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ON NON-POLYNOMIAL LOWER ERROR BOUNDS FOR ADAPTIVE

STRONG APPROXIMATION OF SDES

LARISA YAROSLAVTSEVA

Abstract. Recently, it has been shown in [9] that there exists a system of stochastic differential

equations (SDE) on the time interval [0, T ] with infinitely often differentiable and bounded

coefficients such that the Euler scheme with equidistant time steps converges to the solution of

this SDE at the final time in the strong sense but with no polynomial rate. Even worse, in [20] it

has been shown that for any sequence (an)n∈N ⊂ (0,∞), which may converge to zero arbitrary

slowly, there exists an SDE on [0, T ] with infinitely often differentiable and bounded coefficients

such that no approximation of the solution of this SDE at the final time based on n evaluations

of the driving Brownian motion at fixed time points can achieve a smaller absolute mean error

than the given number an. In the present article we generalize the latter result to the case when

the approximations may choose the location as well as the number of the evaluation sites of the

driving Brownian motion in an adaptive way dependent on the values of the Brownian motion

observed so far.

1. Introduction

Let d,m ∈ N, T ∈ (0,∞), consider a d-dimensional system of autonomous stochastic differ-
ential equations (SDE)

(1)
dX(t) = µ(X(t)) dt + σ(X(t)) dW (t), t ∈ [0, T ],

X(0) = x0

with a deterministic initial value x0 ∈ R
d, a drift coefficient µ : Rd → R

d, a diffusion coefficient
σ : Rd → R

d×m and an m-dimensional driving Brownian motion W , and assume that (1) has a

unique strong solution (X(t))t∈[0,T ]. Our computational task is to approximate X(T ) by means
of methods that use finitely many evaluations of the driving Brownian motion W . In particular
we are interested in the following question: under which assumptions on the coefficients µ and σ
exists a method of the latter type, which converges to X(T ) in absolute mean with a polynomial

rate?
It is well-known that if the coefficients µ and σ are globally Lipschitz continuous then the clas-

sical Euler scheme achieves the rate of convergence 1/2, see [26]. Moreover, the recent literature

on numerical approximation of SDEs contains a number of results on approximation schemes
that are specifically designed for non-Lipschitz coefficients and achieve polynomial convergence
rates for suitable classes of such SDEs, see e.g. [16, 12, 18, 25, 38, 35, 37, 3, 21, 4] for SDEs with

globally monotone coefficients and see e.g. [2, 8, 5, 1, 32, 17, 19, 23, 24, 33, 11] for SDEs with
possibly non-monotone coefficients.

On the other hand, it has recently been shown in [20] that for any sequence (an)n∈N ⊂ (0,∞),

which may converge to zero arbitrary slowly, there exists an SDE (1) with d = 4 and m = 1 and
1
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with infinitely often differentiable and bounded coefficients µ and σ such that no approximation

of X(T ) based on finitely many evaluations of the driving Brownian motion W converges in
absolute mean faster than the given sequence (an)n∈N. More formally,

(2) inf
s1,...,sn∈[0,T ]

inf
u : Rn→R

4

measurable

E
∥∥X(T ) − u

(
W (s1), . . . ,W (sn)

)∥∥ ≥ an.

In particular, there exists an SDE (1) with infinitely often differentiable and bounded coefficients

µ and σ such that its solution at the final time can not be approximated with a polynomial rate
of convergence based on finitely many evaluations of the driving Brownian motion W . We add
that the latter statement in the special case when the approximation is given by the Euler

scheme with equidistant time steps has first been shown in [9].
Note that the time points s1, . . . , sn ∈ [0, T ] that are used by an approximation u(W (s1), . . . ,

W (sn)) in (2) are fixed, and therefore this negative result does not cover approximations that

may choose the number as well as the location of the evaluation sites of the driving Brownian
motion W in an adaptive way, e.g. numerical schemes that adjust the actual step size according
to a criterion that is based on the values of the driving Brownian motion W observed so far,

see e.g. [6, 29, 30, 27, 34, 22, 13, 14] and the references therein. See Section 4 for the formal
definition of that type of approximations. It is well-known that for SDEs (1) with (essentially)
globally Lipschitz continuous coefficients µ and σ adaptive approximations can not achieve a

better rate of convergence compared to what is best possible for non-adaptive ones, which at
the same time coincides with the best possible rate of convergence that can be achieved by
any approximation based on W (Tn ),W (2Tn ), . . . ,W (T ), see [29, 30]. However, as has recently

turned out, this is not necessarily the case anymore if the coefficients µ and σ are not both
globally Lipschitz continuous. In [10] it has been shown that for the one-dimensional squared

Bessel process, which is the solution of the SDE (1) with d = m = µ = 1 and σ(x) = 2
√

|x|
for x ∈ R the following holds: the best possible rate of convergence that can be achieved by any

approximation based onW (Tn ),W (2Tn ), . . . ,W (T ) equals 1/2, i.e. there exist c1, c2 > 0 such that

c1 · n−1/2 ≤ inf
u : Rn→R
measurable

E
∣∣X(T )− u

(
W (Tn ),W (2Tn ), . . . ,W (T )

)∣∣ ≤ c2 · n−1/2,

while the best possible rate of convergence that can be achieved by approximations based on n
adaptively chosen evaluations of the driving Brownian motion W equals infinity. More formally,

for every α > 0 there exists c > 0 and a sequence of approximations X̂n based on n adaptively
chosen evaluations of W such that

E|X(T )− X̂n| ≤ c · n−α.

In view of the latter result one might hope that a non-polynomial lower error bound an in (2)
could be overcome by using adaptive approximations, see also the discussion in [7, p. 2]. In the

present article we prove that the pessimistic alternative is true. We show that for any sequence
(an)n∈N ⊂ (0,∞), which may converge to zero arbitrary slowly, there exists an SDE (1) with
d = 4 and m = 1 and with infinitely often differentiable and bounded coefficients µ and σ such

that no approximation based on n adaptively chosen evaluations of the driving Brownian motion
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W on average can achieve a smaller absolute mean error than the given number an, i.e.

