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Abstract. This article is dedicated to the anisotropic sparse grid quadrature for functions

which are analytically extendable into an anisotropic tensor product domain. Taking into ac-

count this anisotropy, we end up with a dimension independent error versus cost estimate of the
proposed quadrature. In addition, we provide a novel and improved estimate for the cardinality

of the underlying anisotropic index set. To validate the theoretical findings, we present several

examples ranging from simple quadrature problems to diffusion problems on random domains.
These examples demonstrate the remarkable convergence behaviour of the anisotropic sparse

grid quadrature in applications.

1. Introduction

This article is dedicated to the construction of anisotropic sparse grid quadrature methods for
functions which are analytically extendable into an anisotropic tensor product domain. Specifically,
we will develop and analyze a particular realization based on Gauss-Legendre quadrature rules.
Anisotropic sparse grid quadrature methods can be seen as a generalization of sparse Smolyak
type quadratures, cf. [31], since they are explicitly tailored to the anisotropic behaviour of the
underlying integrand. Taking into account these anisotropies leads to a remarkable improvement
in the cost of the sparse grid quadrature.

Usually, a sparse grid quadrature is described by some sparse index set and a sequence of
univariate quadrature rules. For the sequence of univariate quadrature rules, we employ Gauss-
Legendre quadratures with linearly increasing numbers of quadrature points. The index set is a
priorily chosen with respect to a certain weight vector, which incorporates the anisotropy, and a
predefined approximation level. It is also possible to adaptively select those indices which provide
the main contribution to the integral, see [11]. Such adaptive methods have successfully been
applied in the context of random diffusion problems, see e.g. [7, 23, 28], in order to compute
best N -term approximations of the corresponding solution. However, the adaptive construction
of index sets is computational expensive and only heuristic error indicators are available. Hence,
it can not be guaranteed that the adaptively selected index set is optimal. Instead of choosing
Gauss-Legendre points, a sequence of nested quadrature rules such as Clenshaw-Curtis or Leja
type quadratures could be considered as well. While the number of quadrature points needs
to be doubled for Clenshaw-Curtis quadratures in order to guarantee their nestedness, only one
additional quadrature point is added for each consecutive member of the Leja sequence. Hence,
based on the Leja sequences, a sparse grid quadrature can be constructed where only one additional
function evaluation is required for each new multi-index in the sparse index set, cf. [13]. However, in
contrast to Gaussian quadratures, the quadrature weights of the Leja sequence are not necessarily
positive which yields that the stability constant of the quadrature might not be uniformly bounded.
Moreover, Gaussian quadrature rules provide a much higher degree of polynomial exactness than
Leja quadratures with the same number of quadrature points, which is particularly advantageous
for smooth integrands.

The main task in estimating the quadrature’s cost is the estimation of the number of multi-
indices which are contained in the sparse index set. For the isotropic variant, the number of
indices can easily be determined by combinatorial arguments, see e.g. [10, 26, 32]. Things get
more involved if one considers anisotropic, i.e. weighted, sparse index sets, which yields a particular
instance of a weighted tensor product algorithm, see [33] and especially [27, Chapter 15], where
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a comprehensive overview of related literature can be found. In this case, to the best of our
knowledge, only very rough estimates on the cardinality of the index set are known, although
several estimates can be found in the literature, see e.g. [4]. In fact, this problem is equivalent to
the estimation of the number of integer solutions to linear Diophantine inequalities, see [29] and
the references therein, which is a problem in number theory, or to the calculation of the integer
points in a convex polyhedron. Current estimates are not sharp and do not provide improved
results for the cost of the anisotropic sparse grid quadrature in comparison with the anisotropic
full tensor product quadrature. In this article, we prove a novel formula to estimate the cardinality
of the sparse index set in the weighted case. This formula is much more accurate than the other
established estimates.

A very popular application that requires efficient high-dimensional quadrature rules are para-
metric partial differential equations. They are obtained, for example, from partial differential
equations with random data by truncating the series expansions of the underlying random fields
and parametrizing them with respect to the random fields’ distribution. As representatives for
such problems, we shall consider here elliptic diffusion problems with random coefficients as well
as diffusion problems on random domains as specific examples to quantify the performance of
the anisotropic sparse grid quadrature. The resulting quadrature approach is very similar to the
anisotropic sparse grid collocation method based on Gaussian collocation points which has been
introduced in [24, 25]. The collocation method interpolates the random solution in certain col-
location points and represents it in the parameter space with the aid of polynomials. Thus, it
belongs to the class of non-intrusive methods, cf. [1]. Instead of representing the random solution
itself, the anisotropic sparse grid quadrature can be employed to directly compute the solutions
statistics, i.e. its moments, and functionals of the solution.

The remainder of this article is organized as follows. Section 2 specifies the quadrature problem
under consideration and provides the corresponding framework. The subsequent Section 3 is
dedicated to the construction of the anisotropic sparse grid quadrature method. In particular, the
main ingredients, i.e. the index set and the sequence of univariate quadrature rules are introduced.
In Section 4, we provide corresponding error estimates with respect to the level of the anisotropic
sparse grid quadrature and with respect to the cardinality of the index set based on the one
dimensional error estimate for the Gauss-Legendre quadrature. Section 5 deals with the cost of
the anisotropic sparse grid quadrature. In particular, we state here a novel estimate on the number
of indices in the weighted sparse tensor product and provide a proof of this estimate. In Section 6,
we consider three different applications: A pure high dimensional quadrature problem, a diffusion
problem with random coefficient and a diffusion problem on a random domain. Finally, we state
concluding remarks in Section 7.

2. Problem setting

In what follows, let Γ := [−1, 1]. The σ-algebra of Borel sets on Γ shall be denoted by B
and ν := dy/2 is the normalized Lebesgue measure on B. We define the product probability
space (Γ∞,B∞, µ) of all sequences1 ψ : N∗ → Γ, where ψ = {ψn}n. Herein, B∞ is the σ-algebra
generated by the cylindrical sets and µ is the corresponding product measure, i.e. µ(A1 × · · · ×
Am × Γ × . . . ) =

∏m
n=1 ν(Ai) for all m ∈ N and A1, . . . , Am ∈ B. For an integrable function

f : Γ∞ → R, we are interested in the efficient approximation of the integral

(1)

∫
Γ∞

f dµ.

The approach we shall present here is based on the construction of efficient quadrature formulas
for a certain surrogate fm : Γm → R of f . In order to define this surrogate, we make the following
assumption.

Assumption 2.1. Let Σn = Σ(Γ, τn) := {z ∈ C : dist(z,Γ) ≤ τn}. We assume that f is
analytically extendable into Σ(τ ) :=×∞n=1 Σn for an isotone sequence τn → ∞, which measures
the anisotropy of the function f with respect to the different dimensions.

1We make the convention N := {0, 1, 2, . . .} and N∗ := {1, 2, . . .}.
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Now, given an anchor point ψ ∈ Γ∞, we define the surrogate fm of f as the projection of f
onto the first m variables anchored at ψ, i.e.

fm(y1, . . . , ym) := f(y1, . . . , ym, ψm+1, ψm+2, . . .).

