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Abstract

We continue the research on the asymptotic and preasymptotic decay of singu-

lar numbers for tensor product Hilbert-Sobolev type embeddings in high dimen-

sions with special emphasis on the influence of the underlying dimension d. The

main focus in this paper lies on tensor products involving univariate Sobolev type

spaces with different smoothness. We study the embeddings into L2 and H1. In

other words, we investigate the worst-case approximation error measured in L2 and

H1 when only n linear measurements of the function are available. Recent progress

in the field shows that accurate bounds on the singular numbers are essential for

recovery bounds using only function values. The asymptotic bounds in our setting

are known for a long time. In this paper we contribute the correct asymptotic

constant and explicit bounds in the preasymptotic range for n. We complement

and improve on several results in the literature. In addition, we refine the er-

ror bounds coming from the setting where the smoothness vector is moderately

increasing, which has been already studied by Papageorgiou and Woźniakowski.
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1 Introduction

In the present paper we aim at approximating d-variate functions from tensor product
Hilbert-Sobolev type spaces

Hs1 ⊗2 · . . . · ⊗2H
sd ,

built upon L2(D, ̺). Here, we denote with Hs := Hs,q a univariate Hilbert-Sobolev type
space with (fractional smoothness) parameter s > 0, a fine-index q, 1 ≤ q ≤ ∞, and
inner product

〈f, g〉Hs,q :=
∑

k∈I

ck(f)ck(g)(1 + |k|q)2s/q ,

where ck(f) denotes the Fourier coefficient of f ∈ L2(D, ̺) with respect to a given
orthonormal basis (ek)k∈I of L2(D, ̺) indexed by I = N0 or I = Z. Note that this setting
is rather general since L2 may be any space of square integrable univariate functions on
an interval D with respect to a measure ̺. The induced norms ‖ · |Hs,q‖ are equivalent
for different q and fixed s such that the topology is invariant with respect to q. However,
in the sequel we will point out the particular role of the index q, such that we keep it in
the notation of the norm. In fact, its influence on the structure of the unit ball increases
if d is getting large. The space Hs1,q1 ⊗2 · . . . ·⊗2H

sd,qd is isometrically isomorphic to the
space of all functions from L2(D × ...×D) where

‖f |H~s,~q
mix‖2 :=

∑

k∈I×...×I

|ck(f)|2
d∏

j=1

(1 + |kj|qj)2sj/qj (1.1)

is finite. Now ck(f) denotes the respective Fourier coefficient for the tensor product
system (ek1 ⊗ ... ⊗ ekd)k∈I×...×I in L2(D × ... × D). The subspace characterized with

(1.1) will be denoted by H~s,~q
mix in the sequel. Particular examples of spaces within this

framework are (classical) Sobolev spaces of mixed smoothness H~s,~q
mix(T

d) on the d-torus
Td = [0, 2π]d. For these spaces the norm is rather natural since we may rewrite it in terms
of derivatives measured in L2(T

d) if q = 2s and q = ∞, see Subsection 2.1 below and [33].
Although most of the theorems in this paper are formulated in this periodic framework,
the general setting from above allows for dealing also with certain classes of non-periodic
functions which are represented in a system different from the tensorized Fourier basis.
In fact, using for instance the half period cosine system (ek(·))k = (cos(πk·))k∈N0 the
results in this paper also apply to the space of non-periodic functions Hs

mix([0, 1]
d) if

s < 3/2 (natural norm in case s = 1), see [1] and [53]. But also tensor product spaces
built upon Legendre, Chebychev or other orthogonal Jacobi polynomials fit into this
framework when D = [−1, 1] and d̺(x) is given by ν(x) dx, where ν is the respective
Jacobi weight. The Chebychev case is of particular interest, since the respective spaces
are “close” to the non-periodic classical Sobolev spaces on [−1, 1].

The embedding

Id : H
~s,~q
mix → L2

( d⊗

i=1

D, ̺d
)
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is compact if ~s > 0 and the singular numbers σn are given as the non-increasing rear-
rangement of the square root of the eigenvalues of I∗d ◦ Id : H~s,~q

mix → H~s,~q
mix, which are

precisely determined by the reciprocal of the weight appearing in (1.1). This essentially
means that one has access to all the singular numbers. The “only” task remaining is to
rearrange this multi-indexed sequence in a non-increasing order and to study its decay.

The singular numbers represent an important tool for the approximation of operators.
It is well-known that in case of a compact operator between Hilbert spaces X and Y
approximation numbers an(T : X → Y ) (defined below) and singular numbers σn (often
called singular values) of the operator T : X → Y coincide. The approximation numbers
of a bounded linear operator T : X → Y between two Banach spaces are defined as

an(T : X → Y ) := inf
rankA<n

sup
‖x|X‖≤1

‖ Tx− Ax|Y ‖

= inf
rankA<n

‖T −A : X → Y ‖, n ∈ N .
(1.2)

They describe the best approximation of T by finite rank operators. Note that for
compact operators between Hilbert spaces the approximation numbers coincide with all
other s-numbers, like Kolmogorov or Gelfand numbers, see, e.g., [42, Section 11.3.].

Let us emphasize that in many recent works the recovery of functions represented in
a tensorized polynomial basis plays an important role for the treatment of parametric
and stochastic elliptic PDEs, see for instance [7] or [45] and the references therein. The
mentioned recovery is often in the sampling sense, i.e., from n given function values. It
turned out recently, see Krieg, M. Ullrich [28] and also Kämmerer, Volkmer, T. Ullrich
[25], that accurate bounds on the approximation numbers of an embedding directly yield
recovery guarantees for the sampling recovery problem, i.e., new bounds for sampling
numbers gn. These represent a counterpart of an where the operator A in (1.2) is a
sampling operator taking only n function values as information. Let us also mention the
recent paper by Dũng, Thao [13] in this context.

From a technical viewpoint it will be convenient for us to rearrange the variables
according to the smoothness sj in the respective direction. Let ~s := (s1, . . . , sd) be such
that

s1 = s2 = . . . = sν < sν+1 ≤ . . . ≤ sd (1.3)

for some ν, 1 ≤ ν < d. This can be interpreted as an ordering with respect to the
importance of the variables. Assume for instance, that f ∈ H~s,~q

mix(T
d) is a rank-1 tensor,

i.e.,
f(x) = f1(x1) · . . . · fd(xd) ,

with xi ∈ D, i = 1, ..., d. Then f1, . . . fν are those univariate functions which require
more effort to be approximated with a certain precision than the others. In this sense
we say that the variables x1, . . . , xν are more important than xν+1, . . . , xd. Note that
finding these important variables is a difficult task when it comes to algorithms. A
possible “algorithm” A, which realizes the nth approximation number, is often supposed
to “know” in which direction the function is “rough” and in which direction the function
is “smooth”. This would be sufficiently determined by knowing the parameters of the
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function class and, in particular, which eigenfunctions are more important than others.
Note that our setting represents one way to reduce the number of “important variables”.
There exist various other models. One approach works via introducing weights in the
norm on groups of variables. The size of these weights directly determine the influence
of certain groups of variables. Let us refer at least to the pioneering work of Sloan
and Woźniakowski [48]. More references and detailed information may be found in the
monograph [39] and the more recent papers by Werschulz and Woźniakowski [54] or
Dũng, Ullrich [14]. There are some other important problem-related approaches which,
however, are not directly related to our investigations here.

For simplicity we will stick to the classical example of periodic Sobolev spaces with
mixed smoothness on the d-torus Td in order to connect directly to the forerunners
[32, 33, 31, 30, 8] and [27]. The mechanism how to transfer the results to different
settings is rather clear. It is well-known since the 1960s, see e.g. Mityagin [36] and
Telyakovskii [49], that the asymptotic decay is given by

cdn
−s1(log n)(ν−1)s1 ≤ an(Id : H

~s,~q
mix(T

d) → L2(T
d)) ≤ Cdn

−s1(logn)(ν−1)s1 .

This gives a sharp rate of convergence, where only the number of important variables (in
the above sense) plays a role. However, since the rate of convergence does not involve
any dependence on d one may expect that the dimension d (and q) shows up in the
constants. This is indeed the case. In this paper we give the following statement on
the “asymptotic constant” which extends the results from [33] to the anisotropic mixed
smoothness case. It holds

C(d) := lim
n→∞

ns1 an(Id : H
~s,~q
mix(T

d) → L2(T
d))

(lnn)(ν−1)s1
=
[ 2ν

(ν − 1)!

d∏

j=ν+1

Bj

]s1
, (1.4)

where

Bj := 1 + 2
∞∑

m=1

(1 +mqj)
−

sj
s1 qj , j = ν + 1 , . . . d .

If a sequence (sj)
∞
j=1 with

s1 = ... = sν < sν+1 ≤ sν+2 ≤ ...

is given, we may consider the d-indexed family of embeddings corresponding to the
smoothness vectors (s1, ..., sd), d ∈ N. Then, for d ≥ ν, the constants C(d) are strictly
increasing in d, since all Bj > 1. However, for certain constellations of the parameters,
the constants C(d) stay bounded, for instance if ~q = ~1 and

sj ≥ s1(1 + β log2 j)

for all j ≥ 2 and some β > 1 .
In any case, such a result does not tell much about the preasymptotic range. The

range of small n (say below 2d) represents the important range for numerical compu-
tations. In order to achieve reasonable bounds in the preasymptotic range, we use a
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technique in Section 4 which has its origins in a different context. It is based on an
elementary counting lemma, see Lemma 4.1. In its simplest form the Lemma deals with
upper bounds for the cardinality of Zaremba crosses, see Kuo, Sloan, Woźniakowski
[34], Cools, Kuo, Nuyens [9]. Recently Krieg [27] also used a version of this lemma
to rearrange tensor power sequences. Our version of this counting technique allows for
improving on the preasymptotic bounds in [33, 30, 27] when ~s is a constant vector,
i.e. ν = d. Indeed, we observe in Theorem 4.11 below that for d ≥ 3, s > 0 and
~q = (q, q, . . . , q) for some q ≥ 1

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

(C̃(d)

n

) s
q(1+log2(d−1))

, n ≥ 2. (1.5)

Note that the constant C̃(d) ranges in the interval [2.718, 6.25] although it depends
on d. To be more precise, if d > 5 then the constant is strictly smaller than 5, which
represents a small improvement over [30] and [27]. Indeed, the case q = 2s is particularly
important since it represents a natural Sobolev norm where only the highest derivative
is taken into account. It seems that in this case a higher smoothness does not increase
the exponent in the bound. This observation can be already found in [27]. Note that,
since the range for n is not limited, we may easily infer tractability results from this
bound (quasi-polynomial tractability, see [33]).

In case of a non-constant smoothness vector ~s the situation is more involved. If the
“first jump” from sν to sν+1 is “small” then one may use the natural embedding into
H ~s1,q

mix , where ~s1 = (s1, ..., s1), and apply the previously mentioned results. If the first
jump is large, say logarithmically in d, then the influence of the less important variables
xν+1, ..., xd disappears. Indeed, Theorem 4.13 gives the following bound in case

sν+1

s1
≥ log2(d− ν)

1 + log2(ν − 1)
.

It holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤

(38.02
n

) s1
1+log2(ν−1)

, n ≥ 2.

This result indicates that a logarithmic growth condition on the smoothness vector may
lead to a polynomial decay of the approximation numbers also in high dimensions d. We
study this phenomenon in Subsection 4.5. In a certain sense this supplements the findings
of Papageorgiou and Woźniakowski [41] by giving precise constants and approximation
rates. There the authors prove that the following assertions are equivalent:

• There exists constants C > 0 and p > 0 such that for all d ∈ N and all n ∈ N

an(Id : Hs1(T)⊗2 · . . . · ⊗2H
sd(T) → L2(T

d)) ≤ C n−p .

• There exists constants C > 0, p > 0 and q > 0 such that for all d ∈ N and all
n ∈ N

an(Id : Hs1(T)⊗2 · . . . · ⊗2H
sd(T) → L2(T

d)) ≤ C dq n−p .
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• The elements of the sequence (sj)j have to increase sufficiently fast, more precisely

lim sup
j→∞

ln j

sj
< ∞ .

In the language of Information Based Complexity (IBC) the first property is called strong
polynomial tractability, the second one polynomial tractability. This characterization
shows that in case of a moderate growing smoothness vector ~s the worst-case errors decay
well also in high dimensions. However, it also shows that the problem may get more
difficult if sj is not growing properly, which is indicated by the preasymptotic results
above. In Corollary 4.24 we provide the following precise bound when the smoothness
vector ~s is logarithmically growing. Let d ≥ 2 and ~q = ~1 be the constant 1-vector. If

sj ≥ (1 + β log2 j) s1 , j ∈ N , (1.6)

for some β > 0 then

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

(Aα e
Cα,β

n

) s1
α

for any α > 1/β and n ∈ N, see Theorem 4.23. Here Aα and Cα,β are explicit constants
in α and β, see (4.3), Remark 4.2 and (4.25).

