guarantee the boundedness
of the Gâteaux derivative in unbounded spaces X and Y. Let us give one simple example. If
Y is unbounded, e.g. Y = R, we do not expect a bounded influence function for fL⋆,P,λ, if the
squared loss LLS is used, because the supremum of the absolute values of the partial derivatives are
unbounded in this case, as follows from (2.13). Please note that this is no contraction to Theorem
5.3, because LLS is clearly not separately Lipschitz continuous and fL⋆

LS
,P,λ is in general not even

defined on the set of all Borel probability measures M1(X × Y), if Y is unbounded.

In this sense, Theorem 5.3 and its corollary are in good agreement with results obtained by
Christmann and Steinwart (2004, 2007) for the case of support vector machines based on a general
loss function and on a general kernel.

Besides the maximum bias over neighbourhoods and a bounded influence function, qualitative
robustness is another key notion in robust statistics. Qualitative robustness was proposed by
Hampel (1968, 1971) and generalized to more abstract spaces by Cuevas (1988). Define

Pn :=
1

n

n
∑

i=1

δ(Xi,Yi).

In this subsection we will show that the sequence of estimators

(Sn)n∈N, Sn := fL⋆,Pn,λ
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is qualitatively robust for all probability measures and any fixed regularization parameter λ ∈
(0,∞). We will also give an analogous qualitative robustness result for the empirical bootstrap
approximations.

According to Hampel (1968) and Cuevas (1988) a sequence of estimators (Sn)n∈N is called quali-
tatively robust at a probability measure P if and only if

∀ ε > 0 ∃ δ > 0 :
[

d∗(Q,P) < δ =⇒ d∗
(

LQ(Sn),LP(Sn)
)

< ε ∀n ∈ N

]

. (5.10)

Here LQ(Sn) and LP(Sn) denote the image measures of Q and P by Sn, if all pairs (Xi, Yi) are
independent and identically distributed with (Xi, Yi) ∼ P or (Xi, Yi) ∼ Q, respectively. Another
common notation for LP(Sn) is Sn(P

n). Originally, Hampel (1971) used for d∗ the Prohorov metric
dPro, but one can also use the bounded Lipschitz metric dBL defined by

dBL(P,Q) := sup

{∣

∣

∣

∣

∫

g dP−
∫

g dQ

∣

∣

∣

∣

; ‖g‖BL ≤ 1

}

, P,Q ∈ M1(X × Y)

in separable metric spaces, where ‖g‖L := supx1 6=x2
|g(x1)− g(x2)|/d(x1, x2) and ‖g‖BL := ‖g‖L +

‖g‖∞, see Dudley (2002, Chapter 11.2). The reason for this is that, for any separable metric space –
and in our case X × Y is separable –, both dPro and dBL metrize the weak convergence for sequences
of probability measures, i.e.

Pn  P ⇐⇒ dPro(Pn,P) → 0 ⇐⇒ dBL(Pn,P) → 0, (5.11)

we refer to Dudley (2002, Thm. 11.3.3, p. 395) for details. Hence, qualitative robustness as defined
in (5.10) is a kind of equicontinuity concerning the weak convergence of the image measures of Sn

with respect to n.

The finite sample distribution of RPL estimators is in general unknown. One method to obtain
approximations of this finite sample distribution is the empirical bootstrap proposed by Efron
(1979, 1982). As the next theorem will also contain a qualitative robustness of empirical bootstrap
approximations, we need some more notation. Recall that Pn := 1

n

∑n
i=1 δ(Xi,Yi) if all pairs (Xi, Yi)

are independent and identically distributed with (Xi, Yi) ∼ P (abbreviation: (Xi, Yi)
i.i.d.∼ P).

Furthermore, we denote the distribution of the H-valued RPL estimator fL⋆,Pn,λ, by

Ln(S; P), n ∈ N, (5.12)

where S : M1(X × Y) → H with S(P) = fL⋆,P,λ. Because P is unknown but fixed, this is an
unknown, fixed probability measure of an H-valued random function. In the same manner we

denote the distribution of the H-valued RPL estimator fL⋆,Pn,λ, when all pairs (X
(b)
i , Y

(b)
i )

i.i.d.∼
Pn := 1

n

∑n
i=1 δ(Xi,Yi), where (Xi, Yi)

i.i.d.∼ P, by

Ln(S;Pn), n ∈ N. (5.13)

We mention that Ln(S;Pn) denotes a distribution which can be considered itself as a random
function in an abstract sense because it depends on Pn.

We can now state our result on the qualitative robustness of regularized pairwise learning methods.

Theorem 5.5 (Qualitivative robustness). Let the Assumptions 2.1, 3.2, 4.1, and 4.2 be valid.
Then, for all λ ∈ (0,∞), we have:

(i) The sequence of RPL estimators (Sn)n∈N, where Sn := fL⋆,Pn,λ, is qualitatively robust for all
Borel probability measures P ∈ M1(X × Y).

(ii) If the metric space X × Y is additionally compact, then the sequence Ln(S;Pn), n ∈ N, of
empirical bootstrap approximations of Ln(S; P) is qualitatively robust for all Borel probability
measures P ∈ M1(X × Y).
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The proof of Theorem 5.5 is based on the following two results which are interesting in their own.

Theorem 5.6 (Continuity of the operator). Let the Assumptions 2.1, 3.2, 4.1, and 4.2 be
valid. Then, for all Borel probability measures P ∈ M1(X × Y) and for all λ ∈ (0,∞), we have:

(i) The operator S : M1(X × Y) → H, where S(P) = fL⋆,P,λ, is continuous with respect to the
weak topology on M1(X × Y) and the norm topology on H.

(ii) The operator S̃ : M1(X × Y) → Cb(X ), where S(P) = fL⋆,P,λ, is continuous with respect to
the weak topology on M1(X × Y) and the norm topology on Cb(X ).

Corollary 5.7 (Continuity of the estimator). Let the Assumptions 2.1, 3.2, 4.1, and 4.2 be
valid. For any data set Dn ∈ (X × Y)n denote the corresponding empirical measure by Dn :=
1
n

∑n
i=1 δ(xi,yi). Then, for every λ ∈ (0,∞) and every n ∈ N, the mapping

Sn :
(

(X × Y)n, d(X×Y)n

)

→
(

H, dH
)

, Sn(Dn) = fL⋆,Dn,λ, (5.14)

is continuous.

It is known that support vector machines (SVMs) are qualitatively robust for fixed values of λ ∈
(0,∞) but that they can not be qualitatively robust for the usual null-sequences λn needed to obtain
universal consistency, because universal consistency and qualitatively robustness are under some
mild conditions concurrent goals, see Hable and Christmann (2013) for a discussion. Is is known
that SVMs can have a somewhat weaker property called finite-sample qualitivative robustness, see
Hable and Christmann (2011). It is an open problem, whether a similar result is true for RPL
methods, and we will not address this question here.

6 Discussion

In this paper we proved some desirable statistical robustness properties for a broad class of regu-
larized pairwise learning methods based on kernels. Such kernel methods are used in the fields of
information theoretic learning, ranking, gradient learning, and metric and similarity learning. In
particular, our work complements to some respect earlier work on consistency and learning rates
for minimum error entropy principles by Hu et al. (2013), Fan et al. (2014), Hu et al. (2015), for
ranking algorithms by Agarwal and Niyogi (2009), for metric and similarity learning problems by
Cao et al. (2015), and for gradient learning methods by Mukherjee and Zhou (2006).

The following aspects are beyond the scope of this paper and remain open for further work. (i)
We did not address the question of an influence function of regularized pairwise learning methods,
if a bounded but non-convex pairwise loss function is used. The main problem seems to be that in
this case the function fL⋆,P,λ is in general not unique. (ii) We did not add numerical comparisons
because it is known from Principe (2010) that for minimum error entropy principles such methods
can be computed in an efficient gradient descent manner. (iii) It seems obvious that the results
developed here for pairwise learning can in principle be established also to higher order, if one uses
U - or V -statistics of degree ℓ > 2. E.g., if ℓ = 3, one can consider loss functions with 9 instead of
6 arguments which yields instead of (1.2) the optimization problem

inf
f∈H

1

n3

n
∑

i=1

n
∑

j=1

n
∑

m=1

L(xi, yi, xj, yj , xm, ym, f(xi), f(xj), f(xm)) + λ‖f‖2H . (6.1)

We conjecture that the numerical effort to solve such problems will strongly increase with ℓ.
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7 Appendix

7.1 Appendix A: Some Tools

To improve the readability of the paper, we list some known results which are used in our proofs
given in this subsection. The following theorem provides a criterion for the existence of a global
minimizer. Ekeland and Turnbull (1983, Prop. 6, p. 75) shows the existence, and the uniqueness is
a consequence of the strict convexity.