The projection fm is well-defined since f is analytic. Moreover, we know from Assumption 2.1
that fm is analytically extendable into

Σm :=
m

×
n=1

Σn

and it holds, due to the Kolmogorov extension theorem, cf. [20], that

(2)

∣∣∣∣ ∫
Γ∞

f dµ−
∫

Γm
fm(y)2−m dy

∣∣∣∣ ≤ ε(m)

with a null sequence ε(m).
In the sequel, we shall approximate

(3) Ifm :=

( m⊗
n=1

I(n)

)
fm :=

∫
Γm

fm(y)2−m dy

by the anisotropic sparse tensor product quadrature. Herein, we set(
I(n)fm

)
(y?n) :=

∫
Γ

fm(yn,y
?
n)

dyn
2
,

where y?n := [y1, . . . , yn−1, yn+1, . . . , ym] with the notational convenience y = (yn,y
?
n). It is evident

that the precision of the applied quadrature has to increase when m increases. Moreover, the cost
usually scales exponentially with respect to m, which is referred to as the “curse of dimensionality”.
Therefore, we have to keep track of the impact of the dimension m on the error estimates.

We start by considering the univariate quadrature with respect to yn, n = 1, . . . ,m. To that

end, we introduce the N -point Gauss-Legendre quadrature operator Q(n) with quadrature points
ξk ∈ Γ and weights ωk according to

(
Q(n)fm

)
(y?n) :=

N∑
k=1

ωkfm(ξk,y
?
n).

This quadrature operator is exact for all polynomials p ∈ Π2N−1 := span{1, x, . . . , x2N−1}. More-

over, Q(n) : C(Γ)→ R is continuous with continuity constant 1. Hence, the quadrature error can
be bounded by

(4)

∣∣(I(n) −Q(n))fm(y?n)
∣∣ ≤ inf

p∈Π2N−1

(∣∣I(n)(fm(y?n)− p)
∣∣+
∣∣Q(n)(fm(y?n)− p)

∣∣)
≤ 2 inf

p∈Π2N−1

∥∥fm(y?n)− p
∥∥
C(Γ)

.

Thus, in accordance with e.g. [8, Chapter 7.8] and [1], the analytic extendability of fm guarantees
that the N -point Gauss-Legendre quadrature satisfies the one-dimensional error estimate

(5)
∣∣(I(n) −Q(n))fm(y?n)

∣∣ ≤ c(κn) exp
(
− log(κn)(2N − 1)

)
‖fm(y?n)‖C(Σn)

with

κn = τn +
√

1 + τ2
n and c(κn) =

4

κn − 1
.

Here and in the sequel, we set

‖fm(y?n)‖C(Σn) := max
z∈Σn

|fm(z,y?n)|.

Note that it holds by definition

κn > 1 + τn, κn > 2τn and, thus, c(κn) <
4

τn
.
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3. Anisotropic sparse grid quadrature

We shall now introduce anisotropic sparse grid quadrature formulas which extend the original
idea of Smolyak’s construction from [31]. The subsequent realization is a particular instance of a
weighted tensor product algorithm as introduced in [33]. Hence, all the results for those algorithms
are valid, see [27, Chapter 15] for an overview. Compared with the general setup considered therein,
our analysis is taylored for Gauss-Legendre quadrature rules, which are especially non-nested, and
the specific function class under consideration.

We start by considering a sequence of univariate quadratures Qj of increasing accuracy with
Nj ∈ N∗ points and weights

(6) θj :=
{
ξi,j
}Nj
i=1

,
{
ωi,j
}Nj
i=1

, j = 0, 1, 2, . . . ,

where N0 ≤ N1 ≤ · · · and Nj →∞ for j →∞.
Since we deal with multidimensional quadrature rules, we furthermore define tensor products

of univariate quadrature rules by

Q
(1)
j1
⊗ · · · ⊗Q

(m)
jm

fm :=

Nj1∑
k1=1

. . .

Njm∑
km=1

( m∏
i=1

ωki,ji

)
fm(ξk1,j1 , . . . , ξkm,jm).

Following the notation of [26], we introduce for j ∈ N the difference quadrature operator

(7) ∆j := Qj −Qj−1, where Q−1 := 0.

With the telescoping sum Qj =
∑j
`=0 ∆`, the isotropic m-fold tensor product quadrature, which

uses Nj quadrature points in each direction, can be written by

(8) Q
(1)
j ⊗ · · · ⊗Q

(m)
j =

∑
‖α‖∞≤j

∆(1)
α1
⊗ · · · ⊗∆(m)

αm ,

where the superscript index indicates the particular dimension. Since the tensor product quadra-
ture is convergent, we observe that

(9) I(fm) =
∑

α∈Nm
∆(1)
α1
⊗ · · · ⊗∆(m)

αm fm.

The cost of applying a quadrature formula is measured by the number of quadrature points. In
case of the isotropic tensor product quadrature operator (8) this number is given by Nm, where
N = Nj1 = . . . = Njm . Thus, this isotropic tensor product quadrature suffers extremely from
the curse of dimensionality. The classical sparse grid quadrature, cf. [5, 10, 32], can overcome this
problem up to a certain extent. It is based on linear combinations of tensor product quadrature
formulas of relatively small size. To define the sparse quadrature, we introduce as in [2, 24, 32]
for each approximation level q the sets of multi-indices

X(q,m) :=
{

0 ≤ α ∈ Nm : ‖α‖1 ≤ q
}

and

Y (q,m) :=
{

0 ≤ α ∈ Nm : q −m < ‖α‖1 ≤ q
}
.

The sparse grid quadrature operator, cf. [2, 10, 31], is then given by

(10) A(q,m) :=
∑

α∈X(q,m)

∆(1)
α1
⊗ · · · ⊗∆(m)

αm .

An equivalent expression is obtained by the combination technique, cf. [14],

(11) A(q,m) =
∑

α∈Y (q,m)

(−1)q−‖α‖1
(

m− 1

q − ‖α‖1

)
Qα, where Qα := Q(1)

α1
⊗ · · · ⊗Q(m)

αm .

A visualization of the set of indices X(q,m) is given in Figure 1.
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Figure 1. The 21 indices contained in the sparse grid X(5, 2) on the left and
the 56 indices contained in X(5, 3) on the right.

The number of quadrature points used in (10) or (11) is considerably reduced compared to the
full tensor product quadrature. However, the sparse quadrature operator does not take into ac-
count the fact that the different parameter dimensions are of different importance to the integrand
fm. Indeed, the cardinality of the set X(q,m) is given by

#X(q,m) =

(
q +m

m

)
,

which still depends heavily on m. Thus, we assign a weight to each particular dimension and use
a weighted version of the Smolyak quadrature operator.

Let w ∈ Rm+ denote a weight vector for the different parameter dimensions. We assume in the
following that the weight vector is sorted in ascending order, i.e. w1 ≤ w2 ≤ . . . ≤ wm. Otherwise,
we would rearrange the particular dimensions accordingly. We modify the sparse grid index sets
X(q,m) and Y (q,m) in the following way, see also [25],

(12) Xw(q,m) :=

{
0 ≤ α ∈ Nm :

m∑
n=1

αnwn ≤ q

}
and

(13) Yw(q,m) :=

{
0 ≤ α ∈ Nm : q − ‖w‖1 <

m∑
n=1

αnwn ≤ q

}
.

With this notation at hand, the anisotropic sparse grid quadrature operator of level q ∈ N is
defined by

(14) Aw(q,m) :=
∑

α∈Xw(q,m)

∆(1)
α1
⊗ · · · ⊗∆(m)

αm

which can equivalently be expressed as, cf. [25],

(15) Aw(q,m) =
∑

α∈Yw(q,m)

cw(α)Qα, with cw(α) :=
∑

β∈{0,1}m
α+β∈Yw(q,m)

(−1)‖β‖1 .

