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1 Introduction

Four different algorithms for domain decomposed Monte Carlo are outlined,
and the performance of each is measured. These algorithms are implemented
in the KULL IMC package[4] running inside of ALEGRA[1]. This package im-
plements the Implicit Monte Carlo (IMC) scheme for thermal radiation trans-
port of Fleck and Cummings[3].

2 Algorithms

In domain decomposed Monte Carlo, two sets of data must be communicated
between the processors. The nearest neighbors must exchange particles that
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cross processor boundaries. A global communication operation must also be
performed so that all the processors know when all the other processors are
finished moving all the particles. The four algorithms for a time step in the
IMC package vary in how they perform each of these two tasks.

2.1 The KULL IMC Based Algorithms

The original communication method in the KULL IMC package[4] used block-
ing sends and receives to exchange all information. Particles are moved within
a processor and are buffered when they hit a processor boundary. Once all local
particles have been moved, each processor exchanges the number of particles
to exchange with its neighbor, then allocates memory to receive the particles,
and finally processes the incoming particles. A global sum is performed to
tally the total number of particles that are exchanged between processors. If
there are none, the time step finishes, otherwise the exchanged particles are
simulated and the process repeats.

Even though each processor needs to talk with only its neighbors, this al-
gorithm can have a serial communication pattern in certain circumstances. For
example, if you had a square problem domain cut into sixteen sub-domains, it
takes twelve steps to communicate all the data. It should take only four steps
since each processor has at most four neighbors. This serialization is due to the
fact that each processor talks with each of its neighbors one after another, in a
specific order. Even if another neighbor is ready to communicate, a processor
will wait for the next one in its list.

An improved version of this algorithm uses nonblocking receives, as well as
eliminating the separate message for the number of particles. This eliminates
the serialization of the original algorithm.

2.2 Milagro Based Algorithms

The Milagro[5] and ALEGRA-Milagro algorithms both are outlined in Algo-
rithm 1. For particle transport in the domain decomposition topology, each
processor continuously loops until every particle finishes. After simulating N
active particles, the communicator is checked to see if any particles have ar-
rived from neighboring domains on other processors. If incoming particles
have arrived, they are put into the active particle list in a last-in, first-out man-
ner. During transport, particles that leave the processor’s domain are buffered
and eventually sent to the appropriate processors. When a processor has no
more source particles or incoming particles, it deliberately flushes its buffers,
sending only the number of bytes needed to transfer the partially full buffer.
The number of particles that are being sent are encoded into the beginning of
the message buffer, and extracted when the buffer is received. When there ap-
pears to be no more incoming particles, the processor makes any updates to
the global count of finished particles. When all particles have been completed,
the master processor broadcasts the finished status to all the processors.
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The original Milagro algorithm set N = 1 and checked for incoming mes-
sages frequently. This setting was necessary on the SGI Octane “Bluemoun-
tain” supercomputer (now decommissioned) at Los Alamos National Labora-
tory. Even for N = 2, the processors would lock occasionally on that machine.
The Milagro algorithm also looped over MPI requests, making multiple calls
to (MPI Test ).

The original Milagro also uses a fat communication tree for the “particles
completed” messages, where processor zero is the parent of all other nodes.
This means that processor zero checks for many “particles completed” mes-
sages, which causes a load imbalance and poor scaling.

An improved version of the Milagro algorithm uses a binary tree communi-
cation pattern[2] for the asynchronous communication for the “particles com-
pleted” messages and the finished message broadcast. This pattern ensures
that each processor has an even and minimal workload for incoming message
tests.

3 Performance Results

The perfectly load balanced problem is a cube with one centimeter long sides
and is discretized with sixty zones per side for a total of 216,000 zones in
the mesh. All boundaries are reflecting. The box is filled with a uniform,
hot material at T = 1.1604505 · 107 K , with an absorption cross section of
σa = 5000 m−1, with a scattering cross section of σs = 1000 m−1, with a den-
sity of ρ = 1000 kg/m3, and a heat capacity of Cv = 5 · 109 J/K kg. Ten time
steps were computed, each with a constant size of ∆t = 3 ·10−9 sec. With these
parameters, the effective scattering cross section of the Fleck and Cummings
method is approximately σeff = 6000 m−1, or one mean free path per mesh
zone.

