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Abstract

We prove that the Davenport-Mahler bound holds for arbitrary graphs with vertices on the set of roots
of a given univariate polynomial with complex coefficients.

Introduction

The Davenport-Mahler bound is a lower bound for the product of the lengths of the edges on a graph whose
vertices are the complex roots of a given univariate polynomial P ∈ C[X], under certain assumptions. Its
origins are the work of Mahler ([10]), where a lower bound for the minimum separation between two roots
of P in terms of the discriminant of P is given, and the work of Davenport (see [2, Proposition 8]), where
for the first time a lower bound for the joint product of many different distances between roots of P (which
is not simply the product of a lower bound for each distance) is obtained. Roughly speaking, this bound
makes evident an interaction between the involved distances, in the sense that if some of them are very
small, the rest cannot be that small.

Throughout the literature, there are different versions of this bound. We include here the one from [5,
Theorem 3.1] (see also [7, 12]). First, we remind the definitions of discriminant and Mahler measure (see
also [1, 11]).

Definition 1 Let P ∈ C[X], P (X) = ad
∏d
i=1(X − vi), the discriminant of P is

Disc(P ) = a2d−2
d

∏
i<j

(vi − vj)2.

Definition 2 Let P ∈ C[X], P (X) = ad
∏d
i=1(X − vi), the Mahler measure of P is

M(P ) = |ad|
d∏
i=1

max{1, |vi|}.
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Theorem 3 (Davenport-Mahler bound) Let P ∈ C[X] be a polynomial of degree d. Let G = (V,E) be
a directed graph whose vertices {v1, . . . , vk} are a subset of the roots of P such that:

1. if (vi, vj) ∈ E, then |vi| ≤ |vj |,

2. G is acyclic,

3. the in-degree of any vertex is at most 1.

Then ∏
(vi,vj)∈E

|vi − vj | ≥ |Disc(P )|1/2 M(P )−(d−1)
( d√

3

)−#E
d−d/2,

where Disc(P ) and M(P ) are the discriminant and the Mahler measure of P .

Note that when P is not a square-free polynomial, the bound becomes trivial since Disc(P ) vanishes. One
way to manage this situation is to consider the square-free part of P as in [6, Theorem 1]. Another way
suggested by Eigenwillig ([4, Theorem 3.9]) is through the use of subdiscriminants, whose definition we recall
below. This statement is nowadays known as the Generalized Davenport-Mahler bound.

Definition 4 Let P ∈ C[X], P (X) = ad
∏d
i=1(X − vi), for 1 ≤ r ≤ d, the (d− r)-subdiscriminant of P is

sDiscd−r(P ) = a
2(r−1)
d

∑
I⊆{1,··· ,d}

#I=r

∏
j,k∈I
j<k

(vj − vk)2.

Theorem 5 (Generalized Davenport-Mahler bound) Let P ∈ C[X] be a polynomial of degree d with
exactly r distinct complex roots. Let G = (V,E) be a directed graph whose vertices {v1, . . . , vk} are a subset
of the roots of P such that:

1. if (vi, vj) ∈ E, then |vi| ≤ |vj |,

2. G is acyclic,

3. the in-degree of any vertex is at most 1.

Then ∏
(vi,vj)∈E

|vi − vj | ≥ |sDiscd−r(P )|1/2 M(P )−(r−1)
( r√

3

)−#E
r−r/2

(1

3

)min{d,2d−2r}/6
.

It is clear that if P is a square-free polynomial, then r = d and the bound by Eigenwillig is exactly the
classical Davenport-Mahler bound. In the general case, as seen in [1, Remark 4.6], sDiscd−r(P ) is the first
subdiscriminant of P which is different from zero.

One of the main applications of the Davenport-Mahler bound in both its classical and generalized version is
its use in algorithmic complexity estimation as for instance in [3, 5, 8]. It has also been used in [6] to obtain
separation bounds for roots of multivariate polynomial systems.

The main result in this paper is that the Generalized Davenport-Mahler bound holds for arbitrary graphs
(undirected, no loops, no multiple edges) with vertices on the set of roots of P . More precisely:
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Theorem 6 Let P ∈ C[X] be a polynomial of degree d with exactly r distinct complex roots. Let G = (V,E)
be a graph whose vertices {v1, . . . , vk} are a subset of the roots of P . Then∏

(vi,vj)∈E

|vi − vj | ≥ |sDiscd−r(P )|1/2 M(P )−(r−1)
( r√

3

)−#E
r−r/2

(1

3

)min{d,2d−2r}/6
.