As we will see below, the d-dependence of the error decay is determined by the chosen
norm in the source space. To understand this dependence, we shall work with a family of
norms for the univariate Sobolev spaces indexed by q. As already mentioned above, these
norms are all equivalent on Hs(T), the associated norms on the tensor product are, for
fixed d, equivalent as well, but the equivalence constants will depend on d. Comparing
the results of Section 3 and Section 4 one becomes aware of an enormous difference what
concerns the influence of the parameter ~q. Whereas for large n the influence of ~q is only
visible in the constants (see (1.4)), the influence is rather strong for small n as (1.5)
indicates.

In the final Section 5 we continue the investigations started by Griebel and Knapek
[19] on the decay of the approximation numbers for embeddings into the energy space
H1(Td). These findings have been complemented recently by Dũng, Ullrich [14], Byren-
heid et al. [3] and two of the authors together with S. Mayer in [31]. Based on our
new bounds from Section 4 we are able to essentially improve on these bounds in the
literature. This is of interest from at least two points of view. Approximation in the
energy norm is of particular importance in connection with the approximation of solu-
tions of elliptic equations, e.g., the Poisson equation, see [20]. Secondly, it is of interest
from an inner mathematical point of view. Whereas L2(T

d) is a tensor product space,
H1(Td) does not have such a structure. So we have a break of the scale when we embed
Hs1(T)⊗2 · . . . · ⊗2H

sd(T) into H1(Td). In [19] the authors used so-called energy-norm
based sparse grids in order to find the index-set for the optimal subspace. This index set
is essentially determined by the rearrangement of a multi-indexed sequence defined via
a quotient of a non-tensor product weight and a tensor product weight, see (5.2). Since
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this weight is no longer a tensor-product weight we avoid rearrangements and rather
apply a classical technique mainly used in the field of non-linear approximation. The
main results read as follows (see Propositions 5.3, 5.5). If s > 1, d ∈ N, d ≥ 4 and
~s = (s, ..., s), then

an(Id : H
~s,~2
mix(T

d) → H1(Td)) ≤
(e2
n

) s−1
2 log2(d) , n ≥ 8.

This result is non-trivial in the sense that it improves on the straight-forward bound
which (1.5) implies via embedding. If s is small compared to d, in particular smaller
than log2(d), we even get the following result, which represents a further improvement
if d is large:

an(Id : H
~s,~2
mix(T

d) → H1(Td)) ≤
√
d
(C(d)

n

) s
2(1+log2(d−1))

, n ∈ N ,

with
C(d) = e (2.154 + 3/d) .

The framework used in this paper essentially goes back to Mityagin [36, pp. 397, 409]
in 1962 and Telyakovskii [49, p. 438] in 1964 and has been later used by several authors
from the former Soviet Union, e.g., Galeev [15]. See also the book [12] and the references
in Section 10.1. The above defined spaces experienced a renaissance in the nineties of the
last century and are called nowadays anisotropic mixed smoothness Sobolev spaces. We
refer to [50, 51, 12] and the references therein. Within the Information Based Complexity
community we would like to mention the paper by Papageorgiou and Woźniakowski [41].
This paper has initiated further interest, we refer to [10, 11, 16], [22], [24, 29] and [47].
However, only [41] is really close to our setting. Closer to us are the papers by Cobos,
Kühn, Sickel [8] (L∞ approximation), by Krieg [27] (dominating mixed smoothness,
periodic and nonperiodic), by Wang et al. [4, 5, 23] (anisotropic Sobolev spaces, Sobolev
spaces on the sphere) as well as the papers by Mieth [35] and Novak [38] (approximation
on general domains).

The paper is organized as follows. In Section 2 we collect some preliminaries like the
definition of the spaces under consideration and some basic properties of approximation
and singular numbers. The next Section 3 will be devoted to the study of the asymptotic
constants in case that ~s is not a constant vector. In Section 4 we derive estimates for
the approximation numbers an in the preasymptotic range. Finally, in Section 5 we give

new bounds for embeddings of the spaces H~s,~2
mix(T

d) into H1(Td).
Notation. As usual, N denotes the natural numbers, N0 the non-negative integers,

Z the integers and R the real numbers. By T we denote the torus, represented by the
interval [0, 2π], where the end points of the interval are identified. For a real number a
we put a+ := max{a, 0} and denote by ⌊a⌋ the greatest integer not larger than a. The
letter d is always reserved for the dimension in Zd, Rd, Nd, and Td. For 0 < p ≤ ∞
and x ∈ Rd we denote |x|p = (

∑d
i=1 |xi|p)1/p with the usual modification for p = ∞. If

α ∈ Nd
0 and x ∈ Cd we use xα :=

∏d
i=1 x

αi
i with the convention 00 := 1. The symbol #Ω

stands for the cardinality of the set Ω. If X and Y are two Banach spaces, the norm of
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an element x in X will be denoted by ‖x|X‖ and the norm of an operator A : X → Y by
‖A : X → Y ‖. The symbol X →֒ Y indicates that there is a continuous embedding from
X into Y . The equivalence an ∼ bn means that there are constants 0 < c1 ≤ c2 < ∞
such that c1an ≤ bn ≤ c2an for all n ∈ N. If ~s = (s1, . . . , sd) and ~q = (q1, . . . , qd) are
given, then

~s

~q
:=
(s1
q1
, . . . ,

sd
qd

)
.

Furthermore, ~s ≥ ~q means sj ≥ qj for all j.

2 Preliminaries

2.1 Sobolev spaces with anisotropic mixed smoothness

As mentioned in the introduction, our setting is rather general and not restricted to
periodic functions. The essential ingredient is the weight function appearing in (1.1).
However, for simplicity we will state all results for function spaces on the d-torus Td,
which is represented in the Euclidean space Rd by the cube Td = [0, 2π]d, where opposite
faces are identified. In particular, for functions f on T, we have f(x) = f(y) whenever
x − y = 2πk for some k ∈ Z. These functions can be viewed as 2π-periodic in each
component.

The space L2(T
d) consists of all (equivalence classes of) measurable functions f on

Td such that the norm

‖f |L2(T
d)‖ :=

(∫

Td

|f(x)|2 dx
)1/2

is finite. The entire information of a function f ∈ L2(T
d) is encoded in the sequence

(ck(f))k of its Fourier coefficients, given by

ck(f) :=
1

(2π)d/2

∫

Td

f(x) e−ik·x dx , k ∈ Z
d .

Indeed, we have Parseval’s identity

‖f |L2(T
d)‖2 =

∑

k∈Zd

|ck(f)|2 (2.1)

as well as

f(x) =
1

(2π)d/2

∑

k∈Zd

ck(f) e
ik·x

with convergence in L2(T
d).

The (anisotropic) Sobolev space H ~m
mix(T

d) of smoothness ~m ∈ N
d is the collection

of all f ∈ L2(T
d) such that all distributional partial derivatives Dαf of order α =

(α1, ..., αd) with αj ≤ mj , j = 1, ..., d, belong to L2(T
d). It is usually normed by

‖ f |H ~m
mix(T

d)‖ :=
( ∑

αj≤mj
j=1,... ,d

‖Dαf |L2(T
d)‖2

)1/2
. (2.2)
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One can rewrite this definition in terms of Fourier coefficients. Taking ck(D
αf) =

(ik)αck(f) into account, Parseval’s identity (2.1) implies (note that we put 00 := 1)

‖ f |H ~m
mix(T

d)‖2 =
∑

αj≤mj

j=1,..,d

∥∥∥
1

(2π)d/2

∑

k∈Zd

ck(f) (ik)
αeik·x

∣∣∣L2(T
d)
∥∥∥
2

=
∑

k∈Zd

|ck(f)|2
( ∑

0≤αj≤mj

j=1,...,d

d∏

j=1

|kj|2αj

)

=
∑

k∈Zd

|ck(f)|2
( d∏

j=1

mj∑

αj=0

|kj|2αj

)
=
∑

k∈Zd

|ck(f)|2
d∏

j=1

ωmj
(kj)

2 ,

where

ωm(ℓ)
2 =

m∑

n=0

|ℓ|2n .

Due to our convention 00 = 1 we have ωm(0) = 1. Defining

w~m(k) :=
d∏

j=1

ωmj
(kj) for k = (k1, ..., kd) ∈ Z

d ,

we obtain

‖ f |H ~m
mix(T

d)‖ =
[∑

k∈Zd

|ck(f)|2w~m(k)
2
]1/2

. (2.3)

We could also have started with the equivalent norm

‖ f |H ~m
mix(T

d)‖∗ :=
( ∑

αj∈{0,mj}
j=1,... d

‖Dαf |L2(T
d)‖2

)1/2
. (2.4)

Similarly as above, a reformulation of (2.4) in terms of Fourier coefficients yields

‖ f |H ~m
mix(T

d)‖∗ =
[∑

k∈Zd

|ck(f)|2
d∏

j=1

(1 + |kj|2mj )
]1/2

. (2.5)

Inspired by (2.5) we define Sobolev spaces of dominating mixed anisotropic smooth-
ness of fractional order ~s as follows.

Definition 2.1. Let ~s = (s1, . . . , sd), minj sj > 0, and let ~q = (q1, . . . , qd) such that

0 < qj ≤ ∞ for all j. The periodic dominating mixed anisotropic Sobolev space H~s,~q
mix(T

d)
is the collection of all f ∈ L2(T

d) such that

‖ f |H~s,~q
mix(T

d)‖ :=
[∑

k∈Zd

|ck(f)|2
d∏

j=1

(
1 + |kj|qj

)2sj/qj]1/2 < ∞ ,

where
(
1 + |kj|qj

)2sj/qj has to be replaced by max
(
1, |kj|

)2sj if qj = ∞.
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Remark 2.2. (i) Obviously we have H ~m,~q
mix(T

d) = H ~m
mix(T

d), ~m ∈ Nd, in the sense of

equivalent norms. In the fractional case it follows H~s,~q
mix(T

d) = H~s,~2
mix(T

d) in the sense of
equivalent norms. Here ~2 refers to the sequence (2, . . . , 2).
(ii) The sequence of parameters ~q modifies the norm in a controlled way. Here in our
paper it will be used to demonstrate how much certain results depend on the chosen
norm.
(iii) If s = s1 = s2 = . . . = sd, then we simply write Hs

mix(T
d) and call the space Sobolev

space of dominating mixed smoothness of fractional order s.
(iv) The spaces H~s

mix(T
d) have played a significant role in the Russian approximation

theory literature, see, e.g., the papers by Mityagin [36], Telyakovskij [49], Nikol’skaya
[37], Galeev [15] or the monographs of Temlyakov [50] and [51].
(v) Most important for us will be the cases ~q = (1, 1, . . . , 1) = ~1, ~q = (2, 2, . . . , 2) = ~2
and ~q = (∞,∞, . . . ,∞) = ~∞. In the latter case the norm reads as

‖ f |H~s, ~∞
mix (T

d)‖ :=
[∑

k∈Zd

|ck(f)|2
d∏

j=1

(
max(1, |kj|)

)2sj]1/2 < ∞ .

Clearly, there is a monotonicity of the norms with respect to ~q, i.e.,

‖ f |H~s, ~∞
mix (T

d)‖ ≤ ‖ f |H~s,~q
mix(T

d)‖ (2.6)

for all f ∈ H~s
mix(T

d).
Later on we shall need the following observation. Let ~s and ~q be given. Then we

define

~s/~q =
~s

~q
:=
(s1
q1
, . . . ,

sd
qd

)
.

Lemma 2.3. Let ~s = (s1, . . . sd), minj sj > 0. Then for all ~q, 1 ≤ qj < ∞, j = 1, . . . , d,

and all f ∈ H~s,~q
mix(T

d) the following inequality holds

‖ f |H~s/~q,~1
mix (Td)‖ ≤ ‖ f |H~s,~q

mix(T
d)‖ .

Proof . Since 1 ≤ qj < ∞ we have for all k ∈ Zd and all j

(1 + |kj|) ≤ (1 + |kj|qj) .

Taking this to the power 2sj/qj and switching to the product we obtain

d∏

j=1

(1 + |kj|)2sj/qj ≤
d∏

j=1

(1 + |kj|qj)2sj/qj

Hence
∑

k∈Zd

|ck(f)|2
d∏

j=1

(
1 + |kj|

)2sj/qj ≤
∑

k∈Zd

|ck(f)|2
d∏

j=1

(
1 + |kj|qj

)2sj/qj

which proves the claim. �
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Remark 2.4. Observe that this simple argument used in the proof does not extend to
vectors ~q containing at least one component in (0, 1).

Later on we shall also need the following elementary fact.

Lemma 2.5. Let ~m ∈ Nd. Then for all f ∈ H ~m
mix(T

d) the following chain of inequalities
holds.

