
Expected dispersion of uniformly distributed
points

Aicke Hinrichs∗, David Krieg∗, Robert J. Kunsch†, Daniel Rudolf‡

March 27, 2020

Abstract

The dispersion of a point set in [0, 1]d is the volume of the largest axis
parallel box inside the unit cube that does not intersect with the point
set. We study the expected dispersion with respect to a random set of n
points determined by an i.i.d. sequence of uniformly distributed random
variables. Depending on the number of points n and the dimension d we
provide an upper and lower bound of the expected dispersion. In particular,
we show that the minimal number of points required to achieve an expected
dispersion less than ε ∈ (0, 1) depends linearly on the dimension d.
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Classification. Primary: 62D05; Secondary: 52B55, 65Y20, 68Q25.

1 Introduction and main result

Given n points {x1, . . . , xn} ⊂ [0, 1]d, the dispersion is the volume of the largest
axis parallel box that does not contain a point. It is defined by

disp(x1, . . . , xn) := sup
B∩{x1,...,xn}=∅

λd(B), (1)

where λd denotes the d-dimensional Lebesgue measure and the supremum is taken
over all boxes B = I1 × · · · × Id with intervals Ik ⊆ [0, 1]. In this note we study
the expected dispersion of random points based on an i.i.d. sequence of uniformly
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distributed random variables (Xi)i∈N, where each Xi maps from a common proba-

bility space (Ω,F ,P) to [0, 1]d. For simplicity we write X1, X2, . . .
iid∼ Unif([0, 1]d).

We ask for the behavior of

E(disp(X1, . . . , Xn))

in terms of n and d.
In recent years the proof of existence and the construction of point sets with

small dispersion attracted considerable attention, see [1, 6, 13, 15, 20, 21]. In
order to describe optimality of such point sets of cardinality n in the d-dimensional
setting, let us define the minimal dispersion

disp(n, d) := inf
{x1,...,xn}⊂[0,1]d

disp(x1, . . . , xn),

and its inverse
n(ε, d) := min{n ∈ N | disp(n, d) ≤ ε},

where ε ∈ (0, 1). A lower bound for the minimal dispersion growing with the
dimension d is provided in [1, Theorem 1]. Moreover, [1, Section 4] contains an
upper bound due to Gerhard Larcher, based on constructions of digital nets, which
give explicitly constructable point sets. For ε ∈ (0, 1/8) the bounds are

2−3ε−1 log2 d ≤ n(ε, d) ≤ 27d+1ε−1. (2)

Clearly, the dependence on ε−1 in (2) cannot be improved. However, the upper
bound grows exponentially in d, while the lower bound only grows logarithmically.
For large dimensions the upper bound can be improved significantly. It is shown
in [15, 20] that for fixed ε the quantity n(ε, d) increases at most logarithmically
in d. This means that also the d-dependence of the lower bound in (2) is optimal.

The results of [15, 20] are based on probabilistic arguments. Namely, points
are drawn uniformly at random from a regular grid whose parameters depend on ε
and d, and it is shown that these points are suitable with positive probability. By
the use of a derandomization technique, [21] provides a deterministic algorithm for
the construction of point sets with cardinality cε log2(d) and dispersion at most ε,
where cε > 0 depends only polynomially on ε. Comparable results can be obtained
via a careful translation of statements on the so-called hitting set problem, see [10].
In Table 1 we survey explicit bounds for n(ε, d), in particular, it contains the ones
of [15, 20] and their dependence on ε.