E
∥∥X(T )− X̂n

∥∥ ≥ an

for any approximation X̂n of the latter type. This fact is an immediate consequence of Corollary

2 in Section 5 together with an appropriate scaling argument. For the proof of the latter result
we employ the same class of SDEs as in [20]. Thus, roughly speaking, these SDEs can not be
solved approximately in the strong sense in a reasonable computational time by means of any

kind of adaptive (or nonadaptive) method based on finitely many evaluations of the driving
Brownian motion W .

We conjecture that a similar negative result does even if one allows for adaptive approxima-

tions based on finitely many evaluations of arbitrary linear continuous functionals of the driving
Brownian motion W . However, in this case one can not employ the class of SDEs from [20] since
for every such SDE its solution at the final time can be approximated with error zero based on

the evaluation of only two linear continuous functionals of the driving Brownian motion W , see
(4)

We add that negative results in the spirit of (2) for quadrature problems for marginal distri-

butions of SDEs have recently been established in [31].
We briefly describe the content of the paper. In Section 2 we fix some notation. In Section 3 we

briefly introduce the class of SDEs from [20], which is studied in this article as well. In Section 4

we formally define the class of adaptive approximations, which are analysed in this article. Our
lower error bounds are stated in Section 5. The proof of the main result, Theorem 1, is carried
out in Section 6.

2. Notation

Throughout this article the following notation is used. For a set A, a vector space V , a set

B ⊆ V , and a function f : A→ B we put supp(f) = {x ∈ A : f(x) 6= 0}. For sets A, B, a function
f : A→ B and a subset E ⊆ A we denote by f |E the restriction of f to E. Moreover, for d ∈ N

and v ∈ R
d we write ‖v‖ for the Euclidean norm of v. For n ∈ N and −∞ < a < b < ∞

we denote by B(Rn) and B(C([a, b])) the Borel σ-fields on R
n and on C([a, b]), respectively,

where the latter space is equipped with the supremum norm. For S being a finite product of the
latter two spaces we denote by B(S) the Borel σ-field on S generated by the respective product

topology.

3. A family of SDEs with smooth and bounded coefficients

Throughout this article we study SDEs provided by the following setting.

Let T ∈ (0,∞), let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ], and
let W : [0, T ]× Ω → R be a standard (Ft)t∈[0,T ]-Brownian motion on (Ω,F ,P).

Let 0 < τ1 < τ2 < T and let f, g, h ∈ C∞(R) be bounded and satisfy supp(f) ⊆ (−∞, τ1],

inft∈[0,τ1/2] |f ′(t)| > 0, supp(g) ⊆ [τ1, τ2], g 6= 0, supp(h) ⊆ [τ2,∞), and
∫ T
τ2
h(t) dt 6= 0.
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For every ψ ∈ C∞(R) let µψ : R4 → R
4 and σ : R4 → R

4 be given by

µψ(x) =
(
1, 0, 0, h(x1) · cos(x2 ψ(x3))

)
,

σ(x) =
(
0, f(x1), g(x1), 0

)

and consider the following 4-dimensional system of SDEs

(3)
dXψ(t) = µψ(Xψ(t)) dt+ σ(Xψ(t)) dW (t), t ∈ [0, T ],

Xψ(0) = 0.

Remark 1. Note that for every ψ ∈ C∞(R) the functions µψ and σ are infinitely often differ-

entiable and bounded.

Remark 2. It is easy to see that for every ψ ∈ C∞(R) the SDE (3) has a unique strong solution

given by

Xψ
1 (t) = t, Xψ

2 (t) =

∫ min(t,τ1)

0
f(s) dW (s),

Xψ
3 (t) = 1[τ1, T ](t) ·

∫ min(t,τ2)

min(t,τ1)
g(s) dW (s),(4)

Xψ
4 (t) = 1[τ2, T ](t) · cos

(
Xψ

2 (τ1)ψ
(
Xψ

3 (τ2)
))

·
∫ t

τ2

h(s) ds

for all t ∈ [0, T ].

4. Adaptive strong approximations

Let δ ∈ (0, T ]. We study general strong approximations of Xψ(T ) based on (W (t))t∈[δ,T ] and
on finitely many sequential evaluations of W in the interval (0, δ). Every such approximation

X̂ : Ω → R
4 is defined by three sequences

ϕ = (ϕn)n∈N, χ = (χn)n∈N, φ = (φn)n∈N

of measurable mappings

ϕn : R
n−1 × R

[δ,T ] → (0, δ),

χn : R
n × R

[δ,T ] → {0, 1},(5)

φn : R
n × R

[δ,T ] → R
4.

The sequence ϕ determines the evaluation sites of a trajectory of W in the interval (0, δ). The

total number of evaluations is determined by the sequence χ of stopping rules. Finally, the
sequence φ is used to obtain the approximation to Xψ(T ) from the observed data.

More precisely, let ω ∈ Ω, let w = W (ω) be the corresponding trajectory of W and put

v = (w(t))t∈[δ,T ]. The sequential observation of w starts at the knot ϕ1(v). After n steps the
available information is then given by Dn(ω) = (y1, . . . , yn, v), where y1 = w(ϕ1(v)), . . . , yn =
w(ϕn(y1, . . . , yn−1, v)), and we decide whether we stop or further evaluate w according to the

value of χn(Dn(ω)). The total number of observations of w in the interval (0, δ) is thus given by

(6) ν(ω) = min{n ∈ N : χn(Dn(ω)) = 1}.
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If ν(ω) <∞, then the data Dν(ω)(ω) is used to construct the estimate φν(ω)(Dν(ω)(ω)) ∈ R
4.

For obvious reasons we require that ν < ∞ P-a.s. Then the resulting approximation is given
by

X̂ = φν(Dν).