‖ f |H ~m, ~∞
mix (Td)‖ ≤ ‖ f |H ~m

mix(T
d)‖∗ ≤ ‖ f |H ~m

mix(T
d)‖ ≤ ‖ f |H ~m,~2

mix (T
d)‖ .

In the Introduction we were dealing with tensor products of univariate Sobolev
spaces. The connection to the spaces H~s,~q

mix(T
d) will become clear with the next lemma.

Observe that Definition 2.1 makes sense also for d = 1. For two Hilbert spaces H1, H2

the symbol H1⊗2H2 denotes their tensor product, see, e.g., [52, 3.4] for the basics. The
symbol H1 ⊗2 . . .⊗2 Hd has to be interpreted as iterated tensor product, i.e.,

H1 ⊗2 H2 ⊗2 H3 := (H1 ⊗2 H2)⊗2 H3

and so on.

Lemma 2.6. Let ~s = (s1, . . . , sd), sj ∈ R for all j, and let ~q = (q1, . . . , qd) such that

0 < qj ≤ ∞ for all j. Then periodic anisotropic mixed Sobolev space H~s,~q
mix(T

d) coincides
with the tensor product of the univariate Sobolev spaces Hs1,q1(Td), . . ., Hsd,qd(Td). More
exactly, we have

H~s,~q
mix(T

d) = Hs1,q1(T)⊗2 · . . . · ⊗2H
sd,qd(T) ,

and
‖ · |H~s,~q

mix(T
d)‖ = ‖ · |Hs1,q1(T)⊗2 · . . . · ⊗2H

sd,qd(T)‖ .

Proof . For convenience of the reader we will give a proof. We will use the following
fact. If (e1j )

∞
j=0 is an orthonormal basis in the Hilbert space H1 and if (e2j)

∞
j=0 is an

orthonormal basis in the Hilbert space H2, then (e1j ⊗ e2ℓ)
∞
j,ℓ=0 is an orthonormal basis

in the tensor product Hilbert space H1 ⊗2 H2, see, e.g., [52, Satz 3.12 on pages 52/53].
Clearly,

eikx
√
2π
(
1 + |k|q

)s/q , x ∈ R, k ∈ Z ,

is an orthonormal basis in Hs,q(T) and

e~k(x) :=

d∏

j=1

eikjxj

√
2π
(
1 + |kj|qj

)sj/qj , x ∈ R
d, k ∈ Z

d ,

is an orthonormal basis in H~s,~q
mix(T

d). Let us turn to d = 2 for a moment. By means of
the quoted result the functions (e~k)~k∈Z2 form an orthonormal basis forHs,q(T)⊗2H

s,q(T)
as well. From this fact we conclude

∥∥∥
∑

~k∈I

a~k e~k

∣∣∣Hs,q(T)⊗2 H
s,q(T)

∥∥∥ =
(∑

~k∈I

|a~k|2
)1/2

=
∥∥∥
∑

~k∈I

a~k e~k

∣∣∣H~s,~q
mix(T

d)
∥∥∥

11



for any set I ⊂ Z2 of finite cardinality and any sequence (a~k)~k of complex numbers. Those

functions
∑

~k∈I a~k e~k are dense in Hs,q(T) ⊗2 H
s,q(T) by definition and in H~s,~q

mix(T
d) by

a short calculation. Hence, the spaces and the norms coincide. The general case d ≥ 2
follows by induction. �

Also the Sobolev space H ~m
mix(T

d) can be interpreted as a tensor product of univariate
Sobolev spaces.

Lemma 2.7. Let ~m = (m1, . . . , md), mj ∈ N0 for all j. Then the periodic anisotropic
mixed Sobolev space H ~m

mix(T
d) coincides with the tensor product of the univariate Sobolev

spaces Hs1(Td), . . ., Hsd(Td). More exactly, we have

H ~m
mix(T

d) = Hm1(T)⊗2 · . . . · ⊗2H
md(T) ,

and
‖ · |H ~m

mix(T
d)‖ = ‖ · |Hm1(T)⊗2 · . . . · ⊗2H

md(T)‖ .

Proof . The proof follows by the same type of arguments as the proof of Lemma 2.6. �

2.2 Singular numbers of diagonal operators

If τ = (τn)
∞
n=1 is a sequence of real numbers with τ1 ≥ τ2 ≥ ... ≥ 0 , we define the

diagonal operator Dτ : ℓ2 → ℓ2 by Dτ (ξ) = (τnξn)
∞
n=1. Recall the definition of the

approximation numbers (1.2) already given in the Introduction. The following fact
concerning approximation numbers of diagonal operators is well-known, see e.g. Pietsch
[42, Theorem 11.3.2.], König [26, Section 1.b], Pinkus [44, Theorem IV.2.2], or Novak and
Woźniakowski [39, Corollary 4.12]. Comments on the history may be found in Pietsch
[43, 6.2.1.3].

Lemma 2.8. Let τ and Dτ be as above. Then

an(Dτ : ℓ2 → ℓ2) = τn , n ∈ N .

Here the index set of ℓ2 is N. We need a modification for arbitrary countable index sets
J . Then the space ℓ2(J) is the collection of all ξ = (ξj)j∈J such that the norm

‖ξ|ℓ2(J)‖ :=
(∑

j∈J

|ξj|2
)1/2

is finite. Let w = (wj)j∈J with wj > 0 for all j ∈ J , and assume that for every δ > 0
there are only finitely many j ∈ J with wj ≥ δ . Then the non-increasing rearrangement
(τn)n∈N of (wj)j∈J exists, and limn→∞ τn = 0. Defining Dw : ℓ2(J) → ℓ2(J) by Dw(ξ) =
(wjξj)j∈J for ξ ∈ ℓ2(J), Lemma 2.8 gives

an(Dw : ℓ2(J) → ℓ2(J)) = τn .

The preceding identity is scalable in the following sense.

12



Lemma 2.9. Let J be a countable index set, let w = (wj)j∈J and (τn)n∈N be as above.
Then, setting ws = (ws

j)j∈J , one has for any s > 0

an(Dws : ℓ2(J) → ℓ2(J)) = an(Dw : ℓ2(J) → ℓ2(J))
s = τ sn .

Now we can reduce our problem on embedding operators in function spaces to the
considerably simpler context of diagonal operators in sequence spaces, where the index
set is J = Z

d . We consider the operators

A~s,~q : H~s,~q
mix(T

d) → ℓ2(Z
d) and B~s,~q : ℓ2(Z

d) → H~s,~q
mix(T

d)

defined by

A~s,~qf := (u~s,~q(k) ck(f))k∈Zd and B~s,~qξ := (2π)−d/2
∑

k∈Zd

ξk
u~s,~q(k)

eik·x ,

where the weights u~s,~q(k) are given by

u~s,~q(k) :=
d∏

j=1

(
1 + |kj|qj

)sj/qj

(standard modification if qj = ∞).
Note the semi-group property of these weights, i.e., u~s,~q(k) · u~t,~q(k) = u~s+~t,~q(k). Fur-

thermore, we put for k ∈ Z
d

w(k) :=
u~s,~q(k)

u~t,~q(k)

and make use of the associated diagonal operator Dw. Then the following commutative
diagram illustrates the situation quite well in case ~t > ~s ≥ ~0:

H
~t,~q
mix(T

d) H~s,~q
mix(T

d)

ℓ2(Z
d) ℓ2(Z

d)

Id

A~t,~q

Dw

B~s,~q

By the definition of the norm ‖·|H~s,~q
mix(T

d)‖ it is clear that A~s,~q and B~s,~q are isometries

and B~s,~q = (A~s,~q)
−1. For the embedding Id : H

~t,~q
mix(T

d) → H~s,~q
mix(T

d) if ~t > ~s ≥ ~0 we obtain
the factorization

Id = B~s,~q ◦Dw ◦ A~t,~q . (2.7)

The multiplicativity of the approximation numbers applied to (2.7) implies

an(Id) ≤ ‖A~t,~q‖ an(Dw) ‖B~s,~q‖ = an(Dw) = τn ,

13



where (τn)
∞
n=1 is the non-increasing rearrangement of (w(k))k∈Zd . The reverse inequality

can be shown analogously. This gives the important identity

an(Id) = an(Dw) = τn . (2.8)

Let λ > 0. Due to the semi-group property mentioned above and Lemma 2.9 we have
in particular the nice property

an(Id : H
λ~s,~q
mix (T

d) → L2(T
d)) = an(Id : H

~s,~q
mix(T

d) → L2(T
d))λ . (2.9)

Finally let us mention one more elementary fact.

Lemma 2.10. Let X, Y and Z be Banach spaces. Suppose X →֒ Y →֒ Z. Denote by
I1, I2, I3 the identities mapping X into Y , Y into Z and X into Z. If ‖ I1 |X → Y ‖ ≤ 1
then

an(I
3 : X → Z) ≤ an(I

2 : Y → Z)

holds for all n.

Proof . It is enough to have a look at the commutative diagram

X Y

Z

I1

I3 I2

Because of I3 = I1 ◦ I2 the multiplicativity of the approximation numbers yields the
claim. �

2.3 Approximation numbers of Sobolev embeddings

In this subsection we will make a few more observations on the approximation numbers

of the embedding Id : H
~t,~q
mix(T

d) → L2(T
d) . Recall

u~t,~q(k) :=
d∏

j=1

(1 + |kj|qj)tj/qj , k ∈ Z
d ,

(modification if qj = ∞). Due to Lemma 2.8 and (2.8) we have

an(Id : H
~t,~q
mix(T

d) → L2(T
d)) = τn , n ∈ N ,

where (τn)n∈N denotes the non-increasing rearrangement of (1/u~t,~q(k))k∈Zd. We need a
notation for the associated sequence of real numbers without repetitions. Let (ϑn)

∞
n=1

be the sequence of positive real numbers such that

ϑ1 := 1 < ϑ2 := 2minj=1,... d sj/qj < ϑ3 < . . . < ϑn < . . .

14



and
{ϑn : n ∈ N} = {u~t,~q(k) : k ∈ Z

d} . (2.10)

Define

C(r,~t, ~q) := #
{
k ∈ Z

d :

d∏

j=1

(1 + |kj|qj)tj/qj ≤ r
}
, r ≥ 1 , (2.11)

(modification if qj = ∞). Then the function f(r) := C(r,~t, ~q) is a piecewise constant
function, the jumps are located in the points ϑn. These observations imply the following.

Lemma 2.11. Let ~t > 0 and ~q be given. Then, with nm := C(ϑm,~t, ~q), m ∈ N, we have

anm(Id : H
~t,~q
mix(T

d) → L2(T
d)) = 1/ϑm , m ∈ N ,

and

anm+1(Id : H
~t,~q
mix(T

d) → L2(T
d)) = . . . = anm+1(Id : H

~t,~q
mix(T

d) → L2(T
d)) = 1/ϑm+1 ,

m ∈ N.

Remark 2.12. (i) Of course, without precise information on the behavior of the quan-
tities C(r,~t, ~q), Lemma 2.11 is not very useful for practical purposes. But it provides,
at least in principle, complete knowledge on the sequence of approximation numbers

an(Id : H
~t,~q
mix(T

d) → L2(T
d)).

(ii) For any n ∈ N, we can easily construct optimal algorithms Sn of rank less than n.
We choose a set Λn ⊂ Zd with the following properties: the cardinality of Λn equals
n− 1 and if ℓ 6∈ Λn then

sup
k∈Λn

u~t,~q(k) ≤ u~t,~q(ℓ) .

follows. With other words, we select n − 1 vectors k such that the associated values
u~s,~q(k) are the smallest. Then we define

Snf(x) :=
1

(2π)d/2

∑

k∈Λn

ck(f) e
ik·x , x ∈ T

d . (2.12)

Let C(ϑm, ~s, ~q) < n ≤ C(ϑm+1, ~s, ~q). By this construction we get

sup
‖f |H

~t,~q
mix(T

d)‖≤1

‖f − Snf |L2(T
d)‖ =

1

ϑm+1
= an(Id : H

~t,~q
mix(T

d) → L2(T
d)) .

3 Asymptotic behavior and constants

Taking our convention (1.3) into account, Mityagin [36] was the first who showed the
two-sided estimate

c~s,~q(d, ν)n
−s1(lnn)(ν−1)s1 ≤ an(Id : H

~s,~q
mix(T

d) → L2(T
d)) ≤ C~s,~q(d, ν)n

−s1(lnn)(ν−1)s1 ,
(3.1)
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for n ∈ N, n > 1. Here the constants c~s,~q(d, ν) and C~s,~q(d, ν), depending only on d, ν, ~s
and ~q, were not explicitly determined. Our main focus is to clarify, for arbitrary but fixed
d, ν, ~s and ~q, the dependence of these constants on d and ν. In fact, it is necessary to
fix the norms, i.e., the ~q on the spaces H~s

mix(T
d) in advance, since the constants c~s,~q(d, ν)

and C~s,~q(d, ν) in (3.1) depend on the size of the respective unit balls.
We recall a result basically proved in [33].