In one way or another, most of these upper bounds rely on randomly drawn
points and probabilistic arguments. In particular, the estimate of [13, Corollary 1]
is based on an i.i.d. sequence of random variables uniformly distributed on [0, 1]d.
Maybe this is the most canonical randomly chosen point set and one might ask
how good it is compared to deterministic point sets. Here, the measure of goodness
is the expected dispersion and our main result reads as follows:

Theorem 1.1. For any n > d we have

max

{
log(n)

9n
,
d

2en

}
≤ E(disp(X1, . . . , Xn)) ≤ 9d

n
log
(en

d

)
.
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Reference Upper bound of n(ε, d) Remarks

[1] d27d+1 ε−1e optimal in ε−1

(due to Larcher) digital net construction

[6] min{(2d)dlog2(ε−1)−1e , ε−1dlog2(ε−1)ed−1} sparse grid construction

[13] 8 d ε−1 log(33 ε−1) existence of point set

[15] log2(d) dε−1e(dε
−1e2+2)

(4 logdε−1e+ 1)
optimal in d
existence of point set

[20] 27 log2(d) ε−2(1 + log2(ε−1))2 optimal in d
existence of point set

Table 1: The table contains several upper bounds on n(ε, d) based on existence
results of “good” points as well as explicit constructions.

Let us also state our result in terms of the inverse of the expected dispersion.
For ε ∈ (0, 1) and d ∈ N, the inverse of the expected dispersion is defined as

N(ε, d) := min{n ∈ N | E disp(X1, . . . , Xn) ≤ ε}.

Corollary 1.2. For all ε ∈ (0, 1
9e

) and d ∈ N we have

max

{
1

9ε
log

(
1

9ε

)
,
d

2e ε

}
≤ N(ε, d) ≤

⌈
9(1 + e−1)

d

ε
log

(
9(e + 1)

ε

)⌉
.

These estimates show that N(ε, d) for fixed ε behaves linearly w.r.t. the di-
mension, and for fixed d behaves like ε−1 log(ε−1). It is interesting to note that
the linear behavior w.r.t. d is in contrast to the log2(d) dependence of the inverse
of the minimal dispersion.

The upper bound of Theorem 1.1 follows by exploiting a δ-cover approximation
and a concentration inequality stated in [13]. The proof of the lower bound is
separated into two parts. First, we derive the bound log(n)/(9n) from well known
results on the coupon collector’s problem. After that the d-dependent lower bound
d/(2en) is proven by a reduction to the expected dispersion of d points and,
eventually, a constant lower bound for this quantity.

The proof of Theorem 1.1, along with the necessary notation, is given in Sec-
tion 2. Further discussions and extensions of the results are provided in Section 3.
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2 Proof of Theorem 1.1

2.1 The upper bound

Before we start with the proof of the upper bound let us provide some further
notation. Let B be the set of boxes given as follows,

B :=

{
d∏

k=1

[a(k), b(k)) ⊆ [0, 1]d | a(k), b(k) ∈ Q ∩ [0, 1], k = 1, . . . , d

}
.

Then, obviously, we have

disp(x1, . . . , xn) = sup
B∈B

B∩{x1,...,xn}=∅

λd(B).

Note that with this we can restrict ourself to boxes determined by half-open inter-
vals with rational boundary values. Thus, the supremum within the dispersion is
only taken over a countable set, which leads to the measurability of the mapping
(x1, . . . , xn) 7→ disp(x1, . . . , xn). Occasionally, we also call B the set of test sets.
Let δ ∈ (0, 1], then a δ-cover of the set of test sets B is given by a finite set Γδ ⊂ B
that satisfies

∀B ∈ B ∃LB, UB ∈ Γδ with LB ⊆ B ⊆ UB and λ(UB \ LB) ≤ δ.

Furthermore, for x1, . . . , xn ∈ [0, 1]d and a δ-cover Γδ for B define

dispδ(x1, . . . , xn) := sup
A∈Γδ

A∩{x1,...,xn}=∅

λd(A).

Having introduced those quantities we state two results from [13]. From Γδ being
a δ-cover it follows that

disp(x1, . . . , xn) ≤ δ + dispδ(x1, . . . , xn), (3)

and, via a union bound, it follows that for any s ∈ (0, 1) we have

P (dispδ(X1, . . . , Xn) > s) ≤ |Γδ|(1− s)n. (4)

We refer to [13, Lemma 1] and the proof of [13, Theorem 1] for details. These
results lead to the following lemma.