Theorem 7.1 (Existence of minimizers). Let E be a reflexive Banach space and f : E → R∪{∞}
be a convex and lower semi-continuous map. If there exists an M > 0 such that {x ∈ E : f(x) ≤
M} is non-empty and bounded, then f has a global minimum, i.e., there exists an x0 ∈ E with
f(x0) ≤ f(x) for all x ∈ E. Moreover, if f is strictly convex, then x0 is the only element minimizing
f .

Definition 7.2 (Derivatives, see e.g. Denkowski et al. (2003, p. 518f)). Let E and F be normed
spaces, U ⊂ E and V ⊂ F be open sets, and G : U → V be a map. We say that G is Gâteaux
differentiable at x0 ∈ U if there exists a bounded linear operator A : E → F such that

lim
t→0
t6=0

‖G(x0 + tx)−G(x0)− tAx‖F
t

= 0 , x ∈ E.

In this case, A is called the derivative of G at x0, and since A is uniquely determined, we write
G′(x0) :=

∂G
∂E (x0) := A. Moreover, we say G that Fréchet differentiable at x0 if A actually satisfies

lim
x→0
x 6=0

‖G(x0 + x)−G(x0)−Ax‖F
‖x‖E

= 0 .

Furthermore, we say that G is (Gâteaux, Fréchet) differentiable if it is (Gâteaux, Fréchet) dif-
ferentiable at every x0 ∈ U . Finally, G is said to be continuously differentiable if it is Fréchet
differentiable and the derivative G′ : U → L(E,F ) is continuous.

Theorem 7.3 (Partial Fréchet differentiability, see e.g. Akerkar (1999, Theorem 2.6, p. 37)). Let
E1, E2, and F be Banach spaces, U1 ⊂ E1 and U2 ⊂ E2 be open subsets, and G : U1 × U2 → F
be a continuous map. Then G is continuously differentiable if and only if G is partially Fréchet
differentiable and the partial derivatives ∂G

∂E1
and ∂G

∂E2
are continuous. In this case, the derivative

of G at (x1, x2) ∈ U1 × U2 is given by

G′(x1, x2)(y1, y2) =
∂G

∂E1
(x1, x2)y1 +

∂G

∂E2
(x1, x2)y2 , (y1, y2) ∈ E1 × E2 .

The proof of our Theorem 5.3 heavily relies on the implicit function theorem in Banach spaces.
Recall the following simplified version of this theorem, see Akerkar (1999, Thm. 4.1, Cor. 4.2) Here
and throughout this appendix BE denotes the open unit ball of a Banach space E.

Theorem 7.4 (Implicit function theorem). Let E,F be Banach spaces and G : E × F → F be a
continuously differentiable map. Suppose that we have (x0, y0) ∈ E × F such that G(x0, y0) = 0
and ∂G

∂F (x0, y0) is invertible. Then there exists a δ > 0 and a continuously differentiable map
f : x0 + δBE → y0 + δBF such that for all x ∈ x0 + δBE, y ∈ y0 + δBF we have: G(x, y) = 0 if
and only if y = f(x). Moreover, the derivative of f is given by

f ′(x) = −
(

∂G

∂F

(

x, f(x)
)

)−1 ∂G

∂E

(

x, f(x)
)

. (7.1)
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Definition 7.5 (Bochner integral). Let E be a Banach space and (Ω,A, µ) be a σ-finite measure
space. An E-valued measurable function f : Ω → E is called Bochner µ-integrable if there exists
a sequence (fn)n∈N of E-valued measurable step functions fn : Ω → E such that limn→∞

∫

Ω ‖fn −
f‖E dµ = 0. In this case, the limit

∫

Ω f dµ := limn→∞

∫

Ω fn dµ exists and is called the Bochner
integral of f . Finally, if µ is a probability measure, we sometimes write Eµ[f ] for this integral.

Theorem 7.6 (Dominated convergence theorem, see e.g. Denkowski et al. (2003, Thm. 3.10.12,
p. 367)). Let E be a Banach space, (Ω,A, µ) be a finite measure space, and (fn)n∈N be a sequence
of Bochner µ-integrable functions fn : Ω → E. If limn→∞ µ{‖fn − f‖ ≥ ε} = 0 for every ε > 0 and
if there exists a µ-integrable function g : Ω → R with ‖fn(ω)‖ ≤ g(ω) µ-almost everywhere for all
n ∈ N, then f is Bochner µ-integrable and limn→∞

∫

Ω fn dµ =
∫

Ω f dµ.

7.2 Appendix B: Proofs

To shorten the notation, we occationally use the abbreviations z := (x, y), z̃ := (x̃, ỹ), Z :=
(X,Y ), Z̃ := (X̃, Ỹ ), Z := X × Y, and DiL(z, z̃, t, t̃) := DiL(x, y, x̃, ỹ, t, t̃), DiDjL(z, z̃, t, t̃) :=
DiDjL(x, y, x̃, ỹ, t, t̃) for i ∈ {5, 6} etc.

The proofs for the results given in Section 2 and Section 3 are similar to corresponding results for
“classical” loss functions of the form L : X ×Y ×R → [0,∞) used by support vector machines and
related kernel based methods, see e.g. Steinwart and Christmann (2008).

Proof of Lemma 2.4. Since d dominates the pointwise convergence, we see that, for fixed x ∈
X , the R-valued map f 7→ f(x) defined on F is continuous with respect to d. Furthermore,
F ⊂ L0(X ) implies that, for fixed f ∈ F , the R-valued map x 7→ f(x) defined on X is measurable.
By a well-known result from Carathéodory, see e.g. Castaing and Valadier (1977, p. 70), we then
obtain the first assertion. Since this implies that the maps (x, y, x̃, ỹ, f) 7→ (x, y, x̃, ỹ, f(x), f(x̃))
and (x, y, x̃, ỹ, f, f) 7→ (x, y, x̃, ỹ, f(x), f(x̃)) are measurable, we obtain the second assertion. The
third assertion now follows from the measurability statement in Tonelli-Fubini’s theorem, see e.g.
Dudley (2002, p. 137).

Proof of Lemma 2.12. Let c ∈ [0, 1], f, g ∈ L0(X ), and assume that L is a convex pairwise
loss. We immediately obtain, for all (x, y, x̃, ỹ) ∈ (X × Y)2,

L
(

x, y, x̃, ỹ, cf(x) + (1− c)g(x), cf(x̃) + (1− c)g(x̃)
)

≤ cL
(

x, y, x̃, ỹ, f(x), f(x̃)
)

+ (1− c)L
(

x, y, x̃, ỹ, g(x), g(x̃)
)

.

The linearity of integrals yields the assertion RL,P(cf + (1− c)g) ≤ cRL,P(f) + (1 − c)RL,P(g).
The case of strict convexity can be shown in an analogous manner.