Proposition 3.1. Let d ∈ N. Let ~s be given by s1 = . . . = sd > 0 and ~q > 0 arbitrary.
Then

lim
n→∞

ns1 an(Id : H
~s,~q
mix(T

d) → L2(T
d))

(lnn)(d−1)s1
=
[ 2d

(d− 1)!

]s1
. (3.2)

Proof . Step 1. Let ~q be a constant vector generated by some q ∈ (0,∞]. Let s1 = . . . =
sd = 1. We shall employ [33, Thm. 4.3] together with [33, Lem. 4.14]. For convenience
of the reader we first recall this lemma. For ℓ ∈ Z, 0 < ε ≤ 1 and d ∈ N let

yℓ :=
1

1 + |ℓ| , Yd(ε) :=
{
k ∈ Z

d : yk1 · · · ykd ≥ ε
}

, Yd(ε) := #Yd(ε) .

Lemma 3.2. Let (zℓ)ℓ∈Z be a sequence indexed by Z such that

0 < zℓ ≤ z0 = 1 for all ℓ 6= 0 and lim
|ℓ|→∞

yℓ
zℓ

= 1 .

Similarly as for (yℓ)ℓ∈Z we define Zd(ε) and Zd(ε) associated to (zℓ)ℓ∈Z . Then we have

lim
ε↓0

Zd(ε)

Yd(ε)
= 1 . (3.3)

There are some simple consequences of Lemma 3.2 which are of interest for us. Taking
logarithms in (3.3) yields

lim
ε↓0

(
lnZd(ε)− lnYd(ε)

)
= 0.

Since lim
ε↓0

Yd(ε) = ∞ , we get

lim
ε↓0

lnZd(ε)

lnYd(ε)
= lim

ε↓0

lnZd(ε)− lnYd(ε)

lnYd(ε)
+ 1 = 1 . (3.4)

Clearly,
ε · Zd(ε)

(lnZd(ε))d−1
=

ε · Yd(ε)

(lnYd(ε))d−1
·
(
lnYd(ε)

lnZd(ε)

)d−1

· Zd(ε)

Yd(ε)
,

and together with

lim
ε↓0

ε · Yd(ε)

(lnYd(ε))d−1
=

2d

(d− 1)!
,
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see [33, formula (4.23)], (3.3) and (3.4) this implies

lim
ε↓0

ε · Zd(ε)

(lnZd(ε))d−1
= lim

ε↓0

ε · Yd(ε)

(lnYd(ε))d−1
=

2d

(d− 1)!
. (3.5)

We will use these arguments with zℓ := (1 + |ℓ|q)−1/q (usual modification if q = ∞).
Rephrasing (3.5) in the language of the numbers C(r,~1, ~q) we conclude

lim
r→∞

C(r,~1, ~q)

r(lnC(r,~1, ~q))d−1
=

2d

(d− 1)!
. (3.6)

Next we employ Lemma 2.11. Hence, (3.6) yields

lim
m→∞

nm anm(Id : H
~1,~q
mix(T

d) → L2(T
d))

(lnnm)(d−1)
= lim

m→∞

C(ϑm,~1, ~q)

ϑm (lnC(ϑm,~1, ~q))d−1
=

2d

(d− 1)!
.

To deal with the general case we shall use simple monotonicity properties. The function
C(r,~1, ~q) is increasing in r and tends to ∞ if r tends to ∞. Hence, for r ≥ r0 the
function C(r,~1, ~q)/(lnC(r,~1, ~q))d−1 is increasing as well, at least for r sufficiently large.
Let nm < n ≤ nm+1. We obtain

n an(Id : H
~1,~q
mix(T

d) → L2(T
d))

(lnn)(d−1)
≤ C(ϑm+1,~1, ~q)

ϑm+1(lnC(ϑm+1,~1, ~q))(d−1)

and
C(ϑm,~1, ~q)

ϑm+1(lnC(ϑm,~1, ~q))(d−1)
≤ n an(Id : H

~1,~q
mix(T

d) → L2(T
d))

(lnn)(d−1)
.

Obviously

lim
m→∞

ϑm

ϑm+1

= 1 .

As a consequence we find

lim
n→∞

n an(Id : H
~1,~q
mix(T

d) → L2(T
d))

(lnn)(d−1)
=

2d

(d− 1)!
.

Step 2. Let ~q be a constant vector generated by some q ∈ (0,∞]. Let ~s := (s, . . . , s) for
some s > 0. Then the claim follows from Step 1 and (2.9).
Step 3. Let ~q = (q1, . . . , qd), qj ∈ (0,∞], j = 1, . . . , d. Let ~s := (s, . . . , s) for some
s > 0. We define

min
j=1,... ,d

qj = γ0 and max
j=1,... ,d

qj = γ1 .

By ~γ0 and ~γ1 we denote the constant vectors generated by γ0 and γ1, respectively. Next
we shall use the chain of inequalities

‖ f |H~s, ~γ1
mix (T

d)‖ ≤ ‖ f |H~s,~q
mix(T

d)‖ ≤ ‖ f |H~s, ~γ0
mix (T

d)‖ .
By Step 1 and Step 2 we know the asymptotic behavior of an(Id : H

~s, ~γi
mix(T

d) → L2(T
d)),

i = 1, 2. From the multiplicativity of the approximation numbers, see also Lemma 2.10,
we finally conclude (3.2). �
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Our goal is to extend the previous result to the situation of non-constant smoothness
vectors. The core observation is given in the following lemma.

Lemma 3.3. Let a = (an)
∞
n=1, b = (bn)

∞
n=1 ∈ c0 be two sequences of positive real numbers

with limit zero, and let (cn)
∞
n=1 denote the non-increasing rearrangement of the tensor

product sequence
a⊗ b = (aj bk)j,k∈N .

Then

lim
j→∞

jβ aj
(log j)α

= λ

for some constants β, λ > 0 and α ≥ 0 implies

lim
n→∞

nβ cn
(log n)α

= λ
( ∞∑

k=1

b
1/β
k

)β
.

Note that the statement remains true even if b /∈ ℓ1/β since then limn→∞
nβ cn

(logn)α
= ∞.

Proof . Step 1. Reduction to the case β = 1. It is enough to prove the claim for β = 1.
Indeed, if we define ãj := a

1/β
j and b̃k := b

1/β
k , then the assumption on (aj)j gives by

taking power 1/β

lim
j→∞

j ãj
(log j)α/β

= λ1/β .

Now the case β = 1 implies for the non-increasing rearrangement (c̃n)
∞
n=1 of

ã⊗ b̃ = (ãj b̃k)j,k∈N = (a
1/β
j b

1/β
k )j,k∈N

that

lim
n→∞

n c̃n
(logn)α/β

= λ1/β

∞∑

k=1

b̃k .

Since c̃n = c
1/β
n and b̃k = b

1/β
k this is equivalent (by taking power β) to

lim
n→∞

nβ cn
(log n)α

= λ
( ∞∑

k=1

b
1/β
k

)β
.

Step 2. The case β = 1. Since the set of products aj · bk does not depend on the ordering
of the sequences we may assume that both sequences are ordered, i.e.,

a1 ≥ a2 ≥ . . . ≥ aj ≥ . . . and b1 ≥ b2 ≥ . . . ≥ bk ≥ . . . .

By homogeneity of the claimed assertion we may also assume that a1 = b1 = 1. In
what follows we use the notation xn ≍ yn if limn→∞ xn/yn = 1. We begin with a simple
observation. Let

N(ε) := #{j ∈ N : aj ≥ ε} , ε > 0 .
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Then, for arbitrary C > 0 and α ≥ 0, it is easy to verify that

aj ≍
C

j
(log j)α as j → ∞ ⇐⇒ N(ε) ≍ C

ε
(log

1

ε
)α as ε → 0 .

By our assumption and this observation we have

N(ε) ≍ λ

ε

(
log

1

ε

)α
=: ϕ(ε) as ε → 0 .

We can apply this observation also to the quantities

M(ε) := #{n ∈ N : cn ≥ ε} = #{(j, k) ∈ N
2 : aj bk ≥ ε} ,

and therefore it is enough to show that

lim
ε→0

M(ε)

ϕ(ε)
= ‖b‖1 .

Substep 2.1. Lower estimate. Clearly we have

M(ε) =

∞∑

k=1

#
{
j ∈ N : aj ≥

ε

bk

}
=

∑

k∈N: bk≥ε

N(ε/bk) , (3.7)

since N(ε/bk) = 0 if ε/bk > a1 = 1. Fix now m ∈ N. Then

lim inf
ε→0

M(ε)

N(ε)
≥ lim

ε→0

m∑

k=1

N(ε/bk)

N(ε)
=

m∑

k=1

bk ,

where we have used that

lim
ε→0

N(λε)

N(ε)
= lim

ε→0

ϕ(λε)

ϕ(ε)
=

1

λ
for every λ > 0 .

Letting m → ∞ implies

lim inf
ε→0

M(ε)

ϕ(ε)
= lim inf

ε→0

M(ε)

N(ε)
≥ ‖b‖1 .

Substep 2.2. A preparation. We claim that the cardinalities

B(ε) := #{k ∈ N : bk ≥ ε} , 0 < ε ≤ 1 ,

satisfy
lim
ε→0

εB(ε) = 0 .
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For convenience of the reader we give a proof. Because of the monotonicity of the bk we
have for all n ∈ N

n b2n ≤
2n∑

k=n+1

bk ≤
∞∑

k=n+1

bk −−−→
n→∞

0 ,

whence limn→∞ n bn = 0, i.e., for all δ ≥ 0 ∃nδ ∈ N such that for all n ≥ nδ it holds
n bn ≤ δ. Let now δ > 0 and 0 < ε ≤ 1 be fixed and bn ≥ ε. Then either n ≤ nδ of
n > nδ and n ε ≤ n bn ≤ δ. This implies

B(ε) ≤ max
(
nδ,

δ

ε

)

and consequently
lim sup

ε→0
εB(ε) ≤ δ .

Since this is true for every δ > 0, we obtain limε→0 εB(ε) = 0.
Substep 2.3 Upper estimate. Fix any δ > 0 and select ε(δ) > 0 such that

N(ε) ≤ (1 + δ)ϕ(ε) for all 0 < ε ≤ ε(δ) . (3.8)

We shall estimate M(ε) via formula (3.7). From bk ≥ ε and k bk ≤ ‖b‖1 we conclude
that the number of summands in (3.7) is equal to B(ε). If ε/bk > ε(δ), we have

N(ε/bk) ≤ N(ε(δ)) ,

and if ε/bk ≤ ε(δ), we estimate

N(ε/bk) ≤ (1 + δ)
λ bk
ε

(
log

bk
ε

)α
≤ (1 + δ)

λ bk
ε

(
log

1

ε

)α
,

where we used the monotonicity of the bn and b1 = 1. Altogether this implies

M(ε)

ϕ(ε)
≤ B(ε) ·N(ε(δ))

ϕ(ε)
+ (1 + δ) ‖b‖1 ≤ εB(ε)

N(ε(δ))

λ (log 1
ε
)α

+ (1 + δ) ‖b‖1

−−→
ε→0

(1 + δ)‖b‖1 ,

where we used Substep 2.2. Hence

lim sup
ε→0

M(ε)

ϕ(ε)
≤ (1 + δ)‖b‖1 .

Since this is true for all δ > 0, the proof is finished. �

Combining Proposition 3.1 and Lemma 3.3 we arrive at the first main result.

Theorem 3.4. Let d ≥ 2 and ~q := (q1, . . . , qd), qj ∈ (0,∞], j = 1, . . . , d. Let ~s be given
by

0 < s1 = s2 = . . . = sν < sν+1 ≤ . . . ≤ sd < ∞
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for some ν, 1 ≤ ν < d. Then

lim
n→∞

ns1 an(Id : H
~s,~q
mix(T

d) → L2(T
d))

(lnn)(ν−1)s1
=
[ 2ν

(ν − 1)!

d∏

j=ν+1

Bj

]s1
, (3.9)

where

Bj := 1 + 2
∞∑

m=1

(1 +mqj)
−

sj
s1 qj , j = ν + 1 , . . . d .

Proof . We shall proceed by induction. Therefore we fix ν ∈ N and the induction runs
with respect to d. First, we investigate the case d = ν + 1. In this situation we choose

aj := aj(Id : H
(s1,... s1),~q
mix (Tν) → L2(T

ν)) , j ∈ N .

Proposition 3.1 yields

lim
j→∞

js1 aj(Id : H
(s1,... s1),~q
mix (Tν) → L2(T

ν))

(ln j)(ν−1)s1
=
[ 2ν

(ν − 1)!

]s1
.

Furthermore we know that (aj)j coincides with the non-increasing rearrangement of the
sequence

ν∏

ℓ=1

(1 + |kℓ|qℓ)−s1/qℓ , k ∈ Z
ν .