In order to prove Theorem 6, we revisit the classical proofs and the new ingredient is the use of divided
differences to manage the cases where the assumptions in previous formulations do not hold; specially the
one about the in-degree of any vertex being at most 1 (assumption 3 ), which is the one that cannot be
satisfied by simply redirecting edges.

Finally, after proving Theorem 6, we include some remarks and applications.

1 Proof of the results

First, we recall the definition of divided differences.

Definition 7 For f : C → C and v1, . . . , vn ∈ C with vi 6= vj if 1 ≤ i < j ≤ n, the divided difference
f [v1, . . . , vn] ∈ C is defined inductively in n by

f [v1] = f(v1)

if n = 1 and

f [v1, . . . , vn] =
f [v1, . . . , vn−1]− f [v2, . . . , vn]

v1 − vn
if n > 1.

For F : C → Cm given by F (z) = (f1(z), . . . , fm(z)) and v1, . . . , vn ∈ C with vi 6= vj if 1 ≤ i < j ≤ n, the
divided difference F [v1, . . . , vn] is defined as

F [v1, . . . , vn] = (f1[v1, . . . , vn], . . . , fm[v1, . . . , vn]) ∈ Cm.

The only properties we will use concerning divided differences are stated in the next two lemmas. We
refer the reader to [9, Chapter 6] for further properties of divided differences and their use in polynomial
interpolation.

Lemma 8 For F : C → Cm and v1, . . . , vn ∈ C with vi 6= vj if 1 ≤ i < j ≤ n, F [v1, . . . , vn] is the linear
combination of F (v1), . . . , F (vn) given by

F [v1, . . . , vn] =
n∑
h=1

( n∏
k=1
k 6=h

1

vh − vk

)
F (vh).

Proof: We proceed by induction on n. For n = 1 the identity is obvious. For the inductive step we proceed
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as follows:

F [v1, . . . , vn+1] =

F [v1, . . . , vn]− F [v2, . . . , vn+1]

v1 − vn+1
=

( n+1∏
k=2

1

v1 − vk

)
F (v1) +

1

v1 − vn+1

n∑
h=2

( n∏
k=1
k 6=h

1

vh − vk
−

n+1∏
k=2
k 6=h

1

vh − vk

)
F (vh) +

( n∏
k=1

1

vn+1 − vk

)
F (vn+1) =

n+1∑
h=1

( n∏
k=1
k 6=h

1

vh − vk

)
F (vh).

�

Lemma 9 For p ∈ N0, f : C→ C given by f(z) = zp, and v1, . . . , vn ∈ C with vi 6= vj if 1 ≤ i < j ≤ n,

f [v1, . . . , vn] =


∑

(t1,...,tn)∈Nn0
t1+···+tn=p−n+1

n∏
j=1

v
tj
j if n ≤ p+ 1,

0 if n ≥ p+ 2.

Proof: We fix p and we proceed by induction on n. For n = 1 the identity is obvious. For the inductive
step, we consider three cases. First, if n+ 1 ≤ p+ 1, then n ≤ p+ 1 and

f [v1, . . . , vn+1] =

f [v1, . . . , vn]− f [v2, . . . , vn+1]

v1 − vn+1
=

1

v1 − vn+1

( ∑
(t1,...,tn)∈Nn0

t1+···+tn=p−n+1

n∏
j=1

v
tj
j −

∑
(t2,...,tn+1)∈Nn0

t2+···+tn+1=p−n+1

n+1∏
j=2

v
tj
j

)
=

1

v1 − vn+1

( ∑
1≤t≤p−n+1

(vt1 − vtn+1)
∑

(t2,...,tn)∈Nn0
t2+···+tn=p−n+1−t

n∏
j=2

v
tj
j

)
=

∑
1≤t≤p−n+1

( ∑
(t1,tn+1)∈N20
t1+tn+1=t−1

vt11 v
tn+1

n+1

)( ∑
(t2,...,tn)∈Nn0

t2+···+tn=p−n+1−t

n∏
j=2

v
tj
j

)
=

∑
(t1,...,tn+1)∈Nn0
t1+···+tn+1=p−n

n+1∏
j=1

v
tj
j .
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If n+ 1 = p+ 2, then n = p+ 1 and

f [v1, . . . , vn+1] =

f [v1, . . . , vn]− f [v2, . . . , vn+1]

v1 − vn+1
=

1

v1 − vn+1
(1− 1) =

0.

Finally, if n+ 1 ≥ p+ 3, then n ≥ p+ 2 and

f [v1, . . . , vn+1] =

f [v1, . . . , vn]− f [v2, . . . , vn+1]

v1 − vn+1
=

1

v1 − vn+1
(0− 0) =

0.