The formula (15) can be regarded as the anisotropic combination technique quadrature. For the
evaluation of this formula, we only need to determine the coefficients cw(α) and to apply tensor
product quadrature operators of relatively small size. Thus, in order to compute the approximation
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Figure 2. The 10 indices contained in the weighted sparse grid X(1,2.5)(5, 2) on
the left and the 16 indices contained in X(1,2,3)(5, 3) on the right.

to (3) with the anisotropic sparse grid quadrature (15), it is sufficient to evaluate the integrand
fm on the anisotropic sparse grid

Jw(q,m) :=
⋃

α∈Yw(q,m)

θα1
× · · · × θαm .

Note that the sparse grid quadrature operator (10) coincides with the anisotropic sparse grid
quadrature operator (14) for the special weight vector w = 1 := [1, 1, . . . , 1].

In Figure 2, the indices of the weighted sparse grid X(1,2.5)(5, 2) and of the weighted sparse
grid X(1,2,3)(5, 3) are visualized. We observe that the number of indices is drastically reduced in
comparison to the number of indices in the according isotropic sparse grids visualized in Figure 1.

The computation of the anisotropic sparse grid quadrature operator (14) depends on the choice
of the weight vector w and the sequence

{
Nj
}
j

in (6). In view of the one-dimensional error

estimate (5) and to keep the number of quadrature points low, the sequence
{
Nj
}
j

is chosen

slowly increasing in accordance with

(16) Nj =

⌈
1

2
(j + 2)

⌉
.

This choice implies Nj = Nj+1 for j odd. Therefore, many tensor products of difference quadra-
tures in (14) vanish, see Remark 5.1.

Then, we can find an upper bound for the contribution of the difference quadrature operator
∆j = Qj − Qj−1 for all j ≥ 1 and for all functions f1 : Γ → R which are analytically extendable
into Σ1 according to

(17)

|∆jf1| ≤ |If1 −Qjf1|+ |If1 −Qj−1f1|

≤ c(κ1)
(
e− log(κ1)(j+1) + e− log(κ1)j

)
‖f1‖C(Σ1)

≤ c(κ1)
(

1 + e− log(κ1)
)
e− log(κ1)j‖f1‖C(Σ1)

≤ κ1 + 1

κ1
c(κ1)e− log(κ1)j‖f1‖C(Σ1) ≤ 2c(κ1)e− log(κ1)j‖f1‖C(Σ1).

For j = 0, the difference quadrature operator coincides with the function evaluation at the mid-
point z = 0 of Γ which implies that

(18) |∆0f1| = |Q0f1| = |f1(0)| ≤ e− log(κ1)·0‖f1‖C(Σ1).
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Analogously, it follows from (5) and (16) that

(19) |If1 −Qjf1| ≤ c(κ1)e− log(κ1)(j+1)‖f1‖C(Σ1).

Next, let us consider the multivariate integrand fm : Γm → R which can be analytically extended
into the region Σm. Due to the analyticity in a tensor product domain, it follows that the
contribution of the tensor product of the operators ∆j is bounded by the product of the one-
dimensional contributions. Indeed, we obtain that

(20)

∣∣∣(∆(1)
α1
⊗ · · · ⊗∆(m)

αm

)
fm

∣∣∣
≤
(
2c(κn)

)min(1,α1)
e− log(κ)α1 sup

z∈Σ1

∣∣∣( Id⊗∆(2)
α2
⊗ · · · ⊗∆(m)

αm

)
fm(z)

∣∣∣
≤
( m∏
n=1

(
2c(κn)

)min(1,αn)
)
e−

∑m
n=1 log(κn)αn‖fm‖C(Σm)

with ‖fm‖C(Σm) := supz∈Σm
|fm(z)|. In addition, we take the minimum in (20) in order to ensure

that the constant is 1 if αn = 0 in accordance with (18).

4. Error estimation for the anisotropic sparse grid quadrature

For the estimation of the quadrature error of the anisotropic sparse grid quadrature, we employ
the following lemma.

Lemma 4.1. Let {ψn}n ∈ `1(N∗) be a summable sequence of positive real numbers. Then, there
exists for each δ > 0 a constant c(δ) independent of q ≥ 1 such that

(21)

∞∏
n=1

(qψn + 1) ≤ c(δ) exp(δq).

Proof. Let 0 < δ1, δ2 < δ be arbitrary such that δ1 + δ2 = δ. From the summability of {ψn}n, it
follows that there exists a j0 = j0(δ1) ∈ N such that

(22)

∞∑
n=j0+1

ψn ≤ δ1.

We now split the left-hand side in (21) into

(23)

∞∏
n=1

(qψn + 1) =

j0∏
n=1

(qψn + 1)

∞∏
n=j0+1

(qψn + 1).

Then, the second factor can simply be estimated by
∞∏

n=j0+1

(qψn + 1) = exp

( ∞∑
n=j0+1

log(qψn + 1)

)
≤ exp(δ1q).

The number of factors j0 in the first product on the right-hand side of (23) is fixed and depends
only on the choice of δ1 and on the decay properties of {ψk}k. Since j0 is a fixed natural number,
there exists for all δ2 > 0 a constant c(δ1, δ2) such that

j0∏
n=1

(qψn + 1) ≤ c(δ1, δ2) exp(δ2q).

Hence, we obtain that
∞∏
n=1

(qψn + 1) ≤ c(δ1, δ2) exp(δq).

Since 0 < δ1, δ2 < δ can be chosen arbitrary with the only limitation that δ1 + δ2 = δ, the choice
c(δ) = infδ1+δ2=δ c(δ1, δ2) yields the desired estimate. �

With the above preliminaries and further assumptions on the summability of the sequence
{τn}n, we are able to establish error estimates for the anisotropic sparse grid quadrature.
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Assumption 4.2. The sequence {τn}n, which describes the regions of analytic extendability of
the function f , fulfills

τn ≥ cnr

for some r > 1 and a constant c > 0. Hence, the sequences {τ−1
n }n and {(κn − 1)−1}n are

summable.

For the error estimation, we apply an identity which was used in [25] to bound the error of
a collocation approach. Additionally, we exploit Assumption 4.2 to obtain an estimate which is
exponentially decreasing in the sparse grid level q and does not depend on the dimensionality m
at all. Therefore, we further notice that the integration operator I : C(Σm) → R is obviously
continuous with continuity constant 1.

Lemma 4.3. Let the sequence of quadrature points be chosen as in (16) and let the weight vector
w be given by wn = log(κn). Then, there exists for each δ > 0 a constant c(δ) independent of m
such that the error of the anisotropic sparse grid quadrature (10) is bounded by

(24)
∣∣(I−Aw(q,m)

)
fm
∣∣ ≤ c(δ, τ )e−q(1−δ)‖fm‖C(Σm)

with

c(δ, τ ) = 4c(δ)‖{τ−1
n }n‖`1

and c(δ) denotes the constant from Lemma 4.1 with respect to the summable sequence {τ−1
n }n.

Note that the constant c(δ, τ ) tends to infinity as δ tends to 0.

Proof. In the same way as in [25], the error of the sparse grid quadrature is rewritten, with the

notation I =
⊗m

n=1 I(n), by

(25) I−Aw(q,m) =

m∑
n=1

R(q, n)

m⊗
k=n+1

I(k).