We choose
bk := (1 + |k|qν+1)−sν+1/qν+1 , k ∈ Z .

The tensor product sequence is given by

ν+1∏

ℓ=1

(1 + |kℓ|qℓ)−sℓ/qℓ , k ∈ Z
ν+1 .

The non-increasing rearrangement of this sequence, denoted by cn, coincides with the ap-
proximation numbers of the identity operator with respect to (H~s,~q

mix(T
ν+1) → L2(T

ν+1)).

Hence, Lemma 3.3 with β = s1, α = (ν − 1)s1 and λ =
[

2ν

(ν−1)!

]s1
implies

lim
n→∞

ns1 · cn
(logn)(ν−1)s1

=
(
1 + 2

∞∑

k=1

(1 + |k|qν+1)
−

sν+1
s1qν+1

)s1 [ 2ν

(ν − 1)!

]s1
. (3.10)

This coincides with (3.9) in our special situation. The formula (3.10) will serve as the
initial step of our induction. However, in a completely similar way we may prove the
step ν +m → ν +m+ 1 for arbitrary m ∈ N. The proof is finished. �
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Remark 3.5. (i) Clearly, all Bj are finite.
(ii) The fine-index ~q and the “jumps” sj/sν , j = ν + 1, ..., d, influence the asymptotic
behavior (in contrast to the classical mixed case with constant smoothness vector).
(iii) If sν+1 ↓ sν then Bν+1 tends to infinity. This reflects the following. In case

0 < s1 = s2 = . . . = sν = sν+1 < sν+2 ≤ . . . ≤ sd < ∞

we know

lim
n→∞

ns1 an(Id : H
~s,~q
mix(T

d) → L2(T
d))

(lnn)νs1
=
[2ν+1

ν!

d∏

j=ν+2

Bj

]s1
,

see (3.9). Compared to (3.9) the power of the logarithm has changed from (ν − 1)s1 to
νs1. Hence, for sν+1 ↓ sν the right-hand side in (3.9) must approach infinity.
(iv) If sν+1 → ∞, then Bj → 1 for all j ≥ ν + 1 follows, i.e., we are back in the ν-
dimensional case. The approximation numbers an, in some sense, do not see the variables
xν+1, . . . , xd, if n tends to infinity.
(v) There is a general estimate from above for the asymptotic constants

≤
[ 2ν

(ν − 1)!

]s1 [ d∏

j=ν+1

(1 + 2 ζ(sj/s1))
]s1

,

where ζ denotes Riemann’s zeta function, see (4.1) below. This implies that the constant
C~s,~q(d, ν) in (3.1) decays super-exponentially in ν if n is chosen sufficiently large. This
observation can be compared to similar results in Bungartz, Griebel [2], Griebel [18],
Schwab et al. [46], Dinh Dũng, Ullrich [14], Chernov, Dinh Dũng [6], Krieg [27] and [33],
where all these references are dealing with the case ν = d.

In a similar way we can deal with the approximation numbers of the anisotropic
mixed Sobolev spaces an(Id : H

~m
mix(T

d) → L2(T
d)), ~m ∈ N

d, see (2.2).

Theorem 3.6. Let d ≥ 2 and 1 ≤ ν < d. Let ~m ∈ Nd be given by

1 ≤ m1 = m2 = . . . = mν < mν+1 ≤ . . . ≤ md .

Then

lim
n→∞

nm1 an(Id : H
~m
mix(T

d) → L2(T
d))

(lnn)(ν−1)m1

=

[
2ν

(ν − 1)!

d∏

j=ν+1

(
1 + 2

∞∑

ℓ=1

1

(1 + ℓ2 + . . .+ ℓ2mj )1/(2m1)

)]m1

.

Proof . Our main tools are Lemma 3.3 and Corollary 4.21 in [33]. The quoted corollary
yields

lim
n→∞

nm1 an(Iν : H
(m1,... ,m1)
mix (Tν) → L2(T

ν))

(lnn)(ν−1)m1
=
[ 2ν

(ν − 1)!

]m1

. (3.11)
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Temporarily we assume d = ν + 1. From (2.8) we conclude that
an(Id : H

~m
mix(T

d) → L2(T
d)) equals the n-th element in the non-increasing rearrangement

of the tensor product sequence

( ν∏

j=1

ω1(kj)
)−1

(ωmd
(kd))

−1 , k ∈ Z
d ,

see (2.3). Let (an)
∞
n=1 denote the non-increasing rearrangement of the sequence(∏ν

j=1 ω1(kj)
)−1

, (k1, . . . , kν) ∈ Zν . In addition, let (bn)
∞
n=1 be the non-increasing rear-

rangement of the sequence (ωmd
(k))−1, k ∈ Z. By (cn)

∞
n=1 we denote the non-increasing

rearrangement of the tensor product sequence. Then (3.11) yields

λ := lim
n→∞

nm1 an
(lnn)(ν−1)m1

=
[ 2ν

(ν − 1)!

]m1

.

An application of Lemma 3.3 with this positive number λ, β := m1 and α := (ν − 1)m1

leads to

lim
n→∞

nm1 cn
(log n)(ν−1)m1

= λ
( ∞∑

n=1

b1/m1
n

)m1

= λ
(∑

ℓ∈Z

ωmd
(ℓ)−1/m1

)m1

= λ
(
1 + 2

∞∑

ℓ=1

1

(1 + ℓ2 + . . .+ ℓ2md)1/(2m1)

)m1

.

This proves the claim in our special case d = ν + 1. The induction step is using the
same type of arguments, we will not repeat this. �

Remark 3.7. We add a comment. Observe that the sequence of approximation numbers
an(Id : H

~m
mix(T

d) → L2(T
d)) does not have the property

an(Id : H
λ~m
mix(T

d) → L2(T
d)) = an(Id : H

~m
mix(T

d) → L2(T
d))λ , λ ∈ N ,

compare with (2.9). This follows from

ωm1(ℓ)) · ωm2(ℓ)) 6= ωm1+m2(ℓ) , ℓ 6= 0 .

4 Preasymptotics

Meanwhile it is well-known that in case of Sobolev embeddings the qualitative structure
of the bounds for the an in case of large n (the so-called asymptotic case) significantly
differs from those for small n (the so-called preasymptotic case). In this section we deal
with the behavior of the approximation numbers for small n, i.e., n ≤ c 2d, where c will
be specified later.

After some preliminaries we will turn to a detailed discussion of the case of a constant
vector ~s. This simplified situation will be used to discuss our method. Compared to our
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earlier investigations of this case, see [33], this represents a certain progress in quality of
the results as well as in the complexity of the used method (much more simple). Next
we will discuss the case of at least one jump in the sequence ~s. Finally, we will deal with
the case of logarithmically increasing smoothness.

What concerns the dependence on ~q we will proceed as follows. Always it is quite
easy to understand the extremal situation ~q = (∞, . . . ,∞). Next we investigate the

behavior of an(Id : H~s,~1
mix(T

d) → L2(T
d)) (which is of basic importance for the general

situation). Afterwards we deal with the behavior of an(Id : H~s,~q
mix(T

d) → L2(T
d)) for

general ~q, which becomes a simple conclusion of the case ~q = (1, . . . , 1).
Finally, we would like to direct the attention of the reader to the following. In the

preasymptotic range it does not make sense to speak about an optimal approximation
rate. Usually we will prove an estimate in the form

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤ C(d, s)n−γ(n,d)s , 2 ≤ n ≤ c 2d .

Any change of the rate γ(n, d)s can be compensated by a change of the constant C(d, s).
This means, when comparing results one has to discuss C(d, s)n−γ(n,d)s together.

4.1 The crucial lemma

Of basic importance for all what follows are estimates of C(r, ~s, ~q). Therefore we shall
need Riemann’s ζ-function, i.e.,

ζ(t) :=

∞∑

j=1

1

jt
, t > 1 . (4.1)

It will be enough to consider the case ~q = ~1. We put

c(r, d) := C(r, (s1, . . . sd), (1, . . . , 1)) ,

see (2.11).

Lemma 4.1. Let 1 = s1 ≤ s2 ≤ . . . ≤ sℓ ≤ . . . . Then, for any α > 1

c(r, ℓ) ≤ Aα

( ℓ∏

j=2

(2ζ(αsj)− 1)
)
rα (4.2)

holds for all r ≥ 1 and all ℓ ≥ 2, where

Aα := sup
r≥1

2⌊r⌋ − 1

rα
. (4.3)

Proof . We proceed by induction on ℓ. Let ℓ = 1. Then we have

c(r, 1) = 2⌊r⌋ − 1 ≤ Aα r
α
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We put t := sℓ+1. For the next step we shall use the representation formula

c(r, ℓ+ 1) = c(r, ℓ) + 2

⌊r1/t⌋∑

m=2

c(r/mt, ℓ) .

To see this, observe that

#

{
k ∈ Z

ℓ+1 :

ℓ+1∏

j=1

(1 + |kj|)sj ≤ r

}
= #

{
k ∈ Z

ℓ+1 :

ℓ∏

j=1

(1 + |kj|)sj ≤
r

(1 + |kℓ+1|)t
}

= #

{
k ∈ Z

ℓ :

ℓ∏

j=1

(1 + |kj|)sj ≤ r

}

+2

⌊r1/t⌋∑

m=2

#

{
k ∈ Z

ℓ :
ℓ∏

j=1

(1 + |kj|)sj ≤
r

mt

}
.

By means of the representation formula it is now easy to prove (4.2) in case ℓ = 2 which
is our point of departure for the induction. Formula (4.2) represents our induction
hypothesis. Hence, if ℓ ≥ 2

c(r, ℓ+ 1) ≤ Aα

( ℓ∏

j=2

(2ζ(αsj)− 1)
)
rα + 2Aα

( ℓ∏

j=2

(2ζ(αsj)− 1)
) ⌊r1/t⌋∑

m=2

(r/mt)α

≤ Aα

( ℓ∏

j=2

(2ζ(αsj)− 1)
)
rα
(
1 + 2

∞∑

m=2

1

mtα

)

= Aα

( ℓ∏

j=2

(2ζ(αsj)− 1)
)
rα
(
2ζ(tα)− 1

)

= Aα

( ℓ+1∏

j=2

(2ζ(αsj)− 1)
)
rα

as claimed. �

Remark 4.2. It is easy to check that Aα ≤ 2 for α > 1 and Aα = 1 for α ≥ ln(3)/ ln(2) ≈
1.58496.

There exist many contributions in the literature dedicated to this problem (estimates
of C(r, ~s, ~q)). Let us mention here at least [34], [9] and [27]. In [34], [9] the authors are
dealing with the cardinality of weighted Zaremba crosses, see [9], formula (6) on page
69. Such a weighted Zaremba cross coincides with the set C(r,~1, ~∞). In [34] the authors
proved for arbitrary α > 1/s and all r > 0 the inequality

C(r, (s, . . . , s)︸ ︷︷ ︸, (∞, . . . ,∞)︸ ︷︷ ︸) ≤ (2ζ(αs) + 1)d rα .

d times d times
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In [9] the authors obtained the following estimate in dimension d of the form

C(r, (1, . . . 1)︸ ︷︷ ︸, (∞, . . . ,∞)︸ ︷︷ ︸) ≤ (2ζ(α) + 1)d rα

d times d times

for all r ∈ N and α > 1. Observe, that in both estimates there is the number +1 instead
of the number −1 as in our case. The change from d to d−1 seems to be less important.

4.2 A negative result for an(Id : H
~s, ~∞
mix (T

d) → L2(T
d))

This is the most simple case. As usual we assume minj=1,... ,d sj > 0. Because of

C(1, (s1, . . . , sd), (∞, . . . ,∞)) = #
{
k ∈ Z

d :
d∏

j=1

max(1, |kj|)sj ≤ 1
}
= 3d ,

by applying (2.8), we get the following conclusion.

Theorem 4.3. Let d ∈ N. Let ~s = (s1, . . . , sd) be a vector with positive components.
Then

an(Id : H
~s, ~∞
mix (T

d) → L2(T
d)) = 1 , n = 1, 2, . . . , 3d .

Remark 4.4. (i) This is, in some sense, a worst case. There is no approximation at
all for n ≤ 3d (independent on ~s). Only if we are able to spend more than 3d pieces of
information on the function f we probably get an approximation with an error < 1.
(ii) For isotropic Sobolev spaces a similar result has been obtained in [31].
(iii) In a nonperiodic context Novak and Woźniakowski [40] have proved a result in this
spirit for approximation of smooth functions in L∞.

4.3 The preasymptotic decay in case of constant ~s revisited

In this subsection we consider ~s = (s, . . . s) (with a slight abuse of notation) for some
s > 0. First we deal with the case ~q = (1, . . . , 1) = ~1.

The behavior of the an for ~q = ~1. In [33] we already studied the preasymptotics in
case s1 = . . . = sd > 0, see also Dinh Dũng, Ullrich [14], Chernov, Dinh Dũng [6] and
Krieg [27]. Quite recently, in [30], one of the authors improved our result from [33] and
that one of [27] and obtained the following.