�

We will also use the following lemma.

Lemma 10 For d, r ∈ N0 with d ≤ r − 1,(
r−1∑
i=d

(
i

d

)2
)1/2

≤
(
r − 1

d

)(
r + d

2d+ 1

)1/2

≤
( r√

3

)d
r1/2.

Proof: For the first inequality, we fix d ∈ N0 and proceed by induction on r ≥ d+ 1. For r = d+ 1 it is clear
that the equality holds. For the inductive step:

r∑
i=d

(
i

d

)2

≤

(
r − 1

d

)2 r + d

2d+ 1
+

(
r

d

)2

=

(
r

d

)2 ((r − d)2

r2

r + d

2d+ 1
+ 1

)
=

(
r

d

)2 (r2 − d2

r2

r − d
2d+ 1

+ 1

)
≤

(
r

d

)2 ( r − d
2d+ 1

+ 1

)
=

(
r

d

)2 r + d+ 1

2d+ 1
.
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For the second inequality, it can be easily seen first that the inequality holds for d = 0, 1, 2. For d ≥ 3, since

d! ≥
√

3
d
, we have that: (

r − 1

d

)
=

(r − 1) (r − 2) · · · (r − d)

d!
≤
(
r√
3

)d
and since

r + d

2d+ 1
≤ r,

the inequality holds. �

Finally, before proving our main result, we recall [4, Lemma 3.8].

Lemma 11 If m1, . . . ,mr ∈ N and
∑r

i=1mi = d, then

r∏
i=1

mi ≤ 3min{d,2d−2r}/3.

We can now give the proof of our main result.

Proof of Theorem 6: Let P (X) = ad
∏r
j=1(X − vj)mj ∈ C[X] with vi 6= vj if 1 ≤ i < j ≤ r, mi ∈ N for

1 ≤ i ≤ r. It is easy to see that the result holds if r = 1, so from now we suppose r ≥ 2. Without loss of
generality, we suppose also that V = {v1, . . . , vr} and that the roots of P are numbered in such a way that

|v1| ≤ · · · ≤ |vr|.

We give a direction to each edge in E: if e is an edge joining vi and vj with i < j, we consider e = (vi, vj) as
the oriented edge going from vi to vj . Note that now G = (V,E) satisfies conditions 1 and 2 in Theorems
3 and 5. We consider the edges in E listed by

e1 = (vα(1), vβ(1)), . . . , e#E = (vα(#E), vβ(#E)).

Finally, for 1 ≤ j ≤ r, let dj ∈ N0 be the in-degree of the vertex vj . Note that d1 = 0 since there is no edge
finishing in v1, and dj ≤ r − 1 for 1 ≤ j ≤ r.
As seen in [4, Proposition 3.7],

|sDiscd−r(P )|1/2 = |ad|r−1

 r∏
j=1

mj

1/2 ∏
1≤i<j≤r

|vi − vj |. (1)

On the other hand, ∏
1≤i<j≤r

|vi − vj | = | detW | (2)

where W is the Vandermonde matrix

W =


1 v1 . . . vr−1

1

1 v2 . . . vr−1
2

...
...

...
1 vr . . . vr−1

r

 ∈ Cr×r.
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We consider F : C → Cr, F (z) = (1, z, . . . , zr−1) and define a sequence of matrices Wr,Wr−1, . . . ,W1 in
Cr×r. First, we define Wr = W . Then, for fixed j = r, . . . , 2, once Wj is defined, we only modify its j-th
row (if any) in order to define Wj−1, as follows: we take the (possibly empty) sublist of edges ek1 , . . . , ekdj
finishing in vj and take as the j-th row of Wj−1 the divided difference

F [vα(k1), . . . , vα(kdj ), vj ] =

dj∑
i=1

( dj∏
`=1
` 6=i

1

vα(ki) − vα(k`)

) 1

vα(ki) − vj
F (vα(ki)) +

dj∏
`=1

1

vj − vα(k`)
F (vj)

by Lemma 8. Note that the j-th row of Wj equals the j-th row of W , which is F (vj); and since for 1 ≤ i ≤ dj ,
α(ki) < β(ki) = j, the α(ki)-th row of Wj equals the α(ki)-th row of W , which is F (vα(ki)). Then, we have
that

detWj−1 =

dj∏
`=1

1

vj − vα(k`)
detWj

or, equivalently,

detWj = detWj−1

dj∏
`=1

(vj − vα(k`)).