Proof of Lemma 2.13. Because L is a locally separately Lipschitz continuous pairwise loss, we
have

|RL,P(f)−RL,P(g)|

≤
∫

(X×Y)2

∣

∣L(x, y, x̃, ỹ, f(x), f(x̃))− L(x, y, x̃, ỹ, g(x), g(x̃))
∣

∣ dP2(x, y, x̃, ỹ)

≤ |L|B,1

∫

X 2

|f(x)− g(x)| + |f(x̃)− g(x̃)| dP2
X (x, x̃)

≤ 2 |L|B,1 · ‖f − g‖L1(PX ) ,

which gives the assertion.
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Proof of Lemma 2.14. Because we consider L as a function of its last two arguments, while
the first four arguments are held fixed, we define Lz,z̃(t, t̃) := L(z, z̃, t, t̃), where z := (x, y) and
z̃ = (x̃, ỹ). We first observe that all derivatives (DLz,z̃)(t, t̃) are measurable since we assumed
continuous partial derivatives. Now let f ∈ L∞(PX ) and (fn)n∈N ⊂ L∞(PX ) be a sequence with
fn 6= 0, n ≥ 1, and limn→∞ ‖fn‖∞ = 0. Without loss of generality, we additionally assume for later
use that ‖fn‖∞ ≤ 1 for all n ≥ 1. For z = (x, y), z̃ = (x̃, ỹ) ∈ Z and n ≥ 1, we now define

Gn(z, z̃) :=
√
2 ·

∣

∣

∣
Lz,z̃

(

f(x) + fn(x), f(x̃) + fn(x̃)
)

− Lz,z̃

(

f(x), f(x̃)
)

−
〈

(DLz,z̃)(f(x), f(x̃)),
(

fn(x), fn(x̃)
)〉

∣

∣

∣

/

‖(fn(x), fn(x̃))‖2 ,

if ‖(fn(x), fn(x̃))‖2 6= 0, and Gn(z, z̃) := 0 otherwise. We obtain

∣

∣

∣

∣

RL,P(f + fn)−RL,P(f)−R′
L,P(f)fn

‖fn‖∞

∣

∣

∣

∣

≤
∫

(X×Y)2

1

‖fn‖∞
·
∣

∣

∣
Lz,z̃

(

f(x) + fn(x), f(x̃) + fn(x̃)
)

− Lz,z̃

(

f(x), f(x̃)
)

−
〈

(DLz,z̃)(f(x), f(x̃)),
(

fn(x), fn(x̃)
)〉

∣

∣

∣
dP2(x, y, x̃, ỹ)

≤
∫

(X×Y)2

√
2

‖(fn(x), fn(x̃))‖2
· (7.2)

∣

∣

∣
Lz,z̃

(

f(x) + fn(x), f(x̃) + fn(x̃)
)

− Lz,z̃

(

f(x), f(x̃)
)

−
〈

(DLz,z̃)(f(x), f(x̃)),
(

fn(x), fn(x̃)
)〉

∣

∣

∣
dP2(x, y, x̃, ỹ)

=

∫

Z2

Gn(z, z̃) dP
2(z, z̃) (7.3)

for all n ≥ 1, where the well-known relationship ‖v‖2 ≤
√
2 ‖v‖∞, where v ∈ R

2, was used in (7.2).
Furthermore, for z, z̃ ∈ Z, the definition of Gn and the definition of the (total) derivative DLz,z̃

obviously yield
lim
n→∞

Gn(z, z̃) = 0. (7.4)

Denote the gradient of Lz,z̃ by ∇Lz,z̃. For z, z̃ ∈ Z and n ≥ 1 with fn(x) 6= 0, the mean value
theorem for functions from R

2 to R shows that there exists some gn(z, z̃) with

Lz,z̃

(

f(x) + fn(x), f(x̃) + fn(x̃)
)

− Lz,z̃

(

f(x), f(x̃)
)

(7.5)

=
〈

(∇Lz,z̃)
(

(1− gn(z, z̃))f(x) + gn(z, z̃)fn(x),

(1− gn(z, z̃))f(x̃) + gn(z, z̃)fn(x̃)
)

,
(

fn(x), fn(x̃)
)

〉

.

Because L has by assumption uniformly bounded partial derivatives D5L and D6L, to be more
precise, there exists a constant cL ∈ [0,∞) such that

sup
x,x̃∈X , y,ỹ∈Y , t,t̃∈R2

∣

∣DiL(x, y, x̃, ỹ, t, t̃)
∣

∣ ≤ cL , i ∈ {5, 6}.

If we combine this with the equality in (7.5), we obtain

∣

∣

∣
Lz,z̃

(

f(x) + fn(x), f(x̃) + fn(x̃)
)

− Lz,z̃

(

f(x), f(x̃)
)

∣

∣

∣
(7.6)

≤ 2cL
(

|fn(x)|+ |fn(x̃)|
)

≤ 4cL‖fn‖∞ −→ 0, n → ∞ .

Combining (7.3), (7.5), and (7.6), we get
∫

Z2 Gn(z, z̃) dP
2(z, z̃) < ∞. Hence, Gn is a non-negative

convergent dominating function and the assertion follows from Lebesgue’s theorem.
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Proof of Lemma 3.3. Since the closed ball B(f0, r) of the Hilbert space H is weakly compact,
there exists a subsequence (fjℓ)

∞
ℓ=1 weakly converging to some f ∈ B(f0, r). That is,

lim
ℓ→∞

〈fjℓ , f〉H = 〈f∗, f〉H , ∀f ∈ H. (7.7)

Let f = f∗ in (7.7). Then

‖f∗‖2H = 〈f∗, f∗〉H = lim
ℓ→∞

〈fjℓ, f∗〉H ≤ limℓ→∞‖fjℓ‖H‖f∗‖H

which implies ‖f∗‖H ≤ limℓ→∞‖fjℓ‖H .

Let f = Φ(x), x ∈ X , in (7.7). Then the reproducing property of the kernel yields

lim
ℓ→∞

fjℓ(x) = lim
ℓ→∞

〈fjℓ,Φ(x)〉H = 〈f∗,Φ(x)〉H = f∗(x).

This is true for any x ∈ X . So (3.8) is verified.

Proof of Theorem 3.4. For every ℓ ∈ N, we take a function fℓ ∈ H such that

RL,P(fℓ) + λ‖fℓ‖2H ≤ inf
f∈H

RL,P(f) + λ‖f‖2H +
1

ℓ
. (7.8)

Taking f = f0, we find that
λ‖fℓ‖2H ≤ RL,P(f0) + λ‖f0‖2H + 1

and

fℓ ∈ B(0, r), with r =
RL,P(f0) + λ‖f0‖2H + 1

λ
.

Now we apply Lemma 3.3. We know that there exists a subsequence (fjℓ)
∞
ℓ=1 and f∗ ∈ B(0, r) such

that ‖f∗‖H ≤ limℓ→∞‖fjℓ‖H and (3.8) is valid.

Consider RL,P(fℓ). By the Lipschitz continuity of L, the integrated function is bounded by

L (x, y, x̃, ỹ, fℓ(x), fℓ(x̃)) ≤ L (x, y, x̃, ỹ, f0(x), f0(x̃)) + 4|L|1‖k‖∞r.

The upper bound is integrable with respect to P2. Also, for any (x, y, x̃, ỹ) ∈ (X × Y)2, by the
continuity of L and (3.8), we have

lim
ℓ→∞

L (x, y, x̃, ỹ, fℓ(x), fℓ(x̃)) = L (x, y, x̃, ỹ, f∗(x), f∗(x̃)) .

So by the Lebesgue Dominated Theorem, we have

lim
ℓ→∞

RL,P(fℓ) = RL,P(f
∗).

Then we take lim on both sides of (7.8) and find from ‖f∗‖H ≤ limℓ→∞‖fjℓ‖H that

RL,P(f
∗) + λ‖f∗‖H ≤ inf

f∈H
RL,P(f) + λ‖f‖2H .

It means that f∗ is a minimizer fL,P,λ. This proves our statement.

Proof of Lemma 3.5. Let us assume that the map f 7→ RL,P(f) + λ‖f‖2H has two minimizers
f1, f2 ∈ H with f1 6= f2. Recall that the parallelogram law ‖x+ x′‖2 + ‖x− x′‖2 = 2‖x‖2 + 2‖x′‖2
is valid for all points x and x′ in a Hilbert space, cf. Denkowski et al. (2003, Thm. 3.7.7, p. 310).
Therefore, we have ‖1

2 (f1 + f2)‖2H < 1
2‖f1‖2H + 1

2‖f2‖2H . As L is a convex pairwise loss, the map
f 7→ RL,P(f) is convex by Lemma 2.12. This together with RL,P(f1)+λ‖f1‖2H = RL,P(f2)+λ‖f2‖2H
then shows for f∗ := 1

2 (f1 + f2) that

RL,P(f
∗) + λ‖f∗‖2H < RL,P(f1) + λ‖f1‖2H ,

i.e., f1 is not a minimizer of f 7→ RL,P(f) + λ‖f‖2H . Consequently, the assumption that there are
two minimizers is false.
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Proof of Theorem 3.6. Since the kernel k of H is measurable, H consists of measurable func-
tions, see e.g. Steinwart and Christmann (2008, Lem. 4.24). Moreover, k is bounded and thus
id : H → L∞(PX ) is continuous, see e.g. Steinwart and Christmann (2008, Lem. 4.23). In ad-
dition, we have L(z, z̃, t, t̃) < ∞ for all (z, z̃, t, t̃) ∈ Z2 × R