Proposition 4.5. Let ~s = (s, . . . s) for some s > 0 and d ∈ N, d ≥ 2. For all n ≥ 6 it
holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤

(16
3n

) s
1+log2 d

. (4.4)
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Now we shall present a simple method based on Lemma 4.1 which will allow us to
improve (4.4) for d large enough. We employ the notation used in Lemma 2.11 and
assume that

c(ϑm, d) < n ≤ c(ϑm+1, d) = nm+1 . (4.5)

Then an = 1/ϑm+1, see Lemma 2.11. Next we use Lemma 4.1 with r = ϑm+1. For any
α > 1 this yields

n ≤ c(ϑm+1, d) ≤ Aα

( ℓ∏

j=2

(2ζ(αsj)− 1)
)
ϑα
m = Aα

( d∏

j=2

(2ζ(αsj)− 1)
)
a−α
n .

Hence

an ≤ A1/α
α

( d∏

j=2

(2ζ(αsj)− 1)
)1/α

n−1/α . (4.6)

This estimate will be used below in various situations, not only in the following one. As
a further preparation we derive a simple estimate of 2ζ(t)− 1. Let t > 1. Obviously it
holds

2ζ(t)− 1 = 1 + 2
∞∑

j=2

1

jt
≤ 1 + 2−t+1 + 2

∫ ∞

2

x−t dx

= 1 + 2−t+1 +
22−t

t− 1
= 1 + 2−t

(
2 +

4

t− 1

)
. (4.7)

Now we turn back to our problem. Let d ≥ 3 and temporarily we assume ~s = ~1. We
choose α := 1 + log2(d− 1). Lemma 4.1 and (4.7) imply

c(r, d)

Aα
≤

(
2ζ(α)− 1

)d−1

rα

≤
[
1 + 2−(1+log2(d−1))

(
2 +

4

log2(d− 1)

)]d−1

rα

=
[
1 +

1

d− 1

(
1 +

2

log2(d− 1)

)]d−1

rα

We put

C(d) :=
[
1 +

1

d− 1

(
1 +

2

log2(d− 1)

)]d−1

, d ≥ 3 . (4.8)

Taking into account Aα = 1 for d ≥ 3 our previous estimate (4.6) leads to

an ≤
(C(d)

n

)1/α

for all n as in (4.5).
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Proposition 4.6. Let ~s = (s, . . . s) for some s > 0 and d ∈ N, d ≥ 3. For all n ≥ 2 it
holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤

(C(d)

n

) s
1+log2(d−1)

, (4.9)

where C(d) is defined in (4.8).

Proof . The case ~s = ~1 has been proved above. The general case follows by an applica-
tion of (2.9). �

Remark 4.7. Observe, that C(d) is strongly decreasing and limd→∞ C(d) = e. A rough
estimate of C(d) is given by

C(d) ≤ e
1+ 2

log2(d−1) .

Here is a list of the first few values of C(d) (to show the improvement in (4.9) compared
to (4.4)):

d C(d) d C(d) d C(d) d C(d)

3 6.250 9 4.545 15 4.254 21 4.103
4 5.396 10 4.476 16 4.222 22 4.084
5 5.063 11 4.419 17 4.195 23 4.067
6 4.866 12 4.370 18 4.169 24 4.050
7 4.730 13 4.326 19 4.145 25 4.034
8 4.627 14 4.288 20 4.123 26 4.020

Hence, beginning with d = 5 (4.9) is better than (4.4).

In [27] and [33] one can find also lower bounds. We are quoting here the result from
Krieg [27].

Proposition 4.8. Let ~s = (s, . . . s) for some s > 0 and d ∈ N, d ≥ 2. For n ≥ 3 we
define

γ(n, d) := log2

(
1 +

2d

log3 n

)
.

For all 3 ≤ n ≤ 3d it holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≥ 2−s n− s

γ(n,d) .

In the meanwhile we know that the structure of the estimate from below is closer to
the optimal one than the other. The correct behavior is not reflected by a simple power
in n, one needs more complicated functions (those as in Proposition 4.8). We proceed
by the same method as in the proof of Proposition 4.6 but changing α now. Let d, n ≥ 2
and

α = α(n, β, d) := 1 + log2

(
2 +

β(d− 1)

lnn

)
,
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where β > 2 will be chosen later on. This choice of α is based on the observation that our
method will produce a convergence rate close to 1/α for the case 1 = s1 = s2 = . . . = sd.
We do not claim that this is the best choice.

As above, we first deal with the simplified case 1 = s1 = s2 = . . . = sd. Lemma 4.1
and (4.7) imply

c(r, d)

Aα
≤

(
2ζ(α)− 1

)d−1

rα

≤
[
1 + 2−(1+log2(2+

β(d−1)
lnn

))
(
2 +

4

log2(2 +
β(d−1)
lnn

)

)]d−1

rα

=
[
1 +

1

2 + β(d−1)
lnn

(
1 +

2

log2(2 +
β(d−1)
lnn

)

)]d−1

rα

Since our aim consists in an investigation of the preasymptotic case we may suppose

2 ≤ n ≤ eβ(d−1)/2 . (4.10)

Observe that

log2

(
2 +

β(d− 1)

lnn

)
≥ 2 ⇐⇒ β(d− 1)

2
≥ lnn .

Hence

c(r, d)

Aα

≤
[
1 +

2 lnn

2 lnn + β(d− 1)

]d−1

rα

≤
[
1 +

2 lnn

β(d− 1)

]d−1

rα

≤ e(2 lnn)/β rα = n2/β rα .

Now we proceed exactly as above. In case c(ϑm, d) < n ≤ c(ϑm+1, d) and with r = ϑm+1

we obtain

an ≤
(Aα n

2/β

n

)1/α
,

see (4.6). Our assumption (4.10) yields Aα = 1, see Remark 4.2. In the following
Proposition we summarize our observations.

Proposition 4.9. Let d ≥ 2 and β > 2. Let ~s = (s, . . . , s) for some s > 0. For all n,
2 ≤ n ≤ ed−1 it holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤ n−γs , (4.11)

where

γ = γ(n, β, d) :=
(1− 2/β)

1 + log2

(
2 + β(d−1)

lnn

) . (4.12)
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Discussion of Proposition 4.9. Define δ := 2/β. Then

γ(n, β, d) >
1

1 + log2(d− 1)
(4.13)

is equivalent to

δ
[(d− 1)1−δ

21+δ
− 1
]
>

d− 1

lnn
. (4.14)

Hence, for any fixed δ ∈ (0, 1), for sufficiently large d, there is always a nonempty interval
for n (not too far away from ed−1) such that (4.13) is true. This general observation can
be made more precise. For given δ and d sufficiently large we fix ε ∈ (0, 1− δ) such that

8 < min
(
δ (d− 1)ε, (d− 1)1−δ

)
. (4.15)

Now we choose σ := δ + ε and n ≥ 3 such that

(d− 1)σ ≤ lnn ≤ 1

δ
(d− 1) .

It follows

d− 1

lnn
≤ (d− 1)1−σ =

(d− 1)1−δ

(d− 1)ε
< (d− 1)1−δ δ

8
≤ δ

[(d− 1)1−δ

21+δ
− 1
]
,

where we used (4.15) in the last step. Hence, Proposition 4.9 improves Proposition 4.6
if

e(d−1)(2/β)+ε

= e(d−1)σ ≤ n ≤ e
1
δ

d−1
2 = e

β
2
(d−1) ,

and (4.15) is satisfied.
Of course, we are interested in the maximum of γ(n, β, d) for fixed n and fixed d.

Therefore we will have a look at the derivative of γ. Then it follows

∂γ

∂β
(n, β, d) =

2β−2
[
1 + log2

(
2 + β(d−1)

lnn

)]
−
(
1− 2

β

)
d−1
lnn

ln 2

[
2+β(d−1)

lnn

]

[
1 + log2

(
2 + β(d−1)

lnn

)]2 .

It will be convenient to write n in the form n = e(d−1)/κ, κ ≥ 1. We define

F (κ, β) := 2
[
1+ log2

(
2+βκ

)]
−
(
β2−2β

) κ

ln 2
[
2 + βκ

] , (κ, β) ∈ [1,∞)× [2,∞) .

For fixed κ we need to find β such that F (κ, β) = 0 since F (κ, β) = 0 implies
∂γ
∂β
(n, β, d) = 0. Because of F (κ, 2) > 0 and F (κ, β) < 0 if β is large enough there exists

always at least one such β. However, there is no explicit formula for β. By numerical
calculations we obtain in case κ = 1 the value

β ∼ 9.59824 .
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This gives

γ(ed−1, 9.59824, d) =
(1− 2/9.59824)

1 + log2

(
2 + 9.59824

) ∼ 0.174528 .

We need to compare this result with the estimates obtained in Proposition 4.6. It turns
out that the estimate in Proposition 4.6 can be written as

aed−1(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤ e−δ(d) s (d−1)

where

d δ(d) d δ(d) d δ(d) d δ(d)

3 0.042 18 0.180 21 0.175 24 0.170
9 0.203 19 0.178 22 0.173 25 0.169
17 0.182 20 0.176 23 0.171 26 0.167

Hence, our optimization of β, which is expressed by the estimate (4.11) (see also (4.12))

aed−1(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤ e−0.174528s(d−1)

leads to an improvement if d ≥ 21. We repeated this procedure for several values of κ,
determining a sequence β(κ) on this way described in the following table.

κ β(κ) κ β(κ) κ β(κ) κ β(κ)

1 9.60 5 67.60 9 143.69 50 1168.94
2 20.72 6 85.58 10 164.15 70 1738.35
3 34.77 7 104.33 20 388.12 100 2637.18
4 50.58 8 123.73 30 634.94 500 16 628.70

For κ ∈ {1, 2, . . . , 10} we may fit β(k) (empirically) via

β(κ) ∼ (4κ+ 1)11/8 .

Now we insert this formula into (4.12) and obtain

γ∗ = γ∗
(
e(d−1)/κ, (4κ+ 1)11/8

)
:=

1− 2
(4κ+1)11/8

1 + log2

(
2 + (4κ+ 1)11/8κ

) . (4.16)

In case κ = 1 this yields

γ∗
(
ed−1, 511/8

)
∼ 0.174462

which is only slightly worse than the rate γ(ed−1, 9.59824, d) ∼ 0.174528.
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Proposition 4.10. Let d ≥ 7 and ~s = (s, . . . , s) for some s > 0. Let κ := (d−1)/ lnn,
n ≥ 2. For all n, 2 ≤ n ≤ ed−1 it holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤ n−γ∗s , (4.17)

where γ∗ is defined in (4.16). At least, if

4 (d− 1)3/5 ≤ lnn ≤ 2 (d− 1)

7
, (4.18)

we have γ∗ > 1
1+log2(d−1)

, i.e., (4.17) improves (4.9).

Proof . Inequality (4.17) is a direct consequence of (4.11) with β chosen as (4κ+1)11/8.
It will be enough to prove sufficiency of (4.18). The inequality γ∗ > 1

1+log2(d−1)
is

equivalent to

log2(d− 1) >
2(1 + log2(d− 1))

(4κ+ 1)11/8
+ log2

(
2 + (4κ+ 1)11/8κ

)
. (4.19)

Looking at this inequality then it becomes clear we need a lower bound for κ (estimate
of the first summand on the right-hand side) and an upper bound for κ (estimate of the
second summand on the right-hand side). Our assumptions in (4.18) can be rewritten
as

7

2
≤ κ ≤ (d− 1)2/5

4
.

Because of d ≥ 7 we conclude (d− 1)2/5 ≥ 2. Since κ > 3 we find

2 + (4κ+ 1)11/8κ ≤ 2 κ (4κ+ 1)11/8 ≤ (d− 1)2/5

2

(
(d− 1)2/5 + 1

)11/8

≤ (d− 1)2/5

2

(3
2
(d− 1)2/5

)11/8

=
1

2

(3
2

)11/8
(d− 1)19/20 .

Hence, we get

log2

(
2 + (4κ+ 1)11/8κ

)
≤ 19

20
log2(d− 1) + log2

1

2

(3
2

)11/8
.

Now we turn to the other summand in (4.19). The inequality

κ ≥ 408/11 − 1

4
∼ 3.4066

is equivalent to
2

(4κ+ 1)11/8
≤ 1

20
.
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Therefore we obtain

2(1 + log2(d− 1))

(4κ+ 1)11/8
+ log2

(
2 + (4κ+ 1)11/8κ

)

<
1

20
+

1

20
log2(d− 1) +

19

20
log2(d− 1) + log2

1

2

(3
2

)11/8
.