In this way, we can prove by reverse induction in j that for j = r, . . . , 2,

detW = detWj−1

∏
e∈E
β(e)≥j

(vβ(e) − vα(e)),

and at the end we obtain
detW = detW1

∏
e∈E

(vβ(e) − vα(e)). (3)

The next step is to bound |detW1| using Hadamard inequality. For 1 ≤ j ≤ r, keeping the notation of the
above paragraphs, the j-th row of W1 is F [vα(k1), . . . , vα(kdj ), vj ] and by Lemma 9 its norm equals


r−1∑
i=dj

∣∣∣ ∑
(t1,...,tdj

,tdj+1)∈N
dj+1

0
t1+···+tdj+tdj+1=i−dj

 dj∏
`=1

vt`α(k`)

 v
tdj+1

j

∣∣∣2


1/2

.

Note that for each dj ≤ i ≤ r − 1 there are
(
i
dj

)
terms. Since for 1 ≤ ` ≤ dj we have that |vα(k`)| ≤ |vj |, we
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have 
r−1∑
i=dj

∣∣∣ ∑
(t1,...,tdj

,tdj+1)∈N
dj+1

0
t1+···+tdj+tdj+1=i−dj

 dj∏
`=1

vt`α(k`)

 v
tdj+1

j

∣∣∣2


1/2

≤

 r−1∑
i=dj

(
i

dj

)2

|vj |2(i−dj)

1/2

≤

 r−1∑
i=dj

(
i

dj

)2
1/2

max{1, |vj |}r−1−dj ≤

( r√
3

)dj
r1/2 max{1, |vj |}r−1−dj

by Lemma 10. By Hadamard inequality,

|detW1| ≤

r∏
j=1

( r√
3

)dj
r1/2 max{1, |vj |}r−1−dj =

( r√
3

)#E
rr/2

r∏
j=1

max{1, |vj |}r−1−dj .

(4)

Finally, using equations (1), (2), (3), (4) and Lemma 11,∏
(vi,vj)∈E

|vi − vj | =

∏
e∈E
|vβ(e) − vα(e)| =

| detW ||det(W1)|−1 ≥

|sDiscd−r(P )|1/2 |ad|−(r−1)

 r∏
j=1

max{1, |vj |}−(r−1−dj)

( r√
3

)−#E
r−r/2

 r∏
j=1

mj

−1/2

≥

|sDiscd−r(P )|1/2 M(P )−(r−1)
( r√

3

)−#E
r−r/2

(1

3

)min{d,2d−2r}/6

as we wanted to prove. �

We include below some remarks considering cases in which the bound in Theorem 6 can be slightly improved.
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Remark 12 Following the notation in Theorem 6, for 1 ≤ j ≤ r let d̃j be the total degree of vertex vj and
let d̃ = min{d̃j | 1 ≤ j ≤ r}. If P is a monic polynomial then∏

(vi,vj)∈E

|vi − vj | ≥ |sDiscd−r(P )|1/2 M(P )−(r−1− 1
2
d̃)
( r√

3

)−#E
r−r/2

(1

3

)min{d,2d−2r}/6
.

Indeed, taking into account that |vα(e)| ≤ |vβ(e)| for every e ∈ E, we change the last part of the proof of
Theorem 6 as follows: ∏

(vi,vj)∈E

|vi − vj | =

∏
e∈E
|vβ(e) − vα(e)| =

| detW ||det(W1)|−1 ≥

|sDiscd−r(P )|1/2
 r∏
j=1

max{1, |vj |}−(r−1−dj)

(∏
e∈E

max{1, |vα(e)|}1/2

max{1, |vβ(e)|}1/2

)( r√
3

)−#E
r−r/2

 r∏
j=1

mj

−1/2

≥

|sDiscd−r(P )|1/2
 r∏
j=1

max{1, |vj |}−(r−1− 1
2
d̃j)

( r√
3

)−#E
r−r/2

(1

3

)min{d,2d−2r}/6
≥

|sDiscd−r(P )|1/2 M(P )−(r−1− 1
2
d̃)
( r√

3

)−#E
r−r/2

(1

3

)min{d,2d−2r}/6
.

The next remark considers the case where a number of small distances is guaranteed by some extra informa-
tion. More explicitly, suppose that a particular polynomial P is given, and after some computations several
pairs of “very close” roots (vα(1), vβ(1)), . . . , (vα(`), vβ(`)) are obtained, where ` ≥ #E and for 1 ≤ i ≤ `,

|vα(i) − vβ(i)| ≤
(√3

r

)1+∆i

with ∆1 ≥ · · · ≥ ∆` ≥ 0 (note that these pairs could possible have common vertices). The idea is to use
this information to improve the general bound from Theorem 6 by a factor of( r√

3

)∆#E+1+···+∆`

.