2. Recall that every convex function
g : R2 → R ∪ {∞}, which is not identically equal to +∞, is continuous on the interior of its effec-
tive domain Dom g := {t ∈ R; g(t) < ∞}, see e.g. Ekeland and Témam (1999, Cor. 2.3 on p. 12).
Hence L is a continuous pairwise loss by the convexity of L. Therefore, Lemma 2.13 shows that
RL,P : L∞(PX ) → R is continuous, and hence RL,P : H → R is continuous. In addition, Lemma
2.12 provides the convexity of this map. Furthermore, f 7→ λ‖f‖2H is also convex and continuous,
which yields the continuity and the convexity of the map f 7→ Rreg

L,P,λ(f). Now consider the set

A :=
{

f ∈ H : Rreg
L,P,λ(f) ≤ RL,P(0)

}

. We obviously have 0 ∈ A. In addition, f ∈ A implies

λ‖f‖2H ≤ RL,P(0), and hence A ⊂ (RL,P(0)/λ)
1/2B̄H , where B̄H denotes the closed unit ball of H.

Hence A is a non-empty and bounded subset of H and thus Theorem 7.1 gives the existence of a
minimizer fL,P,λ.

Proof of Corollary 3.7. Because L is a separately Lipschitz continuous pairwise loss, we have,
for all (z, z̃, t, t̃) ∈ Z2 ×R

2,

L(z, z̃, t, t̃) = L(z, z̃, 0, 0) + L(z, z̃, t, t̃)− L(z, z̃, 0, 0)

≤ L(z, z̃, 0, 0) + 2|L|1
(

|t|+ |t̃|
)

.

The assumption RL,P(0) < ∞ yields RL,P(f) ≤ RL,P(0) + 4|L|1‖f‖L1(PX ) < ∞. As L is a convex
pairwise loss, Lemma 3.5 and Theorem 3.6 yield the existence and the uniqueness of fL,P,λ and
(3.9) equals (3.3).

Proof of Lemma 3.8. Follows immediately from the definition of L⋆.

Proof of Lemma 3.9. (i) Obviously, we have

inf
f∈L0(X )

L⋆(x, y, x̃, ỹ, f(x), f(x̃)) ≤ L⋆(x, y, x̃, ỹ, 0, 0) = 0.

(ii) We have for all f ∈ H that

|RL⋆,P(f)| = |EP2L(X,Y, X̃, Ỹ , f(X), f(X̃))− L(X,Y, X̃, Ỹ , 0, 0)|
≤ EP2 |L(X,Y, X̃, Ỹ , f(X), f(X̃))− L(X,Y, X̃, Ỹ , 0, 0)|
≤ |L|1 EP2

(

|f(X)|+ |f(X̃)|
)

≤ 2|L|1 EPX
|f(X)|,

which proves (3.17). Equation (3.18) follows from Rreg
L⋆,P,λ(f) = RL⋆,P(f) + λ‖f‖2H .

(iii) As 0 ∈ H, we obtain inff∈H Rreg
L⋆,P,λ(f) ≤ Rreg

L⋆,P,λ(0) = 0 and the same reasoning holds for
inff∈H RL⋆,P(f).
(iv) Due to (iii) we have Rreg

L⋆,P,λ(fL⋆,P,λ) ≤ 0. As L ≥ 0 we obtain

λ‖fL⋆,P,λ‖2H ≤ −RL⋆,P(fL⋆,P,λ)

= EP2

(

L(X,Y, X̃, Ỹ , 0, 0) − L(X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃))
)

≤ EP2L(X,Y, X̃, Ỹ , 0, 0) = RL,P(0).

Using similar arguments as above, we obtain

0 ≤ −Rreg
L⋆,P,λ(fL⋆,P,λ)

= EP2

(

L(X,Y, X̃, Ỹ , 0, 0) − L(X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃))
)

− λ‖fL⋆,P,λ‖2H
≤ EP2L(X,Y, X̃, Ỹ , 0, 0) = RL,P(0).
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Furthermore, we obtain

−2|L|1 EPX
|fL⋆,P,λ(X)| + λ‖fL⋆,P,λ‖2H ≤ Rreg

L⋆,P,λ(fL⋆,P,λ) ≤ Rreg
L⋆,P,λ(0) = 0.

This yields (3.19). Using (3.5), (3.7), and (3.19), we obtain for fL⋆,P,λ 6= 0 that

‖fL⋆,P,λ‖∞ ≤ ‖k‖∞‖fL⋆,P,λ‖H
≤ ‖k‖∞

√

(2/λ) |L|1 EPX
|fL⋆,P,λ(X)|

≤ ‖k‖∞
√

(2/λ) |L|1‖fL⋆,P,λ‖∞ < ∞ .

Hence ‖fL⋆,P,λ‖∞ ≤ 2
λ ‖k‖2∞ |L|1. The case fL⋆,P,λ = 0 is trivial.

(v) This follows immediately from the definition of L⋆, because we just subtract a term, which is
constant w.r.t. the last two arguments of L⋆.

Proof of Lemma 3.10. The inequality |RL⋆,P(f)| ≤ 2 |L|1EPX
|f(X)| < ∞ for f ∈ L1(PX )

follows from (3.17). Then (3.18) yields Rreg
L⋆,P,λ(f) ≥ −|L|1EPX

|f(X)| + λ‖f‖2H > −∞.

Proof of Lemma 3.11. Lemma 3.8 yields that L⋆ is (strictly) convex. Trivially RL⋆,P is also
(strictly) convex. Further f 7→ λ‖f‖2H is strictly convex, and hence the map f 7→ Rreg

L⋆,P,λ(f) =

RL⋆,P(f) + λ‖f‖2H is strictly convex.

Proof of Theorem 3.12. The proof of part (i) is almost identical to the proof of Lemma 3.5. We
only have to use Lemma 3.11 instead of Lemma 2.12. (ii) This condition implies that |RL⋆,P(f)| <
∞, see Lemma 3.10, and the assertion follows from (i).

Proof of Theorem 3.13. Because the proof is very similar to the proof of Theorem 3.6, we omit
it. We also refer to the proof of Theorem 6 by Christmann et al. (2009) for details. The uniqueness
of fL⋆,P,λ follows immediately from Theorem 3.12(ii), because the boundedness of k guarantees
‖f‖∞ ≤ ‖k‖∞ ‖f‖H , see (3.5).

Before we can prove Theorem 5.3, we need the following results.

Lemma 7.7. Let the Assumptions 2.1, 3.2, and 4.1 be satisfied. Let fL⋆,P,λ ∈ H be any fixed
minimizer of minf∈H

(

RL⋆,P(f) + λ‖f‖2H
)

. Then we have, for any g ∈ H,

EP2

[

D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

g(X)

+D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

g(X̃)

]

+ 2λ〈fL⋆,P,λ, g〉H = 0.

Proof of Lemma 7.7. Because L⋆ and λ are fixed, we write fP := fL⋆,P,λ to shorten the notation
in the proof. Let g ∈ H. We define a continuous function

G̃ : [−1, 1] → R, G̃(t) = RL⋆,P(fP + tg) + λ‖fP + tg‖2H . (7.9)

Recall that the partial derivatives of L and L⋆ w.r.t. to the last two arguments are identical because
L and L⋆ differ only by the term L(x, y, x̃, ỹ, 0, 0). Observe that for t 6= 0,

G̃(t)− G̃(0)

t
=

∫

(X×Y)2

1

t

(

L (x, y, x̃, ỹ, fP(x) + tg(x), fP(x̃) + tg(x̃))

−L (x, y, x̃, ỹ, fP(x), fP(x̃))

)

dP2(x, y, x̃, ỹ)

+2λ〈fP, g〉H + t‖g‖2H .
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By the separate Lipschitz continuity of L, the absolute value of the above integrand is bounded by

|L|1 (|g(x)| + |g(x̃)|) ≤ 2|L|1‖g‖∞ < ∞ .