Timings include only the particle transport section of the code and not in-
put, output, or startup costs. Each simulation was run three times, and the
minimum time was used to calculate the efficiencies. The simulations were
run on a Linux cluster with dual 3.05 GHz Pentium Xeon nodes and Myrinet
interconnects between the nodes. Both processors on a compute node were
used. In all the results, there is a drop in efficiency from one to two proces-
sors mainly due to the fact that the memory bandwidth is shared between the
processors. A buffer size of 5000 particles and a message check period of 100
particle was used for the ALEGRA-Milagro algorithm.

Figure 1 shows the constant work efficiency of the four algorithms with
four million particles. The constant work parallel efficiency is

εCW =
t1

ntn
, (1)

where n is the number of processors, t1 is the serial run time, and tn is the run
time of the n processor run. The mesh was decomposed into roughly cubic
chunks. The original KULL and Milagro algorithms do not scale well, each for
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Figure 1: Parallel Efficiency, εCW, for the constant work hot box problem.
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a different reason. The KULL algorithm has a serialized communication pat-
tern, as discussed in Section 2.1. In the Milagro algorithm the master processor
spends a lot of time checking for messages from all other processors. This
leads to a significant load imbalance as the number of processors is increased.
The ALEGRA-KULL algorithm scales very well, but begins to suffer from the
multiple global communications within each time step. The ALEGRA-Milagro
algorithm scales nearly perfectly to 244 processors. In fact, the biggest per-
formance decrease happened between one and two processors and is more a
result of machine architecture than of the algorithm behavior.

4 Conclusions

Two production algorithms for asynchronous parallel Implicit Monte Carlo
radiation transport were analyzed and improved. The improved version of
the Milagro algorithm, the ALEGRA-Milagro algorithm, performed the best
by scaling nearly perfectly out to 244 processors on a Linux cluster. The im-
provements were check for messages less frequently and to use a scalable, non-
blocking version of the standard reduce and broadcast functions. It is critical
not to have one processor do more work than the others, even if it seems like
it is a trivial amount of work, such as checking for incoming messages. The
algorithms that used blocking communication do not perform well due to un-
necessary contention for processor time.
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Algorithm 1 ALEGRA-Milagro

get list of neighbor processors
for each neighbor
| post nonblocking receive for maximum buffer size (MPI Irecv )
get children processors
for each child
| post nonblocking receive for particles completed (MPI Irecv )
get parent processor
post nonblocking receive for finished message from parent (MPI Irecv )
Sum to master total number of particles (MPI Reduce )
while not finished
| if any local particles
| | move the last particle in the list to a termination event
| | if particle hit processor boundary
| | | buffer particle
| | | if buffer full
| | | | send particle buffer to neighbor (MPI Send)
| | else
| | | increment local particles completed counter
| for every N particles or if no active particles
| | for each incoming particle buffer (MPI Testsome )
| | | unpack number of incoming particles from buffer
| | | process particles, adding to end of list
| | | repost nonblocking receive (MPI Irecv )
| | for each completed particle message from children (MPI Testsome )
| | | | add to local number of particles completed
| | | | repost nonblocking receive for particles completed (MPI Irecv )
| if no active particles
| | send any partially full particle buffers (MPI Send)
| | send number of particles completed to parent(MPI Send)
| | if not master processor
| | | reset local particles completed to zero
| | if master processor
| | | if all particles completed
| | | | set finished flag
| | | | for each child
| | | | | send finished message (MPI Send)
| | else if finished message from parent (MPI Test )
| | | set finished flag
| | | for each child
| | | | send finished message (MPI Send)
cancel all outstanding nonblocking receives
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