Without loss of generality we assume that

(7) ϕk(y1, . . . , yk−1, v) 6= ϕl(y1, . . . , yl−1, v)

for all y ∈ R
∞, all k, l ∈ N with k 6= l and all v ∈ C([δ, T ]). We put

c(X̂) = Eν,

that is the expected number of evaluations of the driving Brownian motion W in the interval
(0, δ). We denote by X δ the class of all methods of the above form and for N ∈ N we put

X δ
N = {X̂ ∈ X δ : c(X̂) ≤ N}.

Clearly, X δ1
N ⊆ X δ2

N for all 0 < δ2 ≤ δ1 ≤ T and all N ∈ N.

Let us stress that the class X δ
N contains in particular all methods from the literature, which

use a step size control based on N sequential evaluations of W on average, see e.g. [6, 29, 30,
27, 34, 22, 13, 14] and the references therein. Moreover, X δ

N of course contains all nonadaptive
approximations u

(
W (s1), . . . ,W (sN ), (W (t))t∈[δ,T ]

)
based on N evaluations of W at fixed time

points s1, . . . , sN ∈ (0, δ) and on (W (t))t∈[δ,T ], as studied in [20]. In the latter case one can take
any sequences ϕ,χ and φ satisfying

ϕn = sn for n ≤ N,χ1 = . . . χN−1 = 0, χN = 1 and φN = u.

5. Main results

Assume the setting in Section 3 and put

(8) α = inf
t∈[0,τ1/2]

|f ′(t)|2, β =

∫ τ2

τ1

g2(t)dt, γ =

∫ T

τ2

h(t) dt

as well as

c1 =
γ exp

(
−π2

4 − 1
β

)

8π
√
2πβ

, c2 =
γ exp

(
−π2

4

)

4π
.

Our main result is stated in Theorem 1. It provides a uniform lower bound for the mean

absolute error of any strong approximation of Xψ(T ) that is based on (W (t))t∈[δ,T ] and on N
sequential evaluations ofW in the interval (0, δ) on average in the case that ψ is positive, strictly
increasing and satisfies limx→∞ ψ(x) = ∞ as well as 1 ∈ ψ(R). See Section 6 for the proof.

Theorem 1. Let δ ∈ (0, T ] and let ψ ∈ C∞(R) be positive, strictly increasing with limx→∞ ψ(x) =

∞ and 1 ∈ ψ(R). Then for all N ∈ N and all X̂ ∈ X δ
N we have

(9) E‖Xψ(T )− X̂‖ ≥ c1 · exp
(
− 1
β ·

(
ψ−1

((
1 +

√
96

α(min(δ,τ1/2))3

)
N3

))2)− c2
N
.
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As a consequence of Theorem 1 we obtain a non-polynomial decay of the smallest possible

mean absolute error of strong approximation of Xψ(T ) based on (W (t))t∈[δ,T ] and on N sequen-
tial evaluations of W in the interval (0, δ) on average if ψ additionally satisfies an exponential
growth condition.

Corollary 1. Let δ ∈ (0, T ] and let ψ ∈ C∞(R) be positive, strictly increasing with limx→∞ ψ(x) =

∞ and 1 ∈ ψ(R). Moreover assume that for all q ∈ (0,∞)

lim
x→∞

ψ(x) · exp(−qx2) = ∞.

Then for all q ∈ (0,∞) we have

lim
N→∞

(
N q · inf

X̂∈X δ
N

E‖Xψ(T )− X̂‖
)
= ∞.

Proof. The assumptions on the function ψ ensure that for all q ∈ (0,∞)

(10) lim
N→∞

(
N q · exp

(
− 1
β ·

(
ψ−1

((
1 +

√
96

α(min(δ,τ1/2))3

)
N3

))2))
= ∞,

see Lemma 4.5 in [20]. This in particular implies that there exists N0 ∈ N such that for all

N ≥ N0
c1
2

· exp
(
− 1
β ·

(
ψ−1

((
1 +

√
96

α(min(δ,τ1/2))3

)
N3

))2) ≥ c2
N
.

Employing Theorem 1 we therefore conclude that for all N ≥ N0

inf
X̂∈X δ

N

E‖Xψ(T )− X̂‖ ≥ c1
2

· exp
(
− 1
β ·

(
ψ−1

((
1 +

√
96

α(min(δ,τ1/2))3

)
N3

))2)
.

The latter estimate and (10) imply the statement of the corollary. �

The following result shows that the smallest possible mean absolute error of strong approxi-
mation of Xψ(T ) based (W (t))t∈[δ,T ] and on N sequential evaluations ofW in the interval (0, δN )
on average may converge to zero arbitrarily slow even then when the sequence (δN )N∈N tends

to zero with any given speed.

Corollary 2. Let (aN )N∈N ⊂ (0,∞) and (δN )N∈N ⊂ (0, T ] satisfy limN→∞ aN = 0 and

limN→∞ δN = 0. Then there exists κ > 0 and ψ ∈ C∞(R) such that for all N ∈ N we have

inf
X̂∈X

δN
N

E‖Xψ(T )− X̂‖ ≥ κ · aN .

Proof. We proceed similar to the proof of Corollary 4.3 in [20]. Without loss of generality we
may assume that the sequences (aN )N∈N and (δN )N∈N are strictly decreasing. Let

N0 = min
{
N ∈ N : aN +

c2
N

≤ c1
}

and for N ≥ N0 put

bN =
√

−β ln
(
1
c1

·
(
aN + c2

N

))
, dN =

(
1 +

√
96

α(min(δN ,τ1/2))3

)
N3.

Note that the sequences (bN )N≥N0 and (dN )N≥N0 are strictly increasing and satisfy

lim
N→∞

bN = lim
N→∞

dN = ∞.
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Define a function ψ : R → R by

ψ(x) =





dN0 ·
(
1− exp

(
1

x−bN0

))
, if x < bN0 ,

dN , if x = bN and N ≥ N0,

dN−1 +
dN − dN−1

1 + exp
(

1
x−bN−1

− 1
bN−x

) , if x ∈ (bN−1, bN ) and N > N0.