Also, for any (x, y), (x̃, ỹ) ∈ X × Y, we have

lim
t→0

1

t

(

L
(

x, y, x̃, ỹ, fP(x) + tg(x), fP(x̃) + tg(x̃)
)

− L
(

x, y, x̃, ỹ, fP(x), fP(x̃)
)

)

= D5L
(

x, y, x̃, ỹ, fP(x), fP(x̃)
)

g(x) +D6L
(

x, y, x̃, ỹ, fP(x), fP(x̃)
)

g(x̃).

An application of Lebesgue’s dominated convergence theorem yields

lim
t→0

G̃(t)− G̃(0)

t
=

∫

(X×Y)2

(

D5L
(

x, y, x̃, ỹ, fP(x), fP(x̃)
)

g(x)

+D6L
(

x, y, x̃, ỹ, fP(x), fP(x̃)
)

g(x̃)

)

dP2(x, y, x̃, ỹ)

+2λ〈fP, g〉H .

Since G̃(t) − G̃(0) ≥ 0 for any t by definition of G̃, we know that the term on the right hand of
the above equality is greater or equal to 0. This inequality is also true for the function −g. So the
desired identity follows.

Definition 7.8. We define the local modulus of continuity for the second order derivatives of a
pairwise loss function L with respect to the last two variables as

ω(h)r := sup

{

∣

∣

∣
DiDjL

(

x, y, x̃, ỹ, f, f̃
)

−DiDjL
(

x, y, x̃, ỹ, g, g̃
)

∣

∣

∣
: x, x̃ ∈ X ,

y, ỹ ∈ Y, f, f̃ , g, g̃ ∈ [−r, r], |f − g| ≤ h, |f̃ − g̃| ≤ h, i, j ∈ {5, 6}
}

(7.10)

where h, r > 0.

If the sets X and Y are bounded, the continuity of the second order derivatives of L implies that
limh→0 ω(h)r = 0 uniformly with respect to r > 0.

Let P,Q ∈ M((X × Y)2) and ε ∈ R. Define the signed measure Pε := (1 − ε)P + εQ. Note that
Pε is a probability distribution if ε ∈ [0, 1].

The key property we need to prove Theorem 5.3 is formulated in the following result.

Theorem 7.9. Let L satisfy the Assumptions 2.1, 3.2, 4.1, and 4.2. If limh→0 ω(h)r = 0 for any
fixed r > 0, then the function G : R×H → H defined by

G(ε, f) = 2λf + EP2
ε

[

D5L(X,Y, X̃, Ỹ , f(X), f(X̃))Φ(X)

+D6L(X,Y, X̃, Ỹ , f(X), f(X̃))Φ(X̃)
]

is continuously differentiable. Moreover, ∂G
∂H (0, f) is invertible for any f ∈ H.

Proof of Theorem 7.9. By Theorem 7.3, we only need to show that the partial derivatives ∂G
∂ε

and ∂G
∂H are continuous.

To shorten the notation in the proof, we denote the random functions D5L
(

X,Y, X̃, Ỹ , f(X), f(X̃)
)

by D5Lf and D6L
(

X,Y, X̃, Ỹ , f(X), f(X̃)
)

by D6Lf , respectively. Analogously we denote second
order partial derivatives of L by DiDjLf , where i, j ∈ {5, 6}.
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Note that for ε ∈ R and f ∈ H,

∂G

∂ε
(ε, f) = −2(1− ε)EP⊗P

(

D5LfΦ(X) +D6LfΦ(X̃)
)

(7.11)

+(1− 2ε)EP⊗Q

(

D5LfΦ(X) +D6LfΦ(X̃)
)

+(1− 2ε)EQ⊗P

(

D5LfΦ(X) +D6LfΦ(X̃)
)

+2εEQ⊗Q

(

D5LfΦ(X) +D6LfΦ(X̃)
)

.

Then for ε, ε̃ ∈ R and f, f̃ ∈ H, we have

∂G

∂ε
(ε, f)− ∂G

∂ε
(ε̃, f̃) =

(

∂G

∂ε
(ε, f)− ∂G

∂ε
(ε, f̃)

)

+

(

∂G

∂ε
(ε, f̃)− ∂G

∂ε
(ε̃, f̃)

)

=: ∂G1 + ∂G2.

Here

∂G1 = −2(1 − ε)EP⊗P

[

(

D5Lf −D5Lf̃

)

Φ(X) +
(

D6Lf −D6Lf̃

)

Φ(X̃)
]

+(1− 2ε)EP⊗Q

[

(

D5Lf −D5Lf̃

)

Φ(X) +
(

D6Lf −D6Lf̃

)

Φ(X̃)
]

+(1− 2ε)EQ⊗P

[

(

D5Lf −D5Lf̃

)

Φ(X) +
(

D6Lf −D6Lf̃

)

Φ(X̃)
]

+2εEQ⊗Q

[

(

D5Lf −D5Lf̃

)

Φ(X) +
(

D6Lf −D6Lf̃

)

Φ(X̃)
]

.

Applying (3.6) and (4.2) yield

‖∂G1‖H ≤ (2|1 − ε|+ 2|1− 2ε|+ 2|ε|) · 2 ·
(

‖k‖∞ · 2 · cL,2‖k‖∞‖f − f̃‖H
)

.

Moreover,

∂G2 = 2(ε− ε̃)EP⊗P

[

D5Lf̃Φ(X) +D6Lf̃Φ(X̃)
]

+2(ε̃− ε)EP⊗Q

[

D5Lf̃Φ(X) +D6Lf̃Φ(X̃)
]

+2(ε̃− ε)EQ⊗P

[

D5Lf̃Φ(X) +D6Lf̃Φ(X̃)
]

+2(ε− ε̃)EQ⊗Q

[

D5Lf̃Φ(X) +D6Lf̃Φ(X̃)
]

.

Hence by (4.1) we have
‖∂G2‖H ≤ 8 · 2 · |ε− ε̃|cL,1‖k‖∞.

Thus
∥

∥

∥

∥

∂G

∂ε
(ε, f)− ∂G

∂ε
(ε̃, f̃)

∥

∥

∥

∥

H

≤ (4 + 8|ε|) 4‖k‖2∞cL,2‖f − f̃‖H + 16cL,1‖k‖∞|ε− ε̃|.

This proves the continuity of the partial derivative ∂G
∂ε .

The other partial derivative ∂G
∂H can be expressed with ε ∈ R and f ∈ H as

∂G

∂H
(ε, f) = 2λidH + EPε⊗Pε

[

D5D5LfΦ(X)⊗ Φ(X) +D6D5LfΦ(X)⊗ Φ(X̃)

+D5D6LfΦ(X̃)⊗ Φ(X) +D6D6LfΦ(X̃)⊗ Φ(X̃)

]

.
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To prove its continuity, we consider first the following difference with f̃ ∈ H

∂G

∂H
(ε, f)− ∂G

∂H
(ε, f̃ )

= EPε⊗Pε

[

D5

(

D5Lf −D5Lf̃

)

Φ(X)⊗ Φ(X) +D6

(

D5Lf −D5Lf̃

)

Φ(X)⊗Φ(X̃)

+D5

(

D6Lf −D6Lf̃

)

Φ(X̃)⊗ Φ(X) +D6

(

D6Lf −D6Lf̃

)

Φ(X̃)⊗ Φ(X̃)

]

.

By the definition of the local modulus of continuity for the second order derivatives of L, see
Definition 7.8, and the bound ‖Φ(X̃) ⊗ Φ(X̃)‖L(H,H) ≤ ‖k‖2∞, if f, f̃ ∈ {g ∈ H : ‖g‖H ≤ r} , we
obtain the bound

∥

∥

∥

∥

∂G

∂H
(ε, f)− ∂G

∂H
(ε, f̃)

∥

∥

∥

∥

L(H,H)

≤ 4‖k‖2∞ω(‖k‖∞‖f − f̃‖H)r‖k‖∞ .