Herein, the quantity R(q, n) is defined for n = 1 by

R(q, 1) := I(1) −Qbq/w1c

and for n ≥ 2 by

R(q, n) :=
∑

α∈Xw1:n−1
(q,n−1)

n−1⊗
k=1

∆(k)
αk
⊗
(

I(n) −Q⌊(
q−

∑n−1
k=1 αkwk

)
/wn

⌋).
Due to R(q, 1) = I(1) −Qbq/w1c, we deduce for the first summand in (25) that∣∣∣∣(R(q, 1)

m⊗
k=2

I(k)

)
fm

∣∣∣∣ ≤ c(κ1)e− log(κ1)(bq/w1c+1)‖fm‖C(Σm) ≤ c(κ1)e−q‖fm‖C(Σm).

The summands in (25) with n ≥ 2 can be estimated with (19), (20) and with the continuity of the
integration operator by∣∣∣∣∣
(
R(q, n)

m⊗
k=n+1

I(k)

)
fm

∣∣∣∣∣ ≤ ∑
α∈Xw1:n−1

(q,n−1)

( n−1∏
k=1

(
2c(κk)

)min(1,αk)
)
e−

∑n−1
k=1 αk log(κk)

· c(κn)e− log(κn)
(⌊(

q−
∑n−1
k=1 αkwk

)
/wn

⌋
+1
)
‖fm‖C(Σm)

≤ c(κn)
∑

α∈Xw1:n−1
(q,n−1)

e− log(κn)
(⌊(

q−
∑n−1
k=1 αkwk

)
/wn

⌋
+1
)
−
∑n−1
k=1 αk log(κk)

·
( n−1∏
k=1

(
2c(κk)

)min(1,αk)
)
‖fm‖C(Σm).
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With the choice wk = log(κk) for all k = 1, . . . ,m, it follows that∣∣∣∣(R(q, n)

m⊗
k=n+1

I(k)

)
fm

∣∣∣∣
≤ c(κn)

∑
α∈Xw1:n−1

(q,n−1)

e−q−
∑n−1
k=1 αkwk+

∑n−1
k=1 αkwk

( n−1∏
k=1

(
2c(κk)

)min(1,αk)
)
‖fm‖C(Σm)

= c(κn)
∑

α∈Xw1:n−1
(q,n−1)

e−q
( n−1∏
k=1

(
2c(κk)

)min(1,αk)
)
‖fm‖C(Σm).

It remains to estimate∑
α∈Xw1:n−1

(q,n−1)

( n−1∏
k=1

(
2c(κk)

)min(1,αk)
)
≤

∑
α∈Xw(q,m)

( m∏
k=1

(
2c(κk)

)min(1,αk)
)
.

The expression inside the product always equals 2c(κk) except for the case αk = 0. Hence, it
follows that∑

α∈Xw(q,m)

( m∏
k=1

(
2c(κk)

)min(1,αk)
)
≤
b qw1
c∑

α1=0

(
2c(κ1)

)min(α1,1) · · ·
b q
wm
c∑

αm=0

(
2c(κm)

)min(αm,1)

≤
m∏
k=1

(
2c(κk)q

wk
+ 1

)
≤ c(δ) exp(δq).

The last inequality holds since {2c(κk)/wk}k is summable and, thus, Lemma 4.1 is applicable.
Combining our findings, we obtain that∣∣(I−Aw(q,m)

)
fm
∣∣ ≤ c(δ)e−q(1−δ)‖fm‖C(Σm)

m∑
n=1

c(κn)

≤ c(δ)e−q(1−δ)‖fm‖C(Σm)

m∑
n=1

4

τn
,

which yields the estimate (24). �

Lemma 4.3 implies that the anisotropic sparse grid quadrature converges exponentially with
respect to the level q. The convergence in Lemma 4.3 is nearly as good as the convergence of the
anisotropic tensor product quadrature on level q, with d q

2wn
+ 1

2e quadrature points in the n-th
dimension.

In addition, we provide an estimate on the quadrature error in terms of the number of multi-
indices contained in the anisotropic sparse index set. Note that this is very similar to the analysis
in [3, 13]. From (9), we deduce that the error of the anisotropic sparse grid quadrature can be
written as

(26)
∣∣(I−Aw(q,m)

)
fm
∣∣ =

∣∣∣∣ ∑
α∈Nm\Xw(q,m)

(
∆(1)
α1
⊗ · · · ⊗∆(m)

αm

)
fm

∣∣∣∣.
With estimate (20), we obtain∣∣(I−Aw(q,m)

)
fm
∣∣ ≤ ∑

α∈Nm\Xw(q,m)

( m∏
n=1

(
2c(κn)

)min(1,αn)
)
e−

∑m
n=1 log(κn)αn‖fm‖C(Σm)

≤ c(κ)‖fm‖C(Σm)

∑
α∈Nm\Xw(q,m)

e−
∑m
n=1 log(κn)αn

with

c(κ) := sup
α∈Nm

m∏
n=1

(
2c(κn)

)min(1,αn)
.
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Due to the summability properties of {τn}n, the constant c(κ) can obviously be bounded indepen-
dent of the dimension m. It remains to estimate the sum in the above estimate which has been
extensively studied in [13]. The following result from [13] is particularly useful for the considered
situation.

Theorem 4.4. Let the sequence w = {wn}n of positive, real numbers be ordered, i.e. wi ≤ wj for
i ≤ j. If there exists a real number β > 1 such that

(27) M(w, β) :=

∞∑
n=1

1

ewn/β − 1
<∞,

it holds that

(28)
∑

α∈N∞0 \Xw(q,∞)

e−
∑∞
n=1 wnαn ≤ 1

β
eβM(w,β)#Xw(q,∞)−(β−1).

We apply Theorem 4.4 with respect to the sequence wn = log(κn). Then, it follows from
Assumption 4.2 that the conditions of Theorem 4.4 are fulfilled with β < r since then

(29)

∞∑
n=1

1

elog(κn)/β − 1
≤
∞∑
n=1

1

(1 + cnr)1/β − 1
<∞.

Of course, Theorem 4.4 is still valid when considering dimensions m < ∞. In this case, even
subexponential convergence rates can be proven which, however, depend on the dimension m, see
[13] for the details. Especially, the appearing constants depend then on the dimensionality as
well. Since we are interested in dimensionalities which might grow with the desired accuracy, it
is reasonable to rely on estimates which do not depend on m. To that end, we conclude from
Theorem 4.4 for all β < r that

(30)

∣∣(I−Aw(q,m)
)
fm
∣∣ ≤ c(κ)

eβM
(m)(w,β)

β
#Xw(q,m)−(β−1)‖fm‖C(Σm)

≤ c(w, β)#Xw(q,m)−(β−1)‖fm‖C(Σm)

with M (m)(w, β) :=
∑m
n=1

1
ewn/β−1

. Due to (29), the latter constant is bounded independently of
m.

5. Cost of the anisotropic sparse grid quadrature

5.1. A preliminary estimate on the cost. In order to find an error estimate in terms of
the number of quadrature points, we additionally have to estimate the cost of the sparse grid
quadrature method for a given level q.