Lemma 2.1. Let δ ∈ (0, 1] and assume that the set Γδ is a δ-cover of B. Then,
for any n ≥ log |Γδ| we have

E(disp(X1, . . . , Xn)) ≤ δ +
log |Γδ|
n

+
1

n+ 1
.
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Proof. From (3) we have

E(disp(X1, . . . , Xn)) ≤ δ + E(dispδ(X1, . . . , Xn)).

Furthermore, by using (4) we obtain

E(dispδ(X1, . . . , Xn)) =

∫ 1

0

P (dispδ(X1, . . . , Xn) > s) ds

≤ log |Γδ|
n

+

∫ 1

(log |Γδ|)/n
P (dispδ(X1, . . . , Xn) > s) ds

≤ log |Γδ|
n

+ |Γδ|
∫ 1

(log |Γδ|)/n
(1− s)n ds ≤ log |Γδ|

n
+
|Γδ|
n+ 1

(
1− log |Γδ|

n

)n+1

.

Note that for any 0 ≤ a ≤ n we have (1− a/n)n ≤ exp(−a), hence,

|Γδ|
(

1− log |Γδ|
n

)n+1

≤ 1,

which finishes the proof.

Remark 2.2. Except for the assumption that we have a δ-cover, we did not use
any property of the set of test sets B.

Now, the upper bound of Theorem 1.1 is deduced by the results on δ-covers
for B from Gnewuch, see [4]. Namely, from [4, Formula (1), Theorem 1.15 with
d! ≥ (d/e)d, and Lemma 1.18] one obtains that there is a δ-cover for B with
|Γδ| ≤ (6e δ−1)2d. By setting δ = 6d/n, the upper bound of Theorem 1.1 follows
with Lemma 2.1 and n ≥ d.

Finally, this upper estimate implies the upper bound of Corollary 1.2. For the
convenience of the reader, we add a few arguments. We are looking for preferably
small integers n ≥ d such that

9d

n
log
(en

d

)
≤ ε .

Note that the term on the left-hand side of this inequality is monotonically de-
creasing for n ≥ d. Let c ≥ 1 be a constant, then, any integer

n ≥ c
d

ε
log
(c e

ε

)
will also comply with n ≥ d, and hence satisfies the estimate

9d

n
log
(en

d

)
≤ 9

c
ε ·

(
1 +

log log
(
c e
ε

)
log
(
c e
ε

) )
≤ 9(1 + e−1)

c
ε ,

where we used that (log x)/x attains its maximum for x = e. Choosing the constant
c = 9(1 + e−1) = 12.31... we obtain the desired guarantee.
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2.2 The lower bound

In Section 2.2.1 we show that E(disp(X1, . . . , Xn)) ≥ log(n)
9n

, and in Section 2.2.2 we
prove that E(disp(X1, . . . , Xn)) ≥ d

2en
for n > d. Both lower bounds together yield

the corresponding statement of Theorem 1.1. By convention, all random variables
are defined on a common probability space (Ω,F ,P).

2.2.1 Lower bound without dimension dependence

We start with an auxiliary tool, using results on the coupon collector’s problem.

Lemma 2.3. For ` ∈ N let (Yi)i∈N be an i.i.d. sequence of uniformly distributed
random variables in {1, . . . , `}. Define H` :=

∑`
j=1 j

−1 and

τ` := min{k ∈ N | {Y1, . . . , Yk} = {1, . . . , `}}.

Then, for any integer n ≤ (H` − 2)` we have P(τ` > n) > 1/2.

Proof. It is well known that the mean and the variance of τ` satisfy

E τ` = `H` and Var τ` ≤ `2
∑̀
j=1

j−2 ≤ π2

6
`2 .

For details concerning these estimates, see for example [9] or [7, Proposition 4.7].
Then, for n ≤ (H` − 2)`, by Chebyshev’s inequality we have

P(τ` ≤ n) ≤ P(τ` ≤ (H` − 2)`) = P(`H` − τ` ≥ 2`) ≤ Var(τ`)

4`2
≤ π2

24
<

1

2
,

which finishes the proof.

