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9 On the fixed volume discrepancy of the

Fibonacci sets in the integral norms

V.N. Temlyakov∗ and M. Ullrich†

Abstract

This paper is devoted to the study of a discrepancy-type charac-

teristic – the fixed volume discrepancy – of the Fibonacci point set in

the unit square. It was observed recently that this new characteristic

allows us to obtain optimal rate of dispersion from numerical integra-

tion results. This observation motivates us to thoroughly study this

new version of discrepancy, which seems to be interesting by itself.

The new ingredient of this paper is the use of the average over the

shifts of hat functions instead of taking the supremum over the shifts.

We show that this change in the setting results in an improvement of

the upper bound for the smooth fixed volume discrepancy, similarly

to the well-known results for the usual Lp-discrepancy. Interestingly,

this shows that “bad boxes” for the usual discrepancy cannot be “too

small”. The known results on smooth discrepancy show that the ob-

tained bounds cannot be improved in a certain sense.

1 Introduction

This paper is devoted to the study of a discrepancy-type characteristic – the
fixed volume discrepancy – of a point set in the unit square Ω2 := [0, 1)2.
We refer the reader to the following books and survey papers on discrepancy
theory and numerical integration [2], [7], [8], [19], [3] [5], [15], and [20]. Re-
cently, an important new observation was made in [16]. It claims that a new
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version of discrepancy – the r-smooth fixed volume discrepancy – allows us
to obtain optimal rate of dispersion from numerical integration results (see
[1, 4, 6, 9, 11, 13, 21, 22, 23] for some recent results on dispersion). This ob-
servation motivates us to thoroughly study this new version of discrepancy,
which seems to be interesting by itself.

The r-smooth fixed volume discrepancy takes into account two character-
istics of a smooth hat function hr

B – its smoothness r and the volume of its
support v := vol(B) (see the definition of hr

B below). The new ingredient of
this paper is the use of the Lp, 1 ≤ p < ∞, average over the shifts of hat
functions instead of taking the supremum over the shifts. We show that this
change in the setting of the problem results in an improvement of the upper
bound for the r-smooth fixed volume discrepancy of the special sets of points
– the Fibonacci point sets. For these sets with bn elements (see below), we
get (log(bnv))

1/2 for 1 ≤ p < ∞, instead of log(bnv) for p = ∞. The known
results on r-smooth discrepancy show that both bounds cannot be improved
in a certain sense (see the end of Introduction for a detailed discussion). The
new results are only for the Fibonacci point sets, i.e., in dimension 2, and for
Lp-averaging in the periodic setting, i.e., with respect to the torus geometry.
However, we present the corresponding definitions and some known results
in a general setting on the unit cube Ωd := [0, 1)d. We now proceed to a
formal description of the problem setting and to formulation of the results.

Denote by χ[a,b)(x) a univariate characteristic function (on R) of the in-
terval [a, b) and, for r = 1, 2, 3, . . . , we inductively define

h1
u(x) := χ[−u/2,u/2)(x)

and
hr
u(x) := hr−1

u (x) ∗ h1
u(x),

where

f(x) ∗ g(x) :=

∫

R

f(x− y)g(y)dy.

Note that h2
u is the hat function, i.e., h2

u(x) = max{u− |x|, 0}.
Let ∆tf(x) := f(x) − f(x + t) be the first difference. We say that a

univariate function f has smoothness 1 in L1 if ‖∆tf‖1 ≤ C|t| for some
absolute constant C < ∞. In case ‖∆r

tf‖1 ≤ C|t|r, where ∆r
t := (∆t)

r is the
rth difference operator, r ∈ N, we say that f has smoothness r in L1. Then,
hr
u(x) has smoothness r in L1 and has support (−ru/2, ru/2).
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For a box B of the form

B =
d
∏

j=1

[zj − ruj/2, zj + ruj/2) (1.1)

define

hr
B(x) := hr

u(x− z) :=

d
∏

j=1

hr
uj
(xj − zj). (1.2)

We begin with the non-periodic r-smooth fixed volume discrepancy intro-
duced and studied in [16].