Since 1
20

+ log2
1
2

(
3
2

)11/8
< 0 our claim in (4.19) follows. �

The behavior of the an with ~q 6= ~1. Here we suppose ~q 6= ~1, more exactly, we shall
assume that ~q is a constant vector generated by some q > 1. Clearly, by a generalization
of (2.6) and Lemma 2.10 we have some monotonicity of the approximation numbers,
i.e.,

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤ an(Id : H

~s,~q
mix(T

d) → L2(T
d)) ≤ an(Id : H

~s, ~∞
mix (T

d) → L2(T
d))

holds for all n.
Now we extend the results of Propositions 4.6 and (4.11) to constant vectors ~q gen-

erated by any q ≥ 1.

Theorem 4.11. Let ~s = (s, . . . s) for some s > 0. Let ~q be the constant vector generated
by some finite q ≥ 1.
(i) Let d ≥ 3. For all n ≥ 2 it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

(C(d)

n

) s
q (1+log2(d−1))

, (4.20)

where C(d) is defined in (4.8).
(ii) Let d ≥ 7. For all n, 2 ≤ n ≤ ed−1 it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤ n−γ∗s/q ,

where γ∗ is defined in (4.16) (and κ is given by (d− 1)/ lnn).
(iii) Let d ≥ 2. For n > 2 we define

γ(n, d) := log2

(
1 +

2d

log3 n

)
.

For all 2 < n ≤ 3d it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≥ 2−

s
q n− s

q γ(n,d) .

Proof . Part (i) is a direct consequence of Lemmas 2.3, 2.10 and Proposition 4.6. For
the same reasons (ii) follows from Lemmas 2.3, 2.10 and Proposition 4.10. The lower
estimate in part (iii) is essentially proved in Krieg [27]. One has to apply Theorem 4(ii)
in [27] together with the observation

v := #
{
k ∈ Z : us,q(k) = 2s/q

}
= 2 .

This proves the claim. �
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Remark 4.12. (i) Roughly speaking, an(Id : Hs,q
mix(T

d) → L2(T
d)) behaves almost as

an(Id : H
s/q,1
mix (Td) → L2(T

d)) in the preasymptotic range. The index q has a major
impact on the approximation rate. This fits quite well with our observation for the case
q = ∞, see Theorem 4.3.
(ii) The cases q = 1, 2, 2s have been discussed in Krieg [27] with almost the same
outcome.

4.4 The preasymptotic decay in case of a non-constant ~s

Now we continue with the discussion of the following situation. There exists a natural
number ν, 1 ≤ ν < d, such that

0 < s1 = s2 = . . . = sν < t := sν+1 = . . . = sd .

For technical reasons we distinguish into two cases: (i) ν ≥ 5 and (ii) 1 ≤ ν ≤ 4. We
expect the following behavior. If the jump is large enough, then the influence of the
variables xν+1, . . . , xd should almost disappear.

There is one more splitting. As before we study ~q = ~1 first and continue with the
general case afterwards.

The case ~q = ~1. Case (i): Let s1 := 1 and ν ≥ 5. We choose α := 1+log2(ν−1) ≥ 3.
Lemma 4.1, combined with (4.3), yields

c(r, d) ≤
(
2ζ(α)− 1

)ν−1 (
2ζ(αt)− 1

)d−ν

rα .

It will be convenient to use the following modification of (4.7) in case u ≥ 3:

2ζ(u)− 1 = 1 +
2

2u

∞∑

j=2

(2
j

)u
≤ 1 +

2

2u

∞∑

j=2

(2
j

)3

≤ 1 +
16

2u
(ζ(3)− 1) .

The particular value ζ(3) is known with high precision and we have ζ(3) < 1.2021.
Hence

2ζ(u)− 1 < 1 + 3.2326 · 2−u . (4.21)

Since α ≥ 3 we may apply this inequality and therefore, using 1 + x ≤ ex,

(
2ζ(α)− 1

)ν−1

≤ e
3.2326

2 .

Concerning the second factor we argue as follows

(
2ζ(αt)− 1

)d−ν

<
(
1 +

3.2326

2αt

)d−ν

≤ e
3.2326(d−ν)

2αt ≤ e3.2326
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if 2αt ≥ (d− ν), i.e.,
log2(d− ν)

1 + log2(ν − 1)
≤ t .

Altogether this implies
c(r, d) ≤ e3

3.2326
2 rα ≤ 38.02 rα . (4.22)

Arguing as in the previous subsection including the switch from s1 = 1 to s1 > 0 we
obtain the following result.

Theorem 4.13. Let 0 < s1 = s2 = . . . = sν < sν+1 ≤ . . . ≤ sd for some ν ∈ N,
5 ≤ ν < d. Suppose

t :=
sν+1

s1
≥ log2(d− ν)

1 + log2(ν − 1)
. (4.23)

For all n ∈ N it holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤

(38.02
n

) s1
1+log2(ν−1)

.

Proof . By means of Lemma 2.9 the general case is reduced to the particular case
1 = t1 = t2 = . . . = tν < tν+1 ≤ . . . ≤ td with ti := si/s1, i = 1, . . . , d. Now we
observe that the embedding

H
~t,~1
mix(T

d) →֒ H
t1,... ,tν ,tν+1,... ,tν+1,~1
mix (Td)

has norm 1. The multiplicativity of the approximation numbers yields that

an(Id : H
~t,~1
mix(T

d) → L2(T
d)) ≤ an(Id : H

t1,... ,tν ,tν+1,... ,tnu+1,~1
mix (Td) → L2(T

d)) ,

see Lemma 2.10. Concerning the numbers on the right-hand side we may apply the
estimate (4.22). Arguing as several times before this proves (4.23) with ~s replaced by ~t.
An application of Lemma 2.9 with λ = s1 completes the proof. �

Remark 4.14. (i) In Theorem 4.13 we essentially consider the case of two different
smoothness levels. If the jump from sν to sν+1 is large enough, see (4.23), then we get
an estimate of an in which the influence of the variables xν+1, . . . xd has disappeared.
(ii) Our method works as well without the restriction (4.23). However, we believe, that
the case of a big jump is more interesting as that one of a small jump because in the
latter case we are approaching the case of a constant smoothness vector again. So we
skip the details for small jumps here.

Case (ii): Let s1 = 1 and 1 ≤ ν ≤ 4. We choose α = 2 in Lemma 4.1 and obtain

c(r, d) ≤
(
2ζ(2)− 1

)ν−1 (
2ζ(2t)− 1

)d−ν

r2

≤
(π2

3
− 1
)ν−1 (

1 + 2−2t
(
2 +

4

2t− 1

))d−ν

r2 ,
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see (4.7). If t ≥ max
(

3
2
, log2(d−ν)

2

)
, then

(
2ζ(2t)− 1

)d−ν

≤
(
1 +

4

22t

)d−ν

≤
(
1 +

4

d− ν

)d−ν

≤ e4 .

This results in

c(r, d) ≤ e4
(π2

3
− 1
)ν−1

r2 .

Arguing as in prove of Theorem 4.13 we get the following.

Theorem 4.15. Let 0 < s1 = s2 = . . . = sν < sν+1 ≤ . . . ≤ sd for some ν ∈ N,
1 ≤ ν < min(5, d). Suppose

t :=
sν+1

s1
≥ max

(3
2
,
log2(d− ν)

2

)
.

For all n ∈ N it holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤

[
e4
(π2

3
− 1
)ν−1 1

n

] s1
2
.

Remark 4.16. (i) As in the previous Theorem we can make the following observation:
if the jump between sν and sν+1 is large enough, then the influence of the variables
xν+1, . . . , xd disappears.
(ii) We believe that the exponent s1/2 can be improved.

For later use we investigate one more case. Let

ν = 1, d ≥ 5, s1 = 1 and 1 < s2 ≤ . . . ≤ sd .

We choose α := 1 + log2(d − 1) ≥ 3. Applying Lemma 4.1, (4.21) and Aα = 1 we
conclude that

c(r, d) ≤
d∏

j=2

(2ζ(αsj)− 1) rα ≤ (1 + 3.2326 · 2−αs2)d−1 rα

=
(
1 + 3.2326 · 2−s2

1

(d− 1)s2

)d−1

rα

≤ e
3.2326

2s2 (d−1)s2−1 rα .

We define

C(t, d) := eδ(t,d) , δ(t, d) :=
3.2326

2t(d− 1)t−1
. (4.24)

As a consequence we get the following.
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Theorem 4.17. Let d ≥ 5 and 0 < s1 < s2 ≤ . . . ≤ sd. For all n ∈ N it holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤

[C(s2/s1, d)

n

] s1
1+log2(d−1)

,

where C(s2/s1, d) is defined in (4.24).

Remark 4.18. Of course, if d → ∞, then C(t, d) → 1. In particular, if s2/s1 ≥ 2, then
1 < C(s2/s1, d) ≤ e1/4. In such a situation the influence of s2, . . . , sd and therefore of
x2, . . . , xd is rather weak.

The case ~q 6= ~1. Here we will proceed as in the previous paragraph. Theorem 4.13 in
combination with Lemmas 2.3, 2.10 yield the following.

Corollary 4.19. Let 0 < s1 = s2 = . . . = sν < sν+1 ≤ . . . ≤ sd for some ν ∈ N,
5 ≤ ν < d. Let ~q be a constant vector generated by some q > 1. Suppose

t :=
sν+1

s1
≥ log2(d− ν)

1 + log2(ν − 1)
.

For all n ∈ N it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

(38.02
n

) s1
q(1+log2(ν−1))

.

Similarly, Theorem 4.15, Theorem 4.17 and Lemmas 2.3, 2.10 can be used to derive
the next two results.

Corollary 4.20. Let s1 = s2 = . . . = sν < sν+1 ≤ . . . ≤ sd for some ν ∈ N, 1 ≤ ν <
min(5, d). Let ~q be a constant vector generated by some q > 1. Suppose

t :=
sν+1

s1
≥ max

(3
2
,
log2(d− ν)

2

)
.

For all n ∈ N it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

[
e4
(π2

3
− 1
)ν−1 1

n

] s1
2q
.

Corollary 4.21. Let d ≥ 5 and 0 < s1 < s2 ≤ . . . ≤ sd. Let ~q be a constant vector
generated by some q > 1. For all n ∈ N it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

[C(s2/s1, d)

n

] s1
q(1+log2(d−1))

,

where C(s2/s1, d) is defined in (4.24).
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Also the case of non-constant vector ~q can be treated. But here one has to take into
account that a renumbering of the variables will not influence the approximation numbers
of an embedding into L2(T

d). Again our argument will be based on the embedding

H~s,~q
mix(T

d) →֒ H
~s/~q,~1
mix (Td), see Lemma 2.3. Looking at the sequence s1/q1, . . . , sd/qd,

in general, they will have no ordering. Let us denote by r1, r2, . . . , rd the rearranged
sequence with

r1 := min
{sj
qj

: j = 1, . . . , d
}
.

In addition we need the counterpart of ν, defined as

µ := #
{
j ∈ {1, . . . , d} :

sj
qj

= r1

}
.

For simplicity we only consider the generalization of Corollary 4.19.

Corollary 4.22. Let 0 < s1 ≤ s2 ≤ . . . ≤ sd. Let ~q be a finite vector such that
minj=1,... ,d qj > 1. Suppose 5 ≤ µ < d and

t :=
rµ+1

r1
≥ log2(d− µ)

1 + log2(µ− 1)
.

For all n ∈ N it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

(38.02
n

) r1
q(1+log2(µ−1))

.

4.5 The preasymptotic decay for logarithmically growing ~s

In this subsection we consider vectors ~s with strongly increasing components, more
exactly, we shall investigate

sj := 1 + β log2 j , j ∈ N .

Here β > 0 will be chosen later on. This time we will not try to determine the optimal
rate, we will be satisfied with an estimate completely independent of d.

The case ~q = ~1. Let α be any number > 1
β
. Lemma 4.1, combined with (4.7) and the

trivial inequality 1 + x ≤ ex, x ≥ 0, yields

c(r, d) ≤ Aα r
α

d∏

j=2

(
2ζ(αsj)− 1

)
≤ Aα r

α

d∏

j=2

(
2ζ(α+ αβ log2 j)− 1

)

≤ Aα r
α

d∏

j=2

(
1 + 2−(α+αβ log2 j)

(
2 +

4

α+ αβ log2 j − 1

))

≤ Aα r
α e

(6/2α)
∑d

j=2
1

jα β .
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We observe that
d∑

j=2

1

jαβ
= (ζ(αβ)− 1) < ∞

because of α β > 1. For brevity we put

Cα,β :=
6

21/β
(ζ(αβ)− 1) . (4.25)

This implies the following.

Theorem 4.23. Let d ≥ 2 and suppose

sj ≥ (1 + β log2 j) s1 , j ∈ N ,

for some β > 0. Let α > 1/β. Then it holds

an(Id : H
~s,~1
mix(T

d) → L2(T
d)) ≤

(Aα e
Cα,β

n

) s1
α

(4.26)

for all n ∈ N. Here Cα,β is defined in (4.25).