The second difference we need to consider is the following sum of four terms, where the integrands
are the same but the factors and the probability measures differ:

∂G

∂H
(ε, f̃)− ∂G

∂H
(ε̃, f̃)

= (ε̃− ε)(2− ε̃− ε)EP⊗P

[

D5D5LfΦ(X)⊗ Φ(X) +D6D5LfΦ(X)⊗ Φ(X̃)

+D5D6LfΦ(X̃)⊗ Φ(X) +D6D6LfΦ(X̃)⊗ Φ(X̃)

]

+(ε− ε̃)(1− ε̃− ε)EP⊗Q

[

D5D5LfΦ(X)⊗ Φ(X) +D6D5LfΦ(X)⊗ Φ(X̃)

+D5D6LfΦ(X̃)⊗ Φ(X) +D6D6LfΦ(X̃)⊗ Φ(X̃)

]

+(ε− ε̃)(1− ε̃− ε)EQ⊗P

[

D5D5LfΦ(X)⊗ Φ(X) +D6D5LfΦ(X)⊗ Φ(X̃)

+D5D6LfΦ(X̃)⊗ Φ(X) +D6D6LfΦ(X̃)⊗ Φ(X̃)

]

+(ε− ε̃)(ε̃+ ε)EQ⊗Q

[

D5D5LfΦ(X)⊗ Φ(X) +D6D5LfΦ(X)⊗ Φ(X̃)

+D5D6LfΦ(X̃)⊗ Φ(X) +D6D6LfΦ(X̃)⊗ Φ(X̃)

]

.

Let ε, ε̃ ∈ [−1,+1]. Then assumption (4.2) and the bound ‖Φ(X̃)⊗Φ(X̃)‖L(H,H) ≤ ‖k‖2∞ yield the
following inequality for the norm of this difference:

∥

∥

∥

∥

∂G

∂H
(ε, f̃)− ∂G

∂H
(ε̃, f̃)

∥

∥

∥

∥

L(H,H)

≤ 4cL,2‖k‖2∞|ε− ε̃| (4 + 4|ε| + 4|ε̃|) .

Thus we have
∥

∥

∥

∥

∂G

∂H
(ε, f)− ∂G

∂H
(ε̃, f̃)

∥

∥

∥

∥

L(H,H)

≤ 4‖k‖2∞ω(‖k‖∞‖f − f̃‖H)r‖k‖∞ + 4cL,2‖k‖2∞|ε− ε̃| (4 + 4|ε| + 4|ε̃|) .

Then the continuity of the partial derivative ∂G
∂H follows. This proves the continuous differentiability

of G.
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Let f ∈ H. Consider the linear operator ∂G
∂H (0, f). It can be expressed as

∂G

∂H
(0, f) (7.12)

= 2λidH + EP⊗P

[

D5D5LfΦ(X)⊗ Φ(X) +D6D5LfΦ(X)⊗ Φ(X̃)

+D5D6LfΦ(X̃)⊗ Φ(X) +D6D6LfΦ(X̃)⊗ Φ(X̃)
]

.

It is important to note that by Assumption 4.1 L is a twice continuously differentiable pairwise
loss function which implies that

D6D5Lf = D5D6Lf , f ∈ H.

Hence for any g, g̃ ∈ H, the following holds

〈 ∂G

∂H
(0, f)(g), g̃

〉

H

= 2λ〈g, g̃〉H + EP⊗P

[

D5D5Lf g(X)g̃(X)

+D6D5Lf

(

g(X)g̃(X̃) + g(X̃)g(X̃)
)

+D6D6Lf g(X̃)g̃(X̃)

]

.

So the linear operator ∂G
∂H (ε, f̃)(0, f) is symmetric. Hence its spectrum lies in the closed interval

[a, b] where

a := inf
‖g‖H=1

〈 ∂G

∂H
(0, f)(g), g

〉

H
, b := sup

‖g‖H=1

〈 ∂G

∂H
(0, f)(g), g

〉

H
.

Now, L is a convex pairwise loss function due to Assumption 4.2. Therefore, we obtain, for any
g ∈ H,

〈 ∂G

∂H
(0, f)(g), g

〉

H
≥ 2λ‖g‖2H .

Hence, a ≥ 2λ > 0. This shows that the operator ∂G
∂H (ε, f̃)(0, f) is invertible.

We are now ready for the

Proof of Theorem 4.3. We will first prove part (i) using Lemma 7.7. Let P ∈ M1(X × Y).
Fix some ξ ∈ X and define gξ := Φ(ξ) = k(·, ξ) ∈ H. By the reproducing property (3.4) of the
kernel k, we have

〈fL⋆,P,λ, gξ〉H = 〈fL⋆,P,λ,Φ(ξ)〉H = fL⋆,P,λ(ξ). (7.13)

Obviously, we also have gξ(x) = Φ(ξ)(x) = k(x, ξ) and gξ(x̃) = Φ(ξ)(x̃) = k(x̃, ξ) for all x, x̃ ∈ X .
Note that the partial derivatives of L and of L⋆ with respect of the last two arguments are identical,
because L and its shifted version L⋆ differ only by the term L(x, y, x̃, ỹ, 0, 0) which is independent
of f ∈ H. Therefore, Lemma 7.7 yields for the function gξ ∈ H the equality

0 = EP2

[

D5L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

gξ(X)

+D6L
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

gξ(X̃)
]

+ 2λ〈fL⋆,P,λ, gξ〉H
= EP2

[

h5,P(X,Y, X̃, Ỹ )k(X, ξ) + h6,P(X,Y, X̃, Ỹ )k(X̃, ξ)
]

+ 2λfL⋆,P,λ(ξ),

where we used in the last equality the definition of h5,P and h6,P from (4.5) and (4.6), respectively,
and (7.13). From this we easily conclude that, for all ξ ∈ X ,

fL⋆,P,λ(ξ) = − 1

2λ
EP2

[

h5,P(X,Y, X̃, Ỹ )k(X, ξ) + h6,P(X,Y, X̃, Ỹ )k(X̃, ξ)
]
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which gives the assertion of part (i).

Let us now prove part (ii). As L⋆ and λ ∈ (0,∞) are fixed, we will use the abbreviations fP :=
fL⋆,P,λ and fQ := fL⋆,Q,λ in the proof. The inequality is trivial, if fP = fQ. Hence let us assume
that fP 6= fQ. Recall the following well-known inequality from convex analysis. If g : R2 → R is a
convex and total differentiable function with continuous second partial derivatives, then

g(t̃)− g(t) ≥ 〈∇g(t), t̃ − t〉R2 ∀ t, t̃ ∈ R
2,

where ∇g(t) is the gradient of g at t, see Rockafellar (1970, Thm. 25.1, p. 242) for a more general
result using subgradients. To apply this result, we define, for any fixed (x, y, x̃, ỹ) ∈ (X × Y)2,
the function g : R2 → R, where g(t1, t2) := L⋆(x, y, x̃, ỹ, t1, t2) and t := (t1, t2) ∈ R

2. For any
t̃ := (t̃1, t̃2) ∈ R

2 we thus obtain

L⋆(x, y, x̃, ỹ, t̃1, t̃2)− L⋆(x, y, x̃, ỹ, t1, t2) (7.14)

≥ D5L
⋆(x, y, x̃, ỹ, t1, t2)(t̃1 − t1) +D6L

⋆(x, y, x̃, ỹ, t1, t2)(t̃2 − t2) .

If we specialize (t1, t2) := (fP(x), fP(x̃)) and (t̃1, t̃2) := (fQ(x), fQ(x̃)), we obtain from (7.14) the
inequality

L⋆(x, y, x̃, ỹ, fQ(x), fQ(x̃))− L⋆(x, y, x̃, ỹ, fP(x), fP(x̃))

≥ D5L
⋆(x, y, x̃, ỹ, fP(x), fP(x̃))(fQ(x)− fP(x))

+D6 L
⋆(x, y, x̃, ỹ, fP(x), fP(x̃))(fQ(x̃)− fP(x̃))

= D5L(x, y, x̃, ỹ, fP(x), fP(x̃))(fQ(x)− fP(x))

+D6L(x, y, x̃, ỹ, fP(x), fP(x̃))(fQ(x̃)− fP(x̃)),

where we used in the last step that L and L⋆ differ only a term which does not dependent on the
last two arguments. By calculating the corresponding Bochner integral with respect to the product
measure Q2, it follows from the reproducing property (3.4) of k that

RL⋆,Q(fQ)−RL⋆,Q(fP) (7.15)

≥
〈

fQ − fP , EQ2

[

D5L
(

X,Y, X̃, Ỹ , fP(X), fP(X̃)
)

Φ(X)

+D6L
(

X,Y, X̃, Ỹ , fP(X), fP(X̃)
)

Φ(X̃)
]〉

H

=
〈

fQ − fP , EQ2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

〉

H
, (7.16)

where we used in the last step only the definition of h5,P and h6,P given in (4.5) and (4.6), respec-
tively. Moreover, an easy calculation shows