Then ψ is positive, strictly increasing, infinitely often differentiable and satisfies
limx→∞ ψ(x) = ∞ as well as 1 ∈ ψ(R).

For N ∈ N put

εN = inf
X̂∈X

δN
N

E‖Xψ(T )− X̂‖.

Theorem 1 implies that for all N ≥ N0

εN ≥ c1 · exp
(
− 1
β · (ψ−1(dN ))

2
)
− c2
N

= c1 · exp
(
− 1
β · b2N

)
− c2
N

= aN .

Since the sequence (εN )N∈N is decreasing hence for all N ∈ {1, 2, . . . , N0}
εN ≥ εN0 ≥ aN0 .

Using the assumption that the sequence (aN )N∈N is strictly decreasing we therefore conclude

that for all N ∈ N

εN ≥ min{1, aN0/aN} · aN ≥ aN0

a1
· aN ,

which completes the proof of the corollary with κ = aN0/a1. �

6. Proof of Theorem 1

Let δ ∈ (0, T ] and let X̂ ∈ X δ be given by sequences ϕ = (ϕn)n∈N, χ = (χn)n∈N and
φ = (φn)n∈N, see (5). Recall the definition (6) of ν. We first determine the regular conditional

distribution P
W |Dν .

For n ∈ N put

Sn = {s ∈ (0, δ)n : |{s1, . . . , sn}| = n}.
For n ∈ N, s ∈ Sn, y ∈ R

n and v ∈ C([δ, T ]) define functions

ms,y,v : [0, T ] → R and Rs : [0, T ]
2 → R

as follows. If s1 < . . . < sn put s0 = y0 = 0, sn+1 = δ and yn+1 = v(δ) and let

ms,y,v(t) =

{
sk−t

sk−sk−1
· yk−1 +

t−sk−1

sk−sk−1
· yk, if t ∈ [sk−1, sk) for k ∈ {1, . . . , n+ 1},

v(t), if t ∈ [δ, T ]

as well as

Rs(r, t) =

{
(sk−max(r,t))·(min(r,t)−sk−1)

sk−sk−1
, if r, t ∈ [sk−1, sk) for k ∈ {1, . . . , n+ 1},

0, otherwise,

for r, t ∈ [0, T ]. Otherwise put

ms,y,v = m(sπ(1),...,sπ(n)),(yπ(1),...,yπ(n)),v, Rs = R(sπ(1),...,sπ(n)),
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where π is the permutation of {1, . . . , n} such that sπ(1) < . . . < sπ(n).

For n ∈ N, y ∈ R
n, v ∈ C([δ, T ]) and k = 1, . . . , n put

(11) sy,vk = ϕk(y1, . . . , yk−1, v).

Note that due to the assumption (7) we have |{sy,v1 , . . . , sy,vn }| = n. Let Qy,v denote the Gaussian
measure on B(C([0, T ])) with mean m(Qy,v) = msy,v,y,v and covariance function R(Qy,v) =
Rsy,v . Consider the measurable space

(12) (Ω1,F1) =
( ∞⋃

n=1

R
n × C([δ, T ]), σ

( ∞⋃

n=1

B(Rn × C([δ, T ]))
))
.

It is easy to see that Dν : Ω → Ω1 is F-F1 measurable. Define the mapping

K : Ω1 ×B(C([0, T ])) → [0, 1]

by

K((y, v), A) = Qy,v(A)

for all y ∈
∞⋃

n=1

R
n, v ∈ C([δ, T ]) and A ∈ B(C([0, T ])).

Lemma 1. K is a version of the regular conditional distribution P
W |Dν .

In the case of δ = T the statement of Lemma 1 seems to be well-known, see, e.g., [15, 28, 29, 30],
but a proof of it seems not to be available in the literature. If, additionally, ν is constant then
Lemma 1 follows from Lemma 2.9.7 in [36, p. 474], but measurability issues have not been fully

addressed in the proof of the latter result. For convenience of the reader we therefore provide a
proof of Lemma 1 here.

Proof. Clearly, for all (y, v) ∈ Ω1 the mapping

B(C([0, T ])) ∋ A 7→ K((y, v), A) ∈ [0, 1]

is a probability measure on B(C([0, T ])).

Next, let A ∈ B(C([0, T ])). We show that the mapping

(13) Ω1 ∋ (y, v) 7→ K((y, v), A) ∈ [0, 1]

is F1 -B([0, 1]) measurable. For n ∈ N, s ∈ Sn and u ∈ C([0, δ]) define a function

Fs,u : [0, T ] → R

by

Fs,u(t) =

{
u(t)−ms,(u(s1),...,u(sn)),0(t), if t ∈ [0, δ],

0, if t ∈ (δ, T ]

for t ∈ [0, T ]. It is easy to see that for all (y, v) ∈ Ω1

Qy,v = P
Fsy,v,(W (t))t∈[0,δ]

+msy,v,y,v ,

and therefore for all (y, v) ∈ Ω1

(14) K((y, v), A) =

∫

C([0,δ])
1A(Fsy,v,u +msy,v,y,v) P

(W (t))t∈[0,δ](du).