By means of the previous result we are able to prove the desired lower bound
in the following lemma.

Lemma 2.4. For any integer n ≥ 3 we have E(disp(X1, . . . , Xn)) > log(n)
9n

.

Proof. Fix some ` ∈ N and split [0, 1]d into ` disjoint boxes B1, . . . , B` of equal
volume 1/` (e.g. split along the first coordinate). For i = 1, . . . , n define the
random variable Yi : Ω → {1, . . . , `} that indicates the box the point Xi lies in,
i.e. Xi(ω) ∈ BYi(ω). Note that Y1, . . . , Yn are i.i.d. and each uniformly distributed
in {1, . . . , `}. Furthermore, for ω ∈ Ω satisfying

{Y1(ω), . . . , Yn(ω)} 6= {1, . . . , `} ,

there is an index r ∈ {1, . . . , `} such that {X1(ω), . . . , Xn(ω)} ∩Br = ∅. Thus, for
such an ω we obtain

disp(X1(ω), . . . , Xn(ω)) ≥ 1/`.

6



This yields

E(disp(X1, . . . , Xn)) =

∫
Ω

disp(X1(ω), . . . , Xn(ω))P( dω)

≥ 1

`
P({Y1, . . . , Yn} 6= {1, . . . , `}).

Observe that with τ` defined in Lemma 2.3 we have

P({Y1, . . . , Yn} 6= {1, . . . , `}) = P(τ` > n).

Choosing ` :=
⌈

(1+e)n
log(n)

⌉
, we get

n

`
≤ log(n)

1 + e
≤ log

(
(1 + e)n

log(n)

)
− 2 ≤ log(`)− 2 < H` − 2,

where we used the inequality log
(

(1+e)x
log(x)

)
− 2 − log(x)

1+e
≥ 0 for x > 1 (attaining

equality in x = exp(1 + 1/e)), as well as H` =
∑`

j=1 j
−1 > log(`+ 1). This asserts

n ≤ (H` − 2)`, and by Lemma 2.3 we obtain P(τ` > n) > 1/2. Taking everything
together yields

E(disp(X1, . . . , Xn)) >
1

2`
≥ 1

2
· log(n)

(1 + e)n+ log(n)
>

log(n)

9n
,

which completes the proof. Our derivation holds for integers n ≥ 2, but the bound
starts decaying for n ≥ 3, in the first place.

Having the result of the previous lemma, the first part within the maximum of
the lower bound in Corollary 1.2 follows. For the convenience of the reader we add
a few arguments. If the expected dispersion shall be smaller than a given ε > 0, the
number of points, n, must satisfy logn

9n
≤ ε. Note that the left-hand side is monoton-

ically decreasing only for n ≥ e, but the expected dispersion for n ∈ {1, 2} should
be larger or equal the expected dispersion for n = 3. Restricting to ε ∈ (0, 1

9e
), for

e ≤ n < 1
9ε

log
(

1
9ε

)
we would have

log n

9n
> ε ·

(
1 +

log log
(

1
9ε

)
log
(

1
9ε

) )
> ε .

Hence, n ≥ 1
9ε

log
(

1
9ε

)
is necessary for the expected dispersion to be less or equal ε.

Remark 2.5. In the strong asymptotic regime, the prefactor 1
9

in Lemma 2.4
vanishes, i.e.

E(disp(X1, . . . , Xn)) &
log(n)

n
for n→∞.

This result can be deduced by considering the volume Vn of the largest empty
box of the shape B = (a, b) × [0, 1]d−1, with 0 < a < b < 1. This quantity Vn
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is equivalent to the distribution of the maximal distance between adjacent points
when distributing n + 1 random points on a circle with perimeter 1. We can use
an asymptotic result by Schlemm [14, Cor. 1] on the largest gap of random points
on a circle, namely that (n + 1)Vn − log(n + 1) converges to a standard Gumbel
distribution with its expectation being the Euler-Mascheroni constant γ ≈ 0.5772.
Hence,

E(disp(X1, . . . , Xn)) ≥ EVn '
γ + log(n+ 1)

n+ 1
' log(n)

n
for n→∞.