2λ〈fQ − fP, fP〉H + λ‖fP − fQ‖2H = λ‖fQ‖2H − λ‖fP‖2H . (7.17)

We thus obtain
〈

fQ − fP,EQ2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

+ 2λfP

〉

H

+λ‖fP − fQ‖2H (7.18)

(7.16),(7.15)

≤ RL⋆,Q(fQ)−RL⋆,Q(fP) + 2λ〈fQ − fP, fP〉H + λ‖fP − fQ‖2H
(7.17)
= RL⋆,Q(fQ)−RL⋆,Q(fP) + λ‖fQ‖2H − λ‖fP‖2H
= Rreg

L⋆,Q,λ(fQ)−Rreg
L⋆,Q,λ(fP) ≤ 0, (7.19)
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where the term on the left hand side of (7.19) is less than or equal to zero, because the regularized
risk with respect to Q is minimized for fQ. Recall that we have

2λfP = −EP2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

(7.20)

due to (4.4) in the first part of the representer theorem. If we combine these two facts with the
Cauchy-Schwarz inequality we obtain from (7.18) that

λ‖fP − fQ‖2H
≤ −

〈

fQ − fP , EQ2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

+ 2λfP

〉

H

=
〈

fP − fQ , EQ2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

+ 2λfP

〉

H

(7.20)
=

〈

fP − fQ , EQ2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

− EP2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

〉

H

C.−S.
≤ ‖fP − fQ‖H ·

∥

∥

∥
EQ2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

− EP2

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

∥

∥

∥

H
.

After multiplication with 1/
(

λ‖fP−fQ‖H
)

, which is allowed since fP 6= fQ, we immediately obtain
the assertion.

Proof of Theorem 5.1. The proof only needs some elementary arguments. For brevity let us
use the notation Pε := (1 − ε)P + εP̄, fP := fL⋆,P,λ, fQ := fL⋆,Q,λ, fPε := fL⋆,Pε,λ, and Lf :=
L(X,Y, X̃, Ỹ , f(X), f(X̃)), f ∈ H. Denote f0 := 0 ∈ H. Because L ∈ [0, c] and λ‖f0‖2H = 0, we
immediately obtain, for all P ∈ M1(Z),

0 ≤ Rreg(P) = inf
f∈H

(

∫

Lf dP
2 + λ‖f‖2H

)

≤
∫

Lf0 dP
2 + λ‖f0‖2H ≤ c.

Hence, there is no need to consider shifted loss functions.

Let us start with part (i). Because fQ ∈ H and L ∈ [0, c], we have Rreg(Q) =
∫

LfQ dQ2 +λ‖fQ‖2H
and Rreg(P) ≤

∫

LfQ dP2 + λ‖fQ‖2H . Therefore,

Rreg(Q)−Rreg(P) ≥
∫

LfQ dQ2 + λ‖fQ‖2H −
∫

LfQ dP2 − λ‖fQ‖2H

=

∫

LfQ dQ2 −
∫

LfQ dP2

≥ −c dTV (Q
2,P2) ≥ −2c dTV (Q,P),

where we used in the last inequality that

dTV (Q,P) ≤ dTV (Q
2,P2) ≤ 2dTV (Q,P), P,Q ∈ M1(X × Y), (7.21)

see Hoeffding and Wolfowitz (1958, p.709, (4.4) and (4.5)). Analogously, from fP ∈ H and
L(x, y, x̃, ỹ, t, t̃) ∈ [0, c], we conclude Rreg(Q) ≤

∫

LfP dQ2 + λ‖fP‖2H and Rreg(P) =
∫

LfP dP2 +
λ‖fP‖2H , which yields

Rreg(Q)−Rreg(P) ≤
∫

LfP dQ2 + λ‖fP‖2H −
∫

LfP dP2 − λ‖fP‖2H

=

∫

LfP dQ2 −
∫

LfP dP2

≤ c dTV (Q
2,P2)

(7.21)

≤ 2c dTV (Q,P).
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If we combine both inequalities, we obtain the assertion from part (i).

To part (ii). Because fPε ∈ H and L(x, y, x̃, ỹ, t, t̃) ∈ [0, c], we have Rreg(Pε) =
∫

LfPε
dP2

ε +
λ‖fPε‖2H and Rreg(P) ≤

∫

LfPε
dP2 + λ‖fPε‖2H . Therefore,

Rreg(Pε)−Rreg(P)

≥
∫

LfPε
dP2

ε −
∫

LfPε
dP2

=

∫ ∫

LfPε
d((1 − ε)P + εP̄) d((1 − ε)P + εP̄)−

∫ ∫

LfPε
dP dP

=
(

(1− ε)2 − 1
)

∫ ∫

LfPε
dP dP + ε(1 − ε)

∫ ∫

LfPε
dP dP̄

+ε(1− ε)

∫ ∫

LfPε
dP̄ dP + ε2

∫ ∫

LfPε
dP̄ dP̄

= ε

(
∫ ∫

LfPε
dP dP̄ +

∫ ∫

LfPε
dP̄ dP− 2

∫ ∫

LfPε
dP dP

)

+ε2
(
∫ ∫

LfPε
dP dP +

∫ ∫

LfPε
dP̄ dP̄−

∫ ∫

LfPε
dP̄ dP−

∫ ∫

LfPε
dP dP̄

)

= ε

(
∫

[
∫

LfPε
dP

]

d
(

P̄− P
)

+

∫
[
∫

LfPε
d
(

P̄− P
)

]

dP

)

+ε2
(
∫

[
∫

LfPε
dP

]

d
(

P− P̄
)

+

∫
[
∫

LfPε
dP̄

]

d
(

P̄− P
)

)

(∗)

≥ −2c dTV (P̄,P)ε− 2c dTV (P̄,P)ε
2

= −2c dTV (P̄,P)ε(1 + ε),

where we used in (*) that
∫

LfQ dQ ≤ c for all Q ∈ M1(X × Y). Because fP ∈ H and L(x, y, x̃, ỹ, t, t̃) ∈
[0, c], we have Rreg(Pε) ≤

∫

LfP dP2
ε+λ‖fP‖2H andRreg(P) =

∫

LfP dP2+λ‖fP‖2H . Hence, we obtain
with the same argumentation as given above that

Rreg(Pε)−Rreg(P) ≤ 2c dTV (P̄,P)ε(1 + ε).

The combination of both inequalities yields the assertion.

Proof of Theorem 5.3. The proof uses similar arguments than the proof of Theorem 15 in
Christmann and Steinwart (2007).

Partial derivatives of L with respect to the fifth or sixt argument are denoted by D5L or D6L,
respectively. In the same manner we denote partial derivatives of L of order two by DiDjL, where
i, j ∈ {5, 6}. Recall that due to (3.22), DiL

⋆ = DiL and DiDjL
⋆ = DiDjL for i, j ∈ {5, 6}.

Fix Q ∈ M1(X × Y) and λ ∈ (0,∞). Define Pε := (1− ε)P + εQ and denote the product measure
Pε ⊗ Pε by P2

ε.

The function G : R×H → H defined by

G(ε, f) := 2λf + EP2
ε

[

D5L(X,Y, X̃, Ỹ , f(X), f(X̃))Φ(X)

+D6L(X,Y, X̃, Ỹ , f(X), f(X̃))Φ(X̃)
]

,

where ε ∈ R and f ∈ H, plays a key role in the proof. Since k is bounded by Assumption 3.2, we
have ‖f‖∞ < ∞ for all f ∈ H, see (3.5). Additionally the partial derivatives D5L and D6L are
continuous and uniformly bounded by Assumption 4.1. Hence we obtain by using ‖

∫

f dP‖H ≤
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∫

‖f‖H dP and (3.7), that, for all ε ∈ R and all f ∈ H,

‖G(ε, f)‖H
≤ 2λ ‖f‖H

+

∫

(X×Y)2

(

(

|D5L(x, y, x̃, ỹ, f(x), f(x̃)|+ |D6L(x, y, x̃, ỹ, f(x), f(x̃))|
)

·

· sup
x∈X

‖Φ(x)‖H
)

dP2
ε(x, y, x̃, ỹ)

(3.6)
≤ 2λ ‖f‖H + 2cL,1 · ‖k‖∞ < ∞ .