In the following, we establish a bound on the number of quadrature points used in the combi-
nation technique formula (15). This number is obviously bounded by

cost
(
Aw(q,m)

)
≤

∑
α∈Yw(q,m)

m∏
n=1

Nαn ,

which might be a rough upper bound since some of the coefficients in (15) may vanish and since
some of the quadrature points usually appear repeatedly in (15). Since Yw(q,m) ⊂ Xw(q,m),
cf. (12) and (13), we can further estimate

(31)

cost
(
Aw(q,m)

)
≤

∑
α∈Yw(q,m)

m∏
n=1

⌈
1

2
(αn + 2)

⌉
≤

∑
α∈Yw(q,m)

m∏
n=1

(αn + 1)

≤
∑

α∈Xw(q,m)

m∏
n=1

(αn + 1) ≤
[

max
α∈Xw(q,m)

m∏
n=1

(αn + 1)

]
#Xw(q,m).
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Note that there holds β ∈ Xw(q,m) for all 0 ≤ β ≤ α whenever α ∈ Xw(q,m). This property is
often referred to as downward closedness of the index set. Hence, it follows that

#Xw(q,m) ≥ max
α∈Xw(q,m)

∑
0≤β≤α

1 = max
α∈Xw(q,m)

m∏
n=1

(αn + 1).

As a consequence, the number of quadrature points in (13) with a sequence of univariate quadrature
sequence, where the number of points are given by (16), is bounded by

(32) cost
(
Aw(q,m)

)
≤ #Xw(q,m)2.

We remark that a similar bound for downward closed index sets has also been used in [9] in the
context of a sparse adaptive collocation approximation.

Remark 5.1. As indicated before, the estimate (32) is not sharp. Our numerical experiments
indicate that cost

(
Aw(q,m)

)
depends rather linearly than quadratically on the number of multi-

indices #Xw(q,m), cf. Figures 3–5 from the numerical examples. This is due to the fact that an
exact representation for the cost is given by

(33) cost
(
Aw(q,m)

)
=

∑
α∈Xw(q,m)

m∏
n=1

ζαn

where ζαn denotes the number of quadrature points which belong to Q(n)
αn but not to Q

(n)
i for any

i < αn. In our setting of the Gauss-Legendre quadrature, where the number of points is determined
by (16), this sequence is given by

{ζn}n = {1, 2, 0, 2, 0, 4, 0, 4, 0, 6, 0, 6, . . .}.
Therefore, each summand in (33) vanishes whenever any αn is an even number greater than zero.

5.2. An improved estimate on the anisotropic sparse index set. In order to complete the
convergence analysis, it remains to estimate the number of indices in the set Xw(q,m). To that
end, we require the following lemma.

Lemma 5.2. For L ∈ N, m ∈ N and δ ∈ R+, there holds the inequality

L−1∑
j=0

m∏
n=1

(n+ δ + j) ≤ 1

m+ 1

m∏
n=0

(L+ δ + n)

with equality when δ = 0.

Proof. We prove the assertion by induction on L. For L = 1, we verify

m∏
n=1

(n+ δ) =
1

m+ 1 + δ

m+1∏
n=1

(n+ δ) ≤ 1

m+ 1

m∏
n=0

(n+ δ + 1).

Let the assertion be fulfilled for L. Then, we conclude for L+ 1 that

L∑
j=0

m∏
n=1

(n+ δ + j) ≤ L+ δ

m+ 1

m∏
n=1

(L+ δ + n) +

m∏
n=1

(L+ δ + n)

=

(
L+m+ 1 + δ

m+ 1

) m∏
n=1

(L+ n+ δ)

=

(
1

m+ 1

)m+1∏
n=1

(L+ n+ δ)

=

(
1

m+ 1

) m∏
n=0

(L+ 1 + n+ δ).

�

The next lemma gives us a novel bound on the number of indices in Xw(q,m).
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Lemma 5.3. The cardinality of the set Xw(q,m) in (12), where the weight vector w = [w1, . . . , wm]
is ascendingly ordered, i.e. w1 ≤ w2 ≤ · · · ≤ wm, is bounded by

(34) #Xw(q,m) ≤
m∏
n=1

(
q

nwn
+ 1

)
.

Proof. The prove is performed by induction on m. For m = 1, the assertion is obviously fulfilled,
since

#Xw(q, 1) =

b qw1
c∑

α1=0

1 =
⌊ q
w1

⌋
+ 1.

Let us assume that (34) is true for m−1. For m ∈ N, the cardinality of Xw(q,m) can be calculated
by

#Xw(q,m) =

b q
wm
c∑

j=0

#Xw1:m−1
(q − jwm,m− 1).

Inserting the induction hypothesis yields that

(35)

#Xw(q,m) ≤
b q
wm
c∑

j=0

m−1∏
n=1

(
1 +

q − jwm
nwn

)

=

(
m−1∏
k=1

(
1 +

q

kwk

)) b q
wm
c∑

j=0

m−1∏
n=1

1 + q−jwm
nwn

1 + q
nwn

=

(
m−1∏
n=1

(
1 +

q

nwn

)) b q
wm
c∑

j=0

m−1∏
n=1

(
1− jwm

nwn + q

)

=

(
m−1∏
n=1

(
1 +

q

nwn

))(
1 +

b q
wm
c∑

j=1

m−1∏
n=1

(
1− jwm

nwn + q

))
.

Focusing on the last term and since wm ≥ wn for all 0 ≤ n ≤ m, we conclude that

b q
wm
c∑

j=1

m−1∏
n=1

(
1− jwm

nwn + q

)
≤
b q
wm
c∑

j=1

m−1∏
n=1

(
1− jwm

nwm + q

)

=

m−1∏
n=1

(
n+

q

wm

)−1 b
q
wm
c∑

j=1

m−1∏
n=1

(
n+

q

wm
− j
)
.

Applying the previous lemma with L = b q
wm
c and δ = q

wm
− L leads to

L∑
j=1

m−1∏
n=1

(n+ L+ δ − j) =

L−1∑
j=0

m−1∏
n=1

(n+ δ + j) ≤ 1

m

m−1∏
n=0

(L+ δ + n).

Thus, we obtain that
b q
wm
c∑

j=1

m−1∏
n=1

(
1− jwm

nwn + q

)
≤ L+ δ

m
=

q

mwm
.

Inserting this into (35) finishes the proof. �

Remark 5.4. (1) We would like to point out that estimate (34) is sharp in the isotropic case,
that is, for the weight w = 1. Moreover, the ordering of the weight vector is crucial in
this estimate. There are examples where this estimate does not hold if the weights are not
in ascending order.
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(2) At first glance one might claim that even the estimate

#Xw(q,m) ≤
m∏
n=1

⌊
q
wn

⌋
+ n

n

is valid. This is true in a lot of cases which we investigated. Nonetheless, there are
examples where this estimate fails.

The novel estimate

(SG Formula) #Xw(q,m) ≤
m∏
n=1

q
wn

+ n

n

is much more accurate than the well established and widely used formula by Beged-Dov, cf. [4],

(BD Formula) #Xw(q,m) ≤
m∏
n=1

q + ‖w‖1
nwn

or the anisotropic tensor product estimate

(TP Formula) #Xw(q,m) ≤
m∏
n=1

(⌊
q

wn

⌋
+ 1

)
,

Indeed, the new estimate implies (BD Formula). This can easily be shown by induction: For
m = 1, both estimates coincide. The induction step m 7→ m + 1 follows with q̃ = q +

∑m
n=1 wn

according to

m+1∏
n=1

(q + ‖w‖1) = (q̃ + wm+1)m+1 =

m+1∑
n=0

(
m+ 1

n

)
q̃nwm+1−n

m+1

≥ q̃m+1 + (m+ 1)q̃mwm+1

≥
(
q + (m+ 1)wm+1

)
q̃m

≥
(
q + (m+ 1)wm+1

) m∏
n=1

(q + nwn) =

m+1∏
n=1

(q + nwn).