Definition 1.1. Let r ∈ N, v ∈ (0, 1] and ξ := {ξµ}mµ=1 ⊂ [0, 1)d be a point

set. We define the r-smooth fixed volume discrepancy with equal weights as

Dr(ξ, v) := sup
B⊂Ωd:vol(B)=v

∣

∣

∣

∣

∣

∫

Ωd

hr
B(x)dx−

1

m

m
∑

µ=1

hr
B(ξ

µ)

∣

∣

∣

∣

∣

. (1.3)

The optimized version of the r-smooth fixed volume discrepancy is defined as

follows

Dr,o(ξ, v) := inf
λ1,...,λm

sup
B⊂Ωd:vol(B)=v

∣

∣

∣

∣

∣

∫

Ωd

hr
B(x)dx−

m
∑

µ=1

λµh
r
B(ξ

µ)

∣

∣

∣

∣

∣

. (1.4)

Clearly, we have Dr,o(ξ, v) ≤ Dr(ξ, v).
It is well known that the Fibonacci cubature formulas are optimal in

the sense of order for numerical integration of different kind of smoothness
classes of functions of two variables, see e.g. [5, 14, 19]. We present a result
from [16], which shows that the Fibonacci point set has good fixed volume
discrepancy.

Let {bn}
∞
n=0, b0 = b1 = 1, bn = bn−1 + bn−2, n ≥ 2, be the Fibonacci

numbers. Denote the nth Fibonacci point set by

Fn :=
{

(

µ/bn, {µbn−1/bn}
)

: µ = 1, . . . , bn

}

.

In this definition {a} is the fractional part of the number a. The cardinality
of the set Fn is equal to bn. In [16] we proved the following upper bound.
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Theorem 1.1. Let r ≥ 2. There exist constants c, C > 0 such that for any

v ≥ c/bn we have

Dr(Fn, v) ≤ C
log(bnv)

brn
. (1.5)

The main object of our interest in this paper is the periodic r-smooth Lp-
discrepancy of the Fibonacci point sets. For this, we define the periodization
f̃ (with period 1 in each variable) of a function f ∈ L1(R

d) with a compact
support by

f̃(x) :=
∑

m∈Zd

f(m+ x)

and, for each B ⊂ [0, 1)d, we let h̃r
B be the periodization of hr

B from (1.2).
We now define the periodic r-smooth Lp-discrepancy.

Definition 1.2. For r ∈ N, 1 ≤ p ≤ ∞ and v ∈ (0, 1] define the periodic

r-smooth fixed volume Lp-discrepancy of a point set ξ by

D̃r
p(ξ, v) := sup

B⊂Ωd:vol(B)=v

∥

∥

∥

∥

∥

∫

Ωd

h̃r
B(x− z)dx−

1

m

m
∑

µ=1

h̃r
B(ξ

µ − z)

∥

∥

∥

∥

∥

p

(1.6)

where the Lp-norm is taken with respect to z over the unit cube Ωd = [0, 1)d.
Analogously to (1.4) we may define the optimized version D̃r,o

p (ξ, v).

In the case of p = ∞ this concept was introduced and studied in [17].
We prove the following upper bound for 1 ≤ p < ∞.

Theorem 1.2. Let r ∈ N and 1 ≤ p < ∞. There exist constants c, C > 0
such that for any v ≥ c/bn we have

D̃r
p(Fn, v) ≤ C

√

log(bnv)

brn
.

In the case p = ∞ we prove a weaker upper bound.

Theorem 1.3. Let r ≥ 2. There exist constants c, C > 0 such that for any

v ≥ c/bn we have

D̃r
∞(Fn, v) ≤ C

log(bnv)

brn
.
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We now give some comments, which show that Theorems 1.2 and 1.3
cannot be improved in a certain sense. We do not know if Theorems 1.2 and
1.3 are sharp for all v ≥ c/bn. The known results show that these theorems
are sharp in some cases for the supremum over v. The following quantities

D̃r,o
p,∞(ξ) := sup

v
D̃r,o

p (ξ, v)

have been studied in [17] and [18]. We cite some results from there. The
following lower bound follows from stronger results in [18]. Let r, d ∈ N.
Then for any point set ξ ⊂ Ωd with #ξ = m we have

D̃r,o
2,∞(ξ) ≥ C(r, d)m−r(logm)(d−1)/2, C(r, d) > 0. (1.7)

Under an extra assumption on r, namely, assuming that r is an even number,
we can derive an extended to p > 1 inequality (1.7) for D̃r,o

p,∞(ξ) from [18]. In
the case r = 1 the quantity under consideration corresponds to the classical
(non-smooth) discrepancy, and the above mentioned bounds were already
proven in [10, 12].

For p = ∞ the following result was proved in [17]. For any point set
ξ ⊂ Ωd with #ξ = m we have for even integers r that

D̃r
∞(ξ) ≥ C(r, d)m−r(logm)d−1 (1.8)

with a positive constant C(r, d). This result even holds if we allow weights
(as in the optimized version) λ1, . . . , λm satisfying condition

m
∑

µ=1

|λµ| ≤ B

for some fixed B < ∞.
Finally, let us add that Theorems 1.2 and 1.3 show that the “bad boxes”,

i.e., the boxes that fulfill the lower bounds (1.7) or (1.8), must have volume
at least m−1+δ for some fixed δ > 0. This is interesting as one might think
that boxes of volume at most (logm)c/m (for some large c) may already
suffice.