NON-POLYNOMIAL LOWER ERROR BOUNDS FOR STRONG APPROXIMATION OF SDES 9

Clearly,

{((y, v), u) ∈ Ω1 × C([0, δ]) : Fsy,v,u +msy,v,y,v ∈ A} =

∞⋃

n=1

An,

where

An = {(y, v, u) ∈ R
n × C([δ, T ]) × C([0, δ]) : Fsy,v,u +msy,v,y,v ∈ A}

for n ∈ N. The measurability of the functions ϕn, n ∈ N, imply that for every n ∈ N the mapping

R
n × C([δ, T ]) ∋ (y, v) 7→ sy,v ∈ Sn

is B(Rn × C([δ, T ])) -B(Sn) measurable. Thus, observing that for every n ∈ N the mappings

Sn × C([0, δ]) ∋ (s, u) 7→ Fs,u ∈ C([0, T ])

and

Sn × R
n ×C([δ, T ]) ∋ (s, y, v) 7→ ms,y,v ∈ C([0, T ])

are continuous we conclude that for every n ∈ N the mapping

R
n × C([δ, T ]) × C([0, δ]) ∋ (y, v, u) 7→ Fsy,v,u +msy,v,y,v ∈ C([0, T ])

is B(Rn × C([δ, T ]) × C([0, δ]) -B(C([0, T ])) measurable. Hence for every n ∈ N

An ∈ B(Rn × C([δ, T ]) ×C([0, δ])) ⊂ F1 ⊗B(C([0, δ])),

which implies that the mapping

Ω1 × C([0, δ]) ∋ ((y, v), u) 7→ 1A(Fsy,v,u +msy,v,y,v) ∈ R

is F1 ⊗ B(C([0, δ])) -B(R) measurable. Using (14) and employing Fubini’s theorem we thus

conclude that the mapping (13) is F1 -B([0, 1]) measurable.
Finally, let A ∈ B(C([0, T ])) and E ∈ F1. We show that

(15) P({W ∈ A} ∩ {Dν ∈ E}) =
∫

E
K((y, v), A) PDν (d(y, v)).

We have

{Dν ∈ E} ∩ {ν <∞} =
∞⋃

n=1

({Dν ∈ E} ∩ {ν = n})

=

∞⋃

n=1

(
{Dn ∈ E} ∩ {χn(Dn) = 1} ∩

n−1⋂

k=1

{χk(Dk) = 0}
)

=

∞⋃

n=1

{Dn ∈ E ∩ Cn},

where Cn ∈ B(Rn × C([δ, T ])) is given by

Cn = χ−1
n ({1}) ∩

n−1⋂

k=1

{(y, v) ∈ R
n × C([δ, T ]) : (y1, . . . , yk, v) ∈ χ−1

k ({0})}
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for n ∈ N. Since ν <∞ a.s. we thus obtain

P({W ∈ A} ∩ {Dν ∈ E}) =
∞∑

n=1

P({W ∈ A} ∩ {Dn ∈ E ∩ Cn})

=
∞∑

n=1

∫

E∩Cn

P
W |Dn=(y,v)(A) PDn(d(y, v)).

Similarly to the proof of Lemma 2.9.7 on page 474 in [36] one can show that for all n ∈ N and

all G ∈ B(Rn × C([δ, T ]))
∫

G
P
W |Dn=(y,v)(A) PDn(d(y, v)) =

∫

G
Qy,v(A) P

Dn(d(y, v)).

Hence

P({W ∈ A} ∩ {Dν ∈ E}) =
∞∑

n=1

∫

E∩Cn

Qy,v(A) P
Dn(d(y, v))

=
∞∑

n=1

∫

E∩Cn

K((y, v), A) PDn(d(y, v)).

Since P
Dn(G ∩ Cn) = P

Dν (G) for all n ∈ N and all G ∈ B(Rn × C([δ, T ])) we thus conclude

P({W ∈ A} ∩ {Dν ∈ E}) =
∞∑

n=1

∫

E∩(Rn×C([δ,T ]))
K((y, v), A) PDν (d(y, v)),

which implies (15) and completes the proof of the lemma. �

Next, assume that δ ∈ (0, τ1], let n ∈ N, y ∈ R
n and v ∈ C([δ, T ]). Recall the definition (11)

of the time points sy,v1 , . . . , sy,vn and put

(16) sy,v0 = 0, sy,vn+1 = δ.

Let π be the permutation of {0, . . . , n + 1} such that sy,vπ(0) < . . . < sy,vπ(n+1). Let i
∗ ∈ {0, . . . , n}

and put

(17) t0 = sy,vπ(i∗), t1 = sy,vπ(i∗+1).

Define mappings

W̃ : C([0, T ]) → C([0, t0] ∪ [t1, τ1]), B : C([0, T ]) → C([t0, t1])

by

(18) W̃ (w) = w|[0,t0]∪[t1,τ1]
for w ∈ C([0, T ]) and

(19) B(w)(t) = w(t)− t1 − t

t1 − t0
w(t0)−

t− t0
t1 − t0

w(t1)

for w ∈ C([0, T ]) and t ∈ [t0, t1]. In the following lemma we present properties of the measures

QW̃y,v, Q
B
y,v and Q

(W̃ ,B)
y,v , which will be used in the proof of Theorem 1.
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Lemma 2. We have

(i) QW̃y,v is the Gaussian measure on B(C([0, t0] ∪ [t1, τ1])) with mean

m(QW̃y,v) = msy,v,y,v|[0,t0]∪[t1,τ1] and covariance function R(QW̃y,v) = Rsy,v |([0,t0]∪[t1,τ1])2 .
(ii) QBy,v is the Gaussian measure on B(C([t0, t1])) with mean m(QBy,v) = 0 and covariance

function

R(QBy,v)(r, t) =
(t1 −max(r, t)) · (min(r, t) − t0)

t1 − t0
, r, t ∈ [t0, t1].

(iii) QBy,v = Q−B
y,v ,

(iv) Q
(W̃ ,B)
y,v = QW̃y,v ×QBy,v.

Proof. The property (i) is obvious. Since B is a linear continuous mapping hence QBy,v is a
Gaussian measure. Next, observe that for all t ∈ [t0, t1] we have

m(Qy,v)(t) =
t1 − t

t1 − t0
yπ(i∗) +

t− t0
t1 − t0

yπ(i∗+1).

In particular, for all t ∈ [t0, t1],

(20) m(Qy,v)(t)−
t1 − t

t1 − t0
m(Qy,v)(t0)−

t− t0
t1 − t0

m(Qy,v)(t1) = 0.