A numerical comparison of the exact number of indices, of our new bound and of the formula of
Beged-Dov can be found in Figure 7 in the numerical examples.

In practical applications, we will usually have to choose the level q. Hence, it is also interesting
to examine how the computational cost behave, under the decay Assumption 4.2, with respect to
the dimension m.

Lemma 5.5. Let Assumption 4.2 hold for some c > 1 and let m ≥ 3. Then, we obtain that the
number of indices in the anisotropic sparse grid on level q is bounded by

(36) #Xw(q,m) ≤ c(r) exp

(
q

r
log(log(m))

)
= c(r) log(m)q/r

with a constant c(r) which is independent of m.

Proof. From Lemma 5.3, we know that

#Xw(q,m) ≤
m∏
n=1

(
q

nwn
+ 1

)
.

Next, we split the product into

(37)

m∏
n=1

(
q

nwn
+ 1

)
=

(
q

w1
+ 1

)(
q

2w2
+ 1

)(
q

3w3
+ 1

) m∏
n=4

(
q

nwn
+ 1

)
.

We estimate the last term by
m∏
n=4

(
q

nwn
+ 1

)
= exp

( m∑
n=4

log

(
q

nwn
+ 1

))
≤ exp

( m∑
n=4

q

nwn

)
.
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Due to wn ≥ log(nr), the sum in this estimate can be bounded by the following integral:
m∑
n=4

q

nwn
≤
∫ m

3

q

x log(xr)
dx =

q

r

∫ m

3

1

x log(x)
dx

=
q

r

∫ log(m)

log(3)

1

z
dz =

q

r

(
log(log(m))− log(log(3))

)
.

The first three factors in (37) define a cubic polynomial in q and can thus be estimated by the
exponential function according to(

q

w1
+ 1

)(
q

2w2
+ 1

)(
q

3w3
+ 1

)
≤ c(r) exp

(
log(log(3))

r
q

)
.

Hence, putting all together, we end up with
m∏
n=1

(
q

nwn
+ 1

)
≤ c(r) exp

(
log(log(3))

r
q

)
exp

(
q

r

(
log(log(m))− log(log(3))

))
≤ c(r) exp

(
q

r

(
log(log(m))

))
.

�

Remark 5.6. It follows immediately from Lemma 4.1 and the novel upper bound (SG Formula)
that Xw(q,m) is bounded independently of m whenever {(kwk)−1}k is summable. This result
cannot be proven by (BD Formula). Indeed, for wk = kr with r > 0, it holds that

(q +
∑m
k=1 wk)m

m!
∏m
k=1 wk

> 1.1
(q +

∑m
k=1 k

r)m

(2πm)(r+1)/2(m/e)m(r+1)
> 1.1

(q +mr+1/(r + 1))m

(2πm)(r+1)/2(m/e)m(r+1)

> 1.1
mm(r+1)em(r+1)

(2πm)(r+1)/2mm(r+1)(r + 1)m
= 1.1

1

(2πm)(r+1)/2

( er+1

r + 1

)m
.

Since f(x) = ex/x is strictly increasing for x > 1, we obtain

er+1

r + 1
> e.

Hence, it follows that
1

(2πm)(r+1)/2

( er+1

r + 1

)m
>

exp(m)

(2πm)(r+1)/2

which implies that (BD Formula) grows at least exponentially in m for weights wk = kr with r > 0.

5.3. Convergence in terms of the number of quadrature points. The findings from the
previous two sections can be summarized to an error estimate in terms of the sparse grid quadrature
level q, that is

(38)
∣∣(I−Aw(q,m)

)
fm
∣∣ ≤ C1(δ)e−q(1−δ)‖fm‖C(Σm),

an error estimate in terms of the number of indices in the anisotropic sparse grid,

(39)
∣∣(I−Aw(q,m)

)
fm
∣∣ ≤ C2(w, β)#Xw(q,m)−(β−1),

an estimate of the computational cost,

(40) N(q) := cost
(
Aw(q,m)

)
≤ #Xw(q,m)2,

and finally an improved estimate on the number of indices in an anisotropic sparse grid,

#Xw(q,m) ≤
m∏
n=1

(
q

nwn
+ 1

)
.

With these estimates at hand, we are now able to conduct the main result of this section. From
(39) and (40), we immediately obtain that the error in terms of number of quadrature points is
bounded independently of the dimension m.
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Theorem 5.7. The error of the anisotropic sparse grid quadrature with wn = log(κn) can be
bounded in terms of the number of quadrature points N(q) according to∣∣(I−Aw(q,m)

)
fm
∣∣ ≤ c(w, β)N(q)−(β−1)/2

for all β < r.

6. Numerical results

This section is dedicated to numerical results in order to illustrate the theoretical findings.
We will consider three different examples: At first, we consider a high dimensional quadrature
problem, afterwards we have a look at a parametric diffusion problem as they usually occur in the
context of uncertainty quantification and finally, we consider the approximation of quantities of
interest from a diffusion problem on a random domain.2

6.1. Pure quadrature problem. As a first example, we consider the quadrature problem∫
Γm

fm(y)2−m dy,

where the function fm : Γm → R is given by

fm(y) :=

(
0.6 + 0.2

m∑
n=1

n−syn

)−1

for s = 2, 3, 4.

The derivatives of this function read

∂αy fm = |α|!(−1)|α|γαf |α|+1
m with γn := 0.2n−s.

Therefore, fm satisfies Assumption 2.1 for τn < 5ns−1. The dimension is set to m = 1000 and the
weight sequence is computed according to

wn = log κn, where κn = ns +
√

1 + n2s.

This means that we disregard the fact that the existence of the analytic extension of fm can only
be proven for τn < 5ns−1.

A reference solution is obtained by the anisotropic sparse grid quadrature on a higher level,
featuring about 106 quadrature points. The corresponding values are denoted in Table 1. In order

s = 2 s = 3 s = 4
1.7393632457035437 1.7342253547471955 1.7331866232415222

Table 1. Reference solutions for the different choices of s in the first example.

to validate these reference solutions, we have tested them against a quasi-Monte Carlo quadrature
based on the Halton sequence.

Next, we consider the convergence of the anisotropic sparse grid quadrature. Obviously, in
the absence of any decay, a genuine 1000-dimensional problem would be computationally not
feasible. Thus, in order to determine the inherent dimensionality for each choice of the parameter
s, we approximate the reference solution, which has been computed with m = 1000, by m =
10, 100, 1000.

The plot on the left-hand side of Figure 3 shows the convergence for s = 2. It turns out, that we
are able to recover the reference solution up to an error of order 10−5 by just considering m = 10
dimensions. For m = 100, we already achieve convergence up to an error of order 10−8 and, finally,
for m = 1000, we have convergence up to an error of order 10−10. The observed convergence rate
is in all cases superlinear. Hence, the observed rate is much better than expected by Theorem 5.7
since (β − 1)/2 would be at most 1/2.

The plot on the right-hand side of Figure 3 demonstrates that the bound on the number of
quadrature points N(q) ≤ #Xw(q,m)2 is not sharp here. In fact, it seems that the number of
quadrature points behaves more linearly in terms of the cardinality of the sparse grid index set.

2The implementation of the sparse grid quadrature is available on https://github.com/muchip/SPQR.
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Figure 3. Convergence of the anisotropic sparse grid quadrature with respect to
the different parameter dimensions for s = 2 (left). Number of quadrature points,
cardinality of the sparse index set and their estimates for dimension m = 100
(right).