Therefore, the map G is well-defined and bounded with respect to the H-norm. Due to (3.5) we
have

‖G(ε, f)‖∞ ≤ 2
(

λ ‖f‖H + cL,1 · ‖k‖∞
)

‖k‖∞ < ∞ .

Note that for ε 6∈ [0, 1] the H-valued Bochner integral is with respect to a signed measure. Now for
ε ∈ [0, 1] we obtain by using Lemma 2.14 that

G(ε, f) =
∂(RL⋆,Pε(·) + λ‖ · ‖2H)

∂H
(f) . (7.22)

Since the map f 7→ RL⋆,Pε(f) + λ‖f‖2H is strictly convex for all ε ∈ [0, 1] due to Lemma 2.12 and
is continuous, equation (7.22) shows that we have G(ε, f) = 0 if and only if f = fL⋆,Pε,λ for such
ε. Our aim is to show the existence of a differentiable function ε 7→ fε defined on a small interval
(−δ, δ) for some δ > 0 that satisfies G(ε, fε) = 0 for all ε ∈ (−δ, δ). Once we have shown the
existence of this function we immediately obtain

S′
G(P)(Q) =

∂fε
∂ε

(0) . (7.23)

For the existence of this map ε 7→ fε we have to check by the implicit function theorem (cf.
Theorem 7.4) that G is continuously differentiable and that ∂G

∂H (0, fP,λ) is invertible. However,
these properties of G were shown in Theorem 7.9. Hence we can apply Theorem 7.4 on implicit
functions to see that the map ε 7→ fε is differentiable on a small non-empty interval (−δ, δ).
Therefore, we obtain

S′
G(P)(Q)

(7.23)
=

∂fε
∂ε

(0)

(7.1)
= −

(

∂G

∂H
(0, fL⋆,P,λ)

)−1

◦ ∂G

∂ε
(0, fL⋆,P,λ)

(7.11), (7.12)
= −M(P)−1T (Q;P) ,

which yields the assertion.

Proof of Corollary 5.4. The proof follows immediately by specifying Q to the Dirac-measure
δ(x0,y0) in Theorem 5.3.

Proof of Theorem 5.6. We will first prove part (i). Let P ∈ M1(X × Y) be fixed. Because L⋆

and λ are fixed, we will use again the shorter notations

hi,P(X,Y, X̃, Ỹ ) := DiL
⋆
(

X,Y, X̃, Ỹ , fL⋆,P,λ(X), fL⋆,P,λ(X̃)
)

, i ∈ {5, 6},

in the proof, see (4.5) and (4.6).

Let Pn ∈ M1(X × Y), n ∈ N, be a weakly convergence sequence with limit P, i.e. Pn  P. We
know from (5.11) that Pn  P is equivalent to dBL(Pn,P) → 0, where dBL denotes the bounded
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Lipschitz metric, because X × Y is separable by Assumption 2.1. Hence the metric space (X × Y)2
is separable, too. The separability guarantees that

Pn  P ⇐⇒ P2
n  P2 (n → ∞), (7.24)

see Billingsley (1999, Thm. 2.8 (ii), p. 23). Note that P2
n  P2 guarantees by definition the conver-

gence
∫

g dP2
n →

∫

g dP2 for all continuous and bounded real-valued functions g : (X × Y)2 → R.
However, we will need a corresponding convergence result of Bochner integrals where the integrand
is a special H-valued function.

The second part of Theorem 4.3 (representer theorem) yields

‖S(Pn)− S(P)‖H := ‖fL⋆,Pn,λ − fL⋆,P,λ‖H (7.25)

(4.7)

≤ 1

λ

∥

∥

∥

∫

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

dP2
n (7.26)

−
∫

[

h5,P(X,Y, X̃, Ỹ )Φ(X) + h6,P(X,Y, X̃, Ỹ )Φ(X̃)
]

dP2
∥

∥

∥

H
,

where Φ(X) = k(·,X) and Φ(X̃) = k(·, X̃). Because k is continuous and bounded by Assumption
3.2, the canonical feature map Φ is continuous and bounded, too, see e.g. Steinwart and Christmann
(2008, Lemma 4.23, Lemma 4.29). Furthermore, because the shifted loss function L⋆ is by As-
sumption 4.1 twice continuously differentiable and the partial derivatives are uniformly bounded,
it follows that, for every fixed P ∈ M1(X × Y) and every fixed λ ∈ (0,∞), the function

ΨP :
(

(X × Y)2, d(X×Y)2
)

→ (H, dH),

ΨP(x, y, x̃, ỹ) := h5,P(x, y, x̃, ỹ)Φ(x) + h6,P(x, y, x̃, ỹ)Φ(x̃) (7.27)

is continuous and bounded, where dH(·, ·) := ‖ ·− · ‖H . We mention that the H-valued function ΨP

does not depend on Pn. Because ΨP is continuous and bounded, we obtain from Bourbaki (2004,
p. III.40) the following convergence result for Bochner integrals:

P2
n  P2 =⇒ lim

n→∞

∫

ΨP dP2
n =

∫

ΨP dP2 , (7.28)

see also Hable and Christmann (2011, Thm. A.1, p. 1000). Combining (7.24)–(7.28), we obtain
that Pn  P, which is equivalent to dBL(Pn,P) → 0 by (5.11), implies ‖S(Pn) − S(P)‖H → 0,
which is the assertion of part (i).

The proof of the second part follows immediately from part (i) and the fact that the inclusion
id : H → Cb(X ) is continuous and bounded, see e.g. Steinwart and Christmann (2008, Lemma
4.28).

Proof of Corollary 5.7. Let (Dn,m)m∈N be a sequence in (X × Y)n which converges to some
Dn,0 ∈ (X × Y)n, if m → ∞. Then, the corresponding sequence of empirical measures weakly
converges, i.e. Dn,m  Dn,0, if m → ∞. Therefore, the assertion follows from Theorem 5.6 and
fL⋆,Dn,λ = Sn(Dn).

Proof of Theorem 5.5. Fix λ ∈ (0,∞). We will first prove part (i). For any Dn ∈ (X × Y)n
denote its empirical measure by Dn := 1

n

∑n
i=1 δ(xi,yi). According to Corollary 5.7, the functions

Sn :
(

(X × Y)n, d(X×Y)n
)

→ (H, dH), Sn(Dn) = fL⋆,Dn,λ

are continuous and therefore measurable with respect to the corresponding Borel-σ-algebras for
every n ∈ N. The mapping

S :
(

M1(X × Y), dBL

)

→ (H, dH), S(P) = fL⋆,P,λ, (7.29)
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is a continuous operator due to Theorem 5.6. Furthermore,

Sn(Dn) = S(Dn) ∀ Dn ∈ (X × Y)n ∀ n ∈ N.

Because X is a separable metric space and the kernel k is continuous, the RKHSH of k is separable,
see e.g. Steinwart and Christmann (2008, Lemma 4.33, p. 130). Hence (H, dH) is a complete and
separable metric space.

Therefore, the sequence of RPL estimators (fL⋆,Pn,λ)n∈N, where Pn := 1
n

∑n
i=1 δ(Xi,Yi), is qualita-

tively robust for all Borel probability measures P ∈ M1(X × Y) according to Cuevas (1988, Thm.
2), which states: If (Sn)n∈N is any sequence of estimators which can be represented via a continuous
operator S, which maps each probability measure P to a value in a complete and separable metric
space and satisfies (in our notation) Sn(Dn) = S(Dn), is qualitatively robust for all P. Hence the
assertion of part (i) is shown.

Let us now prove part (ii). It follows from the first part of Theorem 5.6, that the operator
S defined in (7.29) is continuous for all P ∈ M1(X × Y). Hence all conditions of Assumption
16.3 in Christmann et al. (2013) are satisfied, because Z := X × Y is a compact metric space
by assumption of Theorem 5.5(ii) and W := H is a complete and separable metric space due to
the continuity of k by Assumption 3.2, e.g. Steinwart and Christmann (2008, Lemma 4.33, p.
130). Hence, Corollary 16.1 by Christmann et al. (2013) is applicable and immediately yields the
assertion. We like to note that the compactness of the metric space Z was used in the proof
of the above mentioned Corollary 16.1 to show that the continuous operator S is even uniformly
continuous for all P ∈ M1(Z ).
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