Hence for all t ∈ [t0, t1],

m(QBy,v)(t) =

∫

C([t0,t1])
b(t)QBy,v(db)

=

∫

C([0,T ])

(
w(t) − t1 − t

t1 − t0
w(t0)−

t− t0
t1 − t0

w(t1)
)
Qy,v(dw)

= m(Qy,v)(t)−
t1 − t

t1 − t0
m(Qy,v)(t0)−

t− t0
t1 − t0

m(Qy,v)(t1) = 0

and for all r, t ∈ [t0, t1],

R(QBy,v)(r, t) =

∫

C([t0,t1])

(
b(r)−m(QBy,v)(r)

)
·
(
b(t)−m(QBy,v)(t)

)
QBy,v(db)

=

∫

C([0,T ])

(
w(r)− t1 − r

t1 − t0
w(t0)−

r − t0
t1 − t0

w(t1)
)

·
(
w(t) − t1 − t

t1 − t0
w(t0)−

t− t0
t1 − t0

w(t1)
)
Qy,v(dw),
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and hence

R(QBy,v)(r, t) =

∫

C([0,T ])

(
w(r)−m(Qy,v)(r)−

t1 − r

t1 − t0
(w(t0)−m(Qy,v)(t0))

− r − t0
t1 − t0

(w(t1)−m(Qy,v)(t1))
)

·
(
w(t) −m(Qy,v)(t)−

t1 − t

t1 − t0
(w(t0)−m(Qy,v)(t0))

− t− t0
t1 − t0

(w(t1)−m(Qy,v)(t1))
)
Qy,v(dw)

= R(Qy,v)(r, t) −
t1 − t

t1 − t0
R(Qy,v)(r, t0)−

t− t0
t1 − t0

R(Qy,v)(r, t1)

− t1 − r

t1 − t0

(
R(Qy,v)(t0, t)−

t1 − t

t1 − t0
R(Qy,v)(t0, t0)−

t− t0
t1 − t0

R(Qy,v)(t0, t1)
)

− r − t0
t1 − t0

(
R(Qy,v)(t1, t)−

t1 − t

t1 − t0
R(Qy,v)(t1, t0)−

t− t0
t1 − t0

R(Qy,v)(t1, t1)
)
.

Observing that R(Qy,v)(t0, t) = R(Qy,v)(t1, t) = 0 for all t ∈ [t0, t1] we thus obtain

R(QBy,v)(r, t) = R(Qy,v)(r, t)

for all r, t ∈ [t0, t1], which completes the proof of (ii). The property (ii) implies that Q−B
y,v

is the Gaussian measure on B(C([t0, t1])) with mean m(Q−B
y,v ) = 0 and covariance function

R(Q−B
y,v ) = R(QBy,v), which yields the property (iii). Next, we prove (iv). Using the properties

(i), (ii) as well as (20) and the fact that R(Qy,v)(r, t) = 0 for all r ∈ [0, t0]∪ [t1, τ1] and t ∈ [t0, t1]
we obtain

∫

C([0,T ])

(
W̃ (w)(r) −m(QW̃y,v)(r)

)
·
(
B(w)(t) −m(QBy,v)(t)

)
Qy,v(dw)

=

∫

C([0,T ])

(
w(r)−m(Qy,v)(r)

)
·
(
w(t)− t1 − t

t1 − t0
w(t0)−

t− t0
t1 − t0

w(t1)
)
Qy,v(dw)

=

∫

C([0,T ])

(
w(r)−m(Qy,v)(r)

)
·
(
w(t)−m(Qy,v)(t)−

t1 − t

t1 − t0
(w(t0)−m(Qy,v)(t0))

− t− t0
t1 − t0

(w(t1)−m(Qy,v)(t1))
)
Qy,v(dw)

= R(Qy,v)(r, t) −
t1 − t

t1 − t0
R(Qy,v)(r, t0)−

t− t0
t1 − t0

R(Qy,v)(r, t1) = 0

for all r ∈ [0, t0] ∪ [t1, τ1] and t ∈ [t0, t1], which means that W̃ (r) and B(t) are uncorrelated.

This and the fact that QW̃y,v and QBy,v are Gaussian measures implies (iv).

�

In the proof of Theorem 1 we employ the following lower bound for the first absolute moment
of the sine of a normally distributed random variable, which is a generalization of Lemma 4.2

from [20], where a centered normally distributed random variable has been considered.
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Lemma 3. Let a ∈ R, τ ∈ [1,∞), and let Y : Ω → R be a N (a, τ2)-distributed random variable.

Then

E
[
| sin(Y )|

]
≥ exp

(
−π2

8

)
√
8π

.

The proof of Lemma 3 is a straighforward generalization of the proof of Lemma 4.2 from [20].

We now proceed with the proof of Theorem 1.

We first consider the case δ ∈ (0, τ1/2]. Let N ∈ N be such that X̂ ∈ X δ
N . We may then

assume that X̂ ∈ X δ
N+1 and that X̂ uses the evaluation site δ/2. Let ψ ∈ C∞(R) be positive,

strictly increasing with limx→∞ ψ(x) = ∞ and 1 ∈ ψ(R). Using Remark 2, the assumptions on

the functions f and g and Itô’s formula we obtain that P-a.s.

(21) Xψ
2 (τ1) = −

∫ τ1

0
f ′(t)W (t)dt, Xψ

3 (τ2) = −
∫ τ2

τ1

g′(t)W (t)dt.

Thus, P-a.s.

(22) Xψ
4 (T ) = F (W ),

where F : C([0, T ]) → R is given by

F (w) = γ · cos
(∫ τ1

0
f ′(t)w(t)dt · ψ

(
−
∫ τ2

τ1

g′(t)w(t)dt
))

and γ is defined in (8). Recall the definition (12) of the measurable space (Ω1,F1) and define a
function G : Ω1 → R

4 by

G(y, v) = φn(y, v)

for y ∈ R
n and v ∈ C([δ, T ]). Due to the measurability of the functions φn, n ∈ N, the function

G is F1-B(R4) measurable. Moreover,

(23) X̂ = φν(Dν) = G(Dν).