Indeed, for all the three different settings of this example (i.e., for s = 2, 3, 4), the number of
quadrature points lies between the cardinality of the sparse index set and the novel upper bound
(SG Formula). This is the reason why we observe convergence rates that are better reflected by
β−1 than by (β−1)/2. However, the novel upper bound is a tremendous improvement compared
to (BD Formula): Inserting in the weight vector w and the considered range of q, we obtain
values between 9.8×1043 and 1.0×1045 as an upper estimate for #Xw(q,m) from (BD Formula).
Hence, we refrain from including this estimate in Figure 3 in order to illustrate the behavior of
the remaining formulas more clearly. A graphical comparison of the different upper bounds from
Section 5.2 is presented in Figure 7.
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Figure 4. Convergence of the anisotropic sparse grid quadrature with respect
to different parameter dimensions for s = 3 (left). Number of points of the
quadrature, cardinality of the sparse index set and their estimates for dimension
m = 100 (right).
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Figure 4 depicts the situation for s = 3. Here for m = 10, we have already convergence up to
an error of order 10−7. The choices m = 100, 1000 both converge towards the reference solution
up to an error of order 10−13. For all choices of m, we observe an order of convergence that is
greater than 2. The right-hand side of the figure shows that the number of quadrature points N(q)
behaves very similar to log(m)q/s and that (SG Formula) is, overestimating N(q) by a factor 10
for most of the considered values of q. The behavior of (BD Formula) for s = 3 is very similar to
the case s = 2 with values ranging from 1.7× 1044 and 1.1× 1045.
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Figure 5. Convergence of the anisotropic sparse grid quadrature with respect
to different parameter dimensions for s = 4 (left). Number of points of the
quadrature, cardinality of the sparse index set and their estimates for dimension
m = 100 (right).

Finally, on the left-hand side of Figure 5, we see the convergence of the sparse grid quadrature
for s = 4. Here, m = 10 already provides convergence up to an error of order 10−9, whereas
m = 100, 1000 converge towards the reference solution up to an error of order 10−13. We observe an
order of convergence that is about 3 for all choices of m. On the right-hand side of Figure 5, we see
that the number of quadrature points N(q) is bounded by 2 ·#Xw(q,m) for the considered values
of q. Moreover, it seems that the simplified bound from Lemma 5.5, with constant c(r) = 1, reflects
the behaviour of #Xw(q,m) quite well. As for s = 2, 3, (BD Formula) heavily overestimates the
number of points for s = 4 providing values ranging from 2.5× 1044 and 8.0× 1044.

The example indicates that the proven estimates are by far not sharp and could probably be
improved further.

6.2. Random diffusion problem. Let (Ω,F ,P) be a complete probability space and consider
the diffusion equation

(41) −∂x
(
a(x, ω)∂xu(x, ω)

)
= 1 in D = (0, 1) for almost every ω ∈ Ω,

where the random coefficient a(x, ω) is uniformly bounded and elliptic meaning that

0 < a := ess inf
(x,ω)∈D×Ω

a(x, ω) and a := ess sup
(x,ω)∈D×Ω

a(x, ω) <∞.

We arrive at a well-posed problem by complementing (41) with homogeneous boundary conditions,
i.e. u(0, ω) = u(1, ω) = 0.

The first step towards the solution for this class of problems is the parameterization of the
stochastic parameter. To that end, one decomposes the diffusion coefficient with the aid of the



18 A.-L. HAJI-ALI, H. HARBRECHT, M. D. PETERS, AND M. SIEBENMORGEN

Karhunen-Loève expansion. Let the covariance kernel of a(x, ω) ∈ L2
(
Ω;L2(D)

)
be defined by

the positive semi-definite function

C(x, x′) :=

∫
Ω

(
a(x, ω)− E[a](x)

)(
a(x′, ω)− E[a](x′)

)
dP(ω).

Herein, the integral with respect to Ω has to be understood in terms of a Bochner integral, cf. [19].
Now, let (λk, ϕk) denote the eigenpairs obtained by solving the eigenproblem for the diffusion
coefficient’s covariance, i.e. ∫ 1

0

C(x, x′)ϕk(x′) dx′ = λkϕk(x).

Then, the Karhunen-Loève expansion of a(x, ω) is given by

a(x, ω) = E[a](x) +

∞∑
n=1

√
λnϕn(x)Xn(ω),

where Xn : Ω → Γ ⊂ R for n = 1, 2, . . . are centered, pairwise uncorrelated and L2-normalized
random variables with Xn ∼ U([−

√
3,
√

3]). Note that the scaling factor
√

3 stems from the L2-
normalization of the random variables. We have additionally to assume that the random variables
are independent.

By substituting the random variables with their image, we arrive in the uniformly distributed
case at the parameterized Karhunen-Loève expansion

a(x,ψ) = E[a](x) +

∞∑
n=1

√
λnϕn(x)

√
3ψn,

where ψn ∈ Γ. We define γn =
√
λn‖ϕn‖L∞(D). The decay of the sequence {γn}n is important in

order to determine the region of analytical extendability of the solution u, cf. Lemma 6.1.
Truncating the respective Karhunen-Loève expansion after m ∈ N terms, yields the parametric

and truncated diffusion problem

(42) −∂x
(
am(x,y)∂xum(x,y)

)
= 1 in D = (0, 1) for almost every y ∈ Γm.

The impact of truncating the Karhunen-Loève expansion on the solution is bounded by

‖u− um‖L2(Γ∞;H1
0 (D)) ≤ c‖a− am‖L2(Γ∞;L∞(D)) = ε(m), c > 0,

where ε(m) → 0 monotonically as m → ∞, see e.g. [6, 30]. Since the L2-norm is stronger than
the L1-norm, this particularly implies the approximation estimate (2) for u and um, where the
modulus has to be replaced by the H1

0 (D)-norm.
Given the parametric solution um(x,y), we are interested in determining properties of its dis-

tribution. In our numerical examples, we focus on the computation of the solution’s moments.
These are given by the Bochner integral

Mp
um(x) :=

∫
Γm

upm(x,y)2−m dy.

Especially, there holds E[um](x) =M1
um(x).

We remark that the sparse grid quadrature straightforwardly extends to Bochner integrals, see
e.g. [18]. This is due to the fact, that the Bochner integral corresponds for almost every x ∈ (0, 1)
with the usual Lebesgue integral.

It remains to provide the related regularity results that allow for an analytic extension of um
into the complex plane. The extendability is guaranteed by [3, Corollary 2.1], which has slightly
been modified to fit our purposes.

Lemma 6.1. The solution um to (42) admits an analytic extension into the region Σm for all τ
with

τk <
a

C(δ)k1+δγk
, where C(δ) =

∞∑
k=1

k−1−δ for arbitrary δ > 0.

Moreover, it holds that ‖um‖C(Σm;H1
0 (D)) is bounded.
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Lemma 6.1 characterizes the region of analyticity and, therefore, Assumption 2.1 for this appli-
cation. The next lemma from [1] guarantees that um : Γm → H1

0 (D) also satisfies a one-dimensional
error estimate for the polynomial approximation which gives rise to an estimate that is similar to
(5).

Lemma 6.2. Let X be a Banach space. Suppose that v ∈ C(Γ;X ) admits an analytic extension
into Σ1. Then, the error of the best approximation by polynomials of degree at most n can be
bounded by

(43) inf
w∈Πn⊗X

‖v − w‖C(Γ;X ) ≤
2

κ1 − 1
e−n log(κ1)‖v‖C(Σ1;X )

with κ1 = τ1 +
√

1 + τ2
1 .