2 Proofs of Theorems 1.2 and 1.3

The proofs of both theorems go along the same lines. We give a detailed proof
of Theorem 1.2 and point out a change of this proof, which gives Theorem

5



1.3. For continuous functions of two variables, which are 1-periodic in each
variable, define cubature formulas

Φn(f) := b−1
n

bn
∑

µ=1

f
(

µ/bn, {µbn−1/bn}
)

,

called the Fibonacci cubature formulas. Denote

yµ :=
(

µ/bn, {µbn−1/bn}
)

, µ = 1, . . . , bn,

and

Φ(k) := Φn

(

ei2π(k,x)
)

= b−1
n

bn
∑

µ=1

ei2π(k,y
µ).

Note that

Φn(f) =
∑

k

f̂(k) Φ(k), f̂(k) :=

∫

[0,1)2
f(x) e−i2π(k,x)dx, (2.1)

where for the sake of simplicity we may assume that f is a trigonometric
polynomial. It is clear that (2.1) holds for f with absolutely convergent
Fourier series.

It is easy to see that the following relation holds

Φ(k) =

{

1 for k ∈ L(n),

0 for k /∈ L(n),
(2.2)

where

L(n) :=
{

k = (k1, k2) ∈ Z
2 : k1 + bn−1k2 ≡ 0 (mod bn)

}

.

For N ∈ N define the hyperbolic cross (in dimension 2) by

Γ(N) :=

{

k = (k1, k2) ∈ Z
2 :

2
∏

j=1

max(|kj|, 1) ≤ N

}

.

The following lemma is well known (see, for instance, [19], p.274).

Lemma 2.1. There exists an absolute constant γ > 0 such that for any n > 2
we have

Γ(γbn) ∩
(

L(n)\{0}
)

= ∅.
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Considering our (univariate) test functions hr
u we obtain by the properties

of convolution that

ĥr
u(y) = ĥr−1

u (y) ĥ1
u(y), y ∈ R

which implies for y 6= 0

ĥr
u(y) =

(

sin(πyu)

πy

)r

.

Therefore,

∣

∣

∣

ˆ̃
hr
u(k)

∣

∣

∣
≤ min

(

|u|r,
1

|k|r

)

=

(

|u|

k′

)r/2

min

(

|k′u|r/2,
1

|ku|r/2

)

,

where k′ := max{1, |k|}. (Here, we used for a moment ĥ for the Fourier
transform of h on R. This should not lead to any confusion.)

We now proceed with some considerations in arbitrary dimension d. It is
convenient for us to use the following abbreviated notation for the product

pr(u) := pr(u, d) :=
d
∏

j=1

uj.

For B ⊂ Ωd of the form (1.1) and z ∈ Ωd, we have

ˆ̃
hr
B+z(k) = e−i2π(k,z) ˆ̃hr

B(k), (2.3)

where h̃r
B+z(x) := h̃r

B(x− z), see (1.2). Therefore, we obtain from the above
that

∣

∣

∣

ˆ̃hr
B(k)

∣

∣

∣
≤

d
∏

j=1

(

|uj|

k′
j

)r/2

min

(

|k′
juj|

r/2,
1

|kjuj|r/2

)

.

For s ∈ N
d
0, we define

ρ(s) :=
{

k ∈ Z
d : [2sj−1] ≤ |kj| < 2sj , j = 1, . . . , d

}

,

where [a] denotes the integer part of a, and obtain, for k ∈ ρ(s), that

∣

∣

∣

ˆ̃
hr
B(k)

∣

∣

∣
≤ Hr

B(s) :=

(

pr(u)

2‖s‖1

)r/2 d
∏

j=1

min

(

(2sjuj)
r/2,

1

(2sjuj)r/2

)

. (2.4)
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Later we will need certain sums of these quantities. First, consider

σr
u(t) :=

∑

‖s‖1=t

d
∏

j=1

min

(

(2sjuj)
r/2,

1

(2sjuj)r/2

)

, t ∈ N0.

The following technical lemma is part (I) from [16, Lemma 6.1].

Lemma 2.2. Let r > 0, t ∈ N and u ∈ (0, 1/2]d be such that pr(u) ≥ 2−t.

Then, we have

σr
u(t) ≤ C(d)

(log(2t+1pr(u)))
d−1

(2tpr(u))r/2
.