Let pr4 : R
4 → R denote the projection to the fourth component. Due to (22) and (23) we have

(24) E|Xψ
4 (T )− X̂4| = E|F (W )− pr4(G(Dν))| = E

(
E
(
|F (W )− pr4(G(Dν))|

∣∣Dν

))
.

Lemma 1 implies that for PDν -a.a. (y, v) ∈ Ω1

E
(
|F (W )− pr4(G(Dν))|

∣∣Dν = (y, v)
)
=

∫

C([0,T ])
|F (w) − pr4(G(y, v))|Qy,v(dw).(25)

Fix n ∈ N, y ∈ R
n and v ∈ C([δ, T ]). We show that

∫

C([0,T ])
|F (w) − pr4(G(y, v))|Qy,v(dw)

≥ γ exp
(
−π2

4

)

8π
· 1[1,∞)

(√
αδ3

96n3 · ψ
(
−
∫ τ2

τ1

g′(t) v(t)dt
))
,(26)
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where α is given by (8). Recall the definitions (11) and (16) of the time points sy,v0 , . . . , sy,vn+1,

let π be the permutation of {0, . . . , n + 1} such that sy,vπ(0) < . . . < sy,vπ(n+1), and let t0 and t1 be

given by (17) with

(27) i∗ = min{i ∈ {0, . . . , n} : |sy,vπ(i+1) − sy,vπ(i)| ≥ δ/(n + 1)}.

Put

C1 = C([0, t0] ∪ [t1, τ1]), C2 = C([t0, t1]), C3 = C([τ1, τ2]),

let W̃ : C([0, T ]) → C1 and B : C([0, T ]) → C2 be given by (18) and (19). respectively, and define
W : C([0, T ]) → C3 by

W (w) = w|[τ1,τ2]
for w ∈ C([0, T ]). Moreover, define mappings H1 : C1 → R, H2 : C2 → R, H3 : C3 → R and
J : C1 × C2 × C3 → R by

H1(w̃) =

∫ t0

0
f ′(t) w̃(t)dt+

∫ t1

t0

f ′(t)
( t− t0
t1 − t0

w̃(t1) +
t1 − t

t1 − t0
w̃(t0)

)
dt+

∫ τ1

t1

f ′(t) w̃(t)dt,

H2(b) =

∫ t1

t0

f ′(t) b(t)dt, H3(w) = −
∫ τ2

τ1

g′(t)w(t)dt

as well as

J(w̃, b, w) = γ · cos
(
(H1(w̃) +H2(b)) · ψ(H3(w))

)

for w̃ ∈ C1, b ∈ C2 and w ∈ C3. We then have

F = J(W̃ ,B,W ).

Clearly, QWy,v is the dirac measure concentrated at v|[τ1,τ2]. Using Lemma 2(iii),(iv) and the

triangle inequality we thus obtain
∫

C([0,T ])
|F (w) − pr4(G(y, v))|Qy,v(dw)

=

∫

C1

∫

C2

|J(w̃, b, v|[τ1,τ2])− pr4(G(y, v))|QBy,v(db)QW̃y,v(dw̃)

=

∫

C1

∫

C2

1

2

(
|J(w̃, b, v|[τ1,τ2])− pr4(G(y, v))|

+ |J(w̃,−b, v|[τ1,τ2])− pr4(G(y, v))|
)
QBy,v(db)Q

W̃
y,v(dw̃)

≥
∫

C1

∫

C2

1

2
|J(w̃, b, v|[τ1,τ2])− J(w̃,−b, v|[τ1,τ2])|QBy,v(db)QW̃y,v(dw̃).

Put z = H3(v|[τ1,τ2]). The fact that for all x, y ∈ R

cos(x)− cos(y) = 2 sin(y−x2 ) sin(y+x2 )
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thus implies
∫

C([0,T ])
|F (w) − pr4(G(y, v))|Qy,v(dw)

≥ γ

∫

C1

| sin
(
H1(w̃) · ψ(z)

)
|QW̃y,v(dw̃) ·

∫

C2

| sin
(
H2(b) · ψ(z)

)
|QBy,v(db)

= γ

∫

R

| sin(y · ψ(z))|QH1(W̃ )
y,v (dy) ·

∫

R

| sin(y · ψ(z))|QH2(B)
y,v (dy).

Due to Lemma 2(i),(ii), QW̃y,v and Q
B
y,v are Gaussian measures on B(C1) and B(C2), respectively.

Since the mappings H1 and H2 are linear and continuous we conclude that Q
H1(W̃ )
y,v and Q

H2(B)
y,v

are Gaussian measures on B(R). Let m1, σ
2
1 and m2, σ

2
2 denote the mean and the variance of

Q
H1(W̃ )
y,v and Q

H2(B)
y,v , respectively. Applying Lemma 3 we obtain

∫

R

| sin(y · ψ(z))|QH1(W̃ )
y,v (dy) ≥ exp

(
−π2

8

)
√
8π

· 1[1,∞)(σ1 · ψ(z))

as well as ∫

R

| sin(y · ψ(z))|QH2(B)
y,v (dy) ≥ exp

(
−π2

8

)
√
8π

· 1[1,∞)(σ2 · ψ(z)).

Hence

(28)

∫

C([0,T ])
|F (w) − pr4(G(y, v))|Qy,v(dw) ≥

γ exp
(
−π2

4

)

8π
· 1[1,∞)

(
min(σ1, σ2) · ψ(z)

)
.

Next we derive lower bounds for σ21 and σ22. Due to Lemma 2(ii) we have

m2 =

∫

C2

H2(b)Q
B
y,v(db) =

∫ t1

t0

f ′(t) ·m(QBy,v)(t) dt = 0

as well as

σ22 =

∫

C2

(H2(b)−m2)
2QBy,v(db) =

∫ t1

t0

∫ t1

t0

f ′(r) · f ′(t) ·R(QBy,v)(r, t)drdt

=

∫ t1

t0

∫ t1

t0

f ′(r) · f ′(t) · (t1 −max(r, t)) · (min(r, t)− t0)

t1 − t0
drdt.