2.2.2 Dimension-dependent lower bound

The proof of the lower bound w.r.t. the dimension is divided into two steps. First,
we deduce a lower bound for the expected dispersion of n points in terms of the
expected dispersion of d points, see Lemma 2.6. Thus, we reduce the problem to
finding a lower bound for the expected dispersion of d points, which then is the
goal of the second step, see Lemma 2.7. In the following proof, for B ∈ B and
x1, . . . , x` with ` ∈ N, we use the notation

disp|B(x1, . . . , x`) := sup
R∈B∩B

R∩{x1,...,x`}=∅

λd(R)

for the dispersion restricted to B. The following reduction lemma is a probabilistic
version of [1, Lemma 1].

Lemma 2.6. For any n, ` ∈ N we have

E(disp(X1, . . . , Xn)) ≥ `+ 1

n+ `+ 1
E(disp(X1, . . . , X`)).

Proof. We start with a purely combinatorial argument, a version of the pigeonhole
principle. If we split [0, 1]d into m boxes B1, . . . , Bm of equal volume, then there
is some j ∈ {1, . . . ,m} such that Bj contains no more than bn/mc of the points
X1, . . . , Xn. Choosing m = dn+1

`+1
e = b n

`+1
c + 1, we have b n

m
c ≤ b n

n+1
(`+ 1)c ≤ `.

For k ∈ N, let nk ∈ N be the time when Bj is hit by the sequence (Xi)i∈N ⊂ [0, 1]d

for the k-th time (which for X1, X2, . . .
iid∼ Unif([0, 1]d) almost surely happens).

With n` ≥ n, by the choice of Bj, we have

disp(X1, . . . , Xn) ≥ disp|Bj({X1, . . . , Xn} ∩Bj) ≥ disp|Bj(Xn1 , . . . , Xn`).

Let T be an affine transformation that maps Bj onto [0, 1]d. Then

dispBj(Xn1 , . . . , Xn`) = λd(Bj) · disp(TXn1 , . . . , TXn`).

Recall that X1, X2, . . .
iid∼ Unif([0, 1]d), hence, the points TXn1 , . . . , TXn` are in-

dependent and uniformly distributed in [0, 1]d. Taking the expectation and using
λd(Bj) = 1

m
≥ 1

n/(`+1)+1
= `+1

n+`+1
, yields the statement.
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Having the previous lemma at hand, it is sufficient to provide a constant lower
bound for the expected dispersion of d points. In a slightly more general way, we
obtain the following.

Lemma 2.7. For any d, ` ∈ N and X1, . . . , X`
iid∼ Unif([0, 1]d) we have

E(disp(X1, . . . , X`)) ≥ e−`/d.

Proof. For all i ∈ {1, . . . , `}, let X∗i denote the largest coordinate of Xi, i.e.,

X∗i := max{X(1)
i , . . . , X

(d)
i }.

We choose j∗(i) ≤ d such that X
(j∗(i))
i = X∗i . Let us consider the box

B =
d∏
j=1

[0, aj) ,

where
aj := min

(
{1} ∪

{
X∗i
∣∣ i ≤ ` with j∗(i) = j

})
.

This box is empty, since for all i ≤ ` we have X
(j∗(i))
i ≥ aj∗(i), and hence Xi 6∈ B.

An illustration for the case d = 2 is provided in Figure 1. On the other hand, the
volume of B is given by

λd(B) =
d∏
j=1

aj =
∏
i∈I

X∗i ,

where I is a suitable subset of {1, . . . , `}. This yields

disp(X1, . . . , X`) ≥
∏
i∈I

X∗i ≥
∏̀
i=1

X∗i .