This lemma and (2.4) imply that

∑

‖s‖1=t

Hr
B(s)

2 ≤ C1 2
−2rt

(

log
(

2t v
)

)d−1

, (2.5)

where v := vol(B) = rd pr(u), for all r ≥ 1 and all t ∈ N0 with v ≥ rd 2−t+1

and an absolute constant C1 < ∞.

Additionally, we need a result from harmonic analysis – a corollary of the
Littlewood-Paley theorem. Denote

δs(f,x) :=
∑

k∈ρ(s)

f̂(k)ei2π(k,x).

Then it is known that for p ∈ [2,∞) one has

‖f‖p ≤ C(d, p)





∑

s∈Nd
0

‖δs(f)‖
2
p





1/2

. (2.6)

Note that in the proof of Theorem 1.3 we use the simple triangle inequality

‖f‖∞ ≤
∑

s

‖δs(f)‖∞. (2.7)

instead of (2.6).
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We are now considering the case d = 2. Let us define

Er
B(z) :=

1

bn

bn
∑

µ=1

h̃r
B(y

µ − z)−

∫

[0,1)d
h̃r
B(x)dx (2.8)

such that
D̃r

p(Fn, v) = sup
B⊂Ωd:vol(B)=v

‖Er
B‖p

By formulas (2.1), (2.2) and (2.3) we obtain

Er
B(z) =

∑

k 6=0

ˆ̃hr
B(k) Φ(k) e

−i2π(k,z) =
∑

k∈L(n)\{0}

ˆ̃hr
B(k) e

−i2π(k,z).

It is apparent from (2.6) that it remains to bound ‖δs(E
r
B)‖p.

If t 6= 0 is such that 2t ≤ γbn then for s with ‖s‖1 = t we have ρ(s) ⊂
Γ(γbn). Lemma 2.1 then implies that Φ(k) = 0 for k ∈ ρ(s) and, therefore,
δs(E

r
B) = 0. Let t0 ∈ N be the smallest number satisfying 2t0 > γbn, i.e.,

t0 ≥ log(bn)− c for some c < ∞. Then, from (2.6) for p ∈ [2,∞), we have

‖Er
B‖p ≤ C(p)





∞
∑

t=t0

∑

‖s‖1=t

‖δs(E
r
B)‖

2
p





1/2

. (2.9)

Moreover, Lemma 2.1 implies that for t ≥ t0 we have

#
(

ρ(s) ∩ L(n)
)

≤ C2 2
t−t0 , ‖s‖1 = t. (2.10)

By Parselval’s identity we obtain

‖δs(E
r
B)‖2 =

√

∑

k∈ρ(s)∩L(n)

|
ˆ̃
hr
B(k)|

2 ≤
√

#
(

ρ(s) ∩ L(n)
)

·Hr
B(s)

and, by the triangle inequality,

‖δs(EB)‖∞ ≤ #
(

ρ(s) ∩ L(n)
)

·Hr
B(s)

Hence, using the inequality

‖f‖p ≤ ‖f‖
2/p
2 ‖f‖1−2/p

∞

9



for 2 ≤ p ≤ ∞, we get

‖δs(E
r
B)‖p ≤

(

#
(

ρ(s) ∩ L(n)
)

)1−1/p

·Hr
B(s).

Combining this with (2.5) for d = 2, (2.9) and (2.10), we finally obtain for
all v = vol(B) ≥ 2rd2−t0 and p ∈ [2,∞) that

‖Er
B‖p ≤ C





∞
∑

t=t0

22(t−t0)(1−1/p)
∑

‖s‖1=t

Hr
B(s)

2





1/2

≤ C ′

(

∞
∑

t=t0

22(t−t0)(1−1/p) 2−2rt log
(

2t v
)

)1/2

= C ′ 2−rt0

(

∞
∑

t=0

22t(1−1/p−r) log
(

2t+t0 v
)

)1/2

≤ C ′′ 2−rt0

√

log
(

2t0 v
)

(

∞
∑

t=0

t 22t(1−1/p−r)

)1/2

.

Using t0 ≥ log(bn) − c and that ‖Er
B‖p ≤ ‖Er

B‖2 for p < 2, this implies
Theorem 1.2. (Here, we used that clearly r > 1− 1/p for p < ∞.)

As we pointed out above, in the proof of Theorem 1.3 we use inequality
(2.7) instead of (2.6). Moreover we use

∑

‖s‖1=t

Hr
B(s) ≤ C1 2

−rt log
(

2t v
)

,

for all r ≥ 1 instead of (2.5). However, note that we need r > 1 for the last
series in the above computation to be finite. This implies

‖Er
B‖∞ ≤ C b−r

n log (bn v) .
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