It is easy to see that for all a, b ∈ R with a < b

(29)

∫ b

a

∫ b

a

(b−max(r, t)) · (min(r, t) − a)

b− a
drdt =

(b− a)3

12
.

Moreover, the assumption inft∈[0,τ1/2] |f ′(t)| > 0 implies that for all r, t ∈ [0, τ1/2]

(30) f ′(r) · f ′(t) = |f ′(r) · f ′(t)| ≥ α.

Observing (27) we thus obtain

(31) σ22 ≥ α(t1 − t0)
3

12
≥ αδ3

12(n + 1)3
.
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Put si = sy,vπ(i) for i = 0, . . . , n+ 1 as well as sn+2 = τ1. Clearly,

m1 =

∫

C1

H1(w̃)Q
W̃
y,v(dw̃) =

∑

i∈{0,...,n+1}\{i∗}

∫ si+1

si

f ′(t)m(QW̃y,v)(t)dt

+

∫ t1

t0

f ′(t)
( t− t0
t1 − t0

m(QW̃y,v)(t1) +
t1 − t

t1 − t0
m(QW̃y,v)(t0)

)
dt.

Hence

σ21 =

∫

C1

(H1(w̃)−m1)
2QW̃y,v(dw̃)

=

∫

C1

( ∑

i∈{0,...,n+1}\{i∗}

∫ si+1

si

f ′(t) · (w̃(t)−m(QW̃y,v)(t))dt

+

∫ t1

t0

f ′(t) · t− t0
t1 − t0

· (w̃(t1)−m(QW̃y,v)(t1))dt

+

∫ t1

t0

f ′(t) · t1 − t

t1 − t0
· (w̃(t0)−m(QW̃y,v)(t0))dt

)2
QW̃y,v(dw̃).

Lemma 2(i) implies that R(QW̃y,v)(r, t) = 0 for all r ∈ [si, si+1] and t ∈ [sj, sj+1] and all i, j ∈
{0, . . . , n} with i 6= j as well as R(QW̃y,v)(r, t) = 0 for all r ∈ [0, τ1] and t ∈ {t0, t1} ∪ [sn+1, sn+2].
Thus

σ21 =
∑

i∈{0,...,n}\{i∗}

∫ si+1

si

∫ si+1

si

f ′(r) · f ′(t) ·R(QW̃y,v)(r, t)drdt

=
∑

i∈{0,...,n}\{i∗}

∫ si+1

si

∫ si+1

si

f ′(r) · f ′(t) · (si+1 −max(r, t)) · (min(r, t) − si)

si+1 − si
drdt.

Using (30), (29) and the Hölder inequality we therefore obtain

σ21 ≥
∑

i∈{0,...,n}\{i∗}

∫ si+1

si

∫ si+1

si

|f ′(r) · f ′(t)| · (si+1 −max(r, t)) · (min(r, t) − si)

si+1 − si
drdt

≥ α

12

∑

i∈{0,...,n}\{i∗}

(si+1 − si)
3

≥ α

12n2
·
( ∑

i∈{0,...,n}\{i∗}

(si+1 − si)
)3

=
α

12n2
· (δ − (t1 − t0))

3.

The assumption that X̂ uses the evaluation site δ/2 implies that t1 − t0 ≤ δ/2. Hence

(32) σ21 ≥ αδ3

96n2
.

The desired lower bound (26) follows from (28), (31) and (32).
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We conclude from (24),(25) (26) and (21) that

(33) E|Xψ
4 (T )− X̂4| ≥

γ exp
(
−π2

4

)

8π
· P

({
ψ(Xψ

3 (τ2)) ≥
√

96ν3

αδ3

})
.

Put

A =
{
ψ(Xψ

3 (τ2)) ≥
(
1 +

√
96
αδ3

)
N3

}
, B = {ν ≤ N2}.

Clearly,

P

({
ψ(Xψ

3 (τ2)) ≥
√

96ν3

αδ3

})
≥ P

({
ψ(Xψ

3 (τ2)) ≥
√

96ν3

αδ3

}
∩ {ν ≤ N2}

)

≥ P(A ∩B) ≥ P(A)− P(Bc).(34)

Note that Xψ
3 (τ2) ∼ N (0, β), where β is given by (8). Moreover, the assumption that ψ is

continuous with limx→∞ ψ(x) = ∞ and 1 ∈ ψ(R) ensures that

(
1 +

√
96
αδ3

)
N3 ∈ ψ(R).

Hence

P(A) = P

({
Xψ

3 (τ2) ≥ ψ−1
((
1 +

√
96
αδ3

)
N3

)})

≥ 1√
2πβ

∫ 1+ψ−1
((

1+
√

96
αδ3

)
N3

)

ψ−1
((

1+
√

96
αδ3

)
N3

) exp
(
− x2

2β

)
dx

≥ 1√
2πβ

· exp
(
− 1

2β ·
(
1 + ψ−1

((
1 +

√
96
αδ3

)
N3

))2)

≥
exp

(
− 1
β

)
√
2πβ

· exp
(
− 1
β ·

(
ψ−1

((
1 +

√
96
αδ3

)
N3

))2)
.(35)

By the Markov inequality and the fact that X̂ ∈ X δ
N+1,

(36) P(Bc) ≤ Eν

N2
≤ N + 1

N2
≤ 2

N
.

Estimates (33), (34), (35) and (36) imply (9), which completes the proof of the theorem in the
case δ ∈ (0, τ1/2].

If δ ∈ (τ1/2, T ] then the lower bound (9) follows from the fact that X δ
N ⊆ X τ1/2

N and the lower

bound (9) in the case δ = τ1/2.
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