In this way, the closer the roots that have been discovered are, the more the bound is improved.

It could be particularly useful to bound the minimal distance between different roots when at least two pairs
of “very close” roots have been discovered, taking E as the set with only one edge joining a pair of closest
roots.

Remark 13 Following the notation in Theorem 6, suppose that r > 2 and that there exist at least ` distinct

pairs of roots (vα(1), vβ(1)), . . . , (vα(`), vβ(`)) whose distance is less than
√

3
r (not necessarily these pairs of

roots should be connected by edges in E). For 1 ≤ i ≤ `, let ∆i such that

|vα(i) − vβ(i)| ≤
(√3

r

)1+∆i
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and renumber these pairs such that
∆1 ≥ · · · ≥ ∆` ≥ 0.

Then, if #E < `,∏
(vi,vj)∈E

|vi − vj | ≥ |sDiscd−r(P )|1/2M(P )−(r−1)
( r√

3

)−#E+∆#E+1+···+∆`

r−r/2
(1

3

)min{d,2d−2r}/6
.

Indeed, suppose that
0 < ω1 ≤ · · · ≤ ω(r2)

are the ordered distances between pairs of roots of P . By the assumptions, for 1 ≤ i ≤ ` there are at least i

distances less than or equal to
(√

3
r

)1+∆i

and then we have that ωi ≤
(√

3
r

)1+∆i

. Consider Ẽ the set of `

edges whose lengths are ω1, . . . , ω`, this is to say, the set formed by the ` edges with smallest lengths. Then,
applying the bound in Theorem 6 to G̃ = ({v1, . . . , vr}, Ẽ) we obtain the following bound for the product of
the lengths of the edges in E: ∏

(vi,vj)∈E

|vi − vj | ≥

#E∏
i=1

ωi =

( ∏
(vi,vj)∈Ẽ

|vi − vj |
)( ∏̀

i=#E+1

ω−1
i

)
≥

|sDiscd−r(P )|1/2 M(P )−(r−1)
( r√

3

)−`
r−r/2

(1

3

)min{d,2d−2r}/6( ∏̀
i=#E+1

( r√
3

)1+∆i
)

=

|sDiscd−r(P )|1/2M(P )−(r−1)
( r√

3

)−#E+∆#E+1+···+∆`

r−r/2
(1

3

)min{d,2d−2r}/6
.

Finally, as an application of Theorem 6, we give a simplified proof of [8, Theorem 9] with smaller constants.

Theorem 14 Let P ∈ C[X] be a polynomial of degree d with exactly r ≥ 2 distinct complex roots and let
V = {v1, . . . , vr} ⊂ C be the set of roots. For any root v of P , we denote by sep(P, v) the distance from v to
(one of) its closest different root of P . Then, for any V ′ ⊂ V ,∏

v∈V ′
sep(P, v) ≥ |sDiscd−r(P )|M(P )−2(r−1)

( r√
3

)−#V ′

r−r
(1

3

)min{d,2d−2r}/3
.

Proof: For each v ∈ V , we take ṽ as (one of) its closest different root of P . We consider the multigraph
G = (V,E) where E is the multiset of edges of type (v, ṽ) with v ∈ V ′. Note that each edge in E can
occur at most 2 times (one for each of its vertex). We divide E in two sets E0 and E1, with E0 having all
the elements in E and E1 having the elements that occur twice in E. Applying Theorem 6 to (V,E0) and
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(V,E1) and taking into account that #E0 + #E1 = #V ′, we obtain∏
v∈V ′

sep(P, v) =

( ∏
(vi,vj)∈E0

|vi − vj |
)( ∏

(vi,vj)∈E1

|vi − vj |
)

≥

|sDiscd−r(P )|M(P )−2(r−1)
( r√

3

)−#V ′

r−r
(1

3

)min{d,2d−2r}/3

as we wanted to prove. �
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[11] M. Mignotte and D. Ştefănescu, Polynomials. An algorithmic approach. Springer Series in Discrete
Mathematics and Theoretical Computer Science. Springer-Verlag Singapore, Singapore; Centre for Dis-
crete Mathematics & Theoretical Computer Science, Auckland, 1999.

[12] C. Yap, Fundamental problems of algorithmic algebra. Oxford University Press, New York, 2000.

11


	Proof of the results