Thus, in view of (4), we end up with the estimate∥∥(I(n) −Q(n))um(y?n)
∥∥
H1

0 (D)
≤ c(κn) exp

(
− log(κn)(2N − 1)

)
‖um(y?n)‖C(Σn;H1

0 (D).

More generally we remark that by simply replacing all absolute values by the norms of the un-
derlying Banach space X , the whole analysis we have presented so far for real valued functions
directly transfers to Banach space valued functions fm : Γm → X which fulfill the estimate∥∥(I(n) −Q(n))fm(y?n)

∥∥
X ≤ c(κn) exp

(
− log(κn)(2N − 1)

)
‖fm(y?n)‖C(Σn;X ).
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Figure 6. Convergence of the anisotropic sparse grid quadrature for the random
diffusion problem (ν = 5/2 left, ν = 7/2 right).

For this example, we employ two covariance kernels of the Matérn class for ν = 5/2 and ν = 7/2,
cf. [22], i.e.

C5/2(ρ) :=
1

4

(
1 +

√
5ρ

`
+

5ρ2

3`2

)
exp

(
−
√

5ρ

`

)
and

C7/2(ρ) :=
1

4

(
1 +

√
7ρ

`
+

14ρ2

5`2
+

49
√

7ρ3

15`2

)
exp

(
−
√

7ρ

`

)
,

where ρ := |x − x′|. The correlation length is in both cases set to ` = 1/2. The spatial dis-
cretization is performed with piecewise linear finite elements and a mesh with mesh size h = 2−14,
which results from 16384 equidistant sub-intervals and is a good tradeoff between accuracy and
computational time. A numerical approximation to the Karhunen-Loève expansion is computed
by the pivoted Cholesky decomposition of the covariance operator with a trace error of ε = 2−28.
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Figure 7. Estimated number of points from the different formulas (ν = 5/2 left,
ν = 7/2 right).

This yields an approximation error of the underlying random field of ε = 2−14, see [15] for the
details. Thus, the finite element error and the truncation error for the Karhunen-Loève expansion
are balanced. The related truncation rank is given by m = 64 for C5/2 and m = 30 for C7/2. In

addition, we set E[a](x) = 2.5. From [12, Corollary 5], we know that γn ≤ cn−3 for C5/2 and

γn ≤ cn−4 for C7/2.
Since the solution of (41) is not known analytically, we have again to provide a reference

solution. It is computed with h = ε = 2−14, as well. Hence, we take here only the quadrature
error into account. The quadrature error is measured relative to the norm of the reference solution.
This reference solution is computed by the quasi-Monte Carlo quadrature with Halton points and
N = 230 ≈ 109 samples.

For the anisotropic sparse grid quadrature, we choose the weights wn according to wn = log(κn)
with τn = 1/γn. This would be the correct setting for a corresponding anisotropic tensor product
quadrature. Hence, our anisotropic sparse grid quadrature is essentially a sparsification of the
anisotropic tensor product quadrature, cf. [17] for more details on the anisotropic tensor product
quadrature. To choose the same quantity τn for the region of analyticity as for the tensor product
quadrature seems to be a violation of Lemma 6.1. Indeed, the assertion of this lemma is that the
quantities τn, which describe the region of analytic extendability in each direction Σn, should be
rescaled to τ̃n = τn/(c(δ)n

1+δ) in order to ensure analytic extendability into the tensor product
domain Σ(τ̃ ). Nonetheless, our experience suggests that the sparsification of the anisotropic tensor
product quadrature yields an error which is nearly as good as the error of the anisotropic tensor
product quadrature itself.

For both cases ν = 5/2 and ν = 7/2, it turns out that we obtain similar convergence rates for
all moments up to order four, see Figure 6. The smoothness of the underlying covariance kernel
has only little influence on the rate of convergence here. This might be caused by the fact that
the eigenvalues in the Karhunen-Loève expansion do not strictly decay in contrast to the previous
example, but have some offset before the asymptotical rate is achieved. This is due to the small
correlation length ` = 1/2.

In addition to the convergence studies for the sparse anisotropic quadrature, we also provide
results on the estimated number of indices contained in the sparse index set. To that end, we
compare the tensor product estimate (TP Formula) and the formula by Beged-Dov (BD Formula)
with the novel estimate proposed in this article (SG Formula). It turns that the new estimate fits
the cardinality of the sparse grid index set very well in comparison to the other estimates, cp.
Figure 7.
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Figure 8. Different realizations of the random domain.

6.3. Laplace equation on a random domain. As our third example, we consider the Laplacian
on a random domain:

∆u(ω) = 0 in D(ω) ⊂ R2, u(ω) =
1

4
(x2

1 + x2
2) on ∂D(ω).

The nominal domain Dref := E[D] is given by an ellipse with semi-axis 0.3 and 0.2. The boundary
perturbation is defined by means of a random vector field with V(∂Dref , ω) = ∂D(ω). This vector
field is represented via a Karhunen-Loève expansion according to

V(x, ω) = x +

(
1

40

50∑
k=1

k−2
(

cos(kφx)X2k(ω) + sin(kφx)X2k−1(ω)
))[cos(φx)

sin(φx)

]
,

where φx ∈ [0, 2π) is the angle associated to x ∈ ∂Dref and Xn ∼ U(−
√

3,
√

3). A visualization of
several realizations of the random domain can be found in Figure 8. By extending the boundary
perturbation into space by a smooth blending function, it can be shown that the solution u to
the diffusion problem on the random domain exhibits a regularity similar to Lemma 6.1 with
γn :=

√
λn‖ϕn‖W 1,∞(Dref ;R2), where the ϕn correspond to the spatial functions of V’s Karhunen-

Loève expansion, see [16] for the details.
As quantity of interest, we consider, likewise to the previous example, the first four moments of

the solution, but this time restricted to the disc {x ∈ R2 : ‖x‖2 ≤ 0.05}. This disc is illustrated as
grey shaded area in Figure 8. The numerical solution of the underlying boundary value problem
is performed by an exponentially convergent boundary integral method based on collocation as
proposed in [21]. The boundary is discretized by 200 points and a reference is again obtained by
230 quasi-Monte Carlo samples based on the Halton sequence.

In Figure 9, the relative errors of the moments computed by the sparse grid quadrature are
depicted. Also in this application, we observe a rate of convergence which is greater than 1 for all
moments under consideration and, therefore, again better than expected.

7. Conclusion

In the present article, we have considered the anisotropic sparse grid quadrature applied to a
class of analytic functions. Under the assumption that the regions of analyticity for the particular
dimensions are increasing algebraically, i.e. τn ≥ cnr for some c, r ∈ R+, we have derived dimension
independent convergence of the anisotropic sparse grid quadrature. In order to estimate the cost
of the quadrature, a novel estimate for the cardinality of the anisotropic sparse grid index set has
been proven. Our numerical comparisons suggest that this novel estimate is much more accurate
than the widely used estimate by Beged-Dov. In particular, it has been shown that the estimate
of Beged-Dov can easily be deduced from our novel estimate. Besides pure quadrature problems,
the anisotropic sparse grid quadrature has been successfully applied to Bochner integrals which
stem from the computation of the moments of elliptic diffusion problems with random coefficients
or on random domains, respectively.
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Figure 9. Convergence of the anisotropic sparse grid quadrature for the random domain.
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