The case ~q 6= ~1. Again we shall work with Lemmas 2.3, 2.10. Then, as a consequence
of Theorem 4.23 we find the following generalization.

Corollary 4.24. Let d ≥ 2 and suppose

sj ≥ (1 + β log2 j) s1 , j ∈ N ,

for some β > 0. Let α > 1/β. Let ~q be a constant vector generated by a finite q > 1.
Then it holds

an(Id : H
~s,~q
mix(T

d) → L2(T
d)) ≤

(Aα e
Cα,β

n

) s1
αq

for all n ∈ N. Here Cα,β is defined in (4.25).

Remark 4.25. Our estimates in this subsection result in polynomial error bounds in-
dependent of d. In other words, if the smoothness components grow moderately then
d does not influence the error bounds. To be more precise, like in the slightly different
situation discussed in [41], we also have here strong polynomial tractability if and only if

lim sup
j→∞

ln j

sj
< ∞ . (4.27)

We restrict ourselves to the case ~q = ~1. Indeed, according to the fundamental result in
[39, Thm. 5.1] strong polynomial tractability holds if and only if

sup
d

∞∑

n=1

a2τn,d < ∞ for some τ > 0 ,
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where an,d = an,d(Id) denotes the n-th approximation number of the respective d-
dimensional problem. Then the index p on the bottom of page 5 above (equivalence
result in [41]) can be chosen as 1/2τ . One is therefore interested in small τ ’s. In our
specific situation (~q = ~1) this condition can be rephrased as

sup
d∈N

∑

k

d∏

j=1

(1 + |kj|)−2sjτ = sup
d∈N

d∏

j=1

(2ζ(2τsj)− 1) < ∞

for some τ > 0 such that δ := inf
i
2τsi > 1. By our estimate in (4.7) we have

1 + 2−t ≤ 2ζ(t)− 1 ≤ 1 + 2−t(2 + 4/(t− 1))

and hence

sup
d

d∏

j=1

(2ζ(2τsj)− 1) < ∞ ⇐⇒
∞∑

j=1

2−2τsj < ∞ . (4.28)

We are now in the same situation as discussed in [41, p. 416]. There it is proved that
the finiteness of the sum in (4.28) for some τ > 0 is equivalent to (4.27). The optimal
tractability index is then p∗ = 1/2τ ∗ with τ ∗ being the infimum over all τ such that
(4.28) is finite. This corresponds to our decay rates above. Note that we additionally
give precise numerical values for the involved constants in the error bounds. Note also
that in case β ↓ 0 the rate s1/α → 0 which represents another illustration of the above
characterization of polynomial tractability given in [41].

5 Embeddings into the energy space

In this last section we shall investigate the preasymptotic behavior of the approximation
numbers of the embeddings

Id : Hs
mix(T

d) → H1(Td) (s > 1, d ∈ N) .

Here we use the short notation Hs
mix(T

d) for the space H~s,~q
mix(T

d) with constant smooth-
ness vector ~s = (s, . . . , s) and constant vector ~q = (2, . . . , 2). The space H1(Td) belongs
to the scale of isotropic Sobolev spaces Hs(Td) of fractional order s > 0, endowed with
the norm

‖f |Hs(Td)‖ :=
[∑

k∈Zd

|ck(f)|2
(
1 +

d∑

j=1

|kj|2
)s]1/2

.

The asymptotic order of the decay of the approximation numbers is well-known, see,
e.g., [19], [14], [3]. It holds

cs(d)n
−(s−1) ≤ an(Id) ≤ Cs(d)n

−(s−1) (5.1)
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for all n ∈ N, with constants depending on s and d but not on n. To the best of our
knowledge, the only preasymptotic estimate so far is given in [31]. We will use a different
technique here. By analogous arguments as in Subsection 2.2 we see that

an(Id : H
s
mix(T

d) → L2(T
d)) = an(Dw : ℓ2(Z

d) → ℓ2(Z
d)),

where the diagonal operator Dw : ℓ2(Z
d) → ℓ2(Z

d) is defined via the weight

w(k) :=

(
1 +

∑d
j=1 |kj|2

)1/2

d∏
j=1

(1 + |kj|2)s/2
, k ∈ Z

d . (5.2)

In order to find preasymptotic estimates for the decay of the non-increasing rearrange-
ment of this weight we use a point-wise larger weight, namely

w(k) ≤

d∏
j=1

(1 + |kj|2)1/2

d∏
j=1

(1 + |kj|2)s/2
=

d∏

j=1

(1 + |kj|2)−(s−1)/2 =: w̃(k) . (5.3)

Then we have
an(Dw) ≤ an(Dw̃) = an(id : Hs−1

mix (T
d) → L2(T

d)) . (5.4)

Applying Theorem 4.11 we obtain the following result.

Proposition 5.1. Let s > 1, d ≥ 3 and n ≥ 2. Then

an(Id : H
s
mix(T

d) → H1(Td)) ≤
(C(d)

n

) s−1
2 (1+log2(d−1))

, (5.5)

where C(d) is defined in (4.8) and ranges in the interval [e, 6.25] depending on d.

Remark 5.2. (i) This result is already an improvement over the one in [31, (8)]. There
two of the authors and S. Mayer gave a similar estimate with a slightly worse exponent,
the constant C = e2 and the range 1 ≤ n ≤ 4d.

(ii) Proposition 5.1 directly implies that the corresponding family of approximation
problems (Id : Hs

mix(T
d) → H1(Td))d∈N is quasi-polynomially tractable in the sense of

Gnewuch and Woźniakowski [17]. See also [14] and the comment after formula (6) in
[31].

This result can be further improved by using a different technique which does not require
the rearrangement of (w(k))k∈Zd. Note that this technique is not new, see for instance
[39, Thm. 5.1 and (5.2)] .

Proposition 5.3. Let s > 1, d ≥ 4 and n ≥ 8.Then

an(Id : H
s
mix(T

d) → H1(Td)) ≤
(e2
n

) s−1
2 log2 d

.

41



Proof . The main idea is to compare (quasi-)norms in Schatten p-classes. Let p := log2 d
s−1

,
and let w(k) and w̃(k) be as before. Then

nan(Id)
2p ≤

∞∑
n=1

an(Id)
2p =

∞∑
n=1

an(Dw)
2p ≤

∞∑
n=1

an(Dw̃)
2p

=
∑
k∈Zd

w̃(k)2p =

(
1 + 2

∞∑
k=1

(1 + k2)−(s−1)p

)d

.

Now setting x := 2
2(s−1)p = 2

d
, we have x2

2
= 2

4(s−1)p and

1 + 2
∞∑

k=1

1

(1 + k2)(s−1)p
= 1 +

2

2(s−1)p
+

2

4(s−1)p

∞∑

k=2

(
4

1 + k2

)(s−1)p

≤ 1 + x+
x2

2
·

∞∑

k=2

(
4

1 + k2

)2

, since (s− 1)p = log2 d ≥ 2 .

Moreover,

∞∑

k=2

(
4

1 + k2

)2

=

(
4

5

)2

+

(
4

10

)2

+

∞∑

k=4

(
4

k2 + 1

)2

≤ 4

5
+ 16

∞∫

3

dx

x4
=

4

5
+

16

81
≤ 1 .

Altogether this implies

nan(Id)
2p ≤

(
1 + x+

x2

2

)d

≤ exd = e2 ,

and therefore

an(Id) ≤
(
e2

n

) 1
2p

=

(
e2

n

) s−1
2 log2 d

.

�

Remark 5.4. We have actually proved a stronger result, namely that

an(Id : H
s
mix(T

d) → H1
mix(T

d)) ≤
(e2
n

) s−1
2 log2 d

,

which, in turn, improves on Theorem 4.11 in case q = 2.

The following proposition will finally use the specific structure of the energy space
in terms of a different estimate for w(k) and gives an improvement over Proposition 5.3
in some situations (see Remark 5.6 below).
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Proposition 5.5. Let s > 1 and d ∈ N such that d ≥ 1 + max{2s−1, 21/(s−1)}. Then,
with

C(d) = e (2.154 + 3/d)

we have for all n ∈ N

an(Id : H
s
mix(T

d) → H1(Td)) ≤
√
d
(C(d)

n

) s
2(1+log2(d−1))

.

Proof . For any p ≥ 1, Hölder’s inequality implies

(
1 +

d∑

j=1

|kj|2
)p

=
((
1 + |k1|2

)
+ |k2|2 + · · ·+ |kd|2

)p

≤ dp−1
[(
1 + |k1|2

)p
+ |k2|2p + · · ·+ |kd|2p

]
,

whence, with the weight w as given in (5.2),

nan(Id)
2p ≤

∞∑

n=1

an(Id)
2p =

∞∑

n=1

an(Dw)
2p =

∑

k∈Zd

(
1 +

∑d
ℓ=1 |kℓ|2

)p

∏d
j=1(1 + |kj|2)sp

≤ dp−1

[
∑

k∈Zd

(1 + |k1|2)p∏d
j=1(1 + |kj|2)sp

+
d∑

ℓ=2

∑

k∈Zd

|kℓ|2p∏d
j=1(1 + |kj|2)sp

]
.

Note that the d− 1 sums over ℓ = 2, ..., d in the last line are all equal. Setting

A :=
∑

k∈Z

1

(1 + |k|2)sp , B :=
∑

k∈Z

1

(1 + |k|2)(s−1)p
, C :=

∑

k∈Z

|k|2p
(|1 + |k|2)sp

and evaluating the sums over k ∈ Zd coordinate by coordinate we obtain

nan(Id)
2p ≤ dp−1Ad−1(B + (d− 1)C) .

It remains to estimate A,B,C. We choose now

p :=
1 + log2(d− 1)

s
.

The above estimates required p ≥ 1, which is equivalent to our assumption d−1 ≥ 2s−1.
For d ≥ 3 we have sp ≥ 1 + log2(d − 1) ≥ 2, and similarly as in the previous proof we
obtain, now with x := 2

2sp
= 1

d−1
,

A = 1 +
2

2sp︸︷︷︸
=x

+
2

4sp︸︷︷︸
=x2

2

((
4

5

)sp

+

(
4

10

)sp

+ . . .

)

︸ ︷︷ ︸
≤( 4

5
)2+( 4

10
)2+···≤1

≤ 1 + x+
x2

2
≤ ex = e1/(d−1) , whence Ad−1 ≤ e .
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In the estimate of the term B + (d− 1)C we use that (s− 1)p ≥ 1, which is equivalent

to 1 + log2(d− 1) ≥ s
s−1

= 1 + 1
s−1

, i.e. equivalent to d− 1 ≥ 2
1

s−1 . We get

B + (d− 1)C = 1 + 2
∞∑

k=1

1

(1 + k2)(s−1)p
+ 2(d− 1)

∞∑

k=1

k2p

(1 + k2)sp

≤ 1 +
2

2(s−1)p︸ ︷︷ ︸
≤1

+2
∞∑

k=2

1

1 + k2
+

2(d− 1)

2sp︸ ︷︷ ︸
=1

+2(d− 1)
∞∑

k=2

1

1 + k2

≤ 3 + 2d

∞∑

k=2

1

1 + k2
≤ d
(3
d
+ 2.154

)
.

Here we used

∞∑

k=1

1

1 + k2
=

π

2
· coth(π) = π

2
· 1.0037418 · · · ≤ 1.577 .

This proves the desired estimate

nan(Id)
2p ≤ dp · e · (2.154 + 3/d)︸ ︷︷ ︸

=C(d)

, hence an(Id) ≤
√
d

(
C(d)

n

) s
2(1+log2(d−1))

.

�

Remark 5.6. For s = 2, Propositions 5.3 and 5.5 give the following estimates:

(i) an
(
Id : H

2
mix(T

d) → H1(Td)
)
≤
(

e2

n

) 1
2 log2 d

(d ≥ 4) ,

(ii) an
(
Id : H

2
mix(T

d) → H1(Td)
)
≤

√
d
(

e (2.154+3/d)
n

) 1
1+log2(d−1)

(d ≥ 3) .

Clearly, in large dimensions and for (moderate) n in the preasymptotic range n ≤ 2d,
the second bound is better.
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[49] S. A. Teljakovskĭı. Some bounds for trigonometric series with quasi-convex coeffi-
cients. Mat. Sb. (N.S.), 63 (105):426–444, 1964.

[50] V. N. Temlyakov. Approximation of periodic functions. Computational Mathemat-
ics and Analysis Series. Nova Science Publishers, Inc., Commack, NY, 1993.

[51] V. N. Temlyakov. Multivariate approximation, volume 32 of Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge, 2018.

[52] J. Weidmann. Lineare Operatoren in Hilberträumen. B. G. Teubner, Stuttgart,
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[53] A. G. Werschulz and H. Woźniakowski. Tractability of multivariate approximation
over a weighted unanchored Sobolev space. Constr. Approx., 30(3):395–421, 2009.
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