The random numbers X∗i are independent and beta distributed with parameters
α = d and β = 1, in particular, E(X∗i ) = 1− 1/(d+ 1). Hence,

E(disp(X1, . . . , X`)) ≥
∏̀
i=1

E(X∗i ) =

(
1− 1

d+ 1

)`
=

(
1

1 + 1
d

)`
≥
(

1

exp(1/d)

)`
= e−`/d .

The proof of the lower bound follows by setting ` = d and combining the results
of the two lemmas. We readily get

E(disp(X1, . . . , Xn)) ≥ d+ 1

e (n+ d+ 1)
>

d

2en
,

where the last inequality follows from n > d. For ε ∈ (0, 1
2e

), the respective
inverse lower bound N(ε, d) ≥ d

2e ε
is straightforward, where the restriction on ε

implies N(ε, d) > d.
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[0, 1]2

B

X1

X∗
1

X2

X∗
2

[0, 1]2

B

X1

X∗
1

X2X∗
2

Figure 1: An illustration of the empty box construction from Lemma 2.7 for
d = ` = 2, featuring two different types of situations. In the left picture we have
B = [0, a1) × [0, a2) with X1 = (0.4, 0.7), j∗(1) = 2, a1 = 0.7 and X2 = (0.8, 0.3),
j∗(2) = 1, a2 = 0.8. In the right picture we have B = [0, a1) × [0, a2) with
X1 = (0.25, 0.5), j∗(1) = 2, a1 = 0.5 and X2 = (0.7, 0.75), j∗(1) = 2, a2 = 1.

3 Notes and remarks

The dispersion of a point set, as defined in (1), has been introduced in [12], gen-
eralizing the work of [5]. The renewed interest in this quantity emerged from its
appearance in the construction of algorithms for the approximation of rank-one
tensors, see [2, 8, 11], where the dependence on the dimension is crucial. It is
also related to the universal discretization problem, see [16], and the fixed volume
discrepancy, see [17, 18].

The dispersion of a point set has also been studied on the torus instead of the
unit cube, see for example [3, 19]. This setting can be described on the unit cube
by choosing another set of test sets, namely

B̃ :=

{
d∏

k=1

Ik(x, y) | x = (x(1), . . . , x(d)), y = (y(1), . . . , y(d)) ∈ [0, 1]d ∩Qd

}
,

with

Ik(x, y) =

{
(x(k), y(k)) x(k) < y(k),

[0, 1] \ [y(k), x(k)] y(k) ≤ x(k).

The set B̃ is called the test set of periodic boxes. Since the proof of the upper
bound of the expected dispersion depends on B only through the δ-cover, with the
same arguments we can also derive an upper bound for the expected dispersion

10



w.r.t. B̃ by using an appropriate periodic δ-cover. For x1, . . . , xn ∈ [0, 1]d define

d̃isp(x1, . . . , xn) := sup
B∈B̃

B∩{x1,...,xn}=∅

λd(B).

With [13, Lemma 2], we obtain that there is a δ-cover Γ̃δ of B̃ with cardinality

|Γ̃δ| ≤ (4dδ−1)
2d

, so that with δ = 2d/n we have

E(d̃isp(X1, . . . , Xn)) ≤ 5d

n
log(2n).

By the fact that B ⊂ B̃ we obtain for any x1, . . . , xn ∈ [0, 1]d that

disp(x1, . . . , xn) ≤ d̃isp(x1, . . . , xn),

hence, the lower bounds of Theorem 1.1 also carry over to E(d̃isp(X1, . . . , Xn)).
Here it is worth mentioning that the lower bound w.r.t. the dimension can also
be deduced from [19, Theorem 1]. Thus, in this setting also a linear dimension-

dependence is present in E(d̃isp(X1, . . . , Xn)). However, concerning the inverse of
the expected dispersion in the periodic case, the precise growth w.r.t. the dimension
remains open, we only know that it is between d and d